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ABSTRACT: 

Mode-coupling instability is a widely accepted mechanism for the onset of friction-induced vibrations in car brakes, 

wheel sets, paper calendars, to name a few.  In the presence of damping, gyroscopic, and non-conservative positional 

forces the merging of modes is imperfect, that is two modes may come close together in the complex plane without 

collision and then diverge so that one of the modes becomes unstable. In non-conservative rotating continua that 

respect axial symmetry this movement of eigenvalues is very sensitive to the variation of parameters of the system. Our 

study reveals some general rules that govern sub-critical mode-coupling instabilities in non-conservative rotating 

continua to stiffness and damping modifications and provide useful insight for optimisation of such systems and 

interpretation of experimental results. 
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1. Introduction 

Mode coupling is generally acknowledged to be one of 

the most important mechanisms leading to self-excited 

vibration in relative sliding systems with friction, see 

e.g. [1-15]. Although both modal analysis and transient 

analysis of the nonlinear system [16, 17] are the two 

widely accepted complementary methods in modern 

treatments of such problems, we will concentrate on the 

former in this paper.   

Frequently, linearisation and discretisation of the 

models derived for the description of the mode-coupling 

instability in brakes yields a finite-dimensional 

circulatory system  

0 x Ax      (1)                                                                   

where dot denotes time differentiation and A is a real 
non-symmetric matrix that is related to potential and 

non-conservative positional (or circulatory) forces [2, 3, 

11-14].  

Circulatory system, as given in Eqn. (1), is 

(marginally) stable if and only if its eigenvalues are pure 

imaginary and semi-simple, that is each multiple 

eigenvalue has a number of linearly-independent 

eigenvectors equal to its algebraic multiplicity [18]. With 

the change of parameters the eigenvalues move along the 

imaginary axis until two of them collide with the 

origination of the double pure imaginary eigenvalue with 

the Jordan block that then splits into a pair of complex 
eigenvalues – one with negative an another with positive 

real part – that causes flutter instability. This is a basic 

mechanism of mode-coupling instability without 

dissipation [18-21]. 

The boundary between the domain of marginal 

stability of a circulatory system and the flutter instability 

domain possesses singularities that correspond to 

multiple pure imaginary eigenvalues [18]. For example 
to a double pure imaginary semi-simple eigenvalue with 

two linearly-independent eigenvectors corresponds a 

conical singularity in the space of three parameters 

which can yield a planar cone in the plane of two 

parameters [18].  

In the presence of dissipation a new term enters the 

equations of motion. 

0  x Dx Ax      (2)                                                     

where the real symmetric matrix D  corresponds to the 

damping forces. In case of full dissipation the matrix D 

is positive definite. We note however that negative 

friction-velocity slope yields an indefinite matrix of 

damping forces [4,5, 8, 22]. 

In the presence of damping the mode-coupling 
scenario of instability is changed. The merging of modes 

becomes imperfect [3], i.e. two eigenvalues move out the 

imaginary axis, e.g., to the left part of the complex plane, 

come closer together, pass in the vicinity of each other 

and after the closest rendezvous one of the eigenvalues 

sharply turns to the right and crosses the imaginary axis 

at some new critical value of parameters [3, 19-21]. The 

new instability threshold corresponds to a simple pure 

imaginary eigenvalue in contrast to the undamped case 

where the critical eigenvalue is pure imaginary and 
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double. Moreover, in the limit of vanishing dissipation 

the instability threshold of system, as given in Eqn. (2), 

generically does not tend to that of the undamped system 

(1). This phenomenon known as the Ziegler’s paradox 

had been explained by Bottema [23, 24] who found that 

the stability boundary of a circulatory system with 

dissipation possesses a singularity known as the Whitney 

umbrella [15, 24]. Recently, this singular surface 

separating stability and instability domains was observed 
for the models of drum and disk brakes in [13] and [15], 

respectively. 

In [13, 15] the critical friction coefficient was 

plotted as a function of two damping parameters. In case 

of vanishing damping the vertical axis in the three-

dimensional parameter space corresponds to the 

undamped circulatory system, which is marginally stable 

when the friction coefficient changes from zero to some 

instability threshold. On the stability interval all the 

eigenvalues are pure imaginary. The stability boundary 

of the damped system has self-intersection along the 

interval of marginal stability of the undamped system. 
The angle of the self-intersection becomes smaller when 

the friction coefficient tends to its undamped critical 

value, where the angle is zero. This degeneracy 

corresponds to the Whitney umbrella singularity [15, 23-

25]. The existence of the singularity on the stability 

boundary in the presence of damping explains high 

sensitivity of the onset of the friction-induced 

oscillations to small dissipative perturbations as well as 

the imperfect merging of modes that substitutes the 

mode-coupling instability in the presence of damping. 

Recent studies of self-excited instabilities in brakes, 
motivated by the problems of squeal noise and wear 

[10], take into account gyroscopic forces, however small 

they are for these applications, see for example [5-9, 14, 

30]. These studies place the problem of friction-induced 

instabilities in brakes into the context of classical rotor 

dynamics where non-conservative forces arising in seals 

and bearings are known since at least 1920s [31-33]. 

Typical rotor dynamical applications are related to 

stability of high-speed machinery such as turbine shafts 

and wheels, circular saws, disks of computer data storage 

devices, to name a few [34-41]. In such applications 
gyroscopic forces are significant and it is natural to 

consider non-conservative and dissipative forces as a 

perturbation of a conservative gyroscopic system. A 

convenient instrument of stability analysis of rotors in 

the engineering practice is frequency-speed – or 

Campbell – diagrams that plot frequencies of the rotor 

vibrations versus rotating speed. For perfect solids of 

revolution the diagram typically consists of the 

eigencurves that intersect each other at various speeds. 

The speed at which one of the eigenfrequencies vanishes 

is called critical. For high speed applications instabilities 

at the critical speed and in the supercritical speed range 
are of major importance [31, 37, 42]. It is known that 

variation in the mass and stiffness distribution may cause 

the so-called mass- and stiffness- instabilities for such 

speeds [37-42]. It is remarkable that these instabilities 

manifest themselves as instability bubbles [43] of 

complex eigenvalues that originate due to unfolding of 

double eigenvalues at some crossings of eigencurves of 

the Campbell diagram of the non-modified system [30-

42, 44-48]. The mass and stiffness instabilities can easily 

be identified with the interaction of the so-called waves 

of positive and negative energy – the instability 

mechanism that is well-known in hydrodynamics and 

that is typical for Hamiltonian systems such as 

conservative gyroscopic ones [42, 43]. Indeed, the 

Campbell diagram is usually interpreted in terms of 

forward-, backward- and reflected waves travelling 

along the circumferential direction of the rotating solid 
of revolution [37, 49, 50]. Interaction of the reflected and 

forward travelling waves due to mass and stiffness 

modification is an example of the destabilising 

interaction of waves of positive and negative energy in 

the gyroscopic continuum [42, 43]. 

We see that flutter can easily be excited in the 

supercritical range of a rotor due to Hamiltonian 

perturbations such as mass and stiffness redistribution. 

This is not the case in the subcritical speed range. Here 

the doublets in the Campbell diagrams that are sources 

of the combination resonance [49, 50] in the supercritical 

range just veer away into avoided crossings [36, 37, 39-
42, 44-46]. The instabilities in this speed range are 

provoked by the non-conservative positional forces and 

by the indefinite damping [8, 22]. 

Indeed, fundamental studies of Bottema [23, 24] and 

Lakhadanov [51] had lead to a discovery of a theorem 

that states that the gyroscopic system with non-

conservative positional forces in the absence of 

dissipation is generically unstable. This means that in the 

space of the system’s parameters a non-conservative 

gyroscopic system is unstable almost everywhere and 

can be marginally stable only on a set of a very low 
dimension, such as a point in a three-dimensional space. 

It is not surprising that the theorem is repeatedly 

confirmed by numerical calculations for many particular 

models of rotors in frictional contact where non-

conservative positional (or circulatory) forces naturally 

appear [4-8, 11, 12, 14, 37-46]. In practice, rotors in 

frictional contact can be both stable and unstable at 

different speeds in the subcritical speed range. The 

natural stabilizing effect is caused by dissipation. 

Another possible mechanism of stabilisation in the 

subcritical range is believed to be related to the stiffness 
modification of the system.  

On the one hand, structural optimisation that breaks 

the symmetry of the rotor or changes the properties of 

the brake elements such as brake pads is considered as a 

practical and cheap passive method of elimination of 

friction-induced vibrations and therefore its 

consequences such as squeal and wear [4-6, 29, 52-55]. 

Optimisation of stability of a translating string or beam 

as well as of a rotating circular string, ring or disc on an 

elastic foundation and in the frictional contact is in itself 

a remarkable new class of non-conservative problems of 

structural optimisation related to the classical Herrmann-
Smith paradox and to the optimal design of columns 

under conservative and non-conservative loads [54-58]. 

On the other hand, one can consider the wear as a 

source of modification of different properties of the 

brake mechanism such as stiffness distribution, and 

contact and damping characteristics and may be 

interested in the sensitivity analysis of the instability 

onset to such imperfections [10, 27, 28]. For example, 



O.N. Kirillov. 2011. Int. J. Vehicle Structures & Systems, 3(1), 1-13 

3 

 

regarding the contact surface topography, by means of 

experimental analysis some researchers found that the 

roughness of relative sliding contact surfaces definitely 

influences the generation of the squeal noise. They found 

that the contact pressure of a sliding surface and the size 

of its plateaus have great influence on generating squeal 

noise [10, 26]. Pads with many small contact plateaus 

tend to generate stronger squeal noise than pads with 

relatively large plateaus [10]. All this gives enough 
motivation to the sensitivity analysis of sub-critical 

mode-coupling instabilities in non-conservative rotating 

continua to stiffness and damping modifications. 

We note that the variation of stiffness only does not 

change the type of the system – it remains a non-

conservative gyroscopic system even if the frequencies 

of the stiffness matrix are well-separated, i.e. the 

spectrum of the matrix does not possess the doublets or 

multiplets. From this point of view, the problem of 

optimisation of stability of a gyroscopic non-

conservative system by stiffness modification is well-

posed only when it takes into account damping.  
It is quite natural to look at the marginally stable 

systems such as conservative gyroscopic or circulatory 

one and study its stabilization or destabilization by 

dissipation [8, 9, 13, 19-21, 23, 24, 51, 59-66]. Inside the 

marginal stability domain the conservative gyroscopic or 

circulatory system has all its eigenvalues pure imaginary. 

In the presence of damping this stability domain 

constitutes a part of the boundary that separates regions 

of asymptotic stability and instability. Since a non-

conservative gyroscopic system is unstable in the 

absence of dissipation and can be asymptotically stable 
in the presence of dissipation, an intriguing fundamental 

question thus arises: What is the set in the space of 

parameters where all the eigenvalues of the system are 

pure imaginary? How this set is related to the stability 

boundary of the damped system (where it is enough that 

only one complex conjugate pair of eigenvalue be pure 

imaginary and others have negative real parts)?  

The answer to these questions in general is a non-

trivial problem that should shed light to the mechanism 

of mode-coupling subcritical instabilities in rotating 

systems in frictional contact as well as in many other 
applications where non-conservative gyroscopic systems 

with dissipation play a role. In the present paper we give 

some insight with the use of the perturbation theory 

developed in [8, 9, 42, 67] that is applied to a general 

non-conservative gyroscopic system, to a brake disc in 

frictional contact model and to a rotating shaft model. 

2. General perturbation of the doublets of 

an anisotropic rotor system 

Following [4-6, 8, 9, 14, 30, 38, 42, 63-66, 68] we 

consider the finite-dimensional anisotropic rotor system.                                                                        

2 2(2 ) ( ) 0         x G D x P G K N x 
      (3) 

which is a perturbation of the isotropic one 

2 22 ( ) 0    x Gx P G x  .                            (4) 

where 
2nRx , 

2 2 2 2 2 2

1 1 2 2diag( , , , , , )n n     P   

is the stiffness matrix, and 
T G G  is the matrix of 

gyroscopic forces defined as 

blockdiag( ,2 , , )nG J J J                  (5) 

where 

0 1

1 0

 
  
 

J .     (6)                                                              

The matrices of non-Hamiltonian perturbation 

corresponding to velocity-dependent dissipative forces, 
TD D , and non-conservative positional forces, 

T N N , as well as the matrix 
TK = K  of the 

Hamiltonian perturbation that breaks the rotational 

symmetry, can depend on the rotational speed  . The 

intensity of the perturbation is controlled by the 

parameters  ,  , and  .  

Equations in the form (3) and (4) are among 

standard models of rotor dynamics that go back at least 

to the work of Brouwer of 1918 [63, 65] and Jeffcott of 

1919 [31] and usually arise from the modal analysis of 

continuous systems [4-6, 8, 9, 14, 30, 31, 34, 35, 37, 42, 
44-48, 68]. 

At 0   the eigenvalues , 0s si   , of the 

isotropic rotor, as given in Eqn. (4), are double semi-

simple with two linearly independent eigenvectors. For 

example, s s  , where s is a natural number, 

corresponds to the natural frequency 
2

s

s P
f

 
  of 

a circular string of radius r , circumferential tension P , 

and mass density   per unit length [41, 44-47].  

Substituting exp( )tx u  into Eqn. (4) we arrive 

at the eigenvalue problem 

2 2 2

0( ) : ( 2 ) 0       L u I G P G u . (7) 

The eigenvalues of the operator 0L  are found in the 

explicit form 

,s s s si is i is           , 

,s s s si is i is           ,  (8) 

where the overbar denotes complex conjugate. The 

eigenvectors of s


 and s


 are 

1 ( ,1,0,0, ,0,0)Ti  u  , 

: : : ; 

(0,0, ,0,0, ,1)T

n i  u  .                                     (9) 

where the imaginary unit holds the (2 1)s  st position 

in the vector s


u . The eigenvectors, corresponding to the 

eigenvalues s


 and s


, are simply s s

 u u .  

For 0 , simple eigenvalues s


 and s


 

correspond to the forward and backward travelling 

waves, respectively, that propagate in the circumferential 
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direction of the rotor. At the angular velocity 
cr

s s s   the frequency of the s th backward 

travelling wave vanishes to zero, so that the wave 

remains stationary in the non-rotating frame. We assume 

further in the text that the sequence of the doublets si  

has the property 1

cr

s s s    , which implies the 

existence of the minimal critical speed 

1 1

cr

cr    . When the speed of rotation exceeds 

the critical speed, some backward waves, corresponding 

to the eigenvalues s


, travel slower than the disc 

rotation speed and appear to be travelling forward 

(reflected waves). 

Introducing the indices , , , 1       we find 

that the eigenvalue branches s si i s      and 

t ti i t      cross each other at 0   with 

the origination of the double eigenvalue 0 0i   with 

two linearly-independent eigenvectors s


u  and t


u , 

where 

0 0,s t s tt s

t s t s

   


   

 
  

 
.     (10) 

Let M be one of the matrices D, K, or N. In the 

following, we decompose the matrix 
2 2n nR M  into 

2n  blocks 
2 2

st R M , where , 1,2, ,s t n   

2 1,2 1 2 1,2

2 ,2 1 2 ,2

s t s t

st

s t s t

m m

m m

  



 
  
 

M .                               (11) 

Note that 
T

st tsD D , 
T

st tsK K , and 
T

st ts N N .  

We consider a general perturbation of the matrix 

operator of the isotropic rotor 0( ) ( )  L L . The 

size of the perturbation  

   ~NKDL                              (12) 

is small, where 0( )   L  is the Frobenius norm 

of the perturbation at 0  . For small 

0    and   the increment to the doublet 

0 0i   with the eigenvectors s


u  and t


u , is given 

by the formula 0det( ( ) ) 0   R Q , where the 

entries of the 2 2  matrices Q  and R are [8, 9, 42, 67] 

0 02 ( ) 2 ( )T T
s sst t tQ i
     u u u Gu , 

2

0 0 0(2 ( ) 2 ( ) )( )T T
s sst t tR i
      u Gu u G u

0( ) ( ) ( )T T T
s s st t ti v
        u Du u Ku u Nu . 

(13) 

Calculating the coefficients, as given in Eqn. (13), with 

the eigenvectors, as given in Eqn. (9), we find the real 

and imaginary parts of the sensitivity of the doublet 

0 0i   at the crossing (10), 

1 1
Re1 Im Im

Re
8 2s t

c cA B


 

 
    

 
,   (14) 

0Im ( )
2

s t   


    

Retr tr

8 2

ss tt

s t

c c

 

 
   

 

K K
,                 (15) 

where Re Imc c i c   with 

1 1Im Im
Im ( )

8

t s

s t

A B
c s t

 
 

 


    

1 1

2 2

( tr tr )( Im Im )

32

s tt t ss s t

s t

B A   


 

 


K K

2 2Re tr Re tr

8

st st

s t

A B 
 




K J K I
,           (16) 

2

tr tr
Re

2 8

s tt t ss

s t

t s
c

   


 

  
  
 

K K
 

2 2 2

1 1 2 2

2 2

( Im Im ) 4 ((Re ) (Re ) )

64

s t s t

s t

B A A B   

 

  


2 2
2(tr ) (tr )

16

st st

s t

  
 




K J K I
.                   (17) 

The coefficients 1A , 2A  and 1B , 2B  depend only on 

those entries of the matrices D, K, and N that belong to 

the four 2 2  blocks (11) with the indices s  and t  

1 0 2 1,2tr tr 2ss ss s sA i n      D K , 

1 0 2 1,2tr tr 2tt tt t tB i n      D K , 

2 0tr ( tr tr )st st stA i      N I D J K J , 

2 0tr ( tr tr )st st stB i      N J D I K I ,

                  (18) 

where 

0 0
,

0 0
 

 

 

   
    
   

I J .              (19) 

Many important low-dimensional models of rotor 

dynamics are described by the Eqns. (3) and (4) with 

1n   [4-6, 31-33, 59, 60, 63-66], see also [7] for an 

overview of the minimal models for brake squeal and 

[69-72] for the discussion on model reduction in the 

problems of non-conservative stability. In this case N = J 

and the only subcritical crossings of the eigencurves (10) 

happen at 0 0   and correspond 

to , 1s t      , and 1   . With these 

coefficients, the Eqns. (14), (15) and (16), (17) are 
simplified to 
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1 2
Re

Re
4 2

c c 
 


   ,             (20) 

1 2
1

1

Re
Im

4 2

c c 
  




   ,              (21) 

22 2
2 2 21 2 1 2

2

1 1

Re
4 4 4

c
    

 
 

   
     
   

,   (22) 

1 1

2tr tr tr
Im

8
c




 

 
 

KD K D
,              (23) 

where 1,2  and 1,2  are the eigenvalues of the 2 2  

matrices D and K, respectively. From the 

condition Re 0  , we find the approximation to the 

boundary of asymptotic stability domain 

2

21 2 Re

4 2 2

cc 


 
  

 
.                               (24) 

In the absence of gyroscopic and dissipative terms the 

expression (24) simplifies to  

2

2 21 2 0
2

 
 

 
  

 
.                                     (25) 

In the ( , )   - plane, Eqn. (25) defines two lines 

intersecting at the origin. The lines separate the flutter 

instability domain that contains the  -axis (in 

accordance with the Merkin theorem [59, 60]) and the 

domain of marginal stability. The flutter domain thus has 

a form of the planar cone with the apex corresponding to 

the double semi-simple pure imaginary eigenvalue [18]. 

In the following we will see how this conical singularity 

manifests itself in the modelling the disc brakes and 
rotating shafts. 

3. Example 1. A one-doublet mode model of 

a disc in distributed frictional contact 

In [4] Kang, Krousgrill and Sadeghi investigated the 

dynamic instability due to circumferential friction 

between a stationary thin annular plate and two fixed 

annular sector contact interfaces under steady-sliding 

conditions. The effects of rotation and damping were 
neglected in their model. By linearization of the 

governing PDEs and with the use of the truncated modal 

expansion, the governing equations were obtained in [4] 

in the form of the linear circulatory system that follows 

from the Eqn. (3) when 0   and 0  . 

For the prediction of squeal a single doublet mode 

pair model was introduced in [4] with the following 

matrices of potential forces P, K and the matrix of 

circulatory forces N 

2

2

2

2

0.5 0

0 0.5

z

n c n c

z

n c n c

k R

k R

 

 

 
  

 
P




,    (26) 

sin( )

2

z

n nc c

z

n n

R nRk n

n nR R










 
  

 
K

 

 
 

2 2

2 2 1 0

0 0

n n  
 

 
 

,                                          (27) 

0 1
,

1 0 2

c n ck nR 


 
   

 
N J


.              (28) 

In the Eqns. (26)-(28), n  is the number of nodal 

diameters on a vibrating annular plate and is referred to 

as the mode number. The two neighbouring circular 

natural frequencies of the stationary disc are denoted as 

2n  and 2 1n  .  The friction coefficient   is assumed 

to be uniformly constant over the contact area of the disc 

with the contact span angle c . The stiffness of the 

contact is also uniformly constant and equal ck . The 

coefficients nR  and 
z

nR  are integrals involving the 

squared radial functions of order n  in the modal 

expansion for the transverse displacement of the disc [4]. 

The matrices (27) and (28) are perturbations of the 

potential system with the matrix (26) for small values of 

  and in the vicinity of those values of the contact span 

angle c  that satisfy the equation sin( ) 0cn  . 

Calculating the eigenvalues 1  and 2  of the 

symmetric matrix K defined by the Eqn. (27) we find 

2 2

2 2 1
1,2

2

n n 





     

 
2

2 2 2 2 2 2 2

2 2 1( ) sin( ) sin ( )

2

z

n n c n c c n c cn k R n k R n n

n

     



   

                                                        (29) 

Taking their difference, substituting it into Eqn.(25) and 

taking into account the expression for the parameter   

that follows from the Eqn. (28), we find the 

approximation of the boundary between the domains of 

marginal stability and flutter  

2

2 2

2 2 1
2

2 2 2 2 2

sin( )

( ) ( sin ( ))

z c
n n c n

c n c c

n
k R

n

k R n n


 


 



 
  

 





.            (30) 

Remarkably, the expression (30) following from the 

formulas of the perturbation theory of the previous 

section reproduces the exact solution given in the work 
[4]. When the frequency separation is zero, i.e. 

2 2

2 2 1n n   , the Eqn. (30) simplifies to 

2 2 2

sin( )

sin ( )

z

n c

n c c

R n

R n n n





 
 





 .                        (31) 

Taking for simplicity 
z

n nR R   we plot the stability 

boundary (31) in the ( , )c  -plane for 1n   and 

4n  , see Fig. 1. For small values of the friction 
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coefficient   instability domain has the form of two-

dimensional conical tongues with their apexes at 0   

corresponding to the double semi-simple roots of the 

matrix polynomial 
2 I P  

2

2 0.5 z

n c n ck R     .                                           (32) 

 

 

Fig. 1: Domains of marginal stability and flutter for the disc in the 

case of non-separated frequencies; (a) n = 1, (b) n = 4 

The conical form of the flutter domain of a 
circulatory system in the vicinity of a point in the 

parameter space corresponding to the double semi-

simple eigenvalue is well-known [18]. In [18] full 

classification of generic singularities of the stability 

boundary of a circulatory system was given and 

approximations to the boundary near the singularities 

were derived with the use of the perturbation theory of 

multiple eigenvalues. In particular, the conical 

singularity of the stability boundary corresponding to the 

crossing of the eigencurves was analysed in detail. 

The shape of the instability tongues illustrates the 

general theorem by Merkin that states that the potential 
system with equal frequencies is always destabilized by 

non-conservative positional forces [59, 60]. Indeed at the 

singular points the vertical direction leads to the flutter 

domain as is seen in Fig. 1. Nevertheless detuning the 

frequencies of the degenerate potential system can 

stabilize the system for relatively small values of the 

circulatory forces. We note that Fig. 1 qualitatively 

agrees with the plots of the work [4]. For the quantitative 

agreement one needs to take the corresponding values of 

the ratio 
z

n nR R  . 

4. Example 2. The mechanism of subcritical 

flutter instability for a rotating shaft 

Another example of a rotor dynamics system described 

by Eqns. (3) is a two-degrees-of-freedom model of a 

rotating shaft [64], see Fig. 2. In [64] the shaft is 

modelled as the mass m  which is attached by two 

springs with the stiffness coefficients 1k  and 

2 1k k    and two dampers with the coefficients 1  

and 2  to a coordinate system rotating at constant 

angular velocity  , Fig. 2. A non-conservative 

positional force r  acts on the mass. Such a force on 

the shaft in the bearings may arise in a rotating fluid or 

in an electromagnetic field [64]. 
 

 

Fig. 2: A model of the rotating shaft by Shieh and Masur [64] 

With u  and v  representing the displacements in the 

direction of the two rotating coordinate axes, 

respectively, the system [64] is governed by  

2

1 12 ( ) 0mu u m v k m u v           ,

2

2 22 ( ) 0mv v m u k m v u           , (33) 

where dot means time differentiation. Dividing both 

Eqns. (33) by m , we find that this is a system of type 

(3) with the matrices 

1

1

1

2

0

0

m

m










 
  
 

D , 

1

1

1

1

0

0

k m

k m





 
  
 

P , 

1

0 0

0
k

m 

 
  
 

K , 

1

1

0

0

m

m










 
  

 
N . (34) 

Separating time with the substitution 0

tu u e , 

0

tv v e  yields the characteristic polynomial 

4 3 2 21 2 1 2 1 2

2
( ) 2

k k
p

m m m

   
   

  
      

 

21 2 1 2 1 2

2

4k k

m m m

    


   
    
 

 

2
4 2 2 1 1 2

2

k k k k

m m

 
   .                         (35) 

It is straightforward to see that the polynomial (35) 

becomes biquadratic in case when the following 

conditions are fulfilled 

1 2

1

4
0,

m
  




   .                                (36)              

Moreover, all the roots of the polynomial (35) under 

restraints (36) and sufficiently small perturbations are 

pure imaginary if, in addition 

1 2 m   .                                                         (37) 

The equality in (37) corresponds to the double pure 

imaginary eigenvalues   with the Jordan block 

21k

m m


     .                             (38) 
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Therefore, in the space of the shaft parameters there 

exists a non-trivial set given by expressions (36), (37) 

where all the eigenvalues of the system are pure 

imaginary (marginal stability) in the presence of 

dissipative and non-conservative forces. To study the 

connection of this set to the domains of instability and 

asymptotic stability in the parameter space, it is more 

convenient to use the perturbation formulas of the 

previous section than to analyse directly the 
characteristic polynomial (35). Indeed, in the absence of 

perturbations, i.e. when 0  , 1 2 0   , and 

0  , the eigenvalues of the shaft are pure imaginary 

1( )
k

i i
m

      .                                           (39) 

The eigencurves (39) cross at 0   and at 

1
cr

k

m
   . We are interested in the instabilities that 

develop at rotation speeds cr   , i.e., subcritical 

instabilities [37]. Thus, we have to look at the unfolding 

of the doublet 1i k m   at 0  .  

Substituting the matrices (34) into Eqns. (20)-(23) 

we find approximations to the real and imaginary parts 
of the perturbed double eigenvalues. 

1 2
Re

Re
4 2

c c

m

 



   ,              (40) 

1

1

Re
Im

24

c ck

m k m





   ,               (41) 

2 2 2
21 2

1

4
Re

4 16
c

m mk

     
   
 

,              (42) 

2 1

1 1

( )
Im

8
c

k m m k m

    
   .                           (43) 

From the condition Re 0   the approximation to 

the stability boundary immediately follows 

2 2 2
21 2 1 2

2

1

( ) 4 4

16 16
c

m mk

       
   ,   (44) 

1 2 0   .                                                           (45) 

It is easy to see that in the absence of gyroscopic 

and dissipative forces when 1 2 0    and 0   

the stability boundary of the circulatory system is given 

by the expression 

2 24  .                                                         (46) 

In the ( , )  -plane the flutter instability is inside the 

cone given by the inequality 
2 24  . Stability 

domain is given by the opposite inequality 
2 24  , 

Fig. 3. Consequently, when the stiffness detuning 

0  , the potential system with the coincident 

frequencies (or stiffness coefficients 1 2k k ) is always 

destabilized by non-conservative positional forces. This 

is the statement of the Merkin theorem [59, 60]. The 

conical singularity is one of the generic singularities of 

the stability boundary of circulatory systems whose full 

classification and analysis was given in [18]. However, 

detuning of the stiffness matrix 0   increases the 

instability threshold for the non-conservative positional 

force, Fig. 3. Note that the conical singularities of the 

flutter domain in the ( , )  -plane are quite typical in 

the modelling of brake squeal and otpimization of brake 
elements (such as brake pads), see for instance [4].  
 

 

Fig. 3: Approximation to the stability domain in the ( , )  -plane 

for 1m  , 
1 1k   in the absence of dissipative and gyroscopic 

forces (straight lines, marginal stability) and (hyperbolic curves, 

asymptotic stability); (a) 0  , 
1 10.1, 0.2   , (b) 

0.3  , 
1 10.03, 0.06    

In the literature on brake squeal there is a tendency 

to take into account all possible forces [5, 6]. We look 

now what happens with the stability boundary in the 

( , )  -plane when damping and gyroscopic forces are 

added. In the absence of gyroscopic forces ( 0  ) 

damping increases the instability threshold as shown in 

Fig. 3(a). The approximation to the boundary between 

the flutter and stability domains is given now by 

hyperbolic curve (44) with the asymptotes (46), Fig. 

3(a). Stability domain is between the branches of the 

hyperbola.When both gyroscopic and damping forces are 

acting, the instability threshold is lower, Fig. 3(b). The 

boundary between the stability and flutter domain is 

approximated by the hyperbolic curve (44) with the 

asymptotes that differ from the lines (46), Fig. 3(b). 

Again, stability domain is between the branches of the 
hyperbola. 

To uncover the hidden reasons for the non-trivial 

transformation of the stability boundary in the presence 

of non-conservative positional, gyroscopic and 

dissipative forces, further in the text we will study 

stability boundary (44), (45) in the ( 1 2, ,   ) - space. 

In the simplest case when  0   and 0   stability 

domain is bounded by the inequalities 1 0   and 

2 0  . That is, in the ( 1 2, ,   )- space the stability 

boundary is a dihedral angle as is seen in Fig. 4(a). 

Damping does not change the stability domain of the 

potential system with positive definite matrix P [62]. 
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The shape of the stability domain in ( 1 2,  ) - plane is 

invariant with respect to the changes in the spectral gap 

of  P that is controlled by the parameter  . 

Adding the circulatory forces ( 0, 0    ) leads 

to significant qualitative changes in the stability domain 

and its boundary, Fig. 4(b). It turns out that as soon as a 

tiny bit amount of non-conservative positional forces is 
added, the edge of the stability domain along the   - 

axis breaks up into two portions, Fig. 4(b). As a result, in 

the vicinity of the origin stability boundary moves out 

from the vertical axis opening a round instability 

window. The stability boundary near the window is 

smooth almost everywhere and saddle-like, Fig. 4(b). At 

the points 

( 0,0, 2 ),                  (47) 

shown in Fig. 4(b) by the open circles the stability 

boundary has a singularity Whitney umbrella that 
corresponds to pure imaginary double eigenvalue (38) 

with the Jordan block [15, 19-21, 23-25]. 
 

 

Fig. 4: Approximation to the asymptotic stability domain in the 

1 2( , , )   -space for 1m  , 
1 1k  ; (a) 0  , 0  , (b) 

0  , 0.05   

In Fig. 5 cross-sections of the surface (44) of Fig. 

4(b), known as the Viaduct [42], is shown in the 

1 2( , )   - plane for different values of the stiffness 

parameter  . At 0   the origin is inside the flutter 

domain while the stability region is bounded by a 

hyperbolic curve and belongs to the first quadrant of the 

plane. With the increase in   the stability domain tends 

closer to the origin until at 2   it touches the 

origin, which is a singular point of the stability 

boundary. At this value of the stiffness parameter   the 
origin corresponds to the double pure imaginary 

eigenvalue and the stability boundary has a cusp 

singularity at the origin [19-21, 61]. With the further 

increase in   the zero angle at the cusp opens up and 

the stability boundary in the ( 1 2,  ) - plane has a 

singularity corresponding to intersection of two curves at 

the origin. This is a typical evolution of the cross-

sections of the stability domain of a circulatory system 

with dissipation [13, 15, 19-21, 61].  

We see that stiffness modification that violates the 

symmetry of the system ( 2 1: 0k k    ) enlarges the 

stability domain that extends to the origin in ( 1 2,  )- 

plane for sufficiently large  . For such values of   

stabilization can be achieved even by infinitesimal 
amounts of damping for correctly chosen ratio of the 

damping coefficients. 
 

 

Fig. 5: Approximation to the asymptotic stability domain in the 

plane of the damping coefficients for various values of the stiffness 

parameter   and fixed 0   and 0.05   

In the presence of all types of forces - gyroscopic, 

non-conservative positional and damping - the deviation 
of the stability boundary from the dihedral angle of Fig. 

4(a) takes the most dramatical form, Fig. 6(a). 

Qualitatively, the singular surface, part of which bounds 

the stability domain, has again the viaduct [42, 55, 67] 

form. Non-conservative forces produce an instability 

window that is distorted by the gyroscopic ones, Fig. 

6(a). As a consequence, the critical surface has self-

intersections not along the   - axis as it was for 
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0  , but along the hyperbolic curves (36) that lie in 

the plane 1 2 0   .  

It is remarkable that on the curves all the 

eigenvalues of the non-conservative gyroscopic system 

with dissipative and circulatory forces are pure 

imaginary, see Fig. 6. Almost everywhere on the curves 

of self-intersection the eigenvalues are simple except for 

the points with the coordinates in the ( 1 2, ,   )-space 

(2 , 2 ,2 ), ( 2 ,2 , 2 )m m m m        ,    (48) 

where the pure imaginary eigenvalues are double and 

have a Jordan block, see Fig. 6. 
 

 

Fig. 6: Pure imaginary roots of the characteristic Eqn. (35) when 

parameters vary along the curve (36) for  1m  , 
1 1k  , 

0.03 , and 0.03   

Eqn. (41) gives an approximation to the exact 

double eigenvalue (38) up to the terms of first order with 

respect to the perturbation parameters 

1

12

k
i i

m k m


   .                                         (49) 

The shape of the stability boundary shown in Fig. 7(a) is 

a fundamental and new phenomenon in comparison with 

the well-known stability domains of near-Hamiltonian or 

near-reversible systems such as that of the Ziegler 

pendulum [13-15, 19-21, 23, 24], where the marginally 

stable system with all its eigenvalues being pure 

imaginary corresponds to zero dissipation. 
The consequences of such an unusual property of 

the stability boundary of system (33) are clearly seen in 

Fig. 8 where the cross-sections of the surface shown in 

Fig. 7(a) are plotted. For 0   stability domain shown 

in Fig. 8 does not contain the origin, in accordance with 

the Bottema-Lakhadanov’s theorem that states that a 

gyroscopic system with circulatory forces generically is 

unstable without dissipation [23, 51]. This theorem 

governs the evolution of the stability domain with the 

stiffness modification.  

Indeed, the violation of the symmetry of the 

stiffness distribution that corresponds to the increase in 

the parameter   leads to the deformation of the stability 

boundary and its meeting with the other branch of the 

cross-section of the critical surface (44) outside the 

origin in the ( 1 2,  ) - plane. At 2   stability 

domain has a cusp singularity at the point ( 2 , 2m m   ) 

that transforms into the simple intersection point that 
drifts to the origin with the further increase in  , Fig. 8. 
 

 

 Fig. 7: Approximation to the asymptotic stability domain in the 

(
1 2, ,   ) - space for 1m  , 

1 1k  ; (a) 0.03 , 0.03  , 

(b) 0.03 , 0   

Fig. 8 shows that when the gyroscopic and non-

conservative forces are simultaneously present, the 

origin in the (
1 2,  ) - plane is always unstable, 

whatever the value of stiffness modification parameter 
  is. This happens because the non-conservative 

positional forces create a region of instability around the 

origin in the ( 1 2, ,   ) - space. This means that even 

when the frequencies of the stiffness matrix P are well-

separated, one cannot stabilize the non-conservative 

gyroscopic system by arbitrarily small amount of 

damping with positive definite matrix of dissipative 

forces. There exist lower bounds on the values of the 
damping coefficients, the excess of which yields 

stabilization. Due to the non-symmetry of the stability 

domain the stabilizing distribution of damping is non-

trivial. 
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It is remarkable that all the complicated 

transformations of the stability domain in the ( 1 2,  ) - 

plane due to stiffness modification can easily be 

understood when we know the form of the three-

dimensional stability domain in the ( 1 2, ,   ) - space. 

The viaduct is a universal relatively simple singular 

surface that naturally appears both in the gyroscopic 

(Fig. 7(a)) and non-gyroscopic (Fig. 4(b)) case in the 

presence of non-conservative positional forces. It should 

be noted, however, that in the limit 0   at 0   

the viaduct critical surface transforms into one without a 

central hole, Fig. 7(b). The hyperbolas (36) degenerate 

into two straight lines that intersect at the origin, where 

there appears a singularity known as the intersection of 

self-intersections [73].  
 

 

Fig. 8: Approximation to the asymptotic stability domain in the 

plane of damping coefficients for different values of the stiffness 

parameter and fixed 0.03  and 0.03   

It is seen that in the ( 1 2, ,   ) - space in the 

absence of non-conservative positional forces, i.e. for 

0  , the critical surface is diffeomorphic to the 

classical singular surface known as the Plücker conoid of 

index 1n   [73].  

In Fig. 9 we plot the cross sections of the critical 

surface in the plane of the damping parameters. In the 

case of the conservative gyroscopic system the origin is 

always on the stability boundary. The marginally stable 

gyroscopic system with the positive definite matrix of 

potential forces is stabilized by the arbitrary dissipative 

forces with the full dissipation in accordance with the 
Kelvin-Tait-Chetaev theorem [62]. It seen, however, that 

for a symmetric stiffness distribution the stability 

domain is wider than for a non-symmetric one. 

We conclude that the double semi-simple pure 

imaginary eigenvalue corresponding to the undamped 

shaft without non-conservative positional forces is 

indeed a source of instability in the subcritical speed 

range. The most destabilizing influence on its splitting is 

given by the circulatory forces. This destabilization is 

perfectly visualized in the 1 2( , , )   -space of the 

damping and stiffness modification parameters, where 

the typical stability boundary is a part of the viaduct 

singular surface with the opening around the origin. This 

opening prevents stabilization of the non-conservative 

gyroscopic system by small amounts of damping.  
 

 

Fig. 9: Approximation to the asymptotic stability domain in the 

plane of damping coefficients for different values of the stiffness 

parameter and fixed 0.03   and 0   

For stabilization a considerably large damping 

coefficients are required taken in the right proportion 

that is influenced by the Whitney umbrella singularity at 

the exceptional points of the critical surface. 

Understanding the form of the stability boundary and its 

singularities for the perturbed 1:1 resonance on the 

example of the rotating shaft clarifies the prospective 

and limitations of optimisation of rotating continua in 

frictional contact, such as brakes, by means of stiffness 
modification. On the other hand, it shows how stability 

characteristics of rotating continua in frictional contact 

could be influenced by wear that changes the stiffness 

distribution of, for example, brake pads. 

5. Conclusions 

We investigated stability of a non-conservative 

gyroscopic system that arises in the modelling of rotating 

continua in frictional contact. Applying the perturbation 

theory of multiple eigenvalues to the doublets in the 

subcritical speed range we found explicit formulas that 

describe unfolding of the doublets due to stiffness 

modification and perturbation by dissipative, circulatory 
and gyroscopic forces.  

The perturbation theory reproduces the exact 

expression for the marginal stability domain in a model 

of a brake disc in frictional contact. The instability 

domain of this model has conical singularities that are 

associated with the doublets in the spectrum of the 

symmetric problem and are typical in circulatory 

systems. The conical instability tongues are oriented in 
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the ‘contact span angle – friction coefficient’ - plane in 

accordance with the classical Merkin theorem that states 

destabilization of a potential system with the coincident 

eigenfrequencies by the non-conservative positional 

forces. The same singularity on the boundary of the 

domain of marginal stability was found in the model of a 

rotating shaft.  

On the example of the rotating shaft we established 

that the asymptotic stability domain in the space of two 
damping parameters and the stiffness parameter has a 

complicated boundary with the self-intersections and 

Whitney umbrella singularities. On the singular set all 

the eigenvalues of the gyroscopic system are pure 

imaginary despite the presence of damping and non-

conservative positional forces. This discovery clarifies 

difficulties with the stabilization of non-conservative 

gyroscopic systems and is useful for the problems of 

structural optimisation of the elements of brakes as well 

as for the studies of wear and its influence on stability of 

rotating continua in frictional contact. 
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