Sequential Discrete Hashing for Scalable Cross-modality Similarity Retrieval

Liu, Li, Lin, Zijia, Shao, Ling, Shen, Fumin, Ding, Guiguang and Han, Jungong (2017) Sequential Discrete Hashing for Scalable Cross-modality Similarity Retrieval. IEEE Transactions on Image Processing, 26 (1). pp. 107-118. ISSN 1057-7149

CSDH_TIP_submit.pdf - Accepted Version

Download (860kB) | Preview
Official URL:


With the dramatic development of the Internet, how to exploit large-scale retrieval techniques for multimodal web data has become one of the most popular but challenging problems in computer vision and multimedia. Recently, hashing methods are used for fast nearest neighbor search in large-scale data spaces, by embedding high-dimensional feature descriptors into a similarity-preserving Hamming space with a low dimension. Inspired by this, in this paper, we introduce a novel supervised cross-modality hashing framework which can generate unified binary codes for instances represented in different modalities. Particularly, in the learning phase, each bit of a code can be sequentially learned with a discrete optimization scheme that jointly minimizes its empirical loss based on a boosting strategy. In a bitwise manner, hash functions are then learned for each modality, mapping the corresponding representations into unified hash codes. We regard this approach as Cross-modality Sequential Discrete Hashing (CSDH) which can effectively reduce the quantization errors arisen in the the oversimplified roundingoff step and thus lead to high-quality binary codes. In the test phase, a simple fusion scheme is utilized to generate a unified hash code for final retrieval by merging the predicted hashing results of an unseen instance from different modalities. The proposed CSDH has been systematically evaluated on three standard datasets: Wiki, MIRFlickr and NUS-WIDE, and the results show that our method significantly outperforms the state-of-the-art multi-modality hashing techniques.

Item Type: Article
Uncontrolled Keywords: Cross-modality Retrieval, Hashing, Discrete Optimization, Bitwise, Unified Hash Code
Subjects: G400 Computer Science
Department: Faculties > Engineering and Environment > Computer and Information Sciences
Depositing User: Jungong Han
Date Deposited: 20 Oct 2016 09:46
Last Modified: 31 Jul 2021 13:36

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics