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Highlights

• An efficient NUBRS-based formulation is proposed to deal with the size effects of
small-scale functionally graded plates.

• A novel seventh-order quasi-3D plate theory with only four unknowns requiring C1-
continuity is used to sufficiently describe the shear deformation and stretching effects
through plate’s thickness.

• A modified couple stress theory with only one material length scale parameter, which
requires second-order derivatives of the unknowns, efficiently captures the size effects
of the microplates.

• The reliability and validity of the proposed method are illustrated by a number of
convergence and comparison results including benchmark numerical examples.

• Effects of material length scale parameter, material index and plate’s aspect ratio on
the mechanical behaviours of microplates are investigated.
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Abstract

The isogeometric analysis associated with a novel quasi-3D shear deformation theory is
proposed to investigate size-dependent behaviours of functionally graded microplates. The
modified couple stress theory with only one material length scale parameter is employed
to effectively capture the size-dependent effects within the microplates. Meanwhile, the
quasi-3D theory which is constructed from a novel seventh-order shear deformation refined
plate theory with four unknowns is able to consider both shear deformations and thickness
stretching effect without requiring shear correction factors. The NURBS-based isogeometric
analysis is integrated to exactly describe the geometry and approximately calculate the
unknown fields with higher-order derivative and continuity requirements. The proposed
approach is successfully applied to study the static bending, free vibration and buckling
responses of rectangular and circular functionally graded microplates with various types
of boundary conditions in which some benchmark numerical examples are presented. A
number of investigations are also conducted to illustrate the effects of the material length
scale, material index, and aspect ratios on the responses of the microplates.
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1. Introduction

Functionally graded materials (FGMs) are composite materials formed of two or more
constituent phases in which material properties vary smoothly within the structure. Con-
sequently, FGMs avoid high interlaminar shear stresses, stress concentration and delamina-
tion phenomena which are often cited as shortcomings of laminated composite materials. A
FGM consisting of ceramic and metal possesses higher thermal resistance and better duc-
tility which are inherited from the ceramic and metal phases, respectively. Owing to these
striking features, FGMs are applicable to various fields of engineering including aerospace,
nuclear power, chemistry and bio-engineering. FGMs have also been widely studied for
various types of structures such as beams [1–4], plates [5–8], and shells [9–11].

Recent advances in technology lead to new industrial fields in which small-scale elements
are involved. Such elements have been applied in micro- and nano-electro-mechanical sys-
tems [12, 13], actuators [14], space and bio-engineering [15]. These applications encourage
new research area that focuses on investigating and predicting the behaviours of such micro
structures. A number of approaches have been employed to analyse the characteristics of
small-scale structures both experimentally and numerically [16, 17]. Indeed, typical struc-
tural sizes range from a few to dozens of polycrystalline grains only, such that the actual
local grain morphology has a strong influence on the global structural behaviour [18]. One
approach is to handle grains explicitly and represent each of them in the model. This leads
to large computational demands because of the lack of scale separation. Such constitutive
models must be able to account for size effects which are characteristic of small-scale struc-
tures. This is confirmed following a number of theoretical and experimental studies of Fleck
et al. [19], Stolken and Evans [20], and Lam et al. [21]. From an experimental observation
from bending test of epoxy polymeric microbeams, Lam et al. [21] point out that the bend-
ing rigidity increases 2.4 times as a result of the reduction of the beam thickness from 115
µm to 20 µm.

In order to take into account the size effects, a number theories have been developed in-
cluding nonlocal elasticity theory [22], strain gradient theory [23], and modified couple stress
theory [24]. It is worth noting that the classical elasticity is fundamentally founded by the in-
troduction of the Hooke’s Law in which the force and the change in displacement are linearly
related via the stiffness of the component where the forces are applied. This physical princi-
ple governs the linearly elastic behaviour of materials. Aiming at a more general description
of materials’ responses, Mindlin and Tiersten [25] and Mindlin [26] developed higher-order
theories of elasticity. Based on the employment of deformation metrics, those theories can
be classified into two categories: strain gradient and couple stress theories. With regard
to the strain gradient theories, this concept was first developed by Fleck and Hutchinson
[23] in which Mindlin’s theory [26] was extended. There are two components, which are
classified using the second-order deformation tensor that include stretch gradient tensor and
rotation gradient tensor [27]. Within the concept of couple stress theory, both strain and
curvature jointly govern the strength of the solid. In addition, while the antisymmetric part
of the second-order deformation gradients represent rotation gradients, the symmetric part
is neglected. Based on the initial ideas of the couple stress theory, a number of attempts
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have been conducted to further develop such concepts that are applicable to size-dependent
problems. Yang et al. [24] proposed the equilibrium of moment of couples which was an ad-
ditional equilibrium relation that forces the couple stress tensor to be symmetric. Therefore,
the deformation energy is only influenced by the symmetric part of the rotation gradient and
the symmetric part of the displacement gradient. In addition, instead of using two material
length scale parameters as needed in the classical couple stress theory, this modified couple
stress theory (MCST) requires only one material length scale parameter to construct the
constitutive relation. Park and Gao [28] utilised the principle of minimum total potential
energy to develop a variational formulation of the MCST. This method not only derives
the equilibrium equations but also forms the introduction of boundary conditions which are
not available in Yang’s theory [24]. Possessing those beneficial characteristics in which a
symmetric couple stress included and only one material length scale parameter involved, the
MCST is considered to have advantages over other size-dependent theories such as classical
couple stress theory and nonlocal theory.

In recent years, the MCST has been applied to study various behaviours at small-scales.
For beam analysis, static bending, buckling, and vibration analysis have been solved using
Euler-Bernoulli [29], Timoshenko [30–33], and higher-order beam theories [34]. The MCST
was also applied to small-scale plate analyses in several ways, Tsiatas [35] initially employed
it to investigate the static bending response of isotropic Kirchhoff microplates. Yin et al. [36]
investigated the vibration behaviour of Kirchhoff microplates using the standard separation
of variables to derive the closed-form solution for natural frequencies. Bending and vibration
behaviours of Mindlin microplates were studied by Ma et al. [37] in which the thickness
stretching effect was also taken into account. With regard to small-scale functionally graded
(FG) structures, a number of investigations have been conducted for FG microbeams and
microplates using the MCST. Static bending and buckling of FG microbeams were studied
by Simsek et al. [38] and Nateghi et al. [39]. Thai and his colleagues utilised the Navier’s
approach to deriving solutions for FG microplates in which Kirchhoff, Mindlin and sinusoidal
plate theories were used [40–42]. Ke et al. [43, 44] employed the p-version of the Ritz method
and different quadrature method to solve free vibration and bending, buckling problems of
the rectangular and annular FG Mindlin microplates, respectively. Using the MCST, a
refined plate theory was utilised to predict the bending, buckling, and vibration behaviours
of FG microplates by He et al. [45] following the Navier approach. Reddy et al. [46–49]
studied the nonlinear behaviour of small-scale FG microplates for different geometries based
on finite element method (FEM) with eleven-unknown C0 element formulation. Most of
these efforts followed either analytical approaches being able to solve specific problem for
a limit set of boundary conditions or C0 FEMs with high number of unknowns which are
computationally expensive.

A large proportion of the studies in small-scale FG structures employs the classical plate
theory (CPT) and the first-order shear deformation theory (FSDT). However, the CPT (or
the Kirchhoff-Love theory), which neglects shear deformation, provides acceptable solutions
for thin plates (i.e. length-to-thickness ratios are larger than 20) only. The FSDT (or
Reissner-Mindlin plate theory), which accounts for transverse shear effects, is applicable for
both thin and moderately thick plates [50–52]. The shortcomings of the FSDT include inac-
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curate distribution of transverse shear strain/stress and violation of traction free boundary
conditions at the top and bottom surfaces. For this reason, shear correction factors are
required to adjust the transverse shear stress distribution. However, these factors vary from
problem to problem and one may find it difficult to choose appropriate values in general.
In order to avoid using shear correction factors, the third-order shear deformation theory
(TSDT) [53], higher-order shear deformation theory (HSDT) [54], sinusoidal shear deforma-
tion theory (SSDT) [55], and refined plate theories (RPT) [56] have been developed yielding
more accurate and robust results. The RPT was initially proposed by Senthilnathan et al.
[56] by employing four independent unknowns which is one less than that of TSDT. Shimpi
et al. [57–59] then further developed the RPT for isotropic and orthotropic plates by using
only two variables. However, HSDT and RPT require the C1-continuity of the generalised
displacements which cause significant challenge to derive the second derivative of deflection
in the framework of finite element analysis (FEA) with C0 elements. In order to overcome
these continuity issues, some C0 approximations [60] and Hermite interpolation functions
with C1 elements [8] which involve adding extra variables of derivative of displacement can
be adopted.

Recently, a new numerical method so-called Isogeometric Analysis (IGA) which is able
to deal with C1-continuity problem without using any additional variables or Hermite in-
terpolation function has been introduced by Hughes and his co-workers [61]. This method
bridges the existing gap between computer-aided design (CAD) and the fields of FEA. The
essential idea of the IGA is that the basis functions, commonly the non-uniform rational
B-splines (NURBS), which are employed to exactly describe the geometry domain will also
be used for approximations of the unknown fields. In addition, these basic functions are
high smoothness and able to tailor the continuity order easily through the domain [61, 62].
With these striking features, the NURBS-based IGA appears to be a potential approach in
dealing with the C1 HSDT and RPT problems [63]. One may find the guidance on computer
implementation of IGA in the literature [64–66]. IGA has been widely implemented in a
number of linearly and non-linearly mechanical and thermal problems such as static, free
vibration, and buckling of laminated composite and FG plates with various plate theories
including layerwise [67], FSDT [68–70], HSDT [71–73], and RPT [63]. The IGA is also
applicable for the analysis of the shell structures [74–76]. However, as far as authors are
aware, there is no work published on the analysis of small-scale plates based on the MCST
and NURBS basis functions.

In this study, the bending, free vibration and buckling behaviours of FG microplates
based on the MCST and four-variable refined plate and quasi-3D theories are investigated
using IGA. While the MCST is employed to capture the small-scale effects, the displacement
fields of those microplates are expressed based on a novel seventh-order refined plate theory
and quasi-3D theory. The mechanical behaviour of FG microplates is then analysed by this
IGA in which NURBS functions are simultaneously used to exactly describe the geometry
and construct the basis functions of the approximations. It is worth mentioning that even
though NURBS may not fully perform their ability to describe geometry exactly since the
plate’s domains investigated in this study are not highly complex, NURBS far outweigh tra-
ditional FEA in the higher-order derivative of approximations which are essentially required
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in the proposed RPT and MCST.
The outline of this study is as follows. The next section presents theories which are

applicable for analysis of FG microplates including MCST, RPT and quasi-3D theory. In
addition, a brief note on FGMs is also introduced in this section. Section 3 focuses on the
IGA and NURBS-based formulation of the quasi-3D theory. The numerical examples which
cover static bending, free vibration and buckling analysis of rectangular and circular FG
microplates with various boundary conditions are provided in Section 4. Finally, conclusions
are given in Section 5.

2. A novel theory for FG microplates

In this section, a brief review on the formulation of the MCST with only one material
length scale that accounts for size-dependent effects is presented. It is followed by the
definitions required to describe FGMs of which the studied microplates are made. The
displacement field of these plates is then derived based on the four-variable refined plate
theory and quasi-3D plate theory where a novel seventh-order shear deformation theory is
proposed.

2.1. Modified couple stress theory

According to the MCST which is proposed by Yang et al. [24], the strain energy density
w for linear isotropic material is a quadratic function of generalised strains

w =
1

2
λ (trεεε)2 + µ

(
εεε : εεε+ `2χ : χ

)
, (1)

where λ and µ are Lamé’s constants, µ is also known as shear modulus which is often denoted
as G, ` represents material length scale parameter and the strain tensor εεε and symmetric
curvature tensor χ are defined by

εεε =
1

2

[
∇u + (∇u)T

]
, (2a)

χ =
1

2

[
∇θ + (∇θ)T

]
, (2b)

where u is the displacement vector and the rotation vector θ is given by

θ =
1

2
curl (u) . (3)

The strain energy U stored in a deformed elastic body is then defined as

U =

∫
V

wdV =

∫
V

(σ : εεε+ m : χ) dV , (4)
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where σ and m are the symmetric stress tensor and the deviatoric part of the symmetric
couple stress tensor, respectively. These components, σ and m, which are conjugated to the
deformation measures εεε and χ, respectively, are given as

σ (εεε) = λ (trεεε) I + 2µεεε, (5a)

m (χ) = 2µ`2χ, (5b)

where I is the identity tensor. Apparently, only one material length scale needed and the
deviatoric couple stress tensor m is also symmetric, from which the MCST is formed.

2.2. Functionally graded material

The model configuration of a FGM which is made of metal and ceramic is illustrated in
Fig. 1. There are several homogeneous models that are employed to estimate the effective
properties of the FGMs. According to the rule of mixtures, the corresponding effective
properties of these FGMs can be expressed as follows

Pe = PmVm + PcVc, (6)

where Pm and Pc are the material properties of the metalic and ceramic phases, respectively,
including the Young’s modulus E, the density ρ and the Poisson’s ratio ν. Meanwhile, Vm
and Vc represent the volume fraction of metal and ceramic phases, respectively, which are
defined as follows [8]

Vc (z) =

(
1

2
+
z

h

)n
, Vm = 1− Vc, −h

2
≤ z ≤ h

2
, (7)

where n is the material index. This equation implies a smooth variation in material prop-
erties governed by the material index n. As can be inferred from Eq. (7), n = 0 leads to
a homogeneous ceramic material while a fully metalic material is obtained as n approaches
+∞.

Nevertheless, the rule of mixtures fails to describe the interaction between the material
phases [77, 78]. Therefore, the Mori-Tanaka scheme [79, 80] was developed which integrates
the effective bulk modulus Ke and shear modulus Ge are given by

Ke −Km

Kc −Km

=
Vc

1 + Vm
Kc−Km

Km+ 4
3
Gm

,
Ge −Gm

Gc −Gm

=
Vc

1 + Vm
Gc−Gm

Gm+f1

, (8)

where

f1 =
Gm (9Km + 8Gm)

6 (Km + 2Gm)
. (9)

The effective Young’s modulus Ee and Poisson’s ratio νe are then defined as

Ee =
9KeGe

3Ke +Ge

, νe =
3Ke − 2Ge

2 (3Ke +Ge)
. (10)

The variation in effective Young’s modulus of Al/Al2O3 estimated by the rule of mixtures
and Mori-Tanaka scheme is depicted in Fig. 2. As can be seen, the effective material property
of the FGM varies continuously from the metal-rich surface at the bottom to the ceramic-rich
surface at the top of the plate.
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2.3. A novel seventh-order shear deformation plate theory

With regard to the plate theories, the third-order shear deformation model initially
proposed by Reddy [53] is widely considered as a reliable theory in which no shear correction
factor is required. In Reddy’s theory, the displacement field, for z ∈ [−h/2;h/2], is defined
as

u (x, y, z) = u0 (x, y) + zβx (x, y) + g (z)
(
βx (x, y) + w,x (x, y)

)
, (11a)

v (x, y, z) = v0 (x, y) + zβy (x, y) + g (z)
(
βy (x, y) + w,y (x, y)

)
, (11b)

w (x, y, z) = w0 (x, y) , (11c)

where the comma notation (,x,,y) indicates a derivative with respect to the spatial variable,

g(z) = −4z3/(3h2) [53] and the variables u0 = [u0 v0]T , w0, and β = [βx βy]
T are

the membrane displacements, the transverse deflection of the mid-plane surface, and the
rotations, respectively. By making further assumptions, w0 = wb + ws, βx = −wb,x, βy =
−wb,y, to Reddy’s theory which contains five unknowns, Senthilnathan [56] proposed the
four-variable refined plate theory which can be expressed in the generalised form as

u (x, y, z) = u0 (x, y)− zwb,x (x, y) + g (z)ws,x (x, y) , (12a)

v (x, y, z) = v0 (x, y)− zwb,y (x, y) + g (z)ws,y (x, y) , (12b)

w (x, y, z) = wb (x, y) + ws (x, y) , (12c)

where wb and ws represent bending and shear components of transverse displacement,
respectively. The function g : z 7−→ g(z) = f(z)− z is employed to describe the distribution
of transverse shear strains and stresses through the plate’s thickness. It is necessary to have
the first derivative of f satisfies the tangential zero value at z = ±h/2 such that the traction-
free condition at top and bottom surfaces is met. Consequently, the shear correction factor
is no longer required for higher-order shear deformation theory and refined plate theory.

It should be noted that both the higher-order shear deformation theory and refined plate
theory fail to capture the thickness stretching effect of normal deformation (εz 6= 0) due to
the constant deflection through the plate thickness which can be inferred from Eq. (12c).
In order to bypass this shortcoming, a number of theories which consider the thickness
stretching effect have been developed [81–83]. Zenkour [84, 85] proposed the four-variable
quasi-3D plate theory accounting for both transverse shear and normal deformations which
can be alternatively expressed as follows

u (x, y, z) = u0 (x, y)− zwb,x (x, y) + f (z)ws,x (x, y) , (13a)

v (x, y, z) = v0 (x, y)− zwb,y (x, y) + f (z)ws,y (x, y) , (13b)

w (x, y, z) = wb (x, y) + φ (z)ws (x, y) . (13c)

As can be observed, this quasi-3D model has a similar form to that of the four-variable
refined plate theory shown in Eq. (12). Indeed, the displacement field based on the refined
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plate theory can be readily obtained by simplifying those of quasi-3D theory in which f
and φ are replaced by g and 1, respectively. In addition, this formulation of quasi-3D
displacement field requires less number of unknowns than that of existing theories [86–88].
It is worth noting that although, by the theoretical material models, the neutral plane of the
functionally graded plate would not perfectly coincide with its mid-plane, the assumption
of their coincidence which is widely used is applied in the above displacement fields.

A number of distribution functions, f and φ, are available for FGM plates based on
higher-order shear deformation theory, refined plate theory, and quasi-3D plate theory. One
may find the general framework to construct such polynomial functions in the recent work of
Nguyen et al. [89]. In this study, a novel seventh-order function of f and its corresponding
function φ are proposed for the four-variable refined plate theory and quasi-3D theory. The
function f which represents the nonlinear distribution of the transverse shear strains and
stresses is carefully chosen to satisfy the traction-free boundary conditions, therefore no
shear correction factor is required for this refined plate theory. In addition, the function’s
coefficients are obtained by conducting optimisation procedure in which the minimisation of
the differences between the outcome results and the existing analytical solutions is considered
as objective functions and the coefficients play roles of design variables. The proposed
functions of f and φ are presented in Table 1 and Fig. 3 along with others existing in the
literature.

According to the displacement field and the strain-displacement relation, which are pre-
sented in Eqs. (13) and (2a), respectively, the following strain expressions can be obtained
as

εεε (x, y, z) = εεε0 + zκb + f (z)κs, (14a)

γγγ (x, y, z) = [f ′ (z) + φ (z)]εεεs, (14b)

where

εεε =

 εx
εy
γxy

 , εεε0 =

 u0,x

v0,y

u0,y + v0,x

 , κb = −

 wb,xx
wb,yy
2wb,xy

 , κs =

 ws,xx
ws,yy
2ws,xy

 ,
γγγ =

[
γxz
γyz

]
, εεεs =

[
ws,x
ws,y

]
, εz = φ′ (z)ws.

(15)

Using Eqs. (13), (3), and (2b), the rotation vector and the curvature vector are expressed
as

θ =

 θx
θy
θz

 =
1

2

 2wb,y − (f ′ − φ)ws,y
−2wb,x + (f ′ − φ)ws,x
v0,x − u0,y

 , (16a)

χ =

 χbχs
χzz

 =

 χb0χs0
0

+

 f ′χb1
f ′′χs2
0

+

 φχb3
φ′χs4
0

 , (16b)
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where

χb =

 χxx
χyy
χxy

 ,χb0 =
1

2

 wb,xy
−wb,xy
wb,yy − wb,xx

 ,χb1 =
1

4

 −2ws,xy
2ws,xy
−ws,yy + ws,xx

 ,χb3 =
1

4

 2ws,xy
−2ws,xy
ws,yy − ws,xx

 ,
χs =

[
χxz
χyz

]
,χs0 =

1

4

[
v0,xx − u0,xy

v0,xy − u0,yy

]
,χs2 =

1

4

[
−ws,y
ws,x

]
,χs4 =

1

4

[
ws,y
−ws,x

]
.

(17)

According to Eq. (5), the constitutive relations for classical and modified couple stress
theories can be presented in an explicit form as

σx
σy
σz
σxy
τxz
τyz


=


Q11 Q12 Q13 0 0 0

Q22 Q23 0 0 0
Q33 0 0 0

Q66 0 0
Q55 0

sym. Q44





εx
εy
εz
εxy
γxz
γyz


, (18a)

mij = 2Ge`
2χij, (18b)

where, for the proposed quasi-3D theory (εz 6= 0), Qij are the three-dimensional elastic
constants which write

Q11 = Q22 = Q33 =
(1− νe)Ee

(1− 2νe) (1 + νe)
,

Q12 = Q13 = Q23 =
νeEe

(1− 2νe) (1 + νe)
,

Q44 = Q55 = Q66 =
Ee

2 (1 + νe)
,

(19)

meanwhile, for the proposed refined plate theory (εz = 0), Qij are reduced plane-stress
elastic constants and are expressed as

Q11 = Q22 =
Ee

1− ν2
e

,

Q12 = Q21 =
Eeνe

1− ν2
e

,

Q44 = Q55 = Q66 =
Ee

2 (1 + νe)
,

(20)

and the shear modulus Ge =
Ee

2(1 + νe)
.

In this study, the weak form of the static bending, vibration, and buckling problems are
derived using the Hamilton’s principle and weak formulation. One can find details on those
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well-known procedures in the literature [63, 90, 91]. Firstly, the weak form of the static
bending of the couple-stress-based microplates subjected to transverse load loading q0 can
be expressed in the following compact form∫

Ω

δεεεTb DbεεεbdΩ +

∫
Ω

δεεεTs DsεεεsdΩ +

∫
Ω

δ (χcb)
T Db

cχ
c
bdΩ +

∫
Ω

δ (χcs)
T Ds

cχ
c
sdΩ

=

∫
Ω

[
δwb + φ

(
h

2

)
δws

]
q0dΩ

, (21)

where the strain tensors and material matrices in the first two terms in Eq. (21) related to
classical elastic theory are

εεεb =


ε0

κb
κs
ws

 , εεεs =

[
ws,x
ws,y

]
, Db =


A B E X
B D F Yb

E F H Ys

X Yb Ys Z33

 , (22)

in which the material matrices are calculated by

(A,B,D,E,F,H) =

h/2∫
−h/2

[
1, z, z2, f (z) , zf (z) , f 2 (z)

]
Q̄dz, (23a)

(
X,Yb,Ys

)
=

h/2∫
−h/2

[φ′ (z) , zφ′ (z) , f (z)φ′ (z)] Q̃dz, (23b)

Z33 =

h/2∫
−h/2

[φ′ (z)]
2
Q33dz, (23c)

Ds =

h/2∫
−h/2

[f ′ (z) + φ (z)]
2
Q̂dz, (23d)

Q̄ =

 Q11 Q12 0
Q21 Q22 0
0 0 Q66

 , Q̃ =

 Q13

Q23

0

 , Q̂ =

[
Q44 0
0 Q55

]
, (23e)

and where the curvature tensors and material matrices in the third and fourth terms in Eq.
(21) representing the couple stress theory are

χcb =

 χb0χb1
χb3

 , χcs =

 χs0χs2
χs4

 , Db
c =

 Ac Bc Ec

Bc Dc Fc

Ec Fc Hc

 , Ds
c =

 Xc Yc Tc

Yc Zc Vc

Tc Vc Wc

 ,
(24)
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in which the material matrices are be defined as

(Ac,Bc,Dc,Ec,Fc,Hc) =

h/2∫
−h/2

(
1, f ′ (z) , [f ′ (z)]

2
, φ (z) , f ′ (z)φ (z) , [φ (z)]2

)
Ḡdz, (25a)

(Xc,Yc,Zc,Tc,Vc,Wc) =

h/2∫
−h/2

(
1, f ′′ (z) , [f ′′ (z)]

2
, φ′ (z) , f ′′ (z)φ′ (z) , [φ′ (z)]

2
)

Ĝdz,

(25b)

where

Ḡ = 2Ge`
2

 1 0 0
0 1 0
0 0 1

 , Ĝ = 2Ge`
2

[
1 0
0 1

]
. (26)

The weak form of the free vibration of the couple-stress-based microplates is briefly
expressed as∫
Ω

δεεεTb DbεεεbdΩ +

∫
Ω

δεεεTs DsεεεsdΩ +

∫
Ω

δ (χcb)
T Db

cχ
c
bdΩ +

∫
Ω

δ (χcs)
T Ds

cχ
c
sdΩ =

∫
Ω

δũTm̃¨̃udΩ,

(27)
where ũ = [u0 − wb,x ws,x v0 − wb,y ws,y wb ws 0]T , and the mass matrix m̃ is
defined by

m̃ =

 I0 0 0
0 I0 0
0 0 I1

 in which I0 =

 I1 I2 I4

I2 I3 I5

I4 I5 I6

 , I1 =

 I1 I7 0
I7 I8 0
0 0 0

 , (28a)

(I1, I2, I3, I4, I5, I6, I7, I8) =

h/2∫
−h/2

ρ
[
1, z, z2, f (z) , zf (z) , f 2 (z) , φ (z) , φ2 (z)

]
dz. (28b)

For buckling analysis, the weak form of the couple-stress-based microplates subjected to
in-plane loading is of the form∫

Ω

δεεεTb DbεεεbdΩ +

∫
Ω

δεεεTs DsεεεsdΩ +

∫
Ω

δ (χcb)
T Db

cχ
c
bdΩ +

∫
Ω

δ (χcs)
T Ds

cχ
c
sdΩ

+

∫
Ω

∇T δ [wb + φ (0)ws] N0∇ [wb + φ (0)ws] dΩ = 0

, (29)

where ∇T = [∂/∂x ∂/∂y]T and N0 =

[
N0
x N0

xy

N0
xy N0

y

]
are the transpose of gradient operator

and matrix of pre-buckling loads, respectively.
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3. FG microplate formulation based on NURBS basis functions

In this section, a brief review on NURBS which serves as the basis functions of IGA
will be presented. It is followed by a novel NURBS-based formulation for couple-stress
microplate bending, free vibration and buckling that rely upon the refined plate theory and
the quasi-3D theory.

3.1. B-splines and NURBS basis functions

The starting point to express NURBS basis functions is a non-decreasing knot vector
Ξ = {ξ1, ξ2, ..., ξn+p+1} where the ith knot ξi ∈ R, n represents the number of basis functions,
and p denotes the polynomial order. The knot vectors can be either uniform if the knots are
equally spaced in the parameter space or open if its first and last knot values are repeated
p+ 1 times. The knot spans which are bounded by knots define element domains.

The B-spline basis functions that are constructed by the Cox-de Boor recursion formula,
starting with the zeroth order (p = 0) are defined by [61, 62]

Ni,0 (ξ) =

{
1 if ξi ≤ ξ < ξi+1,
0 otherwise,

(30a)

Ni,p (ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) , for p ≥ 1, (30b)

in which the fraction 0/0 is defined as zero. While the basis functions are smooth, e.g.
C∞ continuity, within this domain, they are Cp−k continuous across the knots, where k
is the multiplicity of the knot. Therefore, for p ≥ 2, the basis functions are of C1 con-
tinuous at each knot with single multiplicity (single knot) and at the boundary of the
know span. Two-dimensional B-splines are obtained by introducing a second knot vector
H = {η1, η2, ..., ηm+q+1}, where m and q are the number of basis functions and the polyno-
mial in η direction, respectively, and using the tensor product of Ξ and H in the parametric
dimensions yielding

NA (ξ, η) = Ni,p (ξ)Mj,q (η) . (31)

For illustration purposes, Fig. 4 depicts the one- and two-dimensional B-spline basis func-
tions which are generated from the knot vector Ξ = {0, 0, 0, 0, 1/5, 2/5, 3/5, 3/5, 3/5, 4/5, 1, 1, 1, 1}
and its combination with the knot vector H = {0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1}, respectively.

The non-uniform rational B-splines (NURBS) basis functions are then further defined
by providing an additional weight ζA to each control point given by [62]

RA (ξ, η) =
NAζA

n×m∑̂
A

NÂ (ξ, η) ζÂ

. (32)

It is noted that B-splines basis function are special cases of NURBS function. Indeed, if all
the individual weights corresponding the control points are assigned an equal constant, the
NURBS function degenerates to a B-spline function.
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3.2. A novel NURBS-based formulation of modified couple stress theory

By using NURBS basis functions, the displacement variables u of a microplate can be
approximately calculated as follows

uh (ξ, η) =
n×m∑
A=1

RA (ξ, η)qA, (33)

where n × m is the number of basis functions and qA = [u0A v0A wbA wsA]T denotes
the vector of degrees of freedom associated with the control point A. By substituting the
approximations Eq. (33) into the strain-displacement relations Eq. (15), the in-plane and
shear strains can be obtained

[
εT0 κTb κTs εTs

]T
=

n×m∑
A=1

[
(Bm

A )T
(
Bb1
A

)T (
Bb2
A

)T
(Bs

A)T
]T

qA, (34)

where

Bm
A =

 RA,x 0 0 0
0 RA,y 0 0

RA,y RA,x 0 0

 , Bb1
A = −

 0 0 RA,xx 0
0 0 RA,yy 0
0 0 2RA,xy 0

 ,
Bb2
A =

 0 0 0 RA,xx

0 0 0 RA,yy

0 0 0 2RA,xy

 , Bs
A =

[
0 0 0 RA,x

0 0 0 RA,y

]
,

(35)

and the curvatures are obtained by substituting Eq. (33) into Eq. (17) :[
χTb0 χTb1 χTb3 χTs0 χTs2 χTs4

]T
=

n×m∑
A=1

[(
B̃b0
A

)T (
B̃b1
A

)T (
B̃b3
A

)T (
B̃s0
A

)T (
B̃s2
A

)T (
B̃s4
A

)T]T
qA,

(36)

where

B̃b0
A =

1

2

 0 0 2RA,xy 0
0 0 −2RA,xy 0
0 0 (−RA,xx +RA,yy) 0

 , B̃b1
A =

1

4

 0 0 0 −2RA,xy

0 0 0 2RA,xy

0 0 0 (RA,xx −RA,yy)

 ,
B̃b3
A =

1

4

 0 0 0 2RA,xy

0 0 0 −2RA,xy

0 0 0 (−RA,xx +RA,yy)

 , B̃s0
A =

1

4

[
−RA,xy RA,xx 0 0
−RA,yy RA,xy 0 0

]
,

B̃s2
A =

1

4

[
0 0 0 −RA,y

0 0 0 RA,x

]
, B̃s4

A =
1

4

[
0 0 0 RA,y

0 0 0 −RA,x

]
.

(37)

Substituting Eqs. (34) and (36) into Eqs. (21), (27), and (29), the matrix form of
the global equilibrium equations for static bending, free vibration, and buckling can be
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respectively written as follows

Kq = F, (38a)(
K− ω2M

)
q = 0, (38b)

(K− λcrKg) q = 0, (38c)

where the global stiffness matrix K is the summation of the stiffness matrices corresponding
to the classical theory Ks and the couple stress theory Kc, i.e. K = Ks+Kc. These matrices
are calculated as follows

Ks =

∫
Ω




Bm

Bb1

Bb2

Bz


T 

A B E X
B D F Yb

E F H Ys

X Yb Ys Z33




Bm

Bb1

Bb2

Bz

+ (Bs)T DsBs

 dΩ, (39a)

Kc =

∫
Ω




B̃b0

B̃b1

B̃b3


T  Ac Bc Ec

Bc Dc Fc

Ec Fc Hc


B̃b0

B̃b1

B̃b3

+


B̃s0

B̃s2

B̃s4


T  Xc Yc Tc

Yc Zc Vc

Tc Vc Wc


B̃s0

B̃s2

B̃s4


 dΩ,

(39b)

in which Bz
A =

[
0 0 0 RA

]
. The load vector F is given by

F =

∫
Ω

q0RdΩ, (40)

where R =
[

0 0 RA φ
(
h
2

)
RA

]T
, the global mass matrix is computed by

M =

∫
Ω

R̃Tm̃R̃dΩ, (41)

in which R̃ =
{

R1 R2 R3

}T
, where

R1 =

 RA 0 0 0
0 0 −RA,x 0
0 0 0 RA,x

 , R2 =

 0 RA 0 0
0 0 −RA,y 0
0 0 0 RA,y

 , R3 =

 0 0 RA 0
0 0 0 RA

0 0 0 0

 ,
(42)

the geometric stiffness matrix is given as

Kg =

∫
Ω

(Bg)TN0B
gdΩ, (43)

where

Bg =

[
0 0 RA,x φ (0)RA,x

0 0 RA,y φ (0)RA,y

]
, (44)
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and ω and λcr represent the natural frequency and the critical buckling value, respectively.
As can be observed from Eq. (39), by introducing the distribution function f , the four-

variable refined plate theory and quasi-3D theory do not require any shear correction factor,
which is usually needed if the first-order shear deformation theory is applied, to describe the
transverse shear stresses satisfying traction-free conditions. In addition, the expressions of B
and B̃ matrices in Eqs. (35) and (37) show the employment of the second-order derivatives of
the approximation functions RA. Consequently, C1 continuous approximations are required.
This requirement may cause difficulties to finite element analysis which can be solved by
using the mixed interpolation of tensorial components (MITC) or increasing the degrees of
freedom to transform the C1 problems to C0 ones [46, 92, 93]. Apparently, these approaches
results in higher number of variables and larger computational cost. However, within the
platform of isogeometric analysis in which NURBS basis functions are employed, the C1-
continuity requirement is naturally satisfied for p ≥ 2 since the basis functions are Cp−1

continuous across knot spans, i.e. elements. Therefore, the NURBS-based IGA would be a
prominent numerical approach to deal with the proposed four-unknown C1 quasi-3D refined
plate theory and modified couple stress theory.

4. Numerical examples and discussion

In this section, convergence and verification studies are conducted to demonstrate the
accuracy of the novel approaches presented in Section 2 and 3. In order to illustrate the
efficiency of IGA approach in dealing with the MCST, this section is then continued by
the computational analysis of FG rectangular and circular microplates with various types
of boundary conditions for static bending, free vibration and buckling problems. In these
investigations, the FG microplates made of a mixture of metal and ceramic whose material
properties are presented in Table 2 are used. Throughout the numerical examples, unless
otherwise specified, the material length scale ` is chosen as 17.6×10−6m which was suggested
by Lam et al. [21]. There are two types of boundary conditions considered

Simply supported (S)
v0 = wb = ws = 0 at x = 0, a
u0 = wb = ws = 0 at y = 0, b

Clamped (C)
u0 = v0 = wb = ws = 0 and wb,x = wb,y = ws,x = ws,y = 0

It should be noted that, within a IGA approach, while the homogeneous boundary con-
ditions corresponding to the displacement itself, e.g. u0, v0, wb, ws, are easily treated in a
similar way to the traditional finite element method, those require the first derivative of the
displacement components, e.g. wb,x, wb,y, ws,x, ws,y, can be enforced by assigning zero values
to all displacements of control points which are directly related to clamped edges and their
adjacent points [91, 94].

4.1. Convergence and verification studies

In order to evaluate the convergence and reliability of the approaches proposed in Sections
2 and 3, the MCST-based size-dependent analysis of homogeneous fully simply-supported
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(SSSS) square microplate which is shown in Fig. 5 is conducted using RPT model. Mod-
erately thick plates (a/h = 20) with four different values of material length scale ratio
(`/h = 0, 0.2, 0.6, 1) are investigated. For each case, eight different finite element meshes
are analysed to study the convergence rate of the proposed IGA approach. As can be seen
from Table 3, while the fast convergence of the analysis for polynomial order p = 3 and
p = 4 is obtained, solutions using quadratic polynomial p = 2 experience relatively slower
convergence rate toward analytical solutions reported by Thai and Kim [40]. This agrees
well with the expectation in which the higher polynomial functions give better solutions in
terms of accuracy and convergence rate. Fig. 6 presents the convergence study with the
relative error of non-dimensional central deflection of homogeneous square microplates with
respect to the analytical solutions [40]. Based on the convergence study, the cubic (p = 3)
NURBS element mesh of 11× 11 is relatively sufficient for all analysis cases. Therefore, this
mesh whose geometry is shown in Fig. 5 will be used throughout the next examples unless
otherwise specified.

Further investigation on the accuracy of the proposed method is conducted using FG
plates made of alumina and aluminum (Al/Al2O3). In this case, without considering couple
stress effects, the proposed RPT (εz = 0) and quasi-3D (εz 6= 0) theories are applied to
analyses of SSSS square plates using the rule of mixtures. The plates are subjected to uni-

formly and sinusoidally distributed loads which are defined as q0 and q0sin
(πx
a

)
sin
(πy
a

)
,

respectively. As can be observed in Table 4, the present results are in good agreement with
those available in published works using various 2-D and quasi-3D theories. It should be
noted that some numerical results generated from the proposed IGA approach using the
distribution functions from other existing works [53, 84, 91] are also presented in the Table
4 . The above investigations confirm the validity and reliability of the proposed approaches.

4.2. Static bending analysis

In this section, the static bending analysis of FG microplates based on the MCST will
be investigated. The SSSS square microplates are assumed to follow the rule of mixtures.
The aspect ratio a/h, material length scale ratio `/h, and material index n are taken into
account. Table 5 presents the comparison of non-dimensional central deflection of an SSSS
square plate with those of Thai and Kim [40]. While the results generated from the proposed
RPT theory are in very good agreement, quasi-3D theory yields slightly different responses
in terms of displacement. This is attributed to the consideration of the thickness stretching
effect in the quasi-3D theory.

The bending responses of fully-clamped (CCCC) square Al/Al2O3 microplates under
sinusoidally and uniformly distributed loads are further studied and presented in Table 6.
It is noted that since no study on the static behaviours of CCCC microplates using MCST
is reported in the literature, the results are compared with those generated from Reddy’s
HSDT model [53] using the proposed IGA approach. As can be seen, the results based
on Reddy’s model are in excellent agreement with the proposed RPT-based solutions. The
effects of material index n and material length scale ` on the central displacement of a
CCCC square Al/Al2O3 plate are depicted in Fig. 7 in which data are generated by the
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proposed RPT and quasi-3D theories for three different ratios `/h of 0, 0.4 and 1.0. As
can be observed, an increase in the material index n leads to a rise of the plate’s central
deflection due to the decrease in the plate’s stiffness. On the contrary, the growth of the
material length scale ratio `/h is followed by a decline in the displacement. In other words,
for specific material length scale `, the thinner the microplate, the higher plate’s stiffness. It
can be further observed that the discrepancy in terms of central deflection by the proposed
RPT and quasi-3D is significantly decreased as `/h increases and vanishes when `/h = 1.0.
Fig. 8 depicts the deformed configurations of the Al/Al2O3 square microplates with various
boundary conditions subjected to a sinusoidally distributed load in which a/h, `/h and n
are equal to 5, 0.4 and 10, respectively. It should be noted that the deformed shapes of the
microplates are scaled up for illustration purposes.

4.3. Free vibration analysis

In this part, the free vibration analysis of FG microplates based on a MCST is discussed.
The proposed quasi-3D model is initially tested for linear elastic SSSS Al/ZrO2-1 plates
with various theories taking into account the normal shear deformation. It can be seen that
the results given in Table 7 agree well with other published works. The proposed RPT and
quasi-3D models using IGA are further tested for homogeneous square microplates. The
results shown in Table 8 are compared with analytical solutions generated from CPT by
Yin et al. [36] and TSDT by Thai and Kim [40] . As can be observed, while the proposed
RPT model yields slight discrepancy with respect to Yin et al.’s [36] due to their CPT
assumption neglecting shear deformations, it shows excellent agreement with Thai and Kim
[40], especially as plates become thinner, i.e. a/h ratio is relatively large. Due to the
consideration of the thickness stretching effects, the proposed quasi-3D model gives slightly
different results in comparison with other theories which based on assumption of εz = 0.

Table 9 presents non-dimensional natural frequency of SSSS Al/Al2O3 square microplates.
The results are compared with those of Thai and Kim [40] in which an analytical approach
based on TSDT model is employed. Thick (a/h = 5), moderately thick (a/h = 20) and
thin (a/h = 100) microplates are considered. The results reveal good agreement between
the RPT and TSDT [40], especially when the material length scale ratio `/h is small, e.g.
0 or 0.2. On the contrary, the discrepancy becomes larger as `/h gets closer to 1. However,
this phenomenon just happens for thick plates and tends to be less pronounced as the plates
become thinner. Meanwhile, the quasi-3D gives slightly different results compared to that of
RPT model. A general observation from Table 9 reveals that the higher material length scale
ratio is chosen, the larger the natural frequencies of the plates the plate’s stiffness increases.
Fig. 9 presents the variation of the normalised natural frequency of CCCC Al/Al2O3 square
microplate with respect to the material length scale parameter ratio `/h, plate’s aspect ratio
a/h with different values of material index n. Fig. 10 provides a closer look at the effects
of material index n and material length scale ratio `/h on the plate’s natural frequencies
which are computed using the proposed RPT and quasi-3D models.

Similar to the previous case of bending analysis, the plate’s stiffness decreases as a result
of rising in material index n and decreasing material length scale ratio `/h which leads to a
decrease in natural frequency of the plate. In addition, the discrepancy in terms of frequency

17



results predicted by the proposed RPT and quasi-3D becomes less significant as `/h gets
bigger and almost vanish difference when `/h = 1.0. The first six natural frequencies of
Al/Al2O3 square microplates with different types of boundary conditions are given in Table
10 in which the results are generated for n = 1 and `/h = 0.2. The present quasi-3D results
show good agreement with those of Zenkour’s quasi-3D model [84] using the proposed IGA
approach. The first six mode shapes corresponding to the quasi-3D vibration analysis of
CCCC microplates with a/h = 10 are presented in Fig. 11.

In the next step, free vibration of circular plates whose geometry configuration and mesh
are shown in Fig. 12 will be investigated. Since there is no publication on the vibration
behaviours of FG circular microplates based on the MCST, the investigation of circular
plates in this study can serve as benchmark examples. Table 11 presents the fundamental
natural frequencies which are firstly tested for homogeneous plates. Natural frequencies of
plates without considering size-dependent effects (l = 0) are compared with results reported
by Mohammadi et al. [95] and Nguyen et al. [91]. The results show very good agreement
between the theories, especially proposed RPT and Nguyen et al.’s [91] which also uses
another polynomial-based RPT model. Table 12 presents the first six natural frequencies
of Al/Al2O3 circular plates with simple and clamped supports. The plate’s thickness h and
material index n are set as 0.2R and 1, respectively. As in the previous case of square
microplates, Zenkour’s quasi-3D model [84] using the proposed IGA approach is added for
reference purpose since no study can be found for this problem in the literature. The first
six vibration mode shapes of clamped plates with `/h = 0.2 using quasi-3D model are given
in Fig. 13.

4.4. Buckling analysis

The buckling behaviour of square and circular FG microplates is discussed. In order
to verify the proposed method and models in dealing with buckling analysis, the critical
buckling load of SSSS FG microplates bearing biaxial loads is firstly calculated. The results
are compared with analytical solutions based on the CPT and the FSDT by Thai and Choi
[41] and refined plate theory by He et al. [45] for which material properties are E1 = 14.4GPa,
ρ1 = 12.2 × 103kg/m3, E2 = 1.44GPa, ρ2 = 1.22 × 103kg/m3, ν1 = ν2 = 0.38. As can be
seen in Table 13, although there is discrepancy for the case of thick microplates (a/h = 5),
the results predicted by proposed RPT theory are in good agreement with those calculated
by FSDT [41] and RPT [45] as plates become thinner. On the other hand, while CPT-
based solutions are significantly different compared to that of FDST and RPTs due to the
ignorance of shear deformations, especially for thick plates, the proposed quasi-3D theory
which takes into account normal deformation yields similar results with respect to those of
shear deformable theories of FSDT and RPTs.

Table 14 presents the biaxial buckling analysis results of Al/Al2O3 square microplates.
The results are calculated based on the proposed RPT and quasi-3D theories which can serve
as benchmark examples for future references since no result exists in the literature. The first
six non-dimensional biaxial buckling loads of Al/Al2O3 square plates are reported in Table
15 for n = 10 and `/h = 0.2. While the results generated from the proposed quasi-3D and
IGA-based Zenkour’s quasi-3D theories [84] are relatively close to each other for both types
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of boundary conditions, the RPT’s show a clear discrepancy to the other theories, especially
for the CCCC plates. This is due to the consideration of normal deformation of the quasi-
3D theories. For a/h = 5, the first six buckling mode shapes of CCCC plates based on the
proposed quasi-3D theory which are scaled up for illustration purposes are presented in Fig.
14.

Finally, this section ends with a number of investigations on buckling of circular FG
microplates. Table 16 presents the results of the critical buckling loads of CCCC Al/ZrO2-2
circular plates without considering couple stress effects. It should be noted that, for this
particular attempt of comparison purpose, the material volume fractions are defined as
Vm = (0.5− z/h)n and Vc = 1 − Vm [63, 96–98]. The comparison reveals that the results
generated from proposed RPT are in good agreement with those of other shear deformation
theories even with relatively thick and thick plates. The proposed quasi-3D approach yields
slightly different results in all cases.

Table 17 presents the non-dimensional critical buckling loads of Al/Al2O3 circular mi-
croplates with various boundary conditions based on the proposed RPT and quasi-3D theo-
ries. The difference between the two theories is relatively small for both boundary conditions.
The effects of the material index n and material length scale ratio `/h on the critical buck-
ling loads of simple and clamped supports of Al/Al2O3 circular microplates with h/R = 0.2
are illustrated in Fig. 15. Fig. 16 presents the variation of the normalised critical buckling
loads of simply-supported Al/Al2O3 circular microplates with respect to the material length
scale ratio `/h and plate’s aspect ratio a/h with different value of material index n.

The first six buckling loads of Al/Al2O3 circular microplates with various aspect ratios
for n = 1 and `/h = 0.6 along with the results generated from Zenkour’s quasi-3D theory [84]
using proposed IGA approach are reported in Table 18. The first six buckling mode shapes
corresponding to simply-supported circular microplates for h/R = 0.2 based on proposed
quasi-3D theory are presented in Fig. 17.

5. Conclusions

In this study, a novel computational approach, based on the modified couple stress the-
ory, the four-variable refined plate theory and the quasi-3D theory, and the NURBS-based
isogeometric analysis, has been presented to investigate the static bending, free vibration,
and buckling of functionally graded microplates with various geometries and boundary con-
ditions. Within this proposed approach, the mathematical model governing the behaviour of
the plates is constructed based on the modified couple stress theory with only one material
length scale which efficiently accounts for the size dependency in small-scale structures. The
novel seventh-order refined plate theory and quasi-3D theory with only four unknowns are
also presented. This proposed quasi-3D approach not only considers shear deformations but
also is able to accurately capture the thickness stretching effect which is neglected by other
classical, higher-order shear deformation, and refined plate theories. The NURBS-based iso-
geometric analysis is used to exactly describe the geometry and approximately construct the
unknown field in which the higher-order continuity requirement of the proposed kinematical
and constitutive theories are readily satisfied. A number of investigations including novel
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benchmark problems which have never been reported in the literature have confirmed the
validity and efficiency of the proposed approach. The results also reveal that increase of
the material length scale parameter ratio rises the microplate’s stiffness which results in a
decrease in the central displacement and an increase in the natural frequency and buckling
load. On the contrary, an increase in the material index leads to the opposite effect in which
the microplate’s stiffness decreases. For all cases considered, the numerical results that are
generated by the proposed refined plate theory and quasi-3D theory are slightly different due
to the consideration of the thickness stretching effect. However, these discrepancies become
less pronounced as the microplate becomes thinner.
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Table 1: Various forms of distribution function used for HSDT, RPT, and quasi-3D theories

Theory εz f(z) φz
HSDT [53] = 0 z − 4

3
z3

h2
-

RPT [63] = 0 arctan
(
sin
(
π
h
z
))

-

Quasi-3D [84] 6= 0 h sinh
(
z
h

)
− 4z3

3h2
cosh

(
1
2

)
1
12
f ′ (z)

Quasi-3D [88] 6= 0 h
π

sin
(
πz
h

)
− z f ′ (z) + 1

Quasi-3D [91] 6= 0 π
h
z − 9π

5h3
z3 + 28π

25h5
z5 1

8
f ′ (z)

Present RPT = 0 −8z + 10z3

h2
+ 6z5

5h4
+ 8z7

7h6
-

Present quasi-3D 6= 0 −8z + 10z3

h2
+ 6z5

5h4
+ 8z7

7h6
3
20
f ′ (z)
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Table 2: Material properties of FG plates

Property Material
Al Al2O3 ZrO2-1 ZrO2-2

E (GPa) 70 380 200 151
ν 0.3 0.3 0.3 0.3
ρ (kg/m3) 2707 3800 3000 3000
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Table 3: Convergence of non-dimensional central deflections w̄ =
10Eh3

q0L4
w (a/2, a/2, 0) of SSSS homogeneous

square plate subjected to sinusoidally distributed load (a/h = 20)

`/h p Element Mesh Analytical [40]
3×3 5×5 7×7 9×9 11×11 13×13 15×15 17×17

0 0.2842
2 0.2734 0.2799 0.2819 0.2828 0.2833 0.2835 0.2837 0.2838
3 0.2823 0.2841 0.2842 0.2842 0.2842 0.2842 0.2842 0.2842
4 0.2843 0.2842 0.2842 0.2842 0.2842 0.2842 0.2842 0.2842

0.2 0.2430
2 0.2346 0.2397 0.2413 0.2420 0.2424 0.2426 0.2427 0.2428
3 0.2415 0.2430 0.2431 0.2431 0.2431 0.2431 0.2431 0.2431
4 0.2432 0.2431 0.2431 0.2431 0.2431 0.2431 0.2431 0.2431

0.6 0.1124
2 0.1098 0.1115 0.1121 0.1123 0.1125 0.1125 0.1126 0.1126
3 0.1120 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127
4 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127

1 0.0542
2 0.0532 0.0539 0.0541 0.0542 0.0543 0.0543 0.0543 0.0543
3 0.0541 0.0544 0.0544 0.0544 0.0544 0.0544 0.0544 0.0544
4 0.0544 0.0544 0.0544 0.0544 0.0544 0.1127 0.1127 0.1127
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Table 4: Comparison of non-dimensional deflections w̄ =
10Ech

3

q0L4
w (a/2, b/2, 0) of SSSS Al/Al2O3 square

plates (rule of mixtures scheme)

n Theory εz = 0 εz 6= 0
a/h = 4 a/h = 10 a/h = 100 a/h = 4 a/h = 10 a/h = 100

Sinusoidally distributed load
1 Zenkour [84] - - - 0.6828 0.5592 0.5624

Neves et al. [86] - - - 0.6997 0.5845 0.5624
Mantari and Soares [99] - - - 0.693 0.569 0.545
Carrera et al. [81] 0.7289 0.5890 0.5625 0.7171 0.5875 0.5625
Akavci and Tanrikulu [100] 0.7282 0.5889 0.5625 0.6908 0.5691 0.5457
IGA-Reddy [53] 0.7284 0.5889 0.5625 - - -
IGA-Zenkour [84] 0.7284 0.5889 0.5625 0.6828 0.5592 0.5459
IGA-Nguyen et al. [91] 0.7275 0.5888 0.5625 0.6880 0.5640 0.5422
IGA-Present† 0.7284 0.5889 0.5625 0.6935 0.5691 0.5460

4 Zenkour [84] - - - 1.1001 0.8404 0.7933
Neves et al. [86] - - - 1.1178 0.8750 0.8286
Mantari and Soares [99] - - - 1.085 0.838 0.793
Carrera et al. [81] 1.1673 0.8828 0.8286 1.1585 0.8821 0.8286
Akavci and Tanrikulu [100] 1.1613 0.8818 0.8287 1.0983 0.8417 0.7925
IGA-Reddy [53] 1.1598 0.8815 0.8287 - - -
IGA-Zenkour [84] 1.1599 0.8815 0.8287 1.1001 0.8404 0.7933
IGA-Nguyen et al. [91] 1.1625 0.8820 0.8287 1.0931 0.8363 0.7875
IGA-Present† 1.1590 0.8813 0.8287 1.0868 0.8392 0.7933

10 Zenkour [84] - - - 1.3391 0.9806 0.9140
Neves et al. [86] - - - 1.3490 0.8750 0.8286
Mantari and Soares [99] - - - 1.308 0.972 0.911
Carrera et al. [81] 1.3925 1.0090 0.9361 1.3745 1.0072 0.9361
Akavci and Tanrikulu [100] 1.3917 1.0089 0.9362 1.3352 0.9818 0.9141
IGA-Reddy [53] 1.3908 1.0087 0.9362 - - -
IGA-Zenkour [84] 1.3908 1.0087 0.9362 1.3391 0.9806 0.9140
IGA-Nguyen et al. [91] 1.3914 1.0089 0.9362 1.3260 0.9760 0.9096
IGA-Present† 1.3902 1.0086 0.9362 1.3116 0.9748 0.9132

Uniformly distributed load
1 Zenkour [101] - 0.9287 - - - -

Akavci and Tanrikulu [100] - 0.9288 - - 0.8977 -
IGA-Reddy [53] 1.1319 0.9288 0.8904 - - -
IGA-Zenkour [84] 1.1319 0.9288 0.8904 1.0611 0.8822 0.8641
IGA-Nguyen et al. [91] 1.1308 0.9286 0.8904 1.0701 0.8898 0.8582
IGA-Present† 1.1319 0.9288 0.8904 1.0788 0.8978 0.8642

4 Zenkour [101] - 1.3890 - - - -
Akavci and Tanrikulu [100] - 1.3888 - - 1.3259 -
IGA-Reddy [53] 1.7941 1.3884 1.3116 - - -
IGA-Zenkour [84] 1.7942 1.3884 1.3116 1.7020 1.3238 1.2556
IGA-Nguyen et al. [91] 1.7983 1.3892 1.3116 1.6919 1.3174 1.2464
IGA-Present† 1.7928 1.3882 1.3116 1.6827 1.3223 1.2556

10 Zenkour [101] - 1.5876 - - - -
Akavci and Tanrikulu [100] - 1.5875 - - 1.5453 -
IGA-Reddy [53] 2.1442 1.5872 1.4818 - - -
IGA-Zenkour [84] 2.1442 1.5872 1.4818 2.0656 1.5433 1.4466
IGA-Nguyen et al. [91] 2.1454 1.5876 1.4818 2.0466 1.5362 1.4397
IGA-Present† 2.1432 1.5870 1.4818 2.0244 1.5347 1.4454

†Proposed RPT and quasi-3D models are used for the case of εz = 0 and εz 6= 0, respectively.



Table 5: Non-dimensional deflection w̄ =
10Ech

3

q0L4
w (a/2, b/2, 0) of SSSS Al/Al2O3 square microplates sub-

jected to sinusoidally distributed load (rule of mixtures scheme)

a/h `/h n = 0 n = 1 n = 10
RPT Quasi-3D TSDT[40] RPT Quasi-3D TSDT[40] RPT Quasi-3D TSDT[40]

5 0 0.3433 0.3360 0.3433 0.6688 0.6401 0.6688 1.2271 1.1663 1.2276
0.2 0.2898 0.2853 0.2875 0.5505 0.5321 0.5468 1.0400 1.0019 1.0247
0.4 0.1975 0.1965 0.1934 0.3601 0.3537 0.3535 0.7140 0.7043 0.6908
0.6 0.1292 0.1296 0.1251 0.2288 0.2274 0.2224 0.4694 0.4711 0.4514
0.8 0.0871 0.0879 0.0838 0.1517 0.1520 0.1464 0.3174 0.3220 0.3052
1 0.0614 0.0623 0.0588 0.1060 0.1069 0.1017 0.2242 0.2289 0.2158

20 0 0.2842 0.2836 0.2842 0.5689 0.5516 0.5689 0.9537 0.9280 0.9538
0.2 0.2431 0.2427 0.2430 0.4739 0.4619 0.4737 0.8313 0.8120 0.8303
0.4 0.1695 0.1694 0.1693 0.3157 0.3105 0.3153 0.6001 0.5906 0.5986
0.6 0.1127 0.1127 0.1124 0.2029 0.2008 0.2025 0.4102 0.4061 0.4090
0.8 0.0767 0.0768 0.0765 0.1352 0.1343 0.1349 0.2842 0.2825 0.2834
1 0.0544 0.0544 0.0542 0.0947 0.0943 0.0944 0.2038 0.2031 0.2033

100 0 0.2804 0.2803 0.2804 0.5625 0.5460 0.5625 0.9362 0.9132 0.9362
0.2 0.2401 0.2400 0.2401 0.4689 0.4574 0.4689 0.8176 0.8001 0.8176
0.4 0.1677 0.1677 0.1677 0.3128 0.3076 0.3128 0.5925 0.5833 0.5925
0.6 0.1116 0.1116 0.1116 0.2012 0.1990 0.2011 0.4062 0.4018 0.4061
0.8 0.0760 0.0760 0.0760 0.1341 0.1332 0.1341 0.2820 0.2799 0.2820
1 0.0539 0.0539 0.0539 0.0939 0.0934 0.0939 0.2024 0.2014 0.2024
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Table 6: Non-dimensional deflection w̄ =
10Ech

3

q0L4
w (a/2, b/2, 0) of CCCC Al/Al2O3 square microplates (rule

of mixtures scheme)

a/h `/h n = 0 n = 1 n = 10
RPT Quasi-3D IGA-Reddy RPT Quasi-3D IGA-Reddy RPT Quasi-3D IGA-Reddy

Sinusoidally distributed load
5 0 0.1601 0.1359 0.1601 0.3021 0.2554 0.3020 0.6111 0.4740 0.6113

0.2 0.1378 0.1197 0.1377 0.2555 0.2214 0.2554 0.5178 0.4199 0.5183
0.4 0.0974 0.0883 0.0973 0.1751 0.1586 0.1751 0.3568 0.3132 0.3575
0.6 0.0655 0.0616 0.0655 0.1151 0.1081 0.1151 0.2358 0.2204 0.2364
0.8 0.0450 0.0435 0.0449 0.0779 0.0752 0.0779 0.1602 0.1559 0.1606
1 0.0321 0.0316 0.0320 0.0551 0.0542 0.0551 0.1136 0.1134 0.1139

20 0 0.1035 0.0950 0.1035 0.2065 0.1863 0.2065 0.3505 0.3150 0.3505
0.2 0.0919 0.0849 0.0919 0.1797 0.1638 0.1797 0.3150 0.2857 0.3151
0.4 0.0688 0.0645 0.0688 0.1294 0.1204 0.1294 0.2419 0.2237 0.2420
0.6 0.0485 0.0462 0.0485 0.0882 0.0837 0.0882 0.1746 0.1647 0.1747
0.8 0.0343 0.0331 0.0343 0.0611 0.0587 0.0611 0.1258 0.1204 0.1258
1 0.0250 0.0243 0.0250 0.0438 0.0425 0.0438 0.0926 0.0896 0.0926

100 0 0.0999 0.0955 0.0999 0.2003 0.1872 0.2003 0.3336 0.3131 0.3336
0.2 0.0889 0.0853 0.0889 0.1746 0.1643 0.1746 0.3013 0.2842 0.3013
0.4 0.0668 0.0646 0.0668 0.1262 0.1204 0.1262 0.2336 0.2228 0.2336
0.6 0.0473 0.0461 0.0473 0.0863 0.0835 0.0863 0.1701 0.1640 0.1701
0.8 0.0336 0.0329 0.0336 0.0599 0.0584 0.0599 0.1232 0.1199 0.1233
1 0.0244 0.0241 0.0244 0.0430 0.0422 0.0430 0.0910 0.0891 0.0910

Uniformly distributed load
5 0 0.2239 0.1860 0.2238 0.4220 0.3500 0.4219 0.8557 0.6408 0.8559

0.2 0.1924 0.1641 0.1924 0.3566 0.3040 0.3565 0.7233 0.5701 0.7239
0.4 0.1358 0.1215 0.1358 0.2443 0.2186 0.2442 0.4976 0.4286 0.4985
0.6 0.0914 0.0851 0.0913 0.1606 0.1495 0.1605 0.3288 0.3034 0.3295
0.8 0.0627 0.0602 0.0627 0.1087 0.1041 0.1087 0.2234 0.2154 0.2239
1 0.0447 0.0439 0.0447 0.0769 0.0752 0.0769 0.1584 0.1570 0.1588

20 0 0.1436 0.1300 0.1436 0.2864 0.2553 0.2864 0.4863 0.4307 0.4863
0.2 0.1275 0.1164 0.1275 0.2493 0.2248 0.2493 0.4372 0.3912 0.4373
0.4 0.0956 0.0887 0.0956 0.1797 0.1657 0.1797 0.3360 0.3072 0.3361
0.6 0.0674 0.0637 0.0674 0.1227 0.1156 0.1227 0.2428 0.2269 0.2429
0.8 0.0478 0.0457 0.0478 0.0850 0.0813 0.0850 0.1750 0.1664 0.1751
1 0.0348 0.0336 0.0348 0.0610 0.0589 0.0610 0.1289 0.1240 0.1289

100 0 0.1384 0.1314 0.1384 0.2775 0.2577 0.2775 0.4622 0.4310 0.4622
0.2 0.1232 0.1174 0.1232 0.2421 0.2265 0.2421 0.4176 0.3915 0.4176
0.4 0.0927 0.0891 0.0927 0.1751 0.1664 0.1751 0.3242 0.3075 0.3242
0.6 0.0657 0.0637 0.0657 0.1199 0.1155 0.1199 0.2363 0.2268 0.2363
0.8 0.0467 0.0456 0.0467 0.0833 0.0810 0.0833 0.1713 0.1661 0.1713
1 0.0340 0.0334 0.0340 0.0598 0.0586 0.0598 0.1266 0.1236 0.1266
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Table 7: Comparison of non-dimensional natural frequencies ω̄ = ω
a2

h

√
ρm
Em

of SSSS Al/ZrO2-1 plates

(Mori-Tanaka scheme)

Theory n = 1 a/h = 5
a/h = 5 a/h = 10 a/h = 20 n = 2 n = 3 n = 5

Vel and Batra [102] 5.4806 5.9609 6.1076 5.4923 5.5285 5.5632
Matsunaga [103] 5.7123 6.1932 6.3390 5.6599 5.6757 5.7020
Neves et al. [86] 5.4825 5.9600 6.1200 5.4950 5.5300 5.5625
Belabed et al. [104] 5.4800 5.9700 6.1200 5.5025 5.5350 5.5625
Alijani and Amabili [105] 5.4796 5.9578 6.1040 5.4919 5.5279 5.5633
Akavci and Tanrikulu [100] 5.4829 5.9676 6.1160 5.5064 5.5388 5.5644
Present 5.5172 6.0023 6.1505 5.5324 5.5642 5.5886
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Table 8: Comparison of non-dimensional natural frequencies ω̄ = ω
a2

h

√
ρ

E
of SSSS homogeneous microplates

a/h Theory `/h
0 0.2 0.4 0.6 0.8 1

5 CPT [36] 5.9734 6.4556 7.7239 9.4673 11.4713 13.6213
TSDT [40] 5.2813 5.7699 7.0330 8.7389 10.6766 12.7408
RPT (Present) 5.2813 5.7496 6.9667 8.6191 9.8943 9.9791
Quasi-3D (Present) 5.3090 5.7622 6.9438 8.5509 9.8943 9.9791

20 CPT [36] 5.9734 6.4556 7.7239 9.4673 11.4713 13.6213
TSDT [40] 5.9199 6.4027 7.6708 9.4116 11.4108 13.5545
RPT (Present) 5.9199 6.4009 7.6646 9.4005 11.3945 13.5330
Quasi-3D (Present) 5.9235 6.4030 7.6633 9.3952 11.3854 13.5202

100 CPT [36] 5.9734 6.4556 7.7239 9.4673 11.4713 13.6213
TSDT [40] 5.9712 6.4535 7.7217 9.4651 11.4689 13.6186
RPT (Present) 5.9712 6.4534 7.7215 9.4646 11.4682 13.6178
Quasi-3D (Present) 5.9723 6.4544 7.7222 9.4650 11.4683 13.6177
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Table 9: Non-dimensional natural frequency ω̄ = ω
a2

h

√
ρc
Ec

of SSSS Al/Al2O3 square plates (rule of mixtures

scheme)

a/h `/h n = 0 n = 1 n = 10
RPT Quasi-3D TSDT[40] RPT Quasi-3D TSDT[40] RPT Quasi-3D TSDT[40]

5 0 5.2813 5.3090 5.2813 4.0781 4.1521 4.0781 3.2519 3.3126 3.2514
0.2 5.7496 5.7622 5.7699 4.4959 4.5542 4.5094 3.5312 3.5740 3.5548
0.4 6.9667 6.9438 7.0330 5.5620 5.5865 5.6071 4.2584 4.2627 4.3200
0.6 8.6191 8.5509 8.7389 6.9822 6.9681 7.0662 5.2471 5.2115 5.3335
0.8 9.8943 9.8943 10.6766 8.2313 8.2313 8.7058 5.8571 5.8571 6.4759
1 9.9791 9.9791 12.7408 8.3019 8.3019 10.4397 5.9073 5.9073 7.6895

20 0 5.9199 5.9235 5.9199 4.5228 4.5919 4.5228 3.7623 3.8129 3.7622
0.2 6.4009 6.4030 6.4027 4.9556 5.0179 4.9568 4.0299 4.0761 4.0323
0.4 7.6646 7.6633 7.6708 6.0714 6.1203 6.0756 4.7428 4.7794 4.7488
0.6 9.4005 9.3952 9.4116 7.5739 7.6107 7.5817 5.7369 5.7640 5.7453
0.8 11.3945 11.3854 11.4108 9.2768 9.3042 9.2887 6.8914 6.9106 6.9013
1 13.5330 13.5202 13.5545 11.0882 11.1082 11.1042 8.1384 8.1510 8.1494

100 0 5.9712 5.9723 5.9712 4.5579 4.6263 4.5579 3.8058 3.8533 3.8058
0.2 6.4534 6.4544 6.4535 4.9922 5.0546 4.9922 4.0724 4.1168 4.0725
0.4 7.7215 7.7222 7.7217 6.1124 6.1635 6.1126 4.7837 4.8215 4.7840
0.6 9.4646 9.4650 9.4651 7.6220 7.6630 7.6224 5.7778 5.8090 5.7782
0.8 11.4682 11.4683 11.4689 9.3339 9.3673 9.3344 6.9341 6.9600 6.9345
1 13.6178 13.6177 13.6186 11.1554 11.1832 11.1560 8.1842 8.2060 8.1846
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Table 10: The first six non-dimensional natural frequencies ω̄ = ω
a2

h

√
ρm
Em

of Al/Al2O3 square plates

(Mori-Tanaka scheme)

BC a/h Theory Mode
1 2 3 4 5 6

SSSS 5 IGA-Zenkour 7.9366 13.8049 13.8049 17.3259 17.3259 19.5422
Quasi-3D (Present) 7.8883 13.8049 13.8049 17.2045 17.2045 19.5422
RPT (Present) 7.7844 13.8049 13.8049 16.9943 16.9943 19.5422

10 IGA-Zenkour 8.5940 20.3230 20.3230 27.5893 27.5893 31.7475
Quasi-3D (Present) 8.5607 20.2031 20.2031 27.5893 27.5893 31.5547
RPT (Present) 8.4401 19.9188 19.9188 27.5893 27.5893 31.1386

100 IGA-Zenkour 8.8399 21.7851 21.7851 35.3333 43.0764 43.0764
Quasi-3D (Present) 8.8390 21.7802 21.7802 35.3221 43.0573 43.0573
RPT (Present) 8.7127 21.4598 21.4598 34.8171 42.4074 42.4074

CCCC 5 IGA-Zenkour 12.7213 22.6661 22.6661 27.9021 27.9021 31.1450
Quasi-3D (Present) 13.1029 22.9300 22.9300 27.8791 27.8791 31.3005
RPT (Present) 12.1531 22.0683 22.0683 26.3182 26.3182 30.5398

10 IGA-Zenkour 15.2379 28.9665 28.9665 41.2221 47.8649 47.9221
Quasi-3D (Present) 15.4413 29.3267 29.3267 41.5955 48.2657 48.4504
RPT (Present) 14.3638 27.8276 27.8276 39.9305 46.0435 46.4772

100 IGA-Zenkour 16.0795 32.6473 32.6473 48.5912 58.0858 58.3951
Quasi-3D (Present) 16.0540 32.6082 32.6082 48.5477 58.0353 58.3402
RPT (Present) 15.5212 31.5708 31.5708 47.0903 56.2566 56.5207
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Table 11: The first six non-dimensional natural frequencies ω̄ = ωR2

√
ρh

D†
of homogeneous circular mi-

croplates

`/h Theory Mode
1 2 3 4 5 6

Simple support
0 Mohammadi et al. [95] 4.9345 13.8981 25.6132 29.7198 39.9571 48.4788

Nguyen et al. [91] 4.9304 13.8587 25.4798 29.5390 39.6331 48.0046
RPT (Present) 4.9304 13.8591 25.4799 29.5456 39.6518 48.0402
Quasi-3D (Present) 4.9385 13.8701 25.4983 29.5691 39.6881 48.0906

0.2 RPT (Present) 4.9925 14.5095 26.5426 31.1786 41.8855 50.8427
Quasi-3D (Present) 5.0024 14.5206 26.5613 31.1981 41.9148 50.8808

0.4 RPT (Present) 5.1213 16.2743 29.4369 35.5996 47.7406 58.5547
Quasi-3D (Present) 5.1365 16.2857 29.4529 35.6092 47.7542 58.5621

0.6 RPT (Present) 5.2422 18.8078 33.6370 41.9096 55.8684 69.6631
Quasi-3D (Present) 5.2649 18.8192 33.6497 41.9065 55.8623 69.6331

0.8 RPT (Present) 5.3324 21.8342 38.6993 49.3881 65.3972 82.8177
Quasi-3D (Present) 5.3642 21.8450 38.7080 49.3713 65.3694 82.7497

1 RPT (Present) 5.3954 25.1769 44.3292 57.5842 75.8223 97.1772
Quasi-3D (Present) 5.4379 25.1869 44.3335 57.5538 75.7721 97.0720

Clamped support
0 Mohammadi et al. [95] 10.2158 21.2604 34.8772 39.7706 51.0295 60.8290

Nguyen et al. [91] 10.1839 21.1433 34.5892 39.3624 50.4385 59.9580
RPT (Present) 10.1842 21.1459 34.5885 39.3832 50.4865 60.0416
Quasi-3D (Present) 10.4466 21.6458 35.2774 40.2833 51.5045 61.3186

0.2 RPT (Present) 10.8087 22.4449 36.3961 41.8103 53.5802 63.7743
Quasi-3D (Present) 11.0612 22.9236 37.1800 42.6664 54.5550 64.9738

0.4 RPT (Present) 12.4963 25.9527 41.2953 48.3406 61.7419 73.9729
Quasi-3D (Present) 12.7255 26.3811 41.9956 49.0934 62.6149 74.9922

0.6 RPT (Present) 14.8897 30.9242 48.3696 57.5674 73.1139 88.5334
Quasi-3D (Present) 15.0927 31.2968 48.9732 58.2073 73.8637 89.3634

0.8 RPT (Present) 17.7051 36.7699 56.8123 68.4011 86.4224 105.6689
Quasi-3D (Present) 17.8850 37.0938 57.3265 68.9439 87.0506 106.3411

1 RPT (Present) 20.7715 43.1360 66.1009 80.1939 100.9243 124.3039
Quasi-3D (Present) 20.9330 43.4206 66.5388 80.6591 101.4425 124.8498

†D =
Eh3

12(1− ν2)
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Table 12: The first six non-dimensional natural frequencies ω̄ = ωR2

√
ρch

D†c
of Al/Al2O3 circular microplates

(Mori-Tanaka scheme)

`/h Theory Mode
1 2 3 4 5 6

Simple support
0 IGA-Zenkour 3.4629 8.9254 8.9254 12.9890 12.9890 15.4780

Quasi-3D (Present) 3.4132 8.8258 8.8258 12.9916 12.9916 15.3331
RPT (Present) 3.3572 8.6722 8.6722 12.9121 12.9121 15.0490

0.2 IGA-Zenkour 3.5224 9.3961 9.3961 13.1894 13.1894 16.2612
Quasi-3D (Present) 3.4675 9.2928 9.2928 13.1928 13.1928 16.1022
RPT (Present) 3.4118 9.1595 9.1595 13.1037 13.1037 15.8706

0.4 IGA-Zenkour 3.6392 10.6411 10.6411 13.3115 13.3115 18.2644
Quasi-3D (Present) 3.5698 10.5288 10.5288 13.3143 13.3143 18.1203
RPT (Present) 3.5114 10.4415 10.4415 13.2326 13.2326 18.0361

0.6 IGA-Zenkour 3.7577 12.2959 12.2959 13.5601 13.5601 18.4956
Quasi-3D (Present) 3.6687 12.1873 12.1873 13.5445 13.5445 18.4939
RPT (Present) 3.6018 12.1378 12.1378 13.4872 13.4872 18.4475

0.8 IGA-Zenkour 3.8632 13.2220 13.2220 14.8766 14.8766 18.6662
Quasi-3D (Present) 3.7546 13.2030 13.2030 14.7552 14.7552 18.6655
RPT (Present) 3.6721 13.1245 13.1245 14.7850 14.7850 18.6192

1 IGA-Zenkour 3.9548 13.4288 13.4288 17.1268 17.1268 18.8623
Quasi-3D (Present) 3.8303 13.4243 13.4243 16.9751 16.9751 18.8618
RPT (Present) 3.9557 13.5531 13.5531 17.4735 17.4735 18.8633

Clamped support
0 IGA-Zenkour 6.7718 12.9968 12.9968 19.8267 19.8608 21.9673

Quasi-3D (Present) 6.8745 13.1770 13.1770 20.0202 20.0388 22.2840
RPT (Present) 6.3384 12.4133 12.4133 19.0879 19.1363 20.9877

0.2 IGA-Zenkour 7.2163 13.9289 13.9289 21.1653 21.5889 23.7182
Quasi-3D (Present) 7.3195 14.0950 14.0950 21.3095 21.7503 23.9885
RPT (Present) 6.8208 13.4172 13.4172 20.5401 20.9799 22.8902

0.4 IGA-Zenkour 8.4091 16.4035 16.4035 24.6620 25.9011 25.9011
Quasi-3D (Present) 8.5121 16.5390 16.5390 24.7273 25.8504 25.8504
RPT (Present) 8.0909 16.0391 16.0391 24.2526 24.3345 24.3345

0.6 IGA-Zenkour 10.0860 19.8463 19.8463 25.9424 25.9424 28.6525
Quasi-3D (Present) 10.1880 19.9431 19.9431 25.8948 25.8948 28.6525
RPT (Present) 9.8463 19.6321 19.6321 24.3655 24.3655 28.6525

0.8 IGA-Zenkour 12.0447 23.8379 23.8379 25.9920 25.9920 28.9380
Quasi-3D (Present) 12.1441 23.8850 23.8850 25.9507 25.9507 28.9380
RPT (Present) 11.8741 23.7016 23.7016 24.4627 24.4627 28.9380

1 IGA-Zenkour 14.1674 26.0476 26.0476 28.1435 28.1435 29.3010
Quasi-3D (Present) 14.2615 25.9953 25.9953 28.1492 28.1492 29.3010
RPT (Present) 14.0568 24.4150 24.4150 28.2217 28.2217 29.3010

†Dc =
Ech

3

12(1− ν2
c )
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Table 13: Comparison of non-dimensional critical buckling loads P̄cr =
Pcra

2

E2h3
of square FG microplates

(rule of mixtures scheme)

`/h Theory a/h = 5 a/h = 10 a/h = 20
n = 0 n = 1 n = 10 n = 0 n = 1 n = 10 n = 0 n = 1 n = 10

0 CPT [41] 19.2255 8.2145 3.8359 19.2255 8.2145 3.8359 19.2255 8.2145 3.8359
FSDT [41] 15.3228 6.8576 2.9979 18.0746 7.8273 3.5853 18.9243 8.1142 3.7700
RPT [45] 15.3322 6.8611 2.7672 18.0754 7.8276 3.4969 18.9243 8.1142 3.7450
RPT (Present) 15.3321 6.8610 2.7702 18.0756 7.8277 3.4982 18.9244 8.1143 3.7454
Quasi-3D (Present) 15.3629 7.3905 3.0118 18.1561 8.5396 3.8921 18.9675 8.8639 4.1850

0.2 CPT [41] 22.0863 9.7879 4.3560 22.0863 9.7879 4.3560 22.0863 9.7879 4.3560
FSDT [41] 17.6150 8.1715 3.4076 20.7607 9.3241 4.0710 21.7387 9.6675 4.2809
RPT [45] 18.0422 8.3399 3.3619 20.9025 9.3767 4.0513 21.7771 9.6815 4.2752
RPT (Present) 17.8878 8.2820 3.2917 20.8497 9.3581 4.0246 21.7628 9.6766 4.2677
Quasi-3D (Present) 17.7286 8.7153 3.4728 20.8583 10.0344 4.3958 21.7852 10.4160 4.7009

0.4 CPT [41] 30.6685 14.5082 5.9164 30.6685 14.5082 5.9164 30.6685 14.5082 5.9164
FSDT [41] 24.2899 11.9922 4.6013 28.7478 13.7742 5.5151 30.1625 14.3167 5.8102
RPT [45] 26.1539 12.7754 5.0407 29.3735 14.0232 5.6631 30.3324 14.3832 5.8505
RPT (Present) 25.5457 12.5322 4.8371 29.1700 13.9459 5.5925 30.2773 14.3626 5.8312
Quasi-3D (Present) 24.8060 12.6741 4.8557 28.9624 14.5168 5.9066 30.2381 15.0722 6.2486

0.6 CPT [41] 44.9723 22.3753 8.5171 44.9723 22.3753 8.5171 44.9723 22.3753 8.5171
FSDT [41] 34.7856 17.9838 6.4804 41.8271 21.0597 7.8802 44.1369 22.0292 8.3472
RPT [45] 39.6393 20.1658 7.7001 43.4732 21.7657 8.2906 44.5855 22.2188 8.4589
RPT (Present) 38.2867 19.5858 7.3772 43.0329 21.5846 8.1871 44.4673 22.1708 8.4312
Quasi-3D (Present) 36.5415 19.2256 7.1597 42.4620 21.9814 8.4246 44.3258 22.8320 8.8281

0.8 CPT [41] 64.9976 33.3892 12.1581 64.9976 33.3892 12.1581 64.9976 33.3892 12.1581
FSDT [41] 48.2915 25.6654 8.9020 59.6657 30.9928 11.1065 63.5656 32.7517 11.8745
RPT [45] 58.4862 30.5105 11.3322 63.1958 32.6036 11.9349 64.5348 33.1882 12.1011
RPT (Present) 56.0961 29.4240 10.9005 62.4358 32.2693 11.8036 64.3321 33.0999 12.0666
Quasi-3D (Present) 52.8623 28.3151 10.3843 61.3467 32.4199 11.9498 64.0474 33.6948 12.4394

1 CPT [41] 90.7444 47.5499 16.8393 90.7444 47.5499 16.8393 - - -
FSDT [41] 63.8913 34.4981 11.7042 81.8269 43.3274 15.1152 - - -
RPT [45] 82.6938 43.8094 15.9522 88.5416 46.5372 16.6033 90.1804 47.2914 16.7793
RPT (Present) 78.9675 42.0388 15.4071 87.3775 45.9981 16.4431 89.8715 47.1494 16.7376
Quasi-3D (Present) 73.6925 39.8872 14.5287 85.6043 45.8223 16.4819 89.4018 47.6596 17.0825
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Table 14: Non-dimensional critical buckling load P̄cr =
Pcra

2

D†m
of Al/Al2O3 square microplates (Mori-Tanaka

scheme)

BC a/h `/h n = 0 n = 1 n = 10
RPT Quasi-3D RPT Quasi-3D RPT Quasi-3D

SSSS 5 0 87.4747 86.5475 35.0795 35.6610 21.7236 21.7189
0.2 103.6359 101.8797 42.3816 42.6185 25.4909 25.2307
0.4 152.0215 147.6312 64.2668 63.3902 36.7873 35.7417
0.6 232.4351 223.1633 100.6957 97.7189 55.6034 53.1891
0.8 344.7280 327.6683 151.6424 145.2904 81.9336 77.4961
1 488.8378 460.3907 217.0988 205.8260 115.7764 108.5941

20 0 105.6668 105.6221 42.0033 43.4065 27.5182 27.8578
0.2 123.5339 123.4102 49.9504 51.3272 31.5521 31.8705
0.4 177.1295 176.7715 73.7907 75.0881 43.6520 43.9085
0.6 266.4425 265.6972 113.5226 114.6856 63.8152 63.9707
0.8 391.4648 390.1733 169.1451 170.1141 92.0401 92.0558
1 552.1931 550.1813 240.6580 241.3659 128.3267 128.1618

100 0 107.0958 107.1271 42.5423 44.0165 27.9978 28.3566
0.2 125.0926 125.1206 50.5370 52.0102 32.0486 32.4065
0.4 179.0825 179.1009 74.5212 75.9913 44.2009 44.5563
0.6 269.0653 269.0682 114.4947 115.9596 64.4546 64.8061
0.8 395.0406 395.0223 170.4576 171.9154 92.8097 93.1557
1 557.0082 556.9633 242.4098 243.8584 129.2661 129.6052

CCCC 5 0 178.2578 188.3478 72.2150 78.0421 42.1220 45.4860
0.2 206.9297 215.7331 85.4028 90.6731 49.1101 52.1032
0.4 292.6287 295.5433 124.8630 127.4320 69.9984 71.1001
0.6 435.0030 424.8837 190.5274 187.0650 104.7011 101.8084
0.8 633.8611 601.6084 282.3839 268.7548 153.1709 144.0664
1 889.1171 823.8983 400.4310 371.8457 215.3906 197.7752

20 0 273.9507 288.6976 109.0237 117.3906 70.8926 75.2177
0.2 308.7803 323.9291 124.5481 133.0578 78.8262 83.2085
0.4 413.0833 429.0109 171.0330 179.8054 102.5575 107.0378
0.6 586.6304 603.0356 248.3764 257.2793 141.9833 146.4815
0.8 829.3607 845.5938 356.5558 365.3387 197.0586 201.4295
1 1141.2885 1156.5929 495.5793 503.9582 267.7793 271.8584

100 0 283.7646 292.2008 112.7294 119.3117 74.1644 77.0743
0.2 319.1326 327.9091 128.4414 135.1344 82.1289 85.1055
0.4 425.0550 434.6081 175.4917 182.4322 105.9838 109.1182
0.6 601.2918 611.6685 253.7742 260.9696 145.6726 148.9836
0.8 847.7694 858.8291 363.2623 370.6627 201.1735 204.6383
1 1164.4998 1176.0787 503.9643 511.5167 272.4865 276.0730

†Dm =
Emh

3

12(1− ν2
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Table 15: The first six non-dimensional buckling loads P̄ =
Pa2

Dm
of Al/Al2O3 square microplates, n = 10,

`/h = 0.2 (Mori-Tanaka scheme)

BC a/h Theory Mode
1 2 3 4 5 6

SSSS 5 IGA-Zenkour 25.4064 47.0158 47.0158 62.7947 66.4706 66.4706
Quasi-3D (Present) 25.2307 46.2828 46.2828 61.4689 64.8256 64.8256
RPT (Present) 25.4909 47.9306 47.9306 64.7895 68.7456 68.7456

10 IGA-Zenkour 30.3554 67.5835 67.5835 101.6321 115.5866 115.5866
Quasi-3D (Present) 30.2890 67.2254 67.2254 100.9300 114.4706 114.4706
RPT (Present) 30.1012 67.3570 67.3570 101.9693 116.1512 116.1512

20 IGA-Zenkour 31.8815 76.0319 76.0319 121.4313 143.5095 143.5095
Quasi-3D (Present) 31.8705 75.8988 75.8988 121.1662 143.0021 143.0021
RPT (Present) 31.5521 75.2628 75.2628 120.4131 142.2468 142.2468

100 IGA-Zenkour 32.3844 79.0722 79.0722 129.2976 155.1773 155.1773
Quasi-3D (Present) 32.4065 79.1198 79.1198 129.3662 155.2457 155.2457
RPT (Present) 32.0486 78.2296 78.2296 127.9519 153.4678 153.4678

CCCC 5 IGA-Zenkour 50.6557 66.0350 66.0350 78.0114 80.2597 84.0819
Quasi-3D (Present) 52.1032 66.3156 66.3156 77.2179 78.9774 84.1043
RPT (Present) 49.1101 66.7907 66.7907 80.3088 82.9464 85.5400

10 IGA-Zenkour 74.8665 114.2196 114.2196 146.4170 160.1781 172.6816
Quasi-3D (Present) 75.4661 115.7598 115.7598 147.8696 161.3725 174.2442
RPT (Present) 70.1001 110.6293 110.6293 144.4919 158.8413 167.4729

20 IGA-Zenkour 83.8952 140.5084 140.5084 191.9601 219.4306 239.0973
Quasi-3D (Present) 83.2085 140.4610 140.4610 192.6237 220.3776 239.1104
RPT (Present) 78.8262 133.9531 133.9531 185.0964 211.8925 227.4324

100 IGA-Zenkour 85.2475 149.0723 149.0723 210.8794 246.4373 267.8293
Quasi-3D (Present) 85.1055 148.8861 148.8861 210.7133 246.2408 267.4391
RPT (Present) 82.1289 143.8128 143.8128 203.9109 237.9639 257.7571
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Table 16: Comparison of non-dimensional critical buckling loads P̄cr =
PcrR

2

Dm
of CCCC Al/ZrO2-2 circular

plates (rule of mixtures scheme)

n Theory h/R
0.1 0.2 0.25 0.3

0 TSDT [96] 14.089 12.574 11.638 10.670
UTSDT [97] 14.089 12.575 11.639 10.670
TSDT [98] 14.1089 12.5914 11.6540 10.6842
RPT [63] 14.2023 12.7281 11.8143 10.8666
RPT (Present) 14.0932 12.5776 11.6409 10.6719
Quasi-3D (Present) 14.8264 13.4557 12.4564 11.3775

0.5 TSDT [96] 19.411 17.311 16.013 14.672
UTSDT [97] 19.413 17.310 16.012 14.672
TSDT [98] 19.4391 17.3327 16.0334 14.6910
RPT [63] 19.5663 17.5180 16.2506 14.9381
RPT (Present) 19.4169 17.3133 16.0153 14.6740
Quasi-3D (Present) 20.5166 18.6074 17.2206 15.7222

2 TSDT [96] 23.074 20.803 19.377 17.882
UTSDT [97] 23.075 20.805 19.378 17.881
TSDT [98] 23.1062 20.8319 19.4033 17.9060
RPT [63] 23.2592 21.0569 19.6687 18.2099
RPT (Present) 23.0809 20.8088 19.3812 17.8848
Quasi-3D (Present) 24.4332 22.3510 20.8035 19.1161

5 TSDT [96] 25.439 22.971 21.414 19.780
UTSDT [97] 25.442 22.969 21.412 19.778
TSDT [98] 25.4743 22.9992 21.4407 19.8043
RPT [63] 25.6418 23.2426 21.7268 20.1313
RPT (Present) 25.4469 22.9742 21.4168 19.7813
Quasi-3D (Present) 26.8812 24.6195 22.9303 21.0878

10 TSDT [96] 27.133 24.423 22.725 20.948
UTSDT [97] 27.131 24.422 22.725 20.949
TSDT [98] 27.1684 24.4542 22.7536 20.9750
RPT [63] 27.3429 24.6994 23.0389 21.2986
RPT (Present) 27.1395 24.4287 22.7297 20.9524
Quasi-3D (Present) 28.6197 26.1483 24.3140 22.3196
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Table 17: Non-dimensional critical buckling loads P̄cr =
PcrR

2

Dm
of Al/Al2O3 circular microplates (Mori-

Tanaka scheme)

h/R `/h n = 0 n = 1 n = 10
RPT Quasi-3D RPT Quasi-3D RPT Quasi-3D

Simple support
0.1 0 22.5182 22.6953 9.5368 9.7960 5.9574 6.0309

0.2 23.0489 23.2627 9.8179 10.0793 6.0876 6.1617
0.4 24.1022 24.4172 10.3474 10.6292 6.3543 6.4360
0.6 25.0682 25.5337 10.8125 11.1391 6.6130 6.7163
0.8 25.7985 26.4629 11.1543 11.5512 6.8182 6.9619
1 26.3291 27.2420 11.3981 11.8897 6.9718 7.1752

0.2 0 21.7456 22.0263 9.2059 9.4510 5.6942 5.7510
0.2 22.2719 22.5928 9.4873 9.7327 5.8318 5.8833
0.4 23.2739 23.7059 9.9893 10.2520 6.1019 6.1509
0.6 24.2066 24.8190 10.4423 10.7545 6.3676 6.4377
0.8 24.9581 25.8386 10.8003 11.2074 6.5891 6.7170
1 25.5480 26.7897 11.0777 11.6254 6.7647 6.9866

0.3 0 20.5707 20.8606 8.7033 8.9036 5.3041 5.3287
0.2 21.0993 21.4128 8.9860 9.1777 5.4526 5.4621
0.4 22.0854 22.4669 9.4810 9.6686 5.7409 5.7276
0.6 23.0439 23.5641 9.9511 10.1693 6.0352 6.0281
0.8 23.8746 24.6485 10.3517 10.6610 6.2927 6.3431
1 24.5707 25.7228 10.6823 11.1443 6.5055 6.6623

Clamped support
0.1 0 76.5059 80.4859 30.4539 32.7398 19.7743 20.9413

0.2 86.3696 90.4095 34.8524 37.1578 22.0235 23.1967
0.4 115.9595 120.0466 48.0474 50.3612 28.7616 29.9236
0.6 165.2737 169.2564 70.0379 72.3004 39.9728 41.0821
0.8 234.3115 237.9906 100.8235 102.9597 55.6486 56.6598
1 323.0727 326.2293 140.4042 142.3316 75.7879 76.6551

0.2 0 68.2782 73.0452 27.3245 29.8617 17.1442 18.6240
0.2 77.6521 82.3859 31.5460 34.0702 19.3412 20.7979
0.4 105.7687 110.0650 44.2098 46.5462 25.9122 27.1925
0.6 152.6199 155.7501 65.3154 67.1544 36.8218 37.7110
0.8 218.1997 219.2330 94.8629 95.8167 52.0495 52.3297
1 302.5060 300.3159 132.8523 132.4584 71.5905 71.0373

0.3 0 57.9331 61.7636 23.3438 25.4648 14.0464 15.3047
0.2 66.6302 70.2136 27.3083 29.3268 16.1359 17.3213
0.4 92.7032 95.0207 39.2004 40.6571 22.3875 23.1508
0.6 136.1160 135.6444 59.0182 59.2280 32.7704 32.6634
0.8 196.8399 191.6493 86.7603 84.8742 47.2643 45.8312
1 274.8619 262.6208 122.4264 117.4429 65.8628 62.6312
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Table 18: The first six non-dimensional buckling loads P̄ =
PR2

Dm
of Al/Al2O3 circular microplates, n = 1,

`/h = 0.6 (Mori-Tanaka scheme)

BC h/R Theory Mode
1 2 3 4 5 6

Simple support 0.1 IGA-Zenkour 11.4689 54.8031 54.8031 95.3143 123.2488 129.6396
Quasi-3D (Present) 11.1391 54.0884 54.0884 93.7842 122.0854 128.1298
RPT (Present) 10.8125 53.6215 53.6215 93.3944 122.3489 128.3281

0.2 IGA-Zenkour 11.3113 50.7663 50.7663 83.1176 107.1987 110.9343
Quasi-3D (Present) 10.7545 49.5358 49.5358 80.6606 104.8026 108.1436
RPT (Present) 10.4423 50.2378 50.2378 83.3889 109.1766 112.9355

0.3 IGA-Zenkour 10.8014 45.2015 45.2015 69.1649 89.4125 90.9795
Quasi-3D (Present) 10.1693 43.6917 43.6917 66.3080 86.1911 87.4685
RPT (Present) 9.9511 45.6739 45.6739 71.5215 93.8041 95.5819

Clamped support 0.1 IGA-Zenkour 72.6509 126.0657 126.0657 172.3464 205.4419 222.4846
Quasi-3D (Present) 72.3004 125.7477 125.7477 171.5372 205.0589 221.0537
RPT (Present) 70.0379 123.1185 123.1185 169.2944 203.3425 218.6139

0.2 IGA-Zenkour 66.8949 108.9270 108.9270 140.4481 166.8569 175.2599
Quasi-3D (Present) 67.1544 108.3685 108.3685 138.0488 164.4947 172.3137
RPT (Present) 65.3154 109.4813 109.4813 143.4150 171.7706 179.5962

0.3 IGA-Zenkour 58.9576 90.1444 90.1444 110.5155 131.5270 134.2574
Quasi-3D (Present) 59.2280 88.4285 88.4285 106.6289 127.0395 129.6436
RPT (Present) 59.0182 93.6789 93.6789 117.0824 140.3857 143.1361
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and Mori-Tanaka scheme (in dash lines).
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Figure 4: One- and two-dimensional B-spline basis functions.
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Figure 5: Geometry and element mesh of a square microplate.
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Figure 7: Effects of material index n and material length scale ratio `/h on the central deflection of CCCC
Al/Al2O3 square microplates subjected to uniformly distributed load, a/h = 5 (rule of mixtures scheme).
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(a) CCCC. (b) SSSS.

(c) SCSC. (d) SFSF.

Figure 8: Deformed configuration of Al/Al2O3 square microplates.
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Figure 9: Variation of natural frequency of CCCC Al/Al2O3 square microplates (rule of mixtures scheme).
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Figure 10: Effects of material index n and material length scale ratio `/h on the natural frequency of CCCC
Al/Al2O3 square microplates, a/h = 5 (rule of mixtures scheme).
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(a) ω̄1 = 15.4413. (b) ω̄2 = 29.3267.

(c) ω̄3 = 29.3267. (d) ω̄4 = 41.5955.

(e) ω̄5 = 48.2657. (f) ω̄6 = 48.4504.

Figure 11: The first six free vibration mode shapes of Al/Al2O3 CCCC square microplates.
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(a) Geometric configuration.

(b) Control point net and 11×11 cubic elements.

Figure 12: Geometry and element mesh of a circular microplate.
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(a) ω̄1 = 7.3195. (b) ω̄2 = 14.0950.

(c) ω̄3 = 14.0950. (d) ω̄4 = 21.3095.

(e) ω̄5 = 21.7503. (f) ω̄6 = 23.9885.

Figure 13: The first six free vibration mode shapes of clamped Al/Al2O3 circular microplates.
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(a) P̄1 = 52.1032. (b) P̄2 = 66.3156.

(c) P̄3 = 66.3156. (d) P̄4 = 77.2179.

(e) P̄5 = 78.9774. (f) P̄6 = 84.1043.

Figure 14: The first six buckling mode shapes of Al/Al2O3 CCCC square microplates.
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Figure 15: Effects of material index n and material length scale ratio `/h on the critical buckling loads of
Al/Al2O3 circular microplates, h/R = 0.2 (Mori-Tanaka scheme).59
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Figure 16: Variation of the critical buckling loads of Al/Al2O3 circular microplates (Mori-Tanaka scheme).
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(a) P̄1 = 10.7545. (b) P̄2 = 49.5358.

(c) P̄3 = 49.5358. (d) P̄4 = 80.6606.

(e) P̄5 = 104.8026. (f) P̄6 = 108.1436.

Figure 17: The first six buckling mode shapes of simply-supported Al/Al2O3 circular microplates.
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