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Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to 
exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay 
channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network 
resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to 
communicate via a common receiver aperture at the relay. Therefore, chip-interleaving is adopted as a technique to 
separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies 
on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of 
the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel 
fading and the pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection 
techniques, the BER results show that the proposed scheme can achieve a significant performance improvement 
against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous 
users can be supported with this new scheme in establishing a communication link between multiple pairs of 
nodes in two time slots, thereby improving the channel capacity. 

OCIS codes: (010.3310) Atmospheric turbulence; (060.2605) Free-space optical communication; (060.4255) Networks, multicast; (200.3050) 
Information processing.  

http://dx.doi.org/10.1364/AO.99.099999 

1. INTRODUCTION
Free space optical (FSO) communications is a promising 
complementary alternative over the conventional radio 
frequency (RF) technology, which has attracted attention within 
the research community due to their secure transmission, large 
bandwidth, small component sizes with low cost, and immunity 
to the electromagnetic interference [1]. However, optical signal 
propagation in free space is significantly affected by the 
atmospheric channel conditions such as the turbulence and 
pointing errors (PEs), thereby increasing the bit error rate (BER) 
and severely degrading the overall link performance. For a link 
range from a few meters to longer than 1 km, turbulence-induced 
signal fading becomes a major performance limiting factor in FSO 
systems. To combat such fading effect and maintain acceptable 
performance levels, several mitigation techniques have been 

proposed for FSO systems, which include the forward error 
correction (FEC), spatial diversity techniques, and cooperative 
diversity. Recently, research in FSO has focused on performance 
evaluation of multihop communication systems under the 
atmospheric turbulence condition, where the source node 
communicates with the destination node via a number of relay 
nodes (RNs) in a serial configuration. Multihop transmission is a 
promising technique to achieve broader coverage and mitigate 
wireless channels impairment, and it has a number of advantages 
including increased capacity, avoiding the use of cables, low cost 
and minimizing the need for a fixed infrastructure [2-4]. In 
particular, the relay-assisted FSO system has drawn significant 
attention as an efficient technique to extend the coverage area and 
improve the system performance in the presence of non-line-of-
sight path between two FSO nodes in the network [5,6]. Thus, the 
relay-assisted FSO transmission can take advantage of the 
resulting shorter and multiple-hop links between the transmitter 
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(Tx) and the receiver (Rx) in order to improve the system 
performance and increase the link reliability.  

In recent year, network coding (NC) has been introduced in 
wireless networks to establish a new form of cooperative relay 
technology, mainly due to its capability to increase the system 
throughput and combat link failures by distributing the traffic over 
a larger number of communication paths [7]. NC allows intermediate 
network nodes to perform arbitrary mathematical operations to 
combine the data received from different links, thus offering numerous 
advantages over the traditional routing schemes [8]. This has been 
extensively studied in the context of optical multicast networks [9,10]. To 
mitigate the strong turbulence-induced fading, a cooperative relaying 
aided FSO transmission network based on NC and using an iterative 
multiple source detection scheme in conjunction with a chip-level soft 
network decoding at the relay and the destination node was proposed in 
[11]. The simulation results demonstrated that the proposed method 
was capable of approaching the single user bound for transmission over 
the gamma–gamma turbulence channel. Additionally, this technology 
has been adopted as a widely accepted solution for combatting 
turbulence-induced fading in two-way relay channel (TWRC) FSO 
systems [12-14]. Furthermore, the concept of NC can also be applied to 
the physical layer that deals with signal reception and modulation, and is 
known as the physical layer NC (PNC) [15]. PNC leads to further 
improvement of the wireless transmission throughput through the 
effective use and exploitation of wireless resources. Recently, many 
researchers, due to the need for higher data rates and faster connection 
speeds in wireless networks, have adopted this technique. The PNC 
system was first considered for a TWRC where two users transmitted 
their information simultaneously with the aid of RN.  

However, a substantial number of analytical and simulation studies of 
the two-way relay FSO (TWR-FSO) system have considered only the 
amplifier-and-forward (AF) and decoder-and-forward (DF) schemes or 
have adopted the linear NC at the RNs. Therefore, inspired by the 
advantage of the PNC technique, which offers a higher data rate and faster 
connection speed in wireless networks, it was proposed for the TWR-FSO 
communications where there is no direct path between the two FSO 
communication nodes [16]. The model was referred to as TWR-FSO PNC, 
where the authors explored the advantage of PNC technique for full 
utilization of network resources.  

Despite of a significant amount of research being carried out in TWR 
for PNC, increasing the number of users which can simultaneously be 
transmitted to the RN is still considered as the main constraint in such 
systems. This is mainly because the PNC mapping can only support two 
users for exchanging their information at the same time over TWR. 
Therefore, very little work has been reported on the impact of increasing 
the number of communication pair on the performance of the PNC 
system assuming different strategies [17-19]. Recently, multiple access 
techniques referred to as interleave division multiple access (IDMA) 
technique was suggested in [20, 21].   

In this paper, to allow multiple pairs of user to swap their data between 
them within a single RN over FSO link, the effectiveness of iterative 
multiuser (I-MUD) detection based PNC is embraced. It is assumed that 
the pair of users cannot receive each other’s signals directly, and hence 
the RN is the enabler of communication. Therefore, the chip-interleaving 
approach for user separation, in order to perform PNC demapping at the 
intermediate node, is adopted. This scheme referred to as I-MUD TWR-
FSO PNC, which offers a bi-directional half-duplex relaying network that 
consists from K user communicate with each other via a single RN, as 
shown in Fig. 1. The performance of the system in terms of BER is 
examined by considering link impairments imposed by the atmospheric 
attenuation because of beam extinction and channel fading caused by 
turbulence (ranging from weak to strong turbulence) and the PEs. The 
simulation results reveal the ability of the proposed scheme to establish 

communication between the multiple nodes with a minimum number of 
transmission phases, even when the number of simultaneous users is 
increased. 

The rest of the paper is organized as follows: Section 2 describes the 
system model. Section 3 defines the atmospheric channel, while Section 
4 describes the error rate analysis considered in this study. Next, 
simulation results and discussions are presented in Section 5. Finally, 
conclusions are drawn in Section 6. 

2. SYSTEM MODEL 
In an I-MUD FSO PNC model, each pair of users 𝑃 exchanges their 
information using the RN in two transmission phases. The first phase is 
dedicated to the entire user transmit the information in multiple access 
(MA) channel to the RN. The second phase is broadcasting the RN 
information to the destination in broadcast channel (BC), as shown in Fig. 
1. Assuming all nodes operate over a half-duplex link and full 
transmissions synchronization between the nodes with the same 
transmits power for all nodes. We assume intensity modulation with 
direct detection (IM/DD) for all the source nodes and the RN. Also, the 
noise is modelled as additive white Gaussian noise (AWGN) with zero 
mean and variance 𝜎2 = 𝑁𝑜 2⁄ , where 𝑁𝑜 2 ⁄ is the two-sided noise 
power spectral density. In traditional FSO systems, on-off keying (OOK) 
is commonly used because of its simplicity and low-cost despite of the 
difficulty of adaptively adjusting the threshold. On the other hand, pulse- 
position modulation (PPM) signalling has excellent power efficiency with 
no requirement for adaptive threshold compared to OOK; however, it has 
poor bandwidth efficiency due to the use of shorter pulses [22]. To 
overcome the limitations of OOK and PPM, the binary phase shift keying 
(BPSK) is embraced in our proposed system. The following sub-sections 
outline in detail the operation of the Tx, RN and Rx for the system under 
consideration.  

A. Transmitter 

The basic Tx structure for the I-MUD TWR-FSO PNC model is 
shown in Fig. 2. The input binary data sequence 𝑑𝑘 ∈ (0,1), where 
𝑘 =  (1, … . , 𝐾) represents the number of users, is encoded using 
the convolutional encoder module (ENC) with a rate   𝑅𝑐 . The 
coded bit stream  𝑐𝑘 ∈ (0,1) is further encoded using a simple 
spreading code module (SP) with a rate  𝑅𝑟 to produce  𝑠𝑘 . The 
same spreading sequence is used for all nodes. The coded 
sequence is then permutated by the same chip-level 
interleaver  Π𝑝 for each  𝑃,  thus producing an interleave 

sequence  𝐼𝑘 ∈ (0,1) [23]. These interleaves can be generated 
independently and randomly for each  𝑃 , which scrambles the 
error burst of the code sequence prior to the transmission. The 

 
Fig. 1.  Block diagram of the I-MUD TWR-FSO PNC model. 

 

 
 

 
 



 

interleaver sequence is then used for modulating an RF signal 
using BPSK modulation, which is presented as 

,wcosTtgm ck )()(             (1) 

where g(𝑡) is a rectangular shaping pulse function, 𝑇 is bit duration, 
𝑤𝑐  is a carrier frequency, and 𝜃 is phase angular equal to 
0 or 𝜋 depending if a binary one or a binary zero is transmitted. To 
ensure the modulated signals are all positive, a direct current (DC) level 
bias 𝑏𝑜 is introduced prior to IM of the light source [24]. The output 
optical signal at the laser diode can be expressed as 

 ,mPx ktk  1                            (2) 

where 𝑃𝑡 is the average transmitted optical power, and ζ is the 
modulation index satisfying the condition −1 ≤ ζ 𝑚𝑘 ≤ 1 to avoid 
clipping due to over-modulation [24].  

B.  Relay node 

In the MA phase, all users are simultaneously transmitting to the 
RN, where each 𝑃 swap their information using single RN. We 
assume that each user node is equipped with single aperture 
antenna directed to the corresponding aperture at RN, whereas 
the RN consists of two directional antennas each having K antenna 
aperture directed to the corresponding user’s nodes. The received 
optical beam at the RN is detected by a photodetector (PD) with 
optical-to-electrical efficiency denoted by  𝑅 , then is amplified 
using a trans-impedance amplifier (TIA) as shown in Fig. 3. The 
signal at the output of the PD from all users are collected and sent 
to the deinterleaved process. The channel state of the FSO link is 
modelled as a stochastic process denoted by ℎ𝑘, which represents 
the normalized irradiance accounted for the intensity fluctuations 
due to the atmospheric loss, turbulence and PEs (as explained in 
detail later on). However, the channel coefficients are assumed to 
be the same for both transmissions phases. Thus, the received 
electrical signal for the MA phase can be represented as 
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where ℎ𝑘 is the FSO channel fading coefficient from the 𝑘th users to the 
RN. The term 𝑤𝑟 denotes the AWGN arising from various sources, which 
include the shot noise due to the signal itself, ambient light, dark current 
noise, and electrical thermal noise. Following down conversion, the 
deinterleaving procedure Π̂𝑝 is applied to the superimposed signal for 

each 𝑃, which places the received code bits back in the proper order, 
𝐼𝑘−1,𝑘 . Through PNC demapping detection at the RN, the received signal 
can be mapped to the module-2 addition of the digital bit stream so that 
the interference becomes part of the arithmetic operation in the NC [15]. 
The minimum distance estimation is used to map the superimposed 
symbol to a network-coded symbols for each pair  and, for 𝑃 = 1, can be 
written as 
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In order to successfully distinguish every network coded symbols for 
its target users, they are distinguished again by user specific interleave. 
Following BPSK modulation 𝑥̂𝑝

𝑟  and DC level bias, all signals are summed 

up for transmission over their corresponding FSO link [25]. A Tx 
telescope is used to collect, collimate, and direct the optical radiation 
toward the Rx telescope at the other end of the channel. 

 C.  Receiver 

The performance of the I-MUD FSO PNC model is expected to 
deteriorate due to MA interference (MAI) from other active users 
as well as the scintillation effect. Inspired by the success of the 
turbo code, I-MUD detection has been widely used owing to its 
ability to improve the system performance at a relatively low 
computational cost. Note that the complexity of the decoder is 
independent of 𝐾 [23]. Therefore, the I-MUD technique is adopted 
to improve the system performance by eliminating the negative 
effect of each user on each other by iteratively exchanging the 
extrinsic information between the MUD and channel decoders 
(DECs).  

The block diagram for the Rx structure is shown in Fig. 4.  As in 
the RN, the telescope collects the incoming light and focuses it 
onto the PD, the output of which is amplified and processed. The 
electrical signal at the input to the MUD can be expressed as 

.wxhPRy k
r
pktsp                      (5) 

The iterative Rx comprises of a MUD module, deinterleaver/interleaver 
pairs, despreader/spreading pairs and soft-in-soft-out (SISO) decoders 
[26]. The posteriori log-likelihood ratio (LLR) of a transmitted code bit 
based on the MA constraint is given by [26]  
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Fig. 2.  Block diagram of the transmitter structure for the I-MUD FSO PNC 

model for K users at code rate 21/Rc  , and spreading rate 81/Rr  . 

 
Fig. 3.  Relay structure for the I-MUD TWR-FSO PNC model, which is 
applied PNC demapping on the received signal after a pair of user separated 
by their distinct chip-level interleave. 

 



 

 where  𝑝𝑟  is the conditional probability distribution of the observed 
channel.  In the case of first pairs, Equation (5) can be rewritten as 
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is the sum of the MAI and the noise in terms of 𝑦𝑠1 relative to 𝑥1
𝑟 . Assume 

that 𝑥1
𝑟  is independent and identically distributed random variable, the 

conditional probability 𝑝𝑟[𝑦𝑠1|𝑥1
𝑟 = 1 or 0] can be characterized by the 

Gaussian probability density function (PDF) as given by 
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where 𝐸(. ) and Var(. ) are the total mean and variance of distortion, 
respectively, and can be defined as [23] 
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Correspondingly, Equation (6) can be rewritten as 
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To restore the original ordering of the sequences in the symbol, 
the permutation of the received signal will be deinterleaver 
𝐿𝑑𝑒𝑚(𝑥1

𝑟(𝐼1)). Prior to delivering the signal to the DECs, the signal 
is passed through the despreading (DSP) module. Each group of 
deinterleaver chips within one-bit duration is summed up by 
means of the despreading operation. A posteriori LLR for coded 
bits can be determined as 
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where 𝑠𝑓 is the spreading factor and  𝑗 = 1, . . , 𝑠𝑓 , and 𝑐𝑎, 𝑠𝑎 represent 

the XOR-ed coded and spreading sequence (𝑐1 ⊕ 𝑐2) , (𝑠1 ⊕ 𝑠2) , 
respectively. The output of the DSP module is used as a priori information 
to DECs module of the convolutional code, which performs the standard 
a posteriori probability (APP) decoding [26]. The APP algorithm is used 
to generate the information on the data bit stream as well as the extrinsic 
information on the coded bits. The final a posteriori LLR of the coded bits 
is given by: 
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The output of DEC is then applied to the SP.  To compute the chip-level 
extrinsic LLR information of the corresponding coded bits, the following 
equation is used: 

      .IxLcLsL r
demadecae 11
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The LLR are further interleaved to produce the extrinsic LLR, 
𝐿𝑚𝑎𝑝(𝑥1

𝑟),  of chips 𝑥1
𝑟 . This extrinsic LLR is feedback to the MUD to update 

a priori LLR by determining new values for the mean and variance for the 
next iteration, respectively, and can be expressed as [24]: 
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Finally, the SISO channel decoder computes a posteriori LLR for every 
information bit 𝐿𝑝, which is used to make a hard decision on the decoded 

bits at the last iteration to obtain 𝐷𝑝. The final process performs an XOR 

operation between the original information bits of each users and the 
output of the decoder to determine the desired information for each user 
sent by their partner and can be described as     

.dDd,dDd kpkkpk   11
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3. ATMOSPHERIC CHANNEL MODEL 
The channel state ℎ𝑘  models the optical intensity fluctuations for 
the TWR-FSO link resulting from the atmospheric loss, turbulence 
and misalignment-induced channel fading, which can be 
described as 

,hhhh Eslk                                       (17) 

where  ℎ𝑙 is the channel loss coefficient,  ℎ𝑠 is a random variable 
representing the intensity fluctuation due to atmospheric turbulence, 
and ℎ𝐸  is the misalignment fading due to the PE loss. The following 
subsections describe the mathematical expression for each of these.  

A. Atmospheric Loss 

The atmospheric channel attenuates the signal traversing it as a 
result of absorption and scattering processes and is described by 
the exponential Beers-Lambert Law as [27]: 

 ,Lexphl                                  (18) 

where 𝐿 is the transmission distance, and 𝛿 is the weather attenuation 
coefficient and it can be determined from the visibility data through 
Kim’s model as 
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Fig. 4.  Receiver structure for I-MUD TWR-FSO PNC model. 

 



 

where 𝑉 is the visibility, 𝜆 is the wavelength, and 𝑞 being the particle size 
distribution coefficient [27]. 

B. Atmospheric Turbulence-Induced Fading 

Turbulence fading is one of the main impairments affecting the 
operation of FSO communication systems. Classical studies on 
optical wave propagation have been classified in two major 
categories, either the weak or strong fluctuations theory. To 
describe the atmospheric turbulence and its effects on the optical 
beam propagation, theoretical and experimental studies have 
been carried out within the research community in order to 
develop tractable and reliable mathematical models for the 
irradiance PDF. 

1. Log-Normal Turbulence Model  

The log-normal distribution is commonly used to model the weak 
turbulence condition and has been embraced in many 
calculations for the turbulence channel [28,29]. The distribution 
of the light intensity fading induced by weak turbulence can be 
described by log-normal distribution as 
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where 𝜎𝐼
2  is the scintillation index and for a weak turbulence 

regime is found to be proportional to Rytov variance 𝜎𝑅
2 , which 

can be calculated as   
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where
2
nC is the refractive index structure parameter, and  is a 

constant given by 

.
wave sphericalfor 0.5

waveplanefor23.1





                      (22) 

A plane wave model is used for starlight and other exo-
atmospheric sources while spherical wave model is used for a 
small- aperture source within or near the turbulent atmosphere.  

2. Gamma-Gamma Turbulence Model 

The gamma-gamma distribution is a more recent fading model 
[30], which has evolved from an assumed modulation process, in 
order to address the large- and small-scale scintillations under 
moderate-to-strong scenarios. The gamma-gamma PDF is given 
by 
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where Γ(. ) is the Gamma function and 𝐾𝛼−𝛽(. ) denotes the 

modified Bessel function of the second kind of order α − β . 
Parameters 𝛼 and 𝛽 represent the effective number of large-scale 
and small-scale turbulence eddies, respectively, and their values 
can be calculated according to the expressions provided in [31]. 

C. Pointing Errors 

The misalignment-fading model derived in [32] offers a tractable 
PDF for describing the behaviour of the PE loss, which takes into 
account the detector size, beam width and jitter variance. The 
model assumes a circular detection aperture of radius 𝑎 , and a  

Gaussian spatial intensity profile of beam waist radius 𝑤𝐿 on the 
Rx plane at distance 𝐿. The pointing loss is given by [33,34] 

,wrAh Leqos )2exp( 22                      (24) 

where 𝑟 is the radial displacement between beam centre and          
centre of the detector, and  

  .wav,vA Lppo )(2)erf(
2

               (25) 

where 𝐴𝑜 is the fraction of the received power at a zero radial 
distance, erf(. ) denotes the error function and 𝑤𝐿 𝑎⁄  identifies 
the beam waist normalized by the radius of the receiver aperture. 
𝑤𝐿𝑒𝑞

2 represents the equivalent beam waist and can be determined 

as 
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4. BIT-ERROR RATE 
For an BPSK IM/DD FSO communication link, the BER defines 
as 𝑃𝑒 = 𝑝(0)𝑝(𝑒|0) + 𝑝(1)𝑝(𝑒|1), where 𝑝(0) and 𝑝(1) represent 
the probabilities of transmitting 0 and 1 bits, respectively, while 
𝑝(𝑒|0)  and  𝑝(𝑒|1)  resemble the conditional bit error 
probabilities when the transmitted bit is 0 or 1 , respectively. 
Assuming that the transmitter is sending 1s and 0s with equal 
probability, each has a probability equalled to 0.5, it is easy to 
show that BER conditioned on ℎ 
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where 𝑄(. ) is the Gaussian Q-function. However, the average BER 
can be determined by averaging the conditional bit error 
probabilities over PDF of ℎ𝑘, which is expressed as [35] 
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For log-normal distribution, substituting Eq. (20) into Eq.(28) 
and using a Gauss–Hermit quadrature integration, the average 
BER can be determined as [36]   

𝑃𝑒 =
1

√𝜋
∑ 𝕨𝑖𝑄[ exp (√2𝜎𝑅𝕩𝑖 − 𝜎𝑅

2/2)]z
𝑖=0  ,        (29) 

where 𝕨𝑖and 𝕩𝑖 are weight factors and the zeros of an zth order 
Hermit polynomial, respectively [36]. The channel state 
distribution for strong turbulence regime is given by [37] 
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where  𝜍 = 𝑤𝐿𝑒𝑞 2𝜎𝑠⁄  is the ratio between the equivalent beam 

width at the Rx and the PEs standard deviation. For the gamma-
gamma distribution model, Eq.(30) can be simplified using Meijer 

G-function 𝐺1,3
3,0 as [38] 
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Therefore, the average BER can be realized by substituting Eq. 
(31) into Eq. (28), which gives [22] 
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5. NUMERICAL RESULTS AND DISCUSSION 
In this section, the performance of the three system models, 
namely, FSO/IDMA, TWR-FSO PNC and I-MUD FSO PNC, have 
been evaluated in terms of the BER against the energy-to-noise 
ratio (𝐸𝑏 𝑁𝑜⁄ ), where 𝐸𝑏 is the bit energy, under the influence of 
the channel impairments such as path loss, atmospheric 
turbulence and PEs. The strength of the irradiance fluctuation can 
be determined through the value of Rytov variance 𝜎𝑅

2. This value 
assumed to vary between 0.1 ≤ 𝜎𝑅

2 ≤ 1 for weak turbulence and 
 𝜎𝑅

2 >> 1 for moderate-to-strong turbulence regimes. We 
considered a TWR- FSO link with  𝜆 = 850  nm, path loss  =
0.8 under the clear weather condition at  𝑉 = 10  km with the 
standard deviation (jitter) of PE displacement  𝜎𝑠 = 0.3 m, 
normalized beam width 𝑤𝐿 𝑎⁄ = 25 and normalized jitter 𝜎𝑠 𝑎⁄ =
3 [31, 32].  

A. FSO/IDMA Model   

In communication networks, MA is essential, and several 
techniques have been widely adopted, which permit multiple 
users to transmit and receive information at the same time to the 
base station in a given bandwidth with a given link reliability. 
Recently, IDMA as a special case of the code-division MA system 
has gained significant research attention, and it can be considered 
one of the most promising candidates for the uplink in future 
wireless communication systems. Moreover, MA techniques were 
also proposed in FSO based communication networks, and their 
performance was investigated under the weak, and strong 
atmospheric turbulence regimes [39,40]. In this paper, this 
technique is applied for the FSO communication link to allow 
multiple users to simultaneously share the same resource of 
atmospheric channels. In this scheme, the 𝐾 users transmitted to 
their perspective destinations without the help of the RN.  

However, investigation of the performance FSO/IDMA system 
is simulated for different number of simultaneous user  𝐾 =
2,3 and 6 with the convolutional code at a rate 𝑅𝑐 = 1/2 and the 
spreading code at a rate  𝑅𝑟 = 1/8 . The simulated BER 
performances of the system against 𝐸𝑏 𝑁𝑜⁄ over log-normal and 
gamma-gamma channels are shown in Figs. 5 and 6, respectively. 
The corresponding single user bound BER performance is also 
included for reference. In weak turbulence condition, we 
observed a degradation in the BER performance with respect to 
 𝐸𝑏 𝑁𝑜⁄  when 𝐾  increases from 2 to 6 users. For instance, to 
achieve a BER of 10-4, the 𝐸𝑏 𝑁𝑜⁄  gains are 5.5 and 13.2 dB for K = 
2 and 6, respectively, under the influence of the atmospheric 
turbulence channel characterized by 𝜎𝑅

2. The 𝐸𝑏 𝑁𝑜⁄  penalty is 8.1 
dB for 𝐾 = 2 compared to that of 𝐾 = 6  under the strong 
turbulence condition. These results indicate that the system 
performance is highly sensitive to the atmospheric turbulence, 
which requires higher received optical power to overcome the 
BER degradation. Moreover, the simulated results reveal that the 

Fig. 5.  Simulated BER performance again 𝐸𝑏 𝑁𝑜⁄  for FSO/IDMA 

system under weak turbulence conditions at 𝐿 = 1 km under 
clear weather condition at 𝑉 = 10 km and 𝐾 = 2,3,6. 

 
Fig. 6. Simulated BER performance against 𝐸𝑏 𝑁𝑜⁄  for FSO/IDMA 

system under gamma-gamma distribution with 𝐾 = 2,3,6, 𝑅𝑐 =
1/2, 𝑅𝑟 = 1/8, 𝜆 = 850 nm and 𝐿 = 1 km under clear weather 
condition at 𝑉 = 10 km. 

 

 
Fig. 7. Simulated BER performance against  𝐸𝑏 𝑁𝑜⁄  of the 
FSO/IDMA system for different numbers of normalized beam 
width 𝑤𝐿 𝑎⁄  with fixed normalized jitter at  𝜎𝑠 𝑎⁄ = 3 applying 
log-normal distribution. 

 
 



 

BER performance is limited mainly by the MAI, which arises when 
there are number of users in the system.  

Additionally, scintillation affects the laser beam propagation 
and ultimately causes fluctuation of the received signal. Thus, the 
information encoded in the intensity of the carrier signal is much 
more prone to these impairments.  Accordingly, for higher values 
of K,  𝐸𝑏 𝑁𝑜⁄  penalties are higher for weak and strong turbulence 
regimes. Subsequently, the system is unable to guarantee a 
reliable communication service for the entire turbulence strength 
regimes. Therefore, for 𝐾 = 2 the simulated BER performance of 
the FSO/IDMA system is closer to the single user bound 
performance. To illustrate the effect of PEs on the performance of 
FSO/IDMA system, the influence of the beam width and jitter are 
considered. Figures 7 and 8 depict the simulated BER 
performance against  𝐸𝑏 𝑁𝑜⁄  under weak and strong turbulence 
regimes for a range of normalized beam width  𝑤𝐿 𝑎⁄ =
2,4,6 and 10 with a fixed normalized jitter 𝜎𝑠 𝑎⁄ = 3, respectively. 

     Figure 9 displays the simulated BER performance 
against 𝐸𝑏 𝑁𝑜⁄  under weak and strong turbulence condition for a 
range of normalized jitter 𝜎𝑠 𝑎⁄ = 2,4 and 6  with a fixed 
normalized beam width  𝑤𝐿 𝑎⁄ = 10 . The figures reveal that in 
FSO/IDMA widening the beam width can mitigate the effect of 
PEs, thus resulting in the BER performance approaching that of 
the single user bound. Meanwhile, narrowing the beam width will 
contribute to the problem of misalignment and beam wandering. 
As observed also, the system performance decreases when 
𝜎𝑠 𝑎⁄  decreases. Therefore, the transceiver design with an 
optimum value of the beam width for higher values of normalized 
jitter in order to increase the robustness of the link in the 
presence of PEs was considered [35].  

B.TWR-FSO PNC model  

As the only essential requirement for an FSO system is the need 
for the line-of-sight (LOS) path between Tx and Rx, the relay-
assisted FSO solution can be effectively used to establish 
communications between FSO nodes located over longer link 
distances. However, an FSO link severely suffers from strong 
turbulence and is far away from satisfying the typical BER targets 
for FSO applications within the practical ranges of  𝐸𝑏 𝑁𝑜⁄ . 
Therefore, to combat fading and maintain acceptable 
performance levels, the relay-FSO technique is used by taking 
advantage of a shorter link or multiple hops between Tx and Rx. 
However, the TWR-FSO PNC scheme is adopted here to broaden 
the signal coverage for a given limited transmit power and 
mitigate fading over long transmission span (i.e., > 1 km). This 
model allows the two FSO nodes to exchange their information 
through a single RN with minimum transmission phases (MA and 
BC). This results in improved spectral efficiency, which in turn 
boosts the network throughput. The performance of the TWR-FSO 
PNC system for two users (i.e., 𝐾 = 2) is evaluated by means of 
simulation for atmospheric turbulence with log-normal and 
gamma-gamma distributions. The simulations are run under the 
clear weather condition for 𝑉 = 10 km, 𝐿 = 2 km and  𝜆 =
850 nm.  

Figure 10 presents the predicted BER performance for a FSO 
link between Tx and Rx using Eqs. (29) and (32) for weak and 
strong turbulence conditions, respectively, and the simulated BER 
performance of TWR-FSO PNC in terms of  𝐸𝑏 𝑁𝑜⁄  for a range of 
Rytov variance. In this model, the end-to-end link in TWR-FSO 
PNC was considered, where the RN performed PNC demapping on 
the superimposed received signal, which reduces the system 
complexity but at the cost of performance degradation at the 
destination nodes due to un-corrected errors at the RN. However, 
it was observed from the preliminary results that at higher 𝐸𝑏 𝑁𝑜⁄  
(i.e., ≥ 8 dB) the performance of the TWR-FSO PNC model had a 
slightly worse BER performance then the predicted BER for 
higher turbulence levels. For example, at a BER of 10-4 and for 
𝜎𝑅

2 = 0.5 an additional  𝐸𝑏 𝑁𝑜⁄  of ~7dB is required compared to 
the case with 𝜎𝑅

2 = 0.2. Moreover, it is worth stating that an end-
to-end BER of TWR-FSO PNC was evaluated for two transmission 
phases in which the system will experience channel fading. This is 
caused by fluctuation of the signal strength while propagating 
over a communication channel that had a significant effect on 
performance of the system. Whereas the LOS FSO system consists 
of a single hop transmission phase.  For example, to achieve a BER 
of 10-4 with a fading strength of 𝜎𝑅

2 = 0.5 , a  𝐸𝑏 𝑁𝑜⁄  gain of about 
29 dB is required for the predict FSO system. whereas, to obtain 
the same BER for TWR-FSO PNC,  30 dB of  𝐸𝑏 𝑁𝑜⁄  gain is required.  

The severity of the small-scale fading in the optical wireless 
channel is distance-dependent; therefore, in TWR-FSO to combat 

 
Fig. 9.  Simulated BER performance against  𝐸𝑏 𝑁𝑜⁄ for 

FSO/IDMA system for different numbers of normalized 
jitter 𝜎𝑠 𝑎⁄  and fixed normalized beam width  𝑤𝐿 𝑎⁄ = 10 under 
weak and strong turbulence.  

 

 

 

 

 

 
Fig.  8.    Simulated BER performance against 𝐸𝑏 𝑁𝑜⁄  for FSO/IDMA 

system for different numbers of normalized beam width  𝑤𝐿 𝑎⁄  
with fixed normalized jitter at 𝜎𝑠 𝑎⁄ = 3 under strong turbulence.  

 

 
 



 

fading one needs to reduce the distance between the Tx and the 
Rx. Figure 11 presents the simulated BER performance for the 
TWR-FSO PNC system in terms of 𝐸𝑏 𝑁𝑜⁄  under the weak and 
strong atmospheric turbulence regimes for a range of 
transmission spans 12,6,2L . It can be observed that at a BER 

of 10-4 and for 𝐿 = 12 km, 𝜆 of  850 nm higher  𝐸𝑏 𝑁𝑜⁄  values of 34 
dB and 57 dB are required for weak and moderate turbulence 
regimes, respectively. While for the same BER and 𝐿 = 6 km, 
lower values of  𝐸𝑏 𝑁𝑜⁄  about  27 dB and 52 dB are attained for the 
weak and moderate turbulence regimes, respectively. This is 
expected, since optical beams are less susceptible to the 
attenuation caused by absorption and scattering for a shorter 
propagation link. Whereas, optical beams propagating over 
longer link distances (i.e., > 1 km) will experience higher 
attenuation due to absorption caused by the presence of 
atmospheric particles.  

However, the advantage of the TWR-FSO PNC is to reduce the 
complexity at the RN by performing a specialist detected-and-
forward scheme in order to map the signal at the RN. This is in 
contrast to other traditional relay-assisted FSO system, which 
employs AF and DF strategies to process the signal at the 
intermediate node. In addition, TWR-FSO PNC increases the 
network throughput by reducing the transmission phases that are 
required to complete data exchange between two users.  

C. I-MUD FSO Based PNC  

A MUD technique is necessary to separate different users’ signals 
that share the same propagation media and improve the 
performance by jointly processing signals from all users. Thus, 
numerous suboptimal MUDs have been considered to mitigate 
interference with respect to the system performance, complexity, 
and the requirements with regard to the channel state 
information. In turbo processor, each decoder handles the data 
for a certain user only and disregards the others. Therefore, 
complexity of the decoder is independent of K. Hence, TWR-FSO 
PNC model is extended to allow multiple users exchanging 
information via a single RN over the FSO link when there is no 
direct link between them, as shown in Fig. 1. In this section, the 
performance of I-MUD TWR-FSO PNC model is investigated. The 
simulated BER performance for the proposed system in terms of 
 𝐸𝑏 𝑁𝑜⁄  for a given number of users 𝐾 = 4,12 and 20  under the 
weak atmospheric turbulence regime, and considering the path 
loss and PEs at 𝜆 = 850 nm under the clear weather condition 
at 𝑉 = 10 km and 𝐿 = 2 km (where the distance between a user 
and  relay is 1 Km) is presented in Fig. 12. The simulation result 
shows that there is an improvement in the BER performance for 
the I-MUD FSO PNC model compared to TWR-FSO PNC despite the 
increased number of simultaneous users. For instance, at a BER of 
10-4, the 𝐸𝑏 𝑁𝑜⁄  gains are ~14, 10 and 7 dB for I-MUD FSO PNC 
with respect to TWR-FSO PNC. Furthermore, the simulated BER 
performance for the system under consideration in terms of 
 𝐸𝑏 𝑁𝑜 ⁄ is evaluated under strong turbulence for 𝜆 = 850 nm 
and  𝐿 = 2 km under the clear condition at  𝑉 = 10 km for a 
number of users 𝐾 = 4, 8 and 14, as shown in Fig. 13.  Although 
the number of the concurrent users is increasing, the proposed 

 
Fig. 12.  Simulated BER performance against 

b o
E N for TWR-

FSO PNC and I-MUD FSO based PNC systems under weak 

turbulence for 2 4 12 20K , , , , 850 nm and 2L km under 

the clear weather condition at 10V km. 

 

 
Fig. 10. Predict and simulated BER performance 

against 𝐸𝑏 𝑁𝑜⁄ for TWR-FSO PNC system at 2K km, 850

nm and 2L  km under clear weather condition at 10V over 

weak- moderate - strong turbulence conditions. 

 
Fig. 11.  Simulated BER performance against

b o
E N  for TWR-

FSO PNC system under weak and strong turbulence regimes for 

12,6,2L km, 850 nm under the clear weather condition at 

10V km. 

 



 

system offers improved BER performance. For example, at a BER 
of 10-4, the 𝐸𝑏 𝑁𝑜⁄  gains are 28 , 25  and 22 dB with respect to 
TWR-FSO PNC. It can be explained that by iteratively updating the 
transmitted symbol pair probabilities, the MUD produces more 
accurate a priori probabilities of the XOR-ed coded bits for the 
DECs, which can enhance the system performance. Additionally, 
an alternative mitigation scheme known as aperture averaging 
can be adopted in order to achieve improvement in the BER 
performance under turbulence-induced scintillation and PE 
conditions.  

6. CONCLUSIONS 
Physical layer network coding is a promising technique that has 
great potential for improving the achievable data rates of end-to-
end flows through higher data transmission rates, thereby 
increasing the overall network throughput. We studied the 
performance of the TWR-FSO PNC transmission technique for 
FSO wireless networks when there is no direct path between the 
two communication nodes. The system was simulated for 
attainable BER performance by transmitting BPSK symbols over 
the weak and strong atmospheric turbulence fading channels, 
taking into account the other physical layer impairments 
including atmospheric attenuation and PE. In this paper, to allow 
multiple users to simultaneously share the same resources of FSO 
link, an IDMA technique was applied. We investigated the BER 
performance of the FSO/IDMA system over log-normal and 
gamma-gamma models. The result showed that there was 
 𝐸𝑏 𝑁𝑜⁄  penalty of ~9 dB at a BER of 10-4 under strong turbulence 
for 𝐾 = 6 with respect to single user bound resulting from the 
MAI and scintillation effects. Consequently, the simulation for the 
I-MUD FSO based PNC model was carried out, where multiple 
nodes could exchange information through a single relay over a 
FSO link when there is no direct link between them. The TWR-FSO 
technique was adopted to alleviate the influence of the 
scintillation by reducing the transmission range and increasing 
spectral efficiency. Additionally, the effect of I-MUD algorithm and 
chip-interleaving was considered to mitigate MAI. Simulation 
results showed an improved BER performance even for higher 
number of simultaneous users. For instance, new model offered 

~8  and 22 dB  of  𝐸𝑏 𝑁𝑜⁄  gains to achieve  a BER of 10-4 for 𝐾 =
20 ,14 with respect to TWR-FSO PNC under  weak and strong turbulence 
regimes, respectively.  
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