Northumbria Research Link

Citation: Ali, Abdalla (2016) Development of a Multi-Objective Scheduling System for
Complex Job Shops in a Manufacturing Environment. Doctoral thesis, Northumbria
University.

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/29578/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

[

%y Northumbria g

University 18 UniversityLibrary

NEWCASTLE

http://nrl.northumbria.ac.uk/policies.html

Development of a Multi-Objective
Scheduling System for Complex Job
Shops in a Manufacturing
Environment

A thesis submitted for the degree of
Doctor of Philosophy
By
Abdalla Omar Dagroum Ali

Department of Mechanical and Construction

Engineering

Northumbria University

Newcastle upon Tyne

June 2016

DECLARATION OF ORIGINALITY

Title of Thesis: “Development of a Multi-Objective Scheduling System for

Complex Job Shops in a Manufacturing Environment”
| declare that the thesis hereby submitted for the degree of Doctor of Philosophy
at the University of Northumbria is my own work except as cited in the

references and has not been previously submitted for any degree.

Name: Abdalla Ali

Signature:

Date:

Abstract
In many sectors of commercial operation, the scheduling of workflows and the
allocation of resources at an optimum time is critical; for effective and efficient
operation. The high degree of complexity of a “Job Shop” manufacturing
environment, with sequencing of many parallel orders, and allocation of
resources within multi-objective operational criteria, has been subject to several
research studies. In this thesis, a scheduling system for optimizing multi-
objective job shop scheduling problems was developed in order to satisfy
different production system requirements. The developed system incorporated
three different factors; setup times, alternative machines and release dates, into
one model. These three factors were considered after a survey study of multi-

objective job shop scheduling problems.

In order to solve the multi-objective job shop scheduling problems, a
combination of genetic algorithm and a modified version of a very recent and
computationally efficient approach to non-dominated sorting solutions, called
“efficient non-dominated sort using the backward pass sequential strategy”, was
applied. In the proposed genetic algorithm, an operation based representation
was designed in the matrix form, which can preserve features of the parent after
the crossover operator without repairing the solution. The proposed efficient
non-dominated sort using the backward pass sequential strategy was employed
to determine the front, to which each solution belongs. The proposed system
was tested and validated with 20 benchmark problems after they have been
modified. The experimental results show that the proposed system was
effective and efficient to solve multi-objective job shop scheduling problems in

terms of solution quality.

ii

Acknowledgements
First of all, | thank Allah for giving me strength and ability to complete this study.
| would also like to thank all the people who contributed in some way to the
work described in this thesis. | am sincerely grateful to my first supervisor
Dr. Phil Hackney for the continuous support of my Ph.D. study, for his patience
and motivation. His guidance helped me in the time of research and writing of
this thesis. Besides my first supervisor, | would like to thank my second
supervisor Dr Martin Birkett for his insightful comments, encouragement and his
assistance with my thesis and papers. | would also like to thank all the members
of staff at Northumbria University for their assistance. Thanks must also go to all
my friends who supported me during my time here and for all the fun we have

had in the last four years.

Thanks to the people and the government of my country, the Libyan
Government. | could not have gone through the doctoral program overseas
without Libyan Government financial support. | would like to express my full
appreciation to the staff in the Ministry of Higher Education and Science
Research of Libya and to the staff in the culture attaché in the Libyan embassy
in London. | would also like to express my full appreciation to staff in the Zawia

University in general and in the Regdaleen Engineering Faculty in particular.

Finally, | must express my very profound gratitude to my mother for her pray for
me and unceasing attention, to my father for his unfailing support, and to my
brothers and sisters and their families for their spiritually support throughout

writing this thesis and my life in general.

Thank you all.

iii

List of Publications

. Ali, A., P. Hackney, D. Bell and M. Birkett (2014). Dynamic job shop
scheduling with alternative routes based on genetic algorithm.
Engineering Optimization 2014, CRC Press: 827-832.

. Ali, A., P. Hackney, M. Birkett and D. Bell (2015). Genetic Algorithms for
Minimizing the Number of Tardy Jobs in Job Shop Scheduling With
Machine Setup Issue. Proceedings of the 13th International Conference
on Manufacturing Research Bath, UK, ICMR.

. Ali, A., P. Hackney, D. Bell and M. Birkett (2015). Genetic Algorithms for
Solving Bicriteria Dynamic Job Shop Scheduling Problems with
Alternative Routes. Proceedings of the International Conference on
Engineering & MIS 2015. Istanbul, Turkey, ACM: 1-8.

. Ali, A., P. Hackney, M. Birkett and D. Bell (2016). Efficient Nondominated
Sorting with Genetic Algorithm for solving Multi-objective job shop
scheduling problems. 15t International Conference on Multidisciplinary

Engineering Design Optimization. Belgrade, |IEEE.

iv

Contents

Chapter 1. [[aYd oY 1F ot o] o NP USRI 1
1.1 2 Yol 4= oYU o Lo PSP 2
1.2 o] oI Vo7 o T Yol g =To U] 1oV SRR 3
1.3 Aim and Objectives of the ThesSiS......ccuuii e 5
14 ThESIS OULIINE .. s st 6

Chapter 2. LItErature REVIEWviiiii i ettt e ettt e e e etre e e e e e e e tar e e e e e e e e ebaaae e e e e e e enannraaeeeas 8
2.1 T] dgoTe [T o1 o] o PRSP 9
2.2 Factors for DesCribiNg JSSPS.....co it e 9

221 TIME Parameterscoovviiiiiiiiiiiiiiiciic et 10
2.2.2 SETUP TIMI i ————————————— 12
223 ATIVAl PAtEeINS oo 13
224 ProCess Pathscooiiiiiieie et 14
2.3 PerfOrmManCe IMEASUIESccicueierieeiiee ettt ettt et site e sbe e e sat e e sabeesabeesbaeesabeesareean 15
231 Process-Focused Performance Criteria.....ccoceevueeriieeiieeenieeniee e 16
232 Customer-focused Due Date Criteria......c.ccevueruerreirienieeieeieeeeiee e 17
233 CoSt-based Criteria......oooiiiiieiiie e 17
2.4 (0] oY 0 a1F2=YuTo o T 1Y 114 s oo SRR 20
241 EXACt METNOMS ...t 20
242 ConStructive Methods.eiiiiiiiiiiieiec et 21
243 [terative MEthodsc.cociiieieeeeee et 23
2.5 Multi-objective Optimization and Pareto-optimal Solutions..........cccccevveeiiciieeccnnenn. 30
2.5.1 Solving Multi-objective Optimization Problemsccccovvveiiiiiciieeee e, 32
2.6 Previously Existing Work and Gap of Knowledgeccccvvveeeiiecciiiieeee e, 35
2.7 SUMIMIAIY cttttiiies et ettt ettt e e e e e e e e et et bab e s e e s eeetaeesaa s eeeeeaeaassaaasseeeeeeensssnannseeeanans 38

Chapter 3. Problem Description, Complexity and Formulation..........cccoecveeeviieeiccieee e, 40
3.1 INTFOAUCTION .ttt s s s s s e 41
3.2 Problem Description and CoOmMPIEXitYceeievcciiieiieei e 41

3.2.1 Deterministic Dynamic Release Date......cccccveeeevcciiiieeei et eernee e e 44
3.2.2 Alernative Machingsoovieiiiiieie e e e 44
3.23 Y Yol o1 o TSR Y=Y U] o I T o TSR 48
3.24 Jobs with Various Lengths and Recirculation..........ccecvveeiiciieiiiieeecciee e, 49
3.25 Priorities among jobs expressed by Weights.........ccoveeeeieiiiciiee e, 49
3.2.6 Multi-Objective Optimizationooovvcciiiiii e 50

3.2.7 Effect of Time Uncertainty on the Optimal Solutioncccccovveeiiiiecciieece, 53
3.3 Mathematical FOrmulationc.cooiiiiiiiiiie e 53
33.1 T e [0l O PSP T O PPN 53
3.3.2 Parameters. ..o 54
3.3.3 DeCiSION Variablesccoeiieeieieiiiee ettt ettt 54
334 CONSEFAINTS L.t e e s er e s e 55
3.35 (0] o [=Tot 4 Y7l U T ot o o[RS 56
34 R U110 0 = VRSP 58
Chapter 4. Research Methodologyuuiiiiiiii e 59
4.1 INEFOTUCTION L.t et e s e s ne e e sareesareeeas 60
4.2 An Introduction to Genetic Algorithms in Job shop Scheduling Problems................. 60
4.2.1 REPIESENEATION. .. e e e e e et e e e eaeeeee 61
4.2.2 LaT 1A= oY o TV - | To o WU 63
4.2.3 Fitness Evaluation FUNCLIONooiiiiiiiiiiiiiecee e 63
42.4 GENELIC OPEIAtOrS .o ——— 63
425 CONEIOl PaArameterSoocueieiieeeiee ettt ettt et et s e s e e e sate e sbeesnee e 68
4.3 T o To 1Y =T ISy =T o o O SPPRRN 68
43.1 Solution REPreseNntationccccveeiiciiieieiiee et 70
4.3.2 Creation of Initial POPUIatioNncccuviiieciiie e 72
433 Design of Fitness Evaluation FUNCLIONccccviiiiiiiiie e 72
43.4 GENELIC OPEIAtOrS .o ———— 78
4.3.5 Solving Scheduling Problems with Machine Setup TiMecccccvvvveveeeeiecnnnnneen. 83
4.3.6 Solving Scheduling Problems with Alternative Machines.........ccccvvveveeeeiecnnnneen.. 84
4.3.7 Representation of Processing Time Uncertaintycccocceeeeicieeeecieeececiee e, 86
4.4 SUMIMIAIY et r s ———aaaaaaaan 86
Chapter 5. Computational Results and DiSCUSSIONceeveiiieiciiiieeeeececiiieee e seeivreee e e e e 88
5.1 INEFOTUCTION L.t e s e s me e e sabeesareeeas 89
5.2 Computational Results for ClassiCal JSSPueeviieeeeciiiieeeeeeecrreee e 89
53 EXPerimeENntal PIAN ...cccuveii ettt ettt e enta e e e 91
5.3.1 Incorporating Job / Machine Release TIMeccceocveeeieeccieecciee et 91
5.3.2 Incorporating Machine Setup TiME ...ccccuvvieeie et 93
5.3.3 Incorporating Alternative Machingsccceeeeeeiiiiieee e 96
5.3.4 Incorporating Jobs with Recirculation and Various Numbers of Operations 98
5.3.5 Scheduling System with Multi-Objective Optimizationcccccocevvviieeiiciiiennns 99

vi

5.4 The Effect of Uncertainty on the Optimal Makespancccccceeeecieieeciiee e, 108

5.4.1 Change of Processing Times with the Same Ratio........cccoceeeeecieeiiciiee e 109
5.4.2 Change of Processing Times with Different Ratioscccceeeveieeiiciiieeccciieeeens 110
5.4.3 Time Uncertainty with SIack TIMeoeviiiiiiii e, 112

5.5 SUMMIAIY i e e e e e e s s asabsbsbsbsbensnnens 115
Chapter 6. Conclusions, Contributions to knowledge and Future Work.........ccc.ccoeeuunnneeee. 116
6.1 INEFOAUCTION .t nree 117
6.2 Summary of the Research Work.........c..oooiii i 117
6.3 (6070 1ol [T To] o F TR P RO TR PRSI 121
6.4 CONTIDULIONS .ottt et st e sre e e ne e e 122
6.5 Future Research Dir€CtiONS.......oocueeiiiiiiiiieiieeniee ettt 123
Y] o1<Y o Vo Lol YRR 124
REFERENGCES ...ttt ettt ettt e e sttt e e e s e e et e e e e s mb e et e e e s e eannbnneeeesssanannne 141

vil

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 3-1.
Figure 3-2.

Table of Figures

The layout process of thesis 0DJECHIVEScc.vveiieiiiiiiceeeecee e 6
Factors for DeSCribiNg JSSPS.......uuiiieii ettt e e e e aae s 10
CommoON PerformMance MEASUIEScevvueierueeriieeeieeenireesieessieeesieeesieeesreessseeesaneesas 18
Percentage of included factors in MO-JSSPs from the available literature.............. 37
Single Processing ROULE fOr J1ooeiuiiiiiiie ettt e e e et e e 45
Alternative Processing ROUtES fOr J1 ...ccuviiiiiiiiiiciiiic ettt 45

Figure 3-3. Alternative Processing ROUTES fOr J2cccuviiiiiiiiii ettt 47
Figure 3-4. Different Machine Matrices for JL & J2cuvviiiiiiiiiiie e 48
Figure 4-1. Proposed JSS SYSTEIMccivcuiiiiiiiiieeciiiee ettt ettt e e et e e e sta e e e sntaeeesbaaeessnsaeeesanes 60
Figure 4-2. General LayouUt Of GA..........ooi oottt e e e e e tae e e e ate e e e sbteeeseabaeeeeanes 61
Figure 4-3. Classification of JSSPs Representation in GAccoccuvevvieeiiiiinieenieesiee et 62
FIBUre 4-4. ONe-POiNT CrOSSOVEN ...uuvuiiiiiiiiiiiiiititieietetteeteteeeteteeeteteteteteteteeeteeettteeatseeeseeeeeeeeseeeeeeenes 65
FIBUIe 4-5. TWO-POINT CrOSSOVEcuiiiiiiiiiiiiiierereieeeeereeeerrereeereeereeeeeeeeeaeeeeeeaseteeasasasaeeseseseeeeeeesens 65
Figure 4-6. UNITOrM CrOSSOVELuuiiiiiiiieeceiieeecctiteesetteeeseteeesseateeessbreeessntaeessstaeessnseeessnnsaeessnes 66
Figure 4-7. Shift MULAtIONoiiiiie e et e e e rate e e e e ar e e e e saaae e e ennees 67
Figure 4-8. Pairwise Interchange Mutationcccccooeeciiieiee e 67
Figure 4-9. INVersion MUTATIONeuiiiiiiiiiiiiiiieeeeeeeee e e e e e e e 68
Figure 4-10. The Layout of the Proposed System for Solving MO-JSSPsccccccvveeecieeeeinnenn. 69
Figure 4-11. Operation Based Matrix Representation........cccccoeecciiiieeececccciiieeee e e 70
Figure 4-12. Chromosome Based Matrix Representationcccccceveviveeiicieeeescieeeccieee e 71
Figure 4-13. 3-Dimensional Matrix for Scheduling Evaluationcccceevviiiiiiiiee e, 73
Figure 4-14. Proposed ENS-BPSS for Finding the Front of a Solution..........ccccoveeiiiiiicciinnnnen. 77
Figure 4-15. TWO-parents / ONE-rOW CrOSSOVETc.cccueeereerieerteenieesreesteessesseeiseeseesseessesssesssenns 80
Figure 4-16. TWO-Parents / TWO-TOWS CrOSSOVEN........c.eecveeeireeeireeenreesreeeiseeesseeesseesesesessseessnens 80
Figure 4-17. Three-parents / ONE-TOW CrOSSOVENc..eceveeeereeerreeeeeeeereeeeseeeeseeesseesesesessseessnes 81
Figure 4-18. Shift Mutation (Insertion Neighbourhood).........ccccccuviiviiiiiiiiiiiic e, 82
Figure 4-19. Pairwise Interchange Mutation (Swap Neighbourhood)........ccccceeecviiiiiciieeecnnennn. 82
Figure 4-20. INVErsion MULtIONcuiiiiiiiiiieiecceeeeeeeeeeee e e e e e e e e e e e e e e 83
Figure 4-21. Machine Selection Based on the Processing TiIMecccccceevcieeevicveeesiiieeescveeens 85

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.

LA1 with Job and Machine Release Date........ccccevvieeiiniieeiiniiee et 93
LA1 with Machine Setup times and Release timeccccceeeeciiieeee e 95
Gantt chart LA1 with Alternative Machingsccccevcviiiiiiiii i, 97
Jobs with Recirculation and Different Numbers of Operations for LA1 99
Pareto Front for M _LAL ...ttt etrre e e e e e e e nbae e e e e e e e ennnns 101
Pareto Front fOr IM_LAZcoo ettt ettt e e st e e svte e e e sbae e e enes 101
Pareto Front fOr M _LASottt et e e e ebre e e e ebaeeeenes 102

Figure 5-8. Pareto FroNt fOr IM_ LAoooi ittt e e e e rnrar e e e s e e e naraeeeaaeeeas 102
Figure 5-9. Pareto Front for IM_LASooo ittt e et e e sae e e e save e e s eaae e e snaaeaean 102
Figure 5-10. Pareto Front fOr IM_LABccccuuiieeeiiieecciee ettt e ettt e et e e et e e e et e e s e nae e e eaaaeeean 102
Figure 5-11. Pareto Front fOr IML_LAT ...ttt e e atre e e e e e e eraara e e e e e e 102
Figure 5-12. Pareto Front fOr IM_LAScccciiii ittt et s et e e saae e e saee e e aae e e eaaaeaean 102
Figure 5-13. Pareto Front fOr M LAoccciiii ettt e et e et e e e e tae e e eaaaeeean 103
Figure 5-14. Pareto Front fOr M_LALOcccoo ittt ettt e e e ntr e e e e e e eenanaeeee e e e 103

Figure 5-15.
Figure 5-16.
Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 5-20.
Figure 5-21.
Figure 5-22.
Figure 5-23.
Figure 5-24.
Figure 5-25.

Pareto Front fOr M_LALL.......ccuviiiiiiee et ettt e s ar e e e aae e e enaaee s 103

Pareto Front fOr M _LAL2c.uviiieieee ettt ettt e e e e aa e e enaaeeean 103
Pareto Front fOr M_LALS ...ttt ettt e e e e e et e e eaaee s 103
Pareto Front fOr M_LALAuiiieeieee ettt ettt evae e e s avn e e e e e e enaaeeean 103
Pareto Front fOr M _LALSuiiiieeeee ettt ettt e e e e e aa e e e araeeean 104
Pareto Front fOr IM_LALBDcccccuiiiiiiiee ettt e erree e ee e st e e s are e e s e e e 104
Pareto Front fOr IM_LALTcooeiiie ettt ettt sar e e e e e eaaeeean 104
Pareto Front for M_LALS ...ttt e e e e e e e snbraar e e e e e e eanens 104
Pareto Front fOr M_LAL Dcccciiiiiiiee ettt ettt e s e e e e snnaee s 104
Pareto Front fOr M_LA20........cuiiieiiiee ettt ettt e e e e st e s e e s aae e e senaaeeean 104
Gant Chart of the Optimal Makespan for LAOLccccvvieeeeeiiicciiieeee e, 114

ix

Table of Tables

Table 2-1. Common Performance Measures for Scheduling Problems.cccceeiiiiiieiiinnenns 19
Table 2-2. Previous research in IMO-JSSPooiiii ittt sree e s e 35
Table 4-1. Types of Crossover Operators fOr JSSPS........cociiiicieie et 66
Table 4-2. Comparison Between Actual and NSGAI Frontscccuveeeeeiieciiieeec e 75
Table 5-1. Obtained Results for Benchmark JSSPs Using Operation Based Matrix

=T o] =T=T 0] = 1 A o] o HO TP T U T 90
Table 5-2. Releas Times for Jobs and Machingsccccceeviiiiiiieeiieeccee s 92
Table 5-3. Jobs Setup Groups and Setup Times in Each Machine........cccccoovveeiiiiiiiiiieeeecceenn, 94
Table 5-4. The Alternative Machines Processing TIMESccccvuveeiiieeeiiiieeeeiieeeeecieeeeeveee e 97
Table 5-5. Change of the Processing Times with the Same Ratio.........cccccceeeeeciieeicciieeeccieee, 110
Table 5-6. Change of the Processing Times with Different Ratios........cccoccvevvvciieiiiiieeeiinneenn, 111

AM

AlS
ANN
BPSS
BS

BCO

BA

BB

DP

EDD
ENS
ENS-SS
ENS-BPSS

ES

FCFS

FL

GA
GRASP
P

JRD

JSS
JSSP
MINSLACK
MIP
MOGA
MO-JSSP
MOMGA
NPGA
NP-hard
NSGA

Acronyms

Alternative Machines

Artificial Immune System

Artificial Neural Network

Backward Pass Sequential Strategy

Beam Search

Bee Colony Optimization

Bees Algorithm

Branch and Bound

Dynamic Programing

Earliest Due Date

Efficient Non-dominated Sort

Efficient Non-dominated Sort using Sequential Strategy
Efficient Non-dominated Sort using the Backward Pass
Sequential Strategy

Elitism Selection

First Come First Served

Fuzzy Logic

Genetic Algorithms

Greedy Randomized Adaptive Search Procedure
Integer Programming

Job Release Date

Job Shop Scheduling

Job Shop Scheduling Problem

Minimum Slack

Mixed Integer Programming

Multi-Objective Genetic Algorithm

Multi-objective Job Shop Scheduling Problem
Multi-Objective Messy Genetic Algorithm

Niched Pareto Genetic Algorithm
Non-deterministic Polynomial-hard

Non-dominated Sorting Genetic Algorithm

xi

NSGA-II Non-dominated Sorting Genetic Algorithm-II

PSO Particle Swarm Optimization

PDR Priority Dispatching Rule

RS Rank Selection

RWS Roulette Wheel Selection

SS Sequential Strategy

ST Setup Time

SPT Shortest Processing Time

SA Simulated Annealing

SUS Stochastic Universal Sampling

SPEA Strength Pareto Evolutionary Algorithm
SPEA2 Strength Pareto Evolutionary Algorithm
TS Tabu Search

ACO The Ant Colony Optimization

TRS Tournament Selection

UPT Unfixed Processing Time

VNS Variable Neighbourhood Search
VEGA Vector Evaluated Genetic Algorithm
WIP Work-In-Process

Xii

FIT (s)
Fi

KR

S0

List of Nomenclature

a total number of operations to complete job i
Alternative Routes for job i
design space

Domination Count
due date of job i

equality constraint

Fitness value of solution s—th
flow time of job i

Front index (KR=L2,...,LR)
inequality constraint

job index (i=12,..,n)
machine index (k=1,2,...,m)
Machine Matrix

Maximum completion time (makespan)
Maximum flow time

Maximum lateness

Maximum tardiness

number of jobs
number of machines
number of objectives

Number of tardy jobs

objective function
objective space

operation index

0..)

Operation number j of jobi (Oil’oiz""’ i

population of size

Probability of crossover

xiii

total

Fiot

Probability of mutation

Processing time of operation Oij on machine k

Setup group for operation j of job ion machine k

Setup time for a set of operations that belongs to setup
group G on machinek
Solution front

Solution number s
Solution or individual index (s=12,..,N)
sorted population

The completion time for operation j of job i on machinek .

The completion time for the last operation of jobi.

the Earliness of job i

The importance weight of job i

the lateness of job i

the probability of selecting the individual or solution s—th

the probability of selecting the machine k from a set of

alternative machines AMij

The release date or arrival time of job i

The release time for machine k in the job shop

The set of machines that can process operation j of jobi
The start time for operation j of jobi on machinek .

the tardiness of job i
The weight of job i

The weight of objective v

tightness factor

Total completion time

Total flow time

Xiv

Lot
LR
b

Tot
>W;
Cw_tot
Fw_tot
Lw_tot

Tw_tot

Total lateness

Total number of fronts

total processing times of job i (including setup times)
Total tardiness

total waiting times of job i

Total weighted completion time

Total weighted flow time

Total weighted lateness

Total weighted tardiness

vector of design variable

XV

Introduction

Chapter 1. Introduction

Introduction

1.1 Background

It has become increasingly more apparent that to remain competitive in today’s
open market, manufacturing and service organisations need to manage their
resources in an effective way. The market needs high quality, high product
variety, and short lead-times. To meet these needs, planning and scheduling
are two crucial topics which endeavour to increase efficiency, to improve
resource utilisation and to reduce delivery time. In general, scheduling can be
defined as an allocation of resources over a period of time to execute a number
of tasks with the aim of optimizing certain objectives (Chaudhry 2012). It is a
short-term execution plan that consists of a set of activities which need to be
performed in manufacturing or service industries in order to manage the
execution process and it defines, in a time manner, when each activity should
be executed and how the organisation’s resources should be used to satisfy the
plan and meet the requirements. Failure to do so may lead to chaos in the
system and cause a significant loss of the organisation’s revenue. Hence, a
good scheduling system assists enterprises to use their resources effectively
and to achieve the strategic objectives that have been planned. However,
practical scheduling problems are generally more difficult to solve to optimality
because of the number and variety of tasks and jobs, the dynamic environment

and the usually conflicting objectives (Fera, Fruggiero et al. 2013).

In manufacturing industries, production scheduling problems can be classified
according to some criteria such as flow patterns (flow shop, job shop or open
shop), processing mode (unit processing or batch processing), job release
patterns (static or dynamic), and work centre configuration (single machine,

identical parallel machines, uniform parallel machines, or unrelated parallel

2

Introduction

machines) etc. Different patterns of scheduling problems put different
constraints on how different operations can be scheduled on different machines.
For instance, based on the flow pattern, in a flow shop environment, each job
has to be processed on each machine in the same order, while in a job shop
environment the system consists of a number of different machines and each
job has a specified machine route in which some operations can be missing and
some can be repeated. On the other hand, in an open shop environment, each
job should be processed once on each machine with no order restriction for the
machines. For all these environments, operation times for each job on different
machines are usually not the same (Bayindir 2005). The focus of this research

is on scheduling problems in job shop manufacturing environments.

1.2 Job Shop Scheduling

Job Shop Scheduling Problems (JSSPs) have been around since the mid-
1950s and occur mostly in manufacturing, where each customer order has its
own specific characteristics and the order quantities are relatively small. The job
might be produced only once, at irregular intervals, or periodically at regular
intervals, based on market demands, policies and customer orders (Ebadian,
Rabbani et al. 2009). For make-to-order job shop environments, scheduling of
manufacturing operations spans between the order and delivery dates. Different
jobs can have different routings, due dates, priorities, quantities, and resource
requirements (Sawik 2006). Because of this large diversity of jobs involved, the
Job Shop Scheduling (JSS) process tends to be a very complex problem
mathematically (Browne, O'Kelly et al. 1982). Thus there is an increased need

for an effective and reliable JSS system.

Introduction

In general, each job in such an environment has a number of operations that
must be performed on a number of machines to complete a job. The sequence
of operations for each job is predefined based on the jobs technological
requirements. Machines cannot handle more than one job at a time and
operations of the same job cannot be started until their preceding operation is
completed. Job Shop scheduling in this type of environment is considered to be
one of the most important and complicated scheduling models existing in the
practice and is amongst the hardest combinatorial optimization problems. They
belong to a large class of intractable numerical problems known as Non-
Deterministic Polynomial-hard (NP-hard). To find an optimal solution for such a
problem the algorithm requires a number of computational steps that grows

exponentially with the input (Jain and Meeran 1999).

Over the past decades, a large number of methods have been proposed to
solve the JSSPs optimally with exact methods such as branch and bound
algorithms, or near to optimality with approximation methods such as genetic
algorithms. Yet there is still no efficient method which can guarantee an optimal
solution, consistently, even for a single-objective and there is no work which
shows that any of these methods outperform each other with regard to all
problem aspects. Even though the JSSP with a single-objective has been
widely studied, the research on the Multi-Objective Job Shop Scheduling
Problem (MO-JSSP) is still relatively limited. Furthermore, the majority of
previous works on MO-JSSPs do not incorporate some very important issues
that reflect to the real job shop manufacturing environment, such as setup

times, release times and alternative machines, whilst only a few studies have

Introduction

dealt with time uncertainty, which closely describes and represents the real

world problem.

In order to identify the gap of knowledge, a comprehensive literature review was
conducted in this research. The survey study showed that although the JSSP is
a popular topic, there still is no model that incorporates setup times, alternative
machines, jobs and machines release times altogether in a multi objective job
shop scheduling system. Therefore, the motivation of this work was to bring
together all of these issues to acquire a more reliable, realistic and accurate
scheduling system for the job shop manufacturing environment. Processing
time uncertainty was also studied in order to identify the most important factors

that affect the scheduling objective.

1.3 Aim and Objectives of the Thesis

The aim of this research was to develop a unique scheduling system capable of
producing optimum work flow sequencing for multiple objectives within a
complex job shop manufacturing environment. This aim was achieved through

undertaking the following objectives:

» Conducting a comprehensive survey study on MO-JSSPs and a review
existing production scheduling systems.

» lIdentifying and evaluating modelling techniques capable of simulating
complex job shop production systems.

» Developing an optimization system capable of implementing multiple
objectives for JSSPs.

» Producing MatLab codes to implement the developed system.

Introduction

» Appling multiple datasets of benchmark JSSPs to optimize and validate
the developed system. Then modifying these datasets to suit MO-JSSPs
with all incorporated factors.

» Critically evaluating results from the benchmark problems to further
develop the system.

» Disseminating of the results in journals, conference papers, thesis, and

industrial presentations.

Figure 1-1 shows the layout process of thesis objectives.

Survey Study on MO-JSSP

!

Identification and Evaluation of
Modelling Techniques

!

System Development <

!

System Implementation

!

Results Generation

'

System Validation

!

System Evaluation

!

Dissemination of the results

evaluation feedback

Figure 1-1. The layout process of thesis objectives

1.4 Thesis outline

Chapter 1 “Introduction”:- An introduction to this PhD thesis, including

background, scope, aim and objectives is presented in this chapter.

Introduction

Chapter 2 “Literature Review”:- A wide literature review of JSSPs, including

factors of describing JSSPs, methods for solving JSSPs, multi objective
techniques and previous work offered to solve the MO-JSSP is conducted in

chapter 2.

Chapter 3 “Description, Complexity and Formulation”:- In this chapter,

JSSPs to be solved in this thesis are described and mathematical formulation is

given. Also the complexity of the problem is explained.

Chapter 4 “Research Methodology”:- The developed system for solving the

MO-JSSP that has been described in chapter 3 is introduced in this chapter.

Chapter 5 "Computational Results and Discussion”:- In this chapter

experimental results and discussion on the research results with key

observations in the research methodology are given.

Chapter 6 “Conclusion _and Future Work”:- The summary, conclusions and

contributions to knowledge of this research and suggestions for further work are

provided in this chapter.

Literature Review

Chapter 2. Literature Review

Literature Review

2.1 Introduction

The general goal of this research is to investigate and develop a new
scheduling system for dealing with multiple objective, complex “Job Shop”
manufacturing environments. To clearly identify the current knowledge and
gaps, a comprehensive literature review is conducted. First, factors for
describing JSSPs are identified and then existing methods for solving JSSPs,
as well as multi-objective optimization problems, are specified. The previous
works that have been done for solving MO-JSSPs are then reported. The
chapter concludes with clearly defined gaps of knowledge which underpin the

current work.

2.2 Factors for Describing JSSPs

JSSPs can be classified and considered according to the main factors that
describe the problem in hand. The simplest form of the problem which can be
found in the literature is the so called classical JSSP and can be traced back to
the early 1950s (Jain and Meeran 1999). Since then, many assumptions have

been made to reflect the problem in real world applications.

In this section, the most important factors for describing JSSPs are briefly
investigated. These factors are used at the end of this chapter to distinguish
between previous works that have been done for solving MO-JSSPs. The most
popular methods for solving JSSPs and multi-objective optimization that have
been reported in the literature are stated afterward. Figure 2-1 shows the main

categories of factors that describe JSSPs.

Literature Review

Static Nog-' .
Atrival Atrival Time Deterministic
Parameters

Deterministic
Arrival

Dynamic

. Deterministic
Arrival

Stochastic
Arrival

Factors for Describing Job Single Paths

Machine- Shop Scheduling Problem Process
Indepen('ient Paths
Batch Setup Time -
Availability Job Sequence- Multiple Paths
Independent
Item Setup Times
Availability]I)\/Iachgle- Single
ependent Objective
Batch Setup Times Performance J
Availability Job Sequence- Measures
Dependent Multiple
Item Setup Times Objectives
Availability

Figure 2-1. Factors for Describing JSSPs

2.2.1 Time Parameters

Time is an essential factor when dealing with a schedule, so that resources are
allocated to perform a set of tasks over a period of time (Hollier 1975). In

scheduling problems there are three main time parameters known as

processing time (pijk)’ release date (r;), and due date (d;). Processing time is

the main time parameter that is necessary to deal with any scheduling problem.
The processing time pijk represents the time that has to be spent on machine
k to execute operation j of job i. The release date I is the earliest time at
which job i can start its processing. The due date di represents the date that

job i is promised to the customer (Pinedo 2005). These three parameters can

be presented by using single values, which is known as deterministic (crisp)

10

Literature Review

time, or by using multiple values such as fuzzy numbers, stochastic values or
interval numbers to represent uncertainty (Chakraborty 2009).

Uncertainty of time parameters is a basic feature of manufacturing processes.
Fuzzy and stochastic theories are two commonly used approaches to model the
uncertainty of time parameters in scheduling problems. In a fuzzy theory
approach, the times are given as fuzzy numbers. Two main methods exist in the
literature to deal with fuzzy processing time, one by using triangular fuzzy
numbers and the other by using the mean value of a fuzzy number so that
processing times are de-fuzzed. Similarly, fuzzy double number and fuzzy
triangular number are two main methods that are commonly used in the
literature to represent fuzzy due date (Abdullah and Abdolrazzagh-Nezhad
2014). In the stochastic theory approach, time parameters are assumed to be
random variables (Chakraborty 2009). For fuzzy and stochastic approaches,
probability distribution and membership function need to be known in advance
and a number of data are required to decide the distribution of stochastic
variables or to build the fuzzy membership function (Chakraborty 2009). Interval
number theory has some different features from fuzzy theory or stochastic
theory. The lower and upper bounds of the interval are only needed to indicate
time uncertainty (Lei 2011, Lei 2012). A survey of interval scheduling can be
found in (Kolen, Lenstra et al. 2007). To the best of the author’'s knowledge,
only one research article is available for solving JSSPs with the interval number,
which was presented by Lei (2012). Because of its lower complexity the interval
number is utilized in this research to evaluate the effect of processing time

uncertainty on the optimal makespan.

11

Literature Review

2.2.2 Setup Time

Setup time can be defined as the time to prepare the required resources, such
as machines, to execute different tasks. In manufacturing applications, setup
activities often occur while shifting from one operation to another. For instance,
cleaning up the machines; setting the required jigs and fixtures; setting the jobs
in jigs and fixtures; positioning work in process; obtaining, adjusting and
returning tools for an operation; and inspection of the material in manufacturing
systems, are all considered as setup activities which need to be done before
executing the task (Sharma and Jain 2015). In general, machine setup times
can be classified into two main categories; machine independent setup times
and machine dependent setup times, as shown in Figure 2-1. The case of
machine independent setup times occurs when the setup times are included in
the operation processing time or when there is no need for setup times.
However, in the machine dependent setup times, the setup can be job
sequence independent, where the preceding job does not have an effect on the
duration of the setup time, or job sequence dependent, where the duration of
the setup depends directly on the preceding job. These two classes can be
further divided into setup times with batch availability or setup times with item
availability (Sotskov, Tautenhahn et al. 1996, Allahverdi, Ng et al. 2008).

In real world industrial applications, scheduling problems involving machine
setup times are receiving increasing attention. When setup times are properly
incorporated to the scheduling decision, their addition has been shown to give
significant improvements in reliability and accuracy of the overall scheduling
system. Therefore, setup times must always be considered in solving

scheduling problems (Kim and Bobrowski 1994).

12

Literature Review

JSSPs with setup time considerations was first studied by Wilbrecht and
Prescott (1969). The study shows that for a fully loaded shop, especially in
sequence-dependent setup times, setup times play a very important role in the
performance of a job shop operation. A comprehensive review of scheduling
problems with setup times has been given by Allahverdi, Gupta et al. (1999),
Xiaoyan and Wilhelm (2006) , Allahverdi, Ng et al. (2008), Allahverdi (2015) and
Sharma and Jain (2015). These studies also provide some directions for future
research. According to Sharma and Jain (2015), forty two articles are JSSPs
with sequence-dependent, non-batch setup times, only two articles related to
JSSPs with sequence-independent, non-batch setup times and four articles
each related JSSPs with sequence-dependent and sequence-independent

batch setup times have been reported.

Although dealing with sequence-dependent setup times is more difficult, there
are still limited researches in JSSPs with sequence-independent setup times. In
addition, many issues such as multi objective JSSPs and dynamic JSSPs etc.
with sequence-independent setup times have not been considered together.
Therefore, the current research was confined to solve MO-JSSPs with machine

set up times and job sequence-independent setup times.

2.2.3 Arrival Patterns

This refers to the time that the job arrives to the system, and it can be a static
arrival or dynamic arrival. In a static arrival pattern, a determined number of jobs
arrive at the same time and no further jobs arrive until the existing set of jobs
has been finished. In a dynamic arrival pattern, jobs arrive at different times and

are not fixed at one time; jobs can also continue to arrive indeterminately in the

13

Literature Review

future. Dynamic arrival patterns can be further classified as deterministic or
stochastic based on the way of designing the job arrival times. Deterministic
arrival patterns assume that the job arrival times are known in advance. In
stochastic arrival patterns, job arrival times are random variables defined by a
known probability distribution (Lin, Goodman et al. , Xhafa and Abraham 2008).
Usually, in the stochastic arrival pattern, the scheduling problem is solved by an
insertion method based on some dispatching rules or by rescheduling the
remaining tasks with newly arrived jobs. Although the majority of previous work
assumes that all jobs are available at the same time, in real manufacturing
practice, jobs arrive dynamically at different times. In addition, some job’s
requirements, such as raw materials, might not be available at the time the
order takes place. Therefore, in this research, dynamic job arrival with
deterministic form was considered. It was also assumed that not all the
machines are available at time zero when the schedule starts, which makes the

scheduling system more reliable.

2.2.4 Process Paths

The classical JSSPs assume that only one machine type is capable to perform
a particular type of operation i.e. no more than one machine is available for
each type of job operation, thus each job will only have a single route. In real
manufacturing practice, process paths can be very complicated and it is very
uncommon for every job to be processed by every machine. The process path
can change dynamically due to the availability of resources or sometimes the
need for rework. It is common in real world scheduling problems to have a
number of choices of machines on which certain operations can be executed.

These machines can be identical with identical processing times for a given

14

Literature Review

operation. Otherwise, machines can be non-identical with different processing
times and sometimes different resource requirements and processing
characteristics. Also a machine can be dedicated for a specific type of operation
or it can be capable of performing a variety of operations on the shop floor. The
system with alternative machines is known as a flexible system and it can be
fully flexible, so that any machine can execute any operation, or it can be
partially flexible, where each operation can be executed on one or a subset of
machines (Kacem, Hammadi et al. 2002). Wilhelm and Hyun-Myung (1985)
investigated the influence of alternate operations in flexible manufacturing
systems on system performance. The results showed that alternate operations
can increase machine utilization and reduce in-process inventory. However,
further decisions of machine allocation during the scheduling are required.
Decisions need to be made between automated and manual equipment and
between newer and older equipment etc. The process paths and even
sometimes, the technological sequence of operations, may change based on
the choice of machines. Ideally a good scheduling system needs to be very
flexible regarding the types of process paths to be captured (Rodammer and
White 1988). In this research a partially flexible JSS system where each
operation can be executed on one or a subset of the machines in the shop floor

is considered.

2.3 Performance Measures

Performance measures or scheduling objectives are criteria by which the
performance of any solution can be measured (Oyetunji 2009). They show how

‘good’ a schedule can be (Hsu 2006). These scheduling objectives can be

15

Literature Review

categorized based on some broad criteria (Framifidn Torres, Leisten et al. 2014,

Collier and Evans 2009) as follows:

2.3.1 Process-Focused Performance Criteria

These types of objectives are based on only the information about the start and
end times of jobs and focus on shop performance such as equipment utilization
and Work-In-Process (WIP) inventory. Two common objectives are used; flow

time and makespan.

FLow TIME is the amount of time a job spends in the service or manufacturing
system. Also known as throughput time or time spent in the system, including

service.
FI :z pl +ZWI :CI —ri

Where; Fi is the flow time of job i, 3 pi is the total processing times of job i

(including setup times), >W; is the total waiting times of job i, C is the

completion time of job i and r is the release time for job i.

MAKESPAN : is the total amount of time required to complete a given set of jobs.

The makespan CmaX is important when the number of jobs is finite. A short

makspan aims to achieve high equipment and resource utilization by getting

jobs out of the job shop quickly.

Cmax =maX(C1,...,Cn)

16

Literature Review

2.3.2 Customer-focused Due Date Criteria

Due date related objectives are mainly concerned with customer satisfaction
and service. Common scheduling objectives are minimizing the tardiness and

the number of jobs being tardy or late.

LATENESS : is the difference between the completion time and the due date

(either positive or negative).

Where; Li is the lateness of job i and di is the due date of job i. If Li is

positive then it is called tardiness, when it is negative, it is called earliness. Thus

Job Earliness Ei =max(0,—Li)
Job Tardiness Ti =max(0, Li)

n I, C. >d.
Number of tardy jobs Y Ui where U. = ro

I=1 0; otherwise

2.3.3 Cost-based Criteria

Setup cost, inventory cost, processing cost, and material handling costs etc. are
common in manufacturing. Cost-based criteria can be considered as the most
important criteria, but it is usually hard to obtain an accurate cost value for each
type of job, identify the relevant cost categories, and allocate costs to
manufacturing parts. Usually, costs are considered implicitly in customer-
focused due dates and process-focused performance criteria. In manufacturing

scheduling, costs can be represented by weighted time parameters. For

17

Literature Review

instance, different jobs can have different weights based on the importance of
different customers and the penalty associated to the tardy delivery (M’Hallah

and Bulfin 2007). In this case the weighted number of tardy jobs is used as

follows:

Where w. is the importance weight of job i.

Machine

A

Setup
Time

M2

ST

Release

Date

ST

J3

Time
F2

F1
F3: J3 Flow Time
The Makespan

I
W
C3: J3 Completion Time
FB.’): J3 Due Date——— P>r<Tardiness (T2)—»
T D2

ee—Earliness (E2)—>»

Figure 2-2. Common Performance measures

Table 2-1 summarizes the most commonly used objectives used as
performance measures for JSSPs (Oyetunji 2009). A more detailed overview of

performance measures for JSSPs can be found in (Pinedo 1995).

18

Literature Review

Table 2-1. Common Performance Measures for Scheduling Problems.

performance Symbol and mathematical formula Description

measures

Total C _ g C. The objective is to minimize the
completion total =7 | sum of all the completion times
time of the jobs.

Total C _ g w.C The objective is to minimize the
weighted w_tot ;=i sum of all the completion times
completion multiplied by the relative
time weights of the jobs.

Maximum Cmax =max(C | s Cpy) The objective is to minimize the

complete time

maximum completion time the
last job leave the system.

Total flow n n The objective is to minimize the

. F,.=YF =Y (. -r) .

time tot =i ol i sum of all the flow times of the
jobs.

Total n n The objective is to minimize the

weighted flow FW_tOt - El W, Fi - igl W, (Ci B ri) sum of all the flow times

time multiplied by the relative
weights of the jobs.

Maximum Fmax =max(Fl’ F e Fn) The objective is to minimize the

flow time longest flow times of the jobs.

Total lateness

n n
Lot =i§1 L :El(ci -0

The objective is to minimize the
sum of all lateness of the jobs.

Total n n The objective is to minimize the

. L =>w.L =>w(C.-d.) .
weighted w_tot ;S i i1 717 | sum of all lateness multiplied by
lateness the relative weights of the jobs.
Maximum Lmax =max(L Tt L e Ln) The objective is to minimize the
lateness maximum lateness
Number of n I; C.>d. The objective is to minimize the
tardy jobs 2 Ui where U, = V! total number of tardy jobs.

i=1 0; otherwise
Total T g T The objective is to minimize the
tardiness tot i total tardiness.
Total n The objective is to minimize the
weighted wotot — wT sum of all the tardiness
tardiness multiplied by the relative
weights of the jobs.

Maximum Tmax =max(T 1,T 2,...,Tn) The objective is to minimize the
tardiness longest of the tardiness of the

jobs.

19

Literature Review

2.4 Optimization Methods

In this section different types of optimization methods for solving JSSPs are
described. The optimization methods aim to find an optimal or near to optimal
solution with short computational time. Distinction can be made between three
different types of optimization methods: exact methods, constructive methods
and iterative methods. Exact methods can guarantee finding an optimal solution
for small size JSSPs; however, the computational time increases exponentially
with problem size. Constructive methods have short computational time but do
not guarantee the optimal or even a good solution. Iterative methods produce a
good solution in reasonable time but do not guarantee an optimal solution. A
brief review of these methods is given below. A research survey of various
methods that have been used to solve JSSPs can be found in (Jain and Meeran

1999), (Calis and Bulkan 2015) and (Chaudhry and Khan 2015).

2.4.1 Exact Methods

The aim of exact methods is to find an exact solution by using enumerative
algorithms which rely on more elaborate and sophisticated mathematical
constructs. Branch and Bound (BB) is the main enumerative method, where the
solution space is presented by a dynamically constructed tree of all feasible
schedules that are implicitly searched. This method applies some rules and
procedures to remove large portions of the tree from the search space and was
the most popular technique to solve JSSPs for many years. However, the
disadvantage of BB is that it has excessive computing requirements, since the
number of branches or nodes is often very large, which limit its application in

solving JSSPs (Jain and Meeran 1999). Mathematical programming methods

20

Literature Review

are another exact method that aim to find the optimal solution, where the
function is defined by linear and nonlinear constraints (equalities and
inequalities) (Pinedo 2005). Problems have been formulated using Integer
Programming (IP), Mixed Integer Programming (MIP) (Bowman 1959, Balas
1965, Balas 1967) and Dynamic Programing (DP) (Srinivasan 1971). Yet, the
use of mathematical programming methods has been limited because JSSPs
belong to the class of NP-hard problems and have difficulties in the formulation
of material flow constraints as mathematical inequalities (Jones, Rabelo et al.

2001).

In general, although exact methods provide an important accomplishment to the
research field and have remarkable theoretical values, most of these methods
are inadequate for practical application as they are unable to achieve a feasible
solution or to solve instances with more than 100 operations (Jain and Meeran

1999).

2.4.2 Constructive Methods

Constructive methods such as shifting bottleneck based heuristics (Adams,
Balas et al. 1988), insertion algorithms (Werner and Winkler 1995) and priority
dispatching rules, build a solution from the problem data (Jain and Meeran
1999). In the Shifting Bottleneck procedure, the identified bottleneck machine is
solved optimality and then the solution is introduced into the overall schedule to
determine the optimal sequence for the remaining machines. In the Insertion
Algorithm an operation is inserted into a feasible schedule, such that the length
of the longest path passing through the operation is minimized, then the

reinsertion strategy is applied to iteratively improve the initial solution. Priority

21

Literature Review

Dispatching Rules (PDRs) are constructive procedures that assign a priority to
all the operations which are available to be scheduled and then select the
operation with the highest priority. PDRs have a low computation burden and
are very easy to implement. According to the performance criteria PDRs can be
classified into three main classes; simple priority rules, combination dispatching
rules, and weight priority rules. In the simple priority rules, indexes are based on
information associated with the job such as processing times (e.g. Shortest
Processing Time (SPT) rule, in which jobs with SPT will be processed first, then
the one with the next SPT and so on), due dates (e.g. Earliest Due Date (EDD)
rule, in which the jobs with EDD will be processed first, then the one with the
next EDD and so on), and slack time (e.g. Minimum Slack (MINSLACK) rule).
Combination dispatching rules are a combination of simple priority rules,
wherein the applied specific rule will depend on the situation that exists on the
shop floor. For instance, to avoid jobs with large processing times from waiting
in the queue for a long time, SPT can be applied until the queue length reaches
a certain number, and then switches to the First Come First Served rule
(FCFS). In weight priority rules, scheduled jobs are built by using many pieces
of information. Weights are assigned to these pieces of information such as
processing time, current time, and due date, to reflect their relative importance
to the job. Then an objective function is defined for each job, to rank them.
However, although PDRs can be used to calculate a feasible schedule quickly
and show reasonable performance, they do not usually produce schedules that
are close to optimal and there are no existing rules that show superiority, as
these rules only take into account the current machine situation and its

immediate surroundings, which decreases the quality of the solution as the

22

Literature Review

problem dimensionality increases (Jain and Meeran 1999, Pinedo and CHAO

1999, Jones, Rabelo et al. 2001).

2.4.3 Iterative Methods

Iterative methods modify a schedule by repeatedly reordering the order of
operations. The use of these methods has grown to overcome the insufficiency
exhibited by PDRs. For JSSPs and many other real world scheduling problems,
iterative methods have been shown to be suitable application tools and are very
promising. They are more effective than the other methods, because they have
successfully found the best-known solutions for the benchmark dataset of
JSSPs even on large scale problems (Rodammer and White 1988, Jain and
Meeran 1999). Iterative methods have two main classifications known as
artificial intelligence and local search methods, which are both widely applied to
JSSPs. They try to improve the schedule with regard to one or more criteria
from complete schedules that can be built randomly or based on some heuristic.
However, these methods do not guarantee an optimal solution, yet they try to
find a better solution than the current one (Pinedo 2005). In the following
section a brief description of the most frequently used iterative methods is

given, including some advantages and disadvantages of each one.

Fuzzy Logic (FL)

FL is a method of multi valued logic derived from fuzzy set theory that was
proposed by Zadeh (1965) to handle estimated rather than more precise data. It
allows incorporation of uncertainty into a decision model. In contrast with “crisp
logic”, where binary sets have binary logic of 0 or 1, the FL variables may have

a membership value range between 0 and 1 and are not limited to the two truth

23

Literature Review

values. The method has been applied to solve many real JSSPs, such as
imprecise data and machine breakdown, by regenerating a new schedule (Calis
and Bulkan 2013). However, the number and type of inputs to the fuzzy
scheduler affect the quality of the scheduling significantly. The types of input
should be selected based on their ability to describe the general conditions in
the job shop. On the other hand the number of inputs suitable for fuzzy
scheduling determines the complexity of the inference engine (Bilkay, Anlagan

et al. 2004).

Genetic Algorithms (GA)

GA is a directed random search technique that was developed by Holland
(1975) and was first applied to JSSPs by Davis (1985). A GA is based on the
principles of the natural evolution process and depends on the population of
individuals. It has two main operators, crossover and mutation, which
manipulate individuals in a population over a number of generations to gradually
improve their fitness (Pham and Karaboga 1998, Werner 2011). This method is
easy to understand, has no demand over complex knowledge of mathematics
and chromosomes share information with each other (Abdullah and
Abdolrazzagh-Nezhad 2014). On the other hand, there are still some
disadvantages of using this method such as crossover operators cannot
produce feasible solutions without losing their efficiency (Jain and Meeran
1999). Despite the fact that GA have no memory and search based on random
techniques, some solutions can be replicated and, moreover, the computational

time is high (Abdullah and Abdolrazzagh-Nezhad 2014).

24

Literature Review

Simulated Annealing (SA)

SA is an iterative method that was proposed by Kirkpatrick, Gelatt et al. (1983)
for finding the global minimum of a cost function that might have a number of
local minima (Bertsimas and Tsitsiklis 1993). SA was inspired from the physical
process of cooling and recrystallization of metals. For scheduling problems, the
current scheduling solution corresponds to the current state of the
thermodynamic, while the objective function corresponds to the energy equation
for the thermodynamic system, and the global optimum corresponds to the
ground state. By sampling the probability distribution of the system, this method
will randomly generate new schedules with the aim of optimising the objective
function, which corresponds to lowering a global temperature as the iterations
progress (Jones, Rabelo et al. 2001). SA has a good selection technique and
gradually obtains good solutions. However, the drawback of the SA method is it
cannot quickly achieve good solutions to JSSPs. Therefore, research has been
diverted to combining SA with other methods, such as GA, with the intention of
improving the results and reducing the time required for calculation. Combining
SA with some other methods has made SA competitive with regard to solution

quality but it still requires high computational time (Jain and Meeran 1999).

Artificial Immune System (AIS)

The AIS method is an adaptive system that was inspired by the natural immune
system to solve real-world problems. AIS exploits the immune system’s features
of learning and memory for problem solutions. The distinctive feature of the AIS
is its ability to provide robust solutions. This method has been applied to solve
many optimization problems such as computer security, pattern recognition,

machine learning and scheduling problems including JSSPs. However, despite

25

Literature Review

the robustness of AlS, an optimal solution may not be reached (Chaudhry and
Khan 2015).

Tabu Search (TS)

TS is another iterative method proposed by Glover (1989,1990) for solving
optimization problems and has many successful applications in solving different
types of scheduling problems including JSSPs. In JSSPs, a move from one
solution to another solution is made whilst avoiding duplicates or resembling
previously achieved solutions by recording the search history in the Tabu List.
However, the disadvantage of the TS technique is it does not ex-change
information through the larger set of parallel solutions, which can lead to the
production of poor solutions. Combining TS with other techniques such as GA
can generate more promising results but it will increase the computational time

(Coello Coello, Lamont et al. 2007).

Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP was first introduced by Feo and Resende (1989) and was commonly
applied to solve combinatorial optimization problems. Each iteration in this
method consists of two phases; a construction phase that builds a solution from
scratch and a local search phase to investigate its neighbourhood solutions to
find a local optimal solution. GRASP has been applied successfully to a number
of scheduling problems including JSSPs. However, the solution obtained by
GRASP is not necessarily optimal and is often used to build initial solutions to

be explored by other methods (Chaudhry and Khan 2015).

26

Literature Review

Ant Colony Optimization (ACO)

ACO is a population-based optimization method that was introduced by Colorni,
Dorigo et al. (1991). It was inspired from studying ant colonies and is used to
search for optimal solutions to difficult optimization problems based on the
behaviour of ants seeking a path between a source of food and their colony.
The ants deposit more pheromone on the paths that have the shortest distance
from the colony to get more pheromone, resulting in other ants selecting those
paths in later iterations (Fox, Xiang et al. 2007). Recently there have been a
number of researchers who utilised ACO to solve JSSPs such as Xing, Chen et
al. (2010) and Korytkowski, Rymaszewski et al. (2013), because of its ability to
avoid premature convergence. However, ACO has poor performance when the
JSSP to be solved is larger than 10 jobs and 10 machines. In addition,
sequences are generated based on random decisions and there is no
centralized process to lead ACO to good solutions (Abdullah and Abdolrazzagh-

Nezhad 2014).

Particle Swarm Optimization (PSO)

PSO is a population-based optimization method inspired by social behaviour of
bird flocking and was introduced by Kennedy and Eberhart (1995) for
optimization of continuous nonlinear functions. By having a population of
candidate solutions, PSO optimises the problem by labelling the particles or the
individual and moving them around in the search space, based on the
mathematical formulae to find out the best solution (best position). Since the
solution space of the JSSP is discrete, the PSO method is largely considered as

unsuitable for the problem in hand. However, some researchers have tried to

27

Literature Review

modify the particle position representation, particle movement, and particle

velocity to improve its suitability to JSSPs (Sha and Hsu 2006).

Variable Neighbourhood Search (VNS)

VNS is a framework for building heuristics proposed by Mladenovi and Hansen
(1997), and designed for solving combinatorial and global optimization
problems. It aims to escape from local optimum by changing the neighbourhood
structure. In its basic form, VNS explores a set of neighbourhoods of the current
solution, makes a local search from a neighbour solution to a local optimum,
and moves to it only if an improvement was made (Moreno Pérez, Marcos
Moreno-Vega et al. 2003). VNS is a simple method and requires few
parameters, and overall, can provide very good solutions. It has been applied to
solve many real practice problems such as location problems, data mining,
vehicle routing problems and scheduling problems, including JSSPs. However,
in the later search period, VNS may not be able to escape from local optimal

regions. (Calis and Bulkan 2013).

Beam Search (BS)

BS is a heuristic search method for solving optimization problems. It is an
adaptation of the best-first-search method that reduces its memory requirement.
In BS only the most promising nodes are expanded and evaluated in the search
tree and remaining nodes are cut off permanently, thereby trying to keep the
combinatorial nature of the problem in check. One application of BS for solving
JSSPs is presented by Sabuncuoglu and Bayiz (1999). The main disadvantage
of a BS method is that the optimal solution may not be reached, as many nodes

that can lead to an optimal solution are cut off (Zhang 1999).

28

Literature Review

Bee Inspired Methods

Bee inspired methods such as, the Bee Colony Optimization (BCO)
(Teodorovic and DelllOrco 2005) and Bees Algorithm (BA) (Pham,
Ghanbarzadeh et al. 2006) were inspired by bees’ behaviour of searching for
food sources in nature and then, after they return to the hive, they indicate
these sources to the other bees of the colony to identify promising locations.
Bee inspired methods have fast convergence and high flexibility, smaller
amounts of setting parameters, and memory of best solutions (Abdullah and
Abdolrazzagh-Nezhad 2014). Chin Soon, Low et al. (2006) used BCO to solve
the JSSP with the aim of minimizing the makespan. They compared the
proposed approach with existing approaches such as ACO and TS and found
that the performance of the algorithm is comparable to ACO algorithms but is
less efficient than TS. However, in the later search period, the bee inspired
methods have premature convergence, and sometimes need to apply local
search algorithms to meet some requirements (Abdullah and Abdolrazzagh-

Nezhad 2014).

Artificial Neural Network (ANN)

ANN is a data-driven modelling tool that is able to capture and represent
complex and non-linear input/output relationships. A neural network is
composed of a number of layers of processing elements or nodes. These nodes
are linked by connections, with each connection having an associated weight.
The weight of a connection is a measure of its strength and its sign is indicative
of the excitation or inhibition potential. A neural network captures task-relevant
knowledge as part of its training procedure. This knowledge is encoded in the

architecture or topology of the network, the transfer functions used for nonlinear

29

Literature Review

mapping and a set of network parameters (weights and biases). There have
been several applications of neural networks such as data processing, robotics,
computer numerical control and scheduling problems, including JSSPs
(Weckman, Ganduri et al. 2008). However, great computational burden and the
empirical nature of model development are some key disadvantages of ANN

(Tu 1996).

Hybridization Methods

Hybridization methods combine two or more optimization methods to take
advantage of their strengths. A wide range of these methods have been
proposed to solve JSSPs. For instance a hybridization of GA and TS to
overcome the main drawback of these methods and generate more promising
results has been proposed by Vilcot and Billaut (2008), however computational

time has been shown to increase (Chaudhry and Khan 2015).

In conclusion, most of the previous work on testing the developed methods
focused on benchmark problems and there is no work to show that any of these
methods outperform each other with regard to all problem aspects (Calis and

Bulkan 2015, Chaudhry and Khan 2015).

2.5 Multi-objective Optimization and Pareto-optimal

Solutions

The classical JSS formulation tends towards optimizing a single objective such
as minimizing the makespan, the number of tardy jobs or maximum tardiness.
Real manufacturing environments noticeably involve multiple conflicting

objectives to satisfy various manufacturing requirements. Despite the fact that

30

Literature Review

organisations normally look for minimizing the costs and maximizing the
utilization of resources, scheduling objectives also include objectives directed
towards satisfying customer demand, reducing confusion and improving
schedule stability. A good scheduling system would need to capture and
balance a considerable range of these objectives. Usually, a single objective
optimization system cannot represent all of these complex problem aspects in
their complete richness. However, developing a scheduling system that takes
into account all objectives would require massive amounts of data and
excessive time. An effective and economic scheduling system will consider only
the most important objectives of a given environment, disregarding the least
important features, and handling those in-between in an aggregate way
(Rodammer and White 1988). In general, a single-objective optimization

problem can be represented as:
min f(X) : Xe RN
Subject to g(x)=0 & h(x)<0
Where f is the objective function, or evaluation function or cost function, X is a

vector of design variable x = {XI’XZ""’XN }, RN is the design space, g is an

equality constraint, and h is an inequality constraint.

In the case of multi-objective optimization, generally the problem consists of a
number of objectives and is associated with a number of equality and inequality

constraints. Mathematically, the problem can be written as follows.

min f(x) : xeRN & f eRM

31

Literature Review

Where f = {fl’ f2,..., fM }, and RM is the objective space.

In the case of simultaneous optimization (maximization or minimization) of two
or more conflicting objective functions, there is no single feasible solution that
can optimize all objective functions at the same time. In this case, the notation
of Pareto optimality needs to be introduced. A solution is called a Pareto optimal
or a non-dominated solution if none of the objective functions can be improved

in value without worsening at least one other objective value. Formally
speaking, a vector x* € RN is Pareto optimal if there is no feasible vector

xeRN that would improve some objective function, without causing a
simultaneous deterioration in at least one other objective function (Caramia and

Dell'Olmo 2008, Rangaiah and Bonilla-Petriciolet 2013).

2.5.1 Solving Multi-objective Optimization Problems

In the literature, there are various methods for solving multi-objective
optimization problems. These methods can be classified based on three main
categories; aggregation approach, population-based non-Pareto approach and

Pareto-based approach.

2.5.1.1 Aggregation Approach

The aggregation approach is the simplest approach for solving multi-objective
optimization problems. It is easy to apply and does not require high
computational procedures to implement. Moreover, all existing evolutionary
algorithms can be applied directly with only slight changes (Jin 2003). In the
aggregation approach, different objectives are combined into a single objective

using a weighting or a goal-based method, thus converting the multi-objective

32

Literature Review

optimization problem into a single-objective optimization problem (Xiao-Juan,
Chao-Yong et al. 2008). The goal programming-based method (Charnes,
Cooper et al. 1955, Charnes and Cooper 1961), weighted sum method
proposed by Fishburn (1967), goal attainment-based method proposed by
Gembicki and Haimes (1975), and ¢-constraint method proposed by Chankong
and Haimes (1983) all belong to this category (Bandyopadhyay and Saha
2013). The weighted sum method is the most straightforward and commonly
applied method. In this method different objectives are merged together in one

objective function using some weights w,,v=12,.M (where M is the number

of objectives). The weights represent the relative importance of each objective,

thus, to optimize a number of objective functions the following formula is used:

|\£ f., ()
WA X
v=1 v

M N
Where le\, =1,wy, >0,v=1..,M and xeR

V=
The obtained solution of this approach is usually a Pareto-optimum solution.
However, a prior knowledge is required to decide the weight for each objective
and only one Pareto solution can be achieved from one run of optimization. In
real world practice, decision makers may need different alternatives before

making a decision (Srinivas and Deb 1994, Jin 2003).

2.5.1.2 Population-based Non-Pareto Approach

In the population-based non-Pareto approach, the optimization is carried out by
using a sub-population for each objective, but without the Pareto dominance in
the selection mechanism. In each sub-population, the solutions are ranked and

selected based on one objective. Vector Evaluated Genetic Algorithm (VEGA)

33

Literature Review

proposed by Schaffer (1985) is a typical example belonging to this category. In
this method, generation is produced by performing appropriate fraction or
proportional selection according to each objective. Then the whole population is
pooled together to achieve the mating of individuals of different subpopulations
through crossover and mutation operators. Non-dominated solutions are
specified by observing the population as it evolves but this data is not used by
the algorithm itself (Gen and Cheng 2000). The disadvantage of this approach
is that a Pareto solution can be disregarded during the evolving process,
because the optimal trade-off for all the sub-objectives is usually not the optimal

solution for each objective (Xiao-Juan, Chao-Yong et al. 2008).

2.5.1.3 Pareto-based Approach

The Pareto-based approach is currently the most popular way to evolutionary
multi objective optimization. In this approach Pareto optimality is applied in the
selection mechanism. All the non-dominated solutions are given the same
fithess value, while other solutions are given inferior values. Multi-Objective
Genetic Algorithm (MOGA) proposed by Fonseca and Fleming (1993), Non-
dominated Sorting Genetic Algorithm (NSGA) proposed by Srinivas and Deb
(1994), Niched Pareto Genetic Algorithm (NPGA) proposed by Horn, Nafpliotis
et al. (1994), Strength Pareto Evolutionary Algorithm (SPEA) proposed by
Zitzler and Thiele (1999), Non-dominated Sorting Genetic Algorithm-II (NSGA-
Il) proposed by Deb, Pratap et al. (2002), Strength Pareto Evolutionary
Algorithm (SPEA2) proposed by Zitzler, Laumanns et al. (2002), Multi-Objective
Messy Genetic Algorithm (MOMGA) (Van Veldhuizen 1999, Zydallis 2003) and
a very recent method named Efficient Non-dominated Sort (ENS) proposed by

Xingyi, Ye et al. (2015) all belong to this category. The main disadvantage of

34

Literature Review

these methods in this category is that they are computationally very expensive

(Jin 2003, Xiao-Juan, Chao-Yong et al. 2008).

2.6 Previously Existing Work and Gap of Knowledge

In this section, a survey study of JSSPs based on multi-objective optimization
that have previously appeared in the literature is conducted. Here, four main
factors for describing the JSSPs are considered to distinguish between these
works. These factors are Setup Time (ST), Alternative Machines (AM), Job
Release Date (JRD), and Unfixed Processing Time (UPT). Table 2-2 shows the
reference and authors for different researches, and the factors considered in
their work.

Table 2-2. Previous research in MO-JSSP

Factor of Describing the JSSP

Author(s) and reference ST AM JRD UPT

Sakawa and Mori (1999) - - - v

Ponnambalam, Ramkumar et al. (2001) -

Baykasoglu, 6zbakir et al. (2004) - 4 - -

Low, Wu et al. (2005) v - - -

<\

Xia and Wu (2005) -

Suresh and Mohanasundaram (2006) - - - -

Lei (2008) -

AN

Xing, Chen et al. (2009) -

Manikas and Chang (2009) 4 - -

Zhang, Shao et al. (2009) -

SRR

Li and Huo (2009) -

Huang (2010) v - - -

Adibi, Zandieh et al. (2010) - v -

Li, Pan et al. (2010) -

NIANK

Wang, Gao et al. (2010) -

Sha and Lin (2010) -

Moslehi and Mahnam (2011) -

< <
<

Zheng, Li et al. (2011) -

Kachitvichyanukul and Sitthitham (2011) - - - -

35

Literature Review

Table 2-2. Continued

Factor of Describing the JSSP

Author(s) and reference ST AM JRD UPT

Li, Pan et al. (2011) - v - -

Tavakkoli-Moghaddam, Azarkish et al. (2011) v - v -

Ramkumar, Tamilarasi et al. (2012) - - v

Wang, Zhou et al. (2012) -

Li, Pan et al. (2012) -

NENENE

Li, Pan et al. (2012) -

Frutos and Tohmé (2012) -

AN
<

Dalfard and Mohammadi (2012) -

Lei (2012) -

AN

Rahmati, Zandieh et al. (2012) -

Zhang, Gao et al. (2013) - v -

Wang, Wang et al. (2013) -

Shahsavari-Pour and Ghasemishabankareh (2013) -

SENANE

Shao, Liu et al. (2013) -

Qiu and Lau (2013) - - v -

Niu, Ong et al. (2013) -

Li, Pan et al. (2014) -

NRNE

Gao, Suganthan et al. (2014) -

Zhao, Tang et al. (2014) - - v -
Su, Mengjie et al. (2014) - v

Gao, Suganthan et al. (2014) .

Jia and Hu (2014) -

Hosseinabadi, Siar et al. (2014) -

Xue, Zhang et al. (2014) -

Karthikeyan, Asokan et al. (2014) -

NENENENENANE
<

Pérez and Raupp (2014) -

Yang and Gu (2014) -

AN
AN

Shen and Yao (2015) -

Huang and Siier (2015) -

\

Shivasankaran, Kumar et al. (2015) -

Zhao, Gao et al. (2015) -

SENANE

Singh, Singh et al. (2015) -

Zhang and Chiong (2016) - - - v

\

Kaplanoglu (2016) -

36

Literature Review

The fifty-three reviewed literatures have been categorized based on the four
main factors for describing JSSPs with multi-objective optimization, as shown in
Table 2-2. Figure 2-3 (a) shows the percentage of MO-JSSPs with alternative
machines, setup time, release date and unfixed processing time. The results
show that thirty-one journal articles (57%) considered alternative machines,
eleven journal articles (20%) considered job release date, eight journal articles
(15%) considered unfixed processing time and only four journal articles (8%)
considered setup times. As shown in Figure 2-3 (b) none of the articles
incorporated all four factors or even three factors together, as thirty-eight
articles (72%) considered only one factor, mostly alternative machines, eight
articles (15%) considered two factors and seven articles (13%) did not consider

any of these four factors.

(a): Percentage of included factors in MO- (b): Percentage of number of factors included
JSSPs available from the litrature in MO-JSSPsavailable from the litrature

Setup times
8%

Unfixed
processing time__
15%

2factors Ofactor
G V

1factor

Figure 2-3. Percentage of included factors in MO-JSSPs from the available literature

After a comprehensive study made on the existing MO-JSSPs literature, a

number of limitations have been found:

1. Although the JSSP is a popular topic, the number of researches in MO-

JSSPs is still limited and there is still work to be done in this area.

37

Literature Review

2. At most, only two factors have been incorporated in one scheduling
system, which implies that, there is a need to incorporate more factors to
reflect real manufacturing practice.

3. Although JSSPs with job sequence dependent setup time are more
complicated, there have still not been any studies made on MO-JSSPs
with machine dependent setup time and job sequence independent setup

time.

As a result, the current research considers MO-JSSPs with alternative
machines, job and machine release time and machine dependent setup time
with job sequence independent setup time. The effect of processing time

uncertainty on the optimal makespan for classical JSSPs is also studied.

2.7 Summary

In real job shop manufacturing practice, there are a number of factors for
describing the scheduling problem. Disregarding some of these factors can
have a major impact on the scheduling system reliability. In this chapter, the
most important factors for describing the JSSPs were illustrated. Four main
factors were then used to distinguish between different works that have been
undertaken for solving MO-JSSPs. These factors are setup time, alternative
machines, job release date and unfixed processing time. Based on these
factors, the knowledge gaps for solving MO-JSSPs in the literature were
identified, which provide the evidence to support the contributions of this thesis.
The chapter also presented the most known methods for solving JSSPs. For
JSSPs, iterative methods were considered to be suitable application tools and

are very promising. However, none of these methods outperforms each other

38

Literature Review

with regard to all problem aspects. Some basic concepts about multi-objective
optimization and three popular approaches for multi-objective optimization were
also discussed. These three approaches are; aggregation approach,
population-based non-Pareto approach and Pareto-based approach. Currently
the most popular approach to evolutionary multi objective optimization is
Pareto-based approach. In the next chapter, the problem description, issues
and challenges related to solution methodologies as well as mathematical

formulation of the problem are presented.

39

Problem Description, Complexity and Formulation

Chapter 3. Problem Description,
Complexity and Formulation

40

Problem Description, Complexity and Formulation

3.1 Introduction

In this chapter, JSSPs with multiple objectives are discussed in detail. Issues
and challenges related to solution methodologies are also addressed. Finally,

mathematical formulations for JSSPs with considered factors are presented.

3.2 Problem Description and Complexity

JSS is common practice in the manufacturing environment for many small and
medium-sized companies. The term describes the work flow of the products on
the shop floor. In such an environment the process characteristics on the
machines, such as operations, setup times, processing times, and routings
often differ from one product to another. Because of these variations, JSSPs
are extremely difficult to solve to optimality, both in practice and in theory, and
have been considered as a member of a large class of intractable numerical
problems known as NP-hard. For instance, in the classical JSSP, where n jobs
need to be processed by m machines, the possible number of sequences is

91

(n!)m. Accordingly, a 20x5 problem can have at most 8.5x10”" possible

solutions, which is a very large number and requires, even for the fastest
computer, an enormous computational time to evaluate all the possibilities.
Therefore, JSSPs are extremely difficult to solve to optimality (SMITH 1966,

Jain and Meeran 1999).

Generally, the JSSP consists of n jobs to be processed by m machines, while
minimising some functions of completion time and due date of the jobs, subject
to some technological rules and constraints. In what follows, common features
for all JSSPs are presented followed by various forms of JSSPs that exist in the

literature.

41

Problem Description, Complexity and Formulation

(i) Every job has a predetermined sequence of operations based on its
technological requirements.

(i) Each machine can perform only one operation of any job at a time
and it becomes available to perform other operations once it has
completed the currently assigned operation (resources constraints).

(i) An operation of a job can be performed by only one machine at a
time.

(iv) Tasks of the same job cannot be processed concurrently and cannot
be started until the precedence operation is finished.

(v) The jobs are independent; that is, there are no precedence
constraints among the jobs and they can be operated in any

sequence.

In its simplest form, which is known as the classical JSSP, the assumption is
made that; each job must be processed on each machine only once. There are
no alternate machines for each job’s operations, i.e., there is only one machine
for each type of job operation. Processing time of an operation for a job varies
but is known in advance. All jobs and machines are available at time zero. The
setup times and transportation times are either negligible or are included in the
processing times and no pre-emption is allowed. However, in real
manufacturing environment, machine preparation can be required before
starting the task and operations can be processed on alternative machines.
Moreover, time uncertainty, dynamic job arrival, and multi-objectives
optimization, etc. are all features of real manufacturing practice and need to be
considered in the scheduling model in order to achieve a more accurate and

reliable scheduling system. Still, when all or some of these factors are

42

Problem Description, Complexity and Formulation

incorporated in the scheduling system, the problem complexity will also

increase.

The motivation of this research is to develop a scheduling system that considers

many of these factors, to reflect real world job shop manufacturing practice and

acquire a more reliable and accurate scheduling system that benefits both

practitioners and researchers. In this research the following factors are

considered;

>

>

>

Deterministic dynamic job arrival, in which jobs are available for their
process at various times.

Deterministic dynamic machine release date, in which not all machines
are available at time zero.

Alternative machines, in which some or all of the job’s operations can be
executed on a number of alternative machines

Machine setup times with job sequence independed setup times.

A job does not necessarily visit every machine and it may visit a machine
more than once.

Priorities among jobs, expressed by weights, and

Scheduling based on multi-objectives

The effect of the processing time uncertainty on the optimal makespan is also

studied. The following sections provide a summary of these factors and the

problem complexity.

43

Problem Description, Complexity and Formulation

3.2.1 Deterministic Dynamic Release Date

The release date of a job or machine refers to the first point in time where that
job or machine is available. The job release date is helpful when modelling a
job’s earliest starting time due to the order placement time or the availability of
raw materials. Likewise, the machine release date is helpful when machines
have unavailability windows due to maintenance or breakdowns. In this
research, deterministic release times of both jobs and machines are considered.
Deterministic release times mean that; the time for a job or machine to be

released is known in advance.

3.2.2 Alternative Machines

JSSPs with alternative machines allow some or all of the job’s operations to be
executed on a number of alternative machines. These machines can be
identical or non-identical. The alternative machines or alternative routing is
beneficial when the capacity problem is an important issue. Although
incorporation of alternative machines makes the scheduling system more
complicated, it significantly increases the performance of idle machines and can
reduce the pressure on other overloaded machines. The benefit of using
alternative machines are that; the total manufacturing time is shortened, the
work-in-process is reduced, lead time is reduced, and overall machine utilization
is improved (Wilhelm and Hyun-Myung 1985, Chaudhry 2012). In this research,
the case of alternative machine tools is allowed for some operations (partial
flexible system). Since the system needs further decisions of machine allocation
throughout scheduling, it is considered to be much more complex than the

classical JSSP.

44

Problem Description, Complexity and Formulation

3.2.2.1 Complexity of Alternative Machines

To show the complexity of alternative machines, let’'s assume that a job (J1)

has three different machining operations, which are turning, milling, and drilling,

that have to be processed on machines MLl, M2]1, M3 successively as

(e >0

Figure 3-1. Single Processing Route for J1

shown in Figure 3-1.

It can be seen that only one possible route is available to finish J1 (M1L1—M2]
—M3]1). If one more machine M22 is added to M2l as an alternative
machine for the milling operation, and M3,2 is added to M3,1 as an alternative

machine for the drilling operation, the possible number of routes will increase

from 1 to 4 as shown in Figure 3-2.

Figure 3-2. Alternative Processing Routes for J1

45

Problem Description, Complexity and Formulation

The possible alternative routes to process J1 are now 4 as follows:
MLI—->M21—-M3]l
MLl —M2]1—M32
MLl —M2,2—M3]

MLl ->M22—>M32

In general, the total number of alternative routes AR; for job i that has a total

number of operations J;, and each operation Oij that can be executed by one

machine or set of alternative machines AMij , is equal to multiplying AM i of all

ARi =AM ilXAMi2X"'XAM iJ

i
For instance, in the first case (single route), only one machine is capable of
processing each operation. Consequently, the number of alternative routes in
the first case is equal to one (1*1*1=1). In the second case, there is only one
machine for operation 1, two machines capable to execute operation 2, and two
machines capable to execute operation 3. Consequently, the number of
alternative routes in the second case is equal to four (1*2*2=4).

Now, let’s consider another job J2 to see the influence of alternative machines
on the overall scheduling decision. Similarly as in J1, J2 has 3 different

operations but with a different order on the machines, so that milling on M2,1 or
M 2,2 is first, drilling on M3,1 or M3,2is second and turning on M1]1 is last, as

shown in Figure 3-3.

46

Problem Description, Complexity and Formulation

Figure 3-3. Alternative Processing Routes for J2

The number of possible alternative routes for processing J2 is also 4 and as

follows:

M2,1—M3,1 MLl
M2,1—M32 M1l
M2,2 —M3]1— M1l

M22—->M32—-Ml1

In its simplest case, the possible sequences for scheduling n jobs on m
machines are(n!)m. By considering the alternative machines, the number of
possible sequences will increase dramatically, which can already be large, even
for some small size problems. For instance, scheduling J1 and J2 on 3
different machines will result in 8 different sequences. Considering the
alternative machines for processing J1 and J2 will result in 4*4=16 different
matrix for the machines, as shown in Figure 3-4, this will increase the possible

number of sequences to 16*8= 128.

47

Problem Description, Complexity and Formulation

Alternative routes Alternative routes Matrices of
for J1 for J2 alternative routes
forlJl &1J2
| I T |
N | T T
/1 |
< [Mii— Mz —Ms;

M —M; 1 —Mi]
[Mi1— Mz —Ms,;
M1 — My —M;, My 1 —M;3,1—Mi —> Mz —Ms,—Mial;
[Mi 1 — Mz> —Ms ;3
M 1 —M;,1—M],
My — Mz —Ms,;
Mo 1 —M; 1 —Mia];

My — Mz —Ms;
My 1 —M;,,—M 5
M1 — Mz —M3s;
Mo 1 —M;z>—Mi];
[Mi, 1 — Mz2> —Ms 3
My 1 —Msz—Mi];
M1 — M2z —Ms;
Mz, 1—Msz—Mil;

M1,1 —> Mz,l —>M3,2 | M2,1—>M3,2—>M1,1

\ 4

[Mi 1 — Mz —Ms ;3
Mo or—M; 1 —Mi]
M) — M> —Mso;
Mz >—M;31—Mi];
[Mi, 1 — Mz —Ms i3
M>o—Ms 1 —Mi];
M1 — Mz —Ms,;
Mo o—M; 1 —Mi s

M — Mz, —Ms ;| M r—Mj3 1—M

\4

M1 — Mz —Ms
Mo or—M;>—Mi]
M1 — Mz —Ms,;
Mz >—M;3—Mi];
[Mi, 1 — Mz —Ms i3
M >—Ms—Mi];
M1 — M2 —Ms;
Mz —M;,—Mi s

\4

Ml,l —> M2,2 —>M3,2 > M2’2—>M3)2—>M|’1

Figure 3-4. Different Machine Matrices for J1 & J2

3.2.3 Machine Setup Time

In this research the JSSP with machine dependent, job sequence independent,
and item availability setup times is considered. For this type of problem the
setup takes place on a machine when the job has to be processed on that
machine first and when a job has to be processed after a job of another group
(Sotskov, Tautenhahn et al. 1996). In this research we distinguish the presented
work from Sotskov, Tautenhahn et al. (1996), so that the group is made based
on the machines and operations, i.e. a job can belong to one group on one

machine and to a different group on another machine. By doing so, the job-

48

Problem Description, Complexity and Formulation

based setup group and operation-based setup group can be solved.
Furthermore, different batches can be formed based on these groups from the
resulting schedule. An anticipatory setup time in which the setup can be started
before the corresponding job becomes available on the machine is considered.
The application of this type of scheduling problem can be found in many small
and medium-size manufacturing companies in which different tools are required
to process operations of different jobs on the same machine, such as different
milling cutters in a milling machine or different cutting tools in a turning machine.
Therefore, developing a scheduling system that considers the setup time will
bring benefits to such manufacturing companies. However, the decision
complexity will increase, as the decision-making will also take into account the

machine setup time.

3.2.4 Jobs with Various Lengths and Recirculation

In a real job shop manufacturing environment, not all jobs have to visit all
machines (jobs with different numbers of operations), while some jobs need to
visit some machines more than once (scheduling with recirculation). This
decision depends on the job operational requirements and the scheduling
system must consider all these technological requirements. Therefore, in this
research, a scheduling system in which some operations can be repeated and
some can be missed is considered to reflect to the real job shop manufacturing

environment.

3.2.5 Priorities among jobs expressed by weights

The weight w, of job i is a priority factor, denoting the importance of job i

relative to the other job in the system. It may represent the cost of keeping the

49

Problem Description, Complexity and Formulation

job in the system. The weight can be a holding or inventory cost, or it can be the
amount of value already added to the job (Pinedo and CHAO 1999). In this
research, minimizing the weighted number of tardy jobs was considered.
Different jobs can have different weights with respect to the importance of
different customers. These weights are usually decided based on the penalty

associated to each job of being tardy.

3.2.6 Multi-Objective Optimization

Since the study of JSSPs started, a large number of researches have been
published. The maijority of these publications considered only a single objective
(most frequently the makespan). However, in real manufacturing practice, many
industries have to consider multiple objectives to satisfy the overall performance
of the system, with different conflicting objectives. Therefore, a good and
flexible scheduling system must take into account multiple objectives to satisfy
different aspects of the decision makers. In this research, a scheduling system
for solving JSSPs with multi-objective optimization was developed. Three
practical performance measures: the maximum completion time or the
makespan, the weighted number of tardy jobs and the maximum tardiness,

were considered simultaneously in this work.

3.2.6.1 Complexity of Multi Objective Optimization

Solving MO-JSSPs is considered to be more complex than solving JSSPs with
a single objective because the objectives are often conflicting or even
contradictory. The appearance of conflicting objectives of the feasible solutions
is a common difficulty for JSSPs with multi-objective optimization that does not

allow a simultaneous optimal solution for all objectives (Srinivas and Deb 1994).

50

Problem Description, Complexity and Formulation

Hence, optimizing one objective usually leads to deterioration of one or more
other objectives. For instance, to increase the throughput of the system, the
input rate of products has to be increased, but that will cause higher work in
progress (WIP) inventory. Therefore, it is necessary to find multiple trade-off
solutions between different objectives. Due to the great difficulty but also
necessity, more attention has been given lately to MO-JSSPs. Generally, there
are two main approaches to handle the multi-objective; firstly by aggregating
them to one objective to find the optimal weighted-sum solution and secondly by
optimizing them simultaneously to find a set of non-dominated solutions. If the
objectives are combined into a single objective using weights, the difficulty is to
assign weights to each objective, since it requires knowledge and the order of
importance for each objective in advance, which may be difficult in today’s
unstable market condition. If all objectives are optimized simultaneously, the
problem is to develop an effective search algorithm for some further steps and

the significant increase of time and space complexity (Lei 2008).

Simultaneous optimization of the objectives means identifying the Pareto front
or non-dominated solutions. In a simple approach, to identify the first front of
non-dominated solutions in a population of size N, each solution needs to be
compared with all other solutions in the population to decide if it is dominated by
some other solutions or not. That means each solution requires O(MN)
comparisons, where M is the number of objectives. When this process is

continued to find all members of the first non-dominated level in the population,

the total complexity is O(MN2) (Deb, Pratap et al. 2002). Usually a good

selection approach requires identifying all Pareto fronts and finding solutions in

the other fronts will also require comparing each solution with those solutions

51

Problem Description, Complexity and Formulation

not included in the previous fronts. This technique, however, can be
computationally expensive and requires a large storage space, especially when

the number of individuals in the population is large. For instance, NSGA has a

time complexity of O(MN3) and space complexity of O(N). This time
complexity has been reduced in NSGAII to O(MN2) but storage space has

increased to O(N 2). To avoid many unnecessary comparisons, Xingyi, Ye et al.

(2015) proposed a new method called Efficient Non-dominated Sort (ENS).
Instead of comparing each solution with all other solutions in the population, in
ENS, a solution to be assigned to a front, will only be compared with solutions
that have already been assigned to a front, in that way many unnecessary

comparisons can be avoided. ENS using Sequential Search Strategy (ENS-SS)

has a time complexity of O(MN+/N) in the best case and O(MN2) in the worst
case and has a space complexity of O(l). Since ENS-SS has less time and

space complexity, it has been employed in this research to determine the front
to which each solution belongs, but instead of starting with the first front, the
proposed algorithm starts the comparison with the last created front so far, and
this has been termed as the Backward Pass Sequential Strategy (BPSS).
Efficient Non-dominated Sorting using the Backward Pass Sequential Strategy
(ENS-BPSS) can reduce the number of comparisons needed for N solutions
with M objectives to O(M (N —1)) when there are fronts and there exists only
one solution in each front. In this case, and because a solution can never be
dominated by any succeeding solution in the sorted population, each solution in

the sorted population will only be compared with the directly preceding solution.

52

Problem Description, Complexity and Formulation

3.2.7 Effect of Time Uncertainty on the Optimal Solution

In deterministic JSSPs, the duration of each task in each job is known in
advance and is given as a single value. Therefore, the start and end date for
each task can be calculated in a single pass calculation. However, in a real
manufacturing system, the duration of the task is often uncertain and it can be
defined as a variable value, where each value has a different occurring
probability. In this case, the number of different combinations of durations for
forming the schedule can be very large. Studying each combination individually
can be a massive task. Therefore, in this research, two different scenarios were
considered to study the effect of time uncertainty on the optimal solution for a
single objective (the makespan). In the first scenario, the ratios of change in the
processing time for all operations were considered to be the same. In the
second scenario, the ratios of change were varied from one operation to

another.

3.3 Mathematical Formulation

To solve an optimization problem, it is useful first to formulate the problem in a
manner reflecting the situation being modelled. In this section, the mathematical
formulas to describe the problem are presented. The notation, parameters,

decision variables and objective function are given below:

3.3.1 Indices

n: Total number of jobs.
m : Total number of machines.
i: Job index (i=12,..,n).

k : Machine index (k=12,...,m).

53

Problem Description, Complexity and Formulation

O; : Total number of operations required to complete job i
j: Operation index (1=12,..,G;).

Oij: Operation number j of job i (Oil,Oiz,...,Oi)

AMij: The set of machines that can process operation j of job i.

3.3.2 Parameters

pijk: Processing time of operation Oij on machine k

= The release date of job i in the job shop

ry: The release time for machine k in the job shop

W, The importance weight of job i

di: Due date for job i

Gijk: Setup group for operation j of job i on machine k

StGk : Setup time for a set of operations that belongs to setup group G on

machine k.

3.3.3 Decision Variables

Sijk: The start time for operation j of job i on machine k.

Cijk : The completion time for operation j of job i on machine k.

Ci : The completion time for the last operation of job i.

Xijk =1: If operation j of job i is processed on machine k, otherwise Xijk =0.

54

Problem Description, Complexity and Formulation

Yijaqk =1: If operation j of job i precedes operation q of job a on machine k,

otherwise Yijaqk =0.

Zijkzl: If operation j of job i is processed on machine k as the first,

otherwiseZ.. =0.
ijk

quk =0: If two different operations j and g from the same setup group G are

processed consecutively on machine k, otherwise quk =1.

3.3.4 Constraints

3.3.4.1 Release time constraints:
Release time constraints ensure that a job cannot be started before its
arrival date and before the machine release time.

3.3.4.2 Initial Setup Constraint:
Initial setup constraint ensures that the first job on machine k cannot be
processed until the machine setup has been completed.

3.3.4.3 Operation Precedence Constraint:

Precedence constraint ensures that Operation j of job i cannot be started

before its preceding operation is completed

.2
% =g

55

Problem Description, Complexity and Formulation

3.3.4.4 Processing Time Requirement
Processing time requirement ensures that the difference between the start time

and the completion time of operation j on machine k is equal to the required

processing time of operation j on machine k.
— * =
Ciik ~Sik" Xk = Piik

3.3.4.5 Capacity and Setup Requirement Constraints

These constraints ensure that two different operations cannot be processed at
the same time on the same machine and that machine setup must take place
whenever an operation has to be processed after an operation of another group

on that machine.
(€ pgk ~Cijk = Ppak) Vijagk * Stek *Q jpk 20
Cijk ~Cpgk ~ Pijk)*1=Yijagk)+ Stk *Qjgk 20
3.3.4.6 Operational Constraint

This constraint ensures that every job is processed by only one machine in

each stage

1Xijk =1 Vi,]

NNE!

3.3.5 Objective Function

The objective of the addressed JSSP in this research is to minimise
simultaneously, three practical performance measures;— the maximum
completion time or the makespan, the maximum tardiness and the weighted

number of tardy jobs.

56

Problem Description, Complexity and Formulation

Makespan: The first objective fl(x) is to minimize the makespan Ci,,x Or the

maximum completion time of the last job leave the system. The makespan is
important when the number of jobs is finite. A short makspan aims to achieve
high equipment and resource utilization by getting jobs out of the job shop
quickly. Therefore, the makespan objective was used in this research to

increase equipment and resource utilization.

fl(X) =C ax =maX(C1,...,Cn)

Maximum tardiness: The second objective f,(x) is to minimize the longest

tardiness Tiax Of all jobs in the system. In scheduling problems, job tardiness
is an important issue because it may cause customer dissatisfaction and may
impose additional penalty cost. Specially, when the penalties go up
exponentially, maximum tardiness will be of great importance. Therefore,
maximum tardiness was considered in this research in order to avoid high

penalty cost.

f2(x) =T hax =max(l'1,T2,...,Tn)

Weighted number of tardy jobs: The third objective fz(x) is to minimize the
n

weighted number of tardy jobs 3 w;U; . In a real manufacturing environment,
i=1

different weights are assigned to different customers, based on the importance
of different customers and the penalty associated to tardy delivery. Therefore, in
this research various weights were assigned to different jobs to show the

importance of different customers.

57

Problem Description, Complexity and Formulation

I, if Ci > di

n
f,x)=YwU. :U. =
3() El I ' {O;otherwise

Thus the multi-objective problem can be formulated as:

min F =[f1(x), f2(x), f3(x)]

Note that, any of these three objectives can be replaced with any other due date

or completion time related objectives.

3.4 Summary

JSSP is the most generalized and complex scheduling problem and is
considered to be NP-hard. The problem complexity can be further increased by
including different factors for describing real world JSSPs. However, in order to
achieve a more reliable scheduling system, these factors need to be included in
the scheduling model. In this chapter, the JSSP including the factors that are to
be included in the proposed system, were described. The proposed system is
one of the main contributions of this thesis, since it incorporates the release
date, alternative machines and setup time in one model. The chapter also
presented the problem complexity and mathematical formulations of the
problems. In the next chapter a proposed system for solving JSSPs, including

the aforementioned factors is introduced.

58

Research Methodology

Chapter 4. Research Methodology

59

Research Methodology

4.1 Introduction

In this chapter, the proposed system for solving JSSPs, including the factors
that have been mentioned in chapter 3, is introduced. The proposed system in
this research consists of two methods; a Genetic Algorithm (GA) and an
Efficient Nondominated Sort using the Backward Pass Sequential Strategy
(ENS-BPSS), Figure 4-1 depicts the proposed system. In the following sections,
a brief introduction to GA in solving JSSPs is provided, followed by a detailed
description of the proposed scheduling system design for solving MO-JSSPs

with job release date, setup time and alternative machines.

ot ——> GA ENSBSS —> Ouput

Figure 4-1. Proposed JSS System

4.2 An Introduction to Genetic Algorithms in Job shop

Scheduling Problems

GA is a very popular method that was invented by Holland (1975), and
belongs to the class of evolutionary algorithms. It is a directed random search
technique based on the mechanics of natural selection and Darwin’s main
principle: survival of the fittest (Darwin 1859). GA has been applied to many
optimization problems in the last few decades and has proven to give excellent

results for complex applications (1988, Shah and Kusiak 2004).

The first step before employing GA operators is to represent the problem in a

suitable way. A fitness function is also required to give each solution a figure of

60

Research Methodology

merit. For reproduction, parents must be selected and recombined to generate
offspring in each run. Figure 4-2 represents the general process of the GA.

More details for these aspects are explained in the following sections.

C st)
+

Representation of a
solution

v

Initialization of the
population

v

Evaluation |€——

Termination criterion ?

No
\ 4

Selection of
individuals

!

Crossover

v

Mutation

End Yes

Figure 4-2. General Layout of GA

4.2.1 Representation

The method of representing the problem has a major impact on the
performance of the GA. Different representation schemes can cause different
performance in terms of accuracy and computational time (Pham and Karaboga
1998). In the past, a number of schemes have been proposed to represent
JSSPs in GA. Generally, there are two main based-approaches for encoding

that have been used as shown in Figure 4-3.

61

Research Methodology

GAs encoding approaches for
JSSPs

Direct representation Indirect representation

Operation-based representation Preference list-based representation
[\ >
Job-based representation Priority rule-based representation
L >
b Job pair relation-based representation > Disjunctive graph-based representation
o Completion time-based representation - Machine-based representation
> Random keys representation

Figure 4-3. Classification of JSSPs Representation in GA

In the first approach, the solution can be encoded directly into a chromosome,
and then GA operators can be utilized to discover a better solution by evolving
these chromosomes. Operation-based representation (Fang, Ross et al. 1993,
Gen, Tsujimura et al. 1994), job pair relation-based representation (Nakano and
Yamada 1991), completion time-based representation (Yamada and Nakano
1992), and random keys representation (Bean 1994, Norman 1995) belong to
the direct approach. In the second approach, the job assignment is encoded
into a chromosome using a sequence of priority dispatching rules, and then the
GA operators can be utilized to discover a better solution using these rules,
through evolving these chromosomes (Cheng, Gen et al. 1996). Preference list-
based representation (Davis 1985, Kobayashi, Ono et al. 1995), priority rule-
based representation (Dorndorf and Pesch 1995), disjunctive graph-based
representation (Tamaki and Nishikawa 1992), and machine-based

representation (Dorndorf and Pesch 1995) belong to the indirect representation.

62

Research Methodology

In this research, a modified version of operation based representation is
proposed. This method applies the same procedures as in an operation based
representation but it represents the solution in a matrix form, which can
preserve features of the parent after the crossover operator without repairing

the solution.

4.2.2 Initial Population

Once the solution has been represented in the GA, the next step is to create a
number of possible solutions. These solutions can be created randomly or by
using some heuristic rules or prior knowledge. The randomly created solutions
method is preferred when no prior knowledge exists or for evaluating the
performance of an algorithm. While in the second method, a prior knowledge of
the given optimization problem can be used to converge to an optimal solution

in less time than in the first method (Pham and Karaboga 1998).

4.2.3 Fitness Evaluation Function

The GA evaluates the quality of solutions based on the information produced by
the fitness evaluation function. This unit works as an interface between the GA
and the optimisation problem. It can be simple or complex depending on the

optimization problem that needs to be tackled (Pham and Karaboga 1998).

4.2.4 Genetic Operators

Genetic operators are employed in GA to guide the search towards an optimal
solution of a given problem. Selection, crossover and mutation are three
common genetic operators which describe the algorithm. Sometimes another
reproduction operator called inversion is applied. Crossover and mutation

operators can work independently from each other, so it is not obligatory to

63

Research Methodology

employ both of them in GA (Pham and Karaboga 1998). In what follows, a brief

description for selection, crossover and mutation is presented:-

4.2.4.1 Selection of Individuals

GA uses a selection mechanism to select individuals from the population and
insert them into a mating pool. The aim is to create the basis of the next
generation from the current generation. Usually the individuals with better
fithess are more likely to be selected for mating and reproduction. Hence the
selection procedure determines which of the individuals in the current
generation can be chosen to reproduce new individuals or solutions for the next
generation, in the hope that the next generation will have individuals with better
fitness. There are many methods to select individuals with greater fitness, for
instance Roulette Wheel Selection (RWS), Elitism Selection (ES), Rank
Selection (RS), Stochastic Universal Sampling (SUS), and Tournament
Selection (TRS). Amongst all these methods, RWS and TRS are very common
selection approaches in JSSPs. In RWS, the probability of selection is

proportional to an individual’s fithess. Thus the probability Ps(s) of selecting the
solution or individual s—th with fithess FIT(s) is given as:

FIT(s)

s FITW)

Ps(s) =

In TRS a number of individuals are selected from the population at random.
These individuals are compared with each other and the best one is selected to

be the parent (Pham and Karaboga 1998, Werner 2011).

64

Research Methodology

4.2.4.2 Crossover

A crossover operator recombines the information from selected solutions in
order to generate new solutions, which are hopefully better than the selected
ones. Normally this operator has a probability rate which is referred to as the
Probability of crossover (P.) and gives the possibility of applying a crossover
when producing an offspring from a number of selected parents. In the literature
there are many types of crossover such as n-point crossover (most commonly
one-point or two-point crossover) and uniform crossover (Pham and Karaboga
1998, Werner 2011).

1. One-point Crossover: One cut point is determined for producing two

new strings; the genes of the two parents after the cut point are then
swapped (Werner 2011). Figure 4-4 shows one point crossover for

operation based representation.

Crossover
point

[Parent 1]1[4[2]4[2]3]392]1|1[3]4|—— Offspring 1 [1] 4] 2] 4] 2] 3] 3] 4] 1]3]3]4]
[Parent 2[3]2]2]a] 2] 1441 [3[3[s}——

Figure 4-4. One-point Crossover

2. Two-point Crossover: Two cut points are determined; the genes of the

two parents between the first and second cut points are swapped to

generate two new strings as shown in figure Figure 4-5 (Werner 2011).

Crossover
points

[Parent 1]1|4|294|2(3|392|1]1{3[4}—— Offspring 1 [14| 2{4]1]2[1]2]1]1]3]4]
e A R\ [T

Figure 4-5. Two-point Crossover

65

Research Methodology

3.Uniform Crossover: A string with a decimal number between 0 and 1 or

a bit mask of the numbers 0 is 1 are randomly generated, and for

producing the offspring any two corresponding genes from two randomly

selected parents are exchanged if the corresponding component of the

generated decimal number is more than or equal to P., or the bit mask is

equal to 1. Otherwise these genes do not exchange with each other as

shown in Figure 4-6 (Werner 2011).

[Bitmask J1olofole]tole]oo]1]0]
| P07 Jossloazloazlosr]os os]oesoselosslostogs o

| Paentt [1]a]2]a]2]s]a]2]s]1]2]e}—
N

Offsring 1 [3]4[2]] 1]2[3]¢]1]1]3]4]

1y ‘
| ety [3]2]o]a] a2 a4]3] 3]0

Offspring [2]2]2] | 2[3]1[2]1]3]3]4]

Figure 4-6. Uniform crossover

However, applying these crossover operators to individuals often produces

infeasible offspring. To overcome this problem, several operators have been

proposed to repair infeasible offspring so that all offspring can lead to feasible

individuals. Table 4-1 shows the most commonly used crossover operators for

JSSPs (Werner 2011).

Table 4-1. Types of Crossover Operators for JSSPs

Crossover Operator

Authors

Linear Order Crossover (LOX)

Partially Mapped Crossover (PMX)
Order Crossover (OX)

Cycle Crossover (CX)

Order-Based Crossover (OBX)
Position-Based Crossover (PBX)

Partial Schedule Exchange Crossover
Subsequence Exchange Crossover (SXX)
Job-based Order Crossover (JOX)

Wang (1984)

Goldberg and Robert Lingle (1985)
Davis (1985)

Oliver, Smith et al. (1987)
Syswerda (1990)

Syswerda (1990)

Gen, Tsujimura et al. (1994)
Kobayashi, Ono et al. (1995)

Ono, Yamamura et al. (1996)

Research Methodology

4.2.4.3 Mutation

Mutation usually works with a single chromosome to keep diversity in a
population and to prevent the GA from trapping in local optima. It alters one or
more gene values in a chromosome from their initial position. Generally there
are three common types of mutation operator; shift mutation insertion, pairwise

interchange mutation and inversion mutation (Werner 2011).

1. Shift _Mutation (Insertion Neighbourhood): One job is randomly

selected from an individual and then shifted to a different position. All
remaining jobs between these two positions will be pushed one position

towards the selected job position as shown in Figure 4-7 (Werner 2011).

o stng [1[4 22 AT BIR[TT2] 8 {New Scne [[# BRI 2[4]

Figure 4-7. Shift Mutation

2. Pairwise Interchange Mutation (Swap Neighbourhood): Two jobs are

randomly selected from an individual and then swap their positions

(Werner 2011). Figure 4-8 shows pairwise interchange mutation.

Y
[o1d Sing [1[4 2B 2 AT B2 4 —New sng] A B 24T 212 4]

Figure 4-8. Pairwise Interchange Mutation

3. Inversion Mutation: Two points are randomly selected from an

individual and then the jobs in that segment are reinserted in the reverse

order as shown in Figure 4-9 (Werner 2011).

67

Research Methodology

Y Vﬂ
L 0ld String [1]4[2{3[214]1|3[3]1]2]4——>{New String | 1]4]3]1{4]2{3]2]3]1[2[4]
1

UA

Figure 4-9. Inversion Mutation

4.2.5 Control Parameters

The number of individuals in the population, which is known as population size,
and the rate of crossover and mutation are very important control parameters
for the GA. The probability of convergence to a global optimal solution is greater
when using a large population size, rather than using a small population size.
However, the computation time per iteration increases when the number of
individuals in the population increases. If the crossover rate is low, it can reduce
the speed of convergence to the global optimal solution area. On the other
hand, too high a crossover rate might lead to saturation around one solution.
Mutation rate can cause instability if it is too high, but it is usually very hard for a
GA to find a global optimal solution with too low a mutation rate (Pham and

Karaboga 1998).

After a general introduction of GA has been given, the proposed system for
solving JSSPs that was introduced in chapter 3 is presented in the following

sections.

4.3 Proposed System

This section presents the proposed system for solving MO-JSSPs with the
considered factors from chapter 3. In the proposed system, GA and ENS-BPSS

were combined together to solve the MO-JSSP. In the beginning, the

68

Research Methodology

representation method of the chromosome was presented, and then generation
of the initial population and design of the fitness evaluation function was
introduced. The mechanisms of GA operators (selection, crossover and

mutation) were also explained. Figure 4-10 shows the layout of the proposed

System for solving MO-JSSPs.

Chromosome representation using operation-

based matrix representation

Final set of non-
dominated solutions

End

'

Parameters setting

'

Initial population

'

Fitness evaluation using ENS-BPSS

0. Gen > Max No. Gen?

No
Y

No. Gen =No. Gen +1

Y
Front selection using rank selection

|

Parent selection using random selection

Y

Crossover New generation
| Mutation | T

Figure 4-10. The Layout of the Proposed System for Solving MO-JSSPs

69

Research Methodology

4.3.1 Solution Representation

In this research, a new solution representation method termed an Operation-
based Matrix Representation is introduced. This method applies similar
techniques to the operation-based representation that was proposed by Gen,
Tsujimura et al. (1994), to represent operations in the schedule or the individual.
Each gene in this method stands for a sequence of one operation, and each
integer number in the gene represents a job type. The first occurrence of a job
in a chromosome stands for the first operation of that job in the corresponding
machine, while the second occurrence stands for the second operation, and so
on (Cheng, Gen et al. 1996). Instead of using a vector to represent the
chromosome, the chromosome or the solution is presented in matrix form so
that, for n jobs and m machines, the solution can have a matrix size mxn,
where each job cannot appear more than once in each row. For instance if we
have five jobs that need to be processed on four machines, one chromosome or

solution can be presented as shown in Figure 4-11.

G, G, 0, GO O
O, O
G, G, 0, G, G,
0, 0, O; Q; O

Chromosome =

— N W N
W = A
O
O
[\S]

0O

o W R —
whn hn = W
~ B D D

Figure 4-11. Operation Based Matrix Representation

The decoding procedure can be described as follows: first decode the
chromosome to a list of order operations starting from the genes in the first

column then the genes in the second column and so on. The schedule can then

70

Research Methodology

be generated using a one-pass heuristic based on the list. The first operation or
gene in the first column is scheduled first, and then the second operation in the
first column is scheduled second and so on, until all operations in the first
column are scheduled. Then the operations in the second column are
scheduled with the same procedure as in the first column and so on. Each
operation under treatment is allocated in the best available processing time.

These procedures are continuously repeated until all operations are scheduled.

Chromosome =
Chromosome =

(a) Chromosome for jobs with the same number of operations | | (b) Chromosome for jobs with a different number of operations

Figure 4-12. Chromosome Based Matrix Representation

Figure 4-12 (a) shows the chromosome based matrix representation when all
jobs have the same number of operations. If some jobs need more numbers of
operations, such as in recirculation or additional operations, then dummy
operations can be used for matrix balance, as shown in Figure 4-12 (b). To
generate feasible solutions from any crossover operation, all corresponding
rows in matrices in the population should contain the same type of jobs,

regardless of their position.

71

Research Methodology

4.3.2 Creation of Initial Population

In this research, individuals in the initial population were created randomly. This
technique allows the search process to cover a wide space, which can be useful
for multi-objective optimization. Randomly created solutions must take into
account that, each job cannot appear more than once in each row and all
corresponding rows of different matrices must have the same elements,
regardless of the job order in the row. Individuals created in this way always

produce feasible solutions.

4.3.3 Design of Fitness Evaluation Function

The aim of the proposed scheduling system was to minimize the multiple
objectives based on job completion time and due date whilst considering
release time and setup time. In order to achieve that, the start and completion
time for each operation and machine have to be calculated to attain the required
information from each schedule. This information can then be used to evaluate
each solution regarding the performance measurement and compare it with

other solutions.

In this work a 3-dimensional matrix [X,Y,Z] was used to handle the start time,

end time, machine ID, setup group for each job and machine setup time, as
shown in Figure 4-13. The Z-axis refers to the machine ID or machine number
and each machine has a list of gaps, where X and Y represent the gaps list.
Initially there is only one gap. The first column of the gap list in all machines
refers to the gap start time and is set to be equal to the machine release time.
The second column is the gap end time, which is initially set to be equal to

infinity. The third column of the gap list is the machine setup time and the fourth

72

Research Methodology

column is the setup group. When a job has to be inserted, the required gap
must be identified and then the job divides the gap into two, left and right gaps,
these gaps are then added to the gap list and the previous gap is deleted. Jobs
are inserted into the best available gap length with respect to all constraints.
These procedures are continued until all jobs are scheduled and all information
such as start time and end time for the operations and machine setup is

obtained.

Once resources have been allocated to existing jobs with the best available
time, three performance measures are calculated. The performance measures
that have been used in this work, as mentioned in chapter 3, are makespan,
maximum tardiness and weighted number of tardy jobs. After calculating the
performance measures for each schedule, the fithess assignment procedure is

applied using Pareto dominance.

A
>
.Y
b3
] e
c <&
= oS
(3
El <
(<5
wv
o3 :
o Gap start ap end Machine Setup
o time time setup Time| group

Gap index X

Figure 4-13. 3-Dimensional Matrix for Scheduling Evaluation

73

Research Methodology

4.3.3.1 Efficient Nondominated Sort Using the Backword Pass Sequential
Strategy for Fitness Assignment

The fitness assignment procedure works by exploiting the concept of Pareto

dominance. In the previous methods such as NSGA-II (Deb, Pratap et al. 2002),

in order to identify each front, each solution must be compared with all other

solutions in the population, to find out how many solutions dominate a solution s

and how many solutions are dominated by solution s, which requires at least
o(MN) number of comparisons. In NSGA-II, to design each front, a domination

count nts , the number of solutions which dominate the solution t., is needed.

g
The domination count determines the number of or level of the non-dominated
front. However, this method might assign some solutions to the lower non-
dominated front or level from its actual front. For instance, using an example in
Table 4-2, in which 5§ solutions with 3 different objective functions [obj1, obj2
obj3]. These solutions belong to 3 different fronts based on their objective

functions. In this example, in the case of minimization, two solutions (t3 &t4)
belong to the second front but ts is dominated by just one solution from the first
front (t2) and t, is dominated by two solutions (tl'tz)' However, by using
NSGA-Il; t; will be assigned to the second front and t, will be assigned to the

third front, since ”t3 =1 and nt4 =2. This will also cause solutions dominated by

t, to step back one front.

74

Research Methodology

Table 4-2. Comparison Between Actual and NSGAII Fronts

First front Second front Third front

Actual fronts t,=[201,40,15] t,=[218,35,16] t5=[220,45,19]
t,=[209,33,12] t,=[210,41,20]

fronts by using t=1201,40,15] t; =[218,35,16] t,=[220,45,19]

NSGAII t,=[209,33,12] tg =1[210,41,20]

Because of these deficiencies of NSGA-Il and some other techniques, the
proposed system in this research adopted a very recent method that was
proposed by Xingyi, Ye et al. (2015) and termed as ENS-SS. This method has
less computational time and can identify each non-dominated front more
precisely. Instead of comparing each solution with all other solutions in the
population and then determining the front number of all solutions on the same
front at once, the ENS-SS approach determines the front each solution belongs

to one by one. Compared to NSGAII, the space complexity of ENS-SS can be

reduced from O(N2) to O(l), while the time complexity or number of

comparisons can be reduced from O(MN 2) to O(MN+/N) in the best case. For

more details of ENS-SS, readers are encouraged to refer to (Xingyi, Ye et al.
2015). In the following section, the proposed ENS with the new comparison

strategy called BPSS is described.

For the case of minimizing three objectives; the makespan (flzcmax), the

maximum tardiness (f2(x)=T) and the total weighted number of tardy jobs

max
n

(f3(x): > wiUi), first all solutions are sorted in ascending order according to
i=1

the value of C . When two or more solutions have the same value of C ,
max max

they are sorted according to the Toax - If CmaX and Toax are also the same in

75

Research Methodology

n
two or more solutions, then they are sorted according to the ZWiUi.
i=1

Otherwise, if all values in all objectives are the same, they can be sorted
arbitrarily. These procedures continue until all individuals in the population are
sorted. By doing this, any succeeding solution in the sorted list can never
dominate any preceding solution, as there is at least one objective value in the
preceding solution that is less than the objective value of the succeeding
solution or there exists two or more solutions with the same values in all
objectives. Consequently, only two possible relationships can exist between any
two solutions instead of three relationships. The preceding solution in the list
dominates the succeeding solution or two solutions do not dominate each other.
This step has O(NlogN) time complexity and O(1) space complexity (Xingyi,

Ye et al. 2015).

Once all solutions are sorted, the proposed ENS-BPSS starts to assign
solutions from the sorted population, starting from the first solution in the list and
ending with the last one, one after another to their fronts. A similar procedure as
in the SS was used in BPSS to determine the front to which each solution
belongs, but instead of starting with the first front, the proposed BPSS starts the
comparison with the last created front so far and ends where it finds its
dominant solution. ENS-BPSS can reduce the number of comparisons needed
when there are N fronts and there exists only one solution in each front to

O(M(N —1)), since the solution in the sorted population can never dominate a

preceding solution, so that each solution will only be compared with the direct

preceding solution in this case. In what follows, the BPSS within the ENS

76

Research Methodology

framework is introduced. Figure 4-14 illustrates the proposed ENS-BPSS for

finding the front of a solution.

(Stat)

Y

Sorted solution pool
(P)

Y
Set =1
Set LR=1

Y

Select t(s)
Select FR(LR) |

Y

Set KR=LR
A;;%}g};(j)l 10 o Ves Is there any soh%tion in front
(KR+1) FR(KR) dominate t(s)?

Yes v .
A
l No—) KR=KR-1
Create new front LR=LR+1 Yes
& Assign t(s) to FR(KR+1) v
Assignt(s) to
FR(1)

yes

Figure 4-14. Proposed ENS-BPSS for Finding the Front of a Solution

For solution t that belongs to the sorted population SP, where 1<s<N and

N is the population size; - check whether a solution exists that has been

77

Research Methodology

assigned to the last created front so far FR g that dominates ts. If t5 is
dominated by any solution in FR| ; - create a new front FR| R4t and assign tg

to this new front and set LR =LR+1. If such a solution does not exist so that no

solution in FR p dominates ts; start comparing ts with solutions assigned to
FR r_q- If tg is dominated by any solution in FR R’ assign tg to FRI R
otherwise check the solution in FR| 5, and so on. This procedure is continued
until such a solution that is a dominated solution tg is found in front KR where
I<KR<LR. If such a solution has been found, then assign ts to the front
FRKR+1’ otherwise, if such a solution has not been found in any front, tg is
assigned to the first front FR;. Similarly, as in SS, solutions assigned to an

existing front are also sorted in ascending order according to the value of CmaX,

n
Tax @nd X WiUi . Therefore, the comparisons between tg and the solutions
i=1

assigned to any front would start with the last assigned solution in the front and

end with the first assigned one.

In the case when there are LR fronts and there exists only one solution in each
front, only one comparison is needed between each solution and its direct
preceding solution. Consequently, the total number of comparisons in this case

is reduced to O(M (N -1)).

4.3.4 Genetic Operators

In this research the three main elements of genetic operators (selection,

crossover and mutation) are used to guide the search towards the optimal

78

Research Methodology

solutions. More details of these three operators are given in the following

sections.

4.3.4.1 Individuals Selection Method

In order to determine which of the chromosomes or individuals in the current
generation can be selected to reproduce offspring, two selection mechanisms
were used in this research. In the first, the rank selection was used to determine
the Pareto front number to be selected for each parent. Rank selection ranks
the front so that the first front will have a fitness value equal to LR (total number
of fronts), the second front will have a fithess value equal to LR-1 and so on, so
that the worst front will have a fitness value of 1. In the second selection, after
determining the Pareto front number for each parent, random selection was
used to select the parent from the selected front. The first selection method
ensures that chromosomes in the higher level, or with a better Pareto front,
have a better chance to be selected, while the second selection method
ensures that chromosomes in the same level, or same front, have an equal
chance to be selected. These procedures are applied each time when two
parents need to be selected for mating as well as when one parent needs to be
selected for mutation. Individuals in the first front are always maintained to form

the next generation.

4.3.4.2 Crossover Procedures

Relating to the chromosome representation method in this research, three
forms of crossover were introduced, which are based on two classifications; the
number of rows to be exchanged between two or more parents and the number

of parents to be contributed to produce new offspring. Three different types of

79

Research Methodology

crossover were introduced; two-parents / one-row crossover, two-parents / two-

rows crossover, and three-parents / one-row crossover (harmony crossover).

1. Two-parent / One-row Crossover: In this type of crossover, after two

parents have been identified, one row from each parent is selected and

then these two rows exchange their genes as shown in Figure 4-15.

1 3 5 2 4 1 3 5 2 4
4 1 2 3 5 4 2 3 5
Parent1 = —) offspring 1 =
[3 5 4 2 1] {4 2 5 1 |
2 5 4 1 3 {2 4 1 3]
1 3 4 5 2] B 4 5 2]
5 2 3 1 4 5 3 1 4
P t2 = Jipﬁ> ng2 =
aren [4 3 2 s 1 offspring 3 4 2 1 |
4 5 2 1 3 4 2 1 3]

Figure 4-15. Two-parents / One-row Crossover

2. Two-parent /| Two-row Crossover: Two rows from each of the two

selected parents are randomly selected and then the genes in these

rows are exchanged as shown in Figure 4-16.

1 3 5 2 4 1 3 5 2 4
4 1 2 3 5} = —xs 3. 1 4
Parent1 = [) offspring 1 =
[3 5 4 2 1| {4 2 5 1]
2 5 4 1 3_ _2 4 1 3_
1 3 4 5 2] 1 4 5 2]
[s 2 3 1 af la 2 3 5]
Parent2 = ino?d =
(4 3 2 5 1 }J:p—> offspring 3 4 2 1 |
4 5 2 1 3] _4 2 1 3_

Figure 4-16. Two-parents / Two-rows Crossover

80

Research Methodology

3. Three-parent / One-row_ Crossover: in this type of crossover two

parents are identified as main parents and the third parent only
contributes to each offspring with gens taken from one row. After the
main two parents have been identified, one row from each parent is
selected and then these two rows exchange their genes. Another row
with a different row index, is randomly selected from the third parent and
inserted into that row index in the two offspring. These procedures are

depicted in Figure 4-17.

1 3 5 2 4 1 3 5 2 4]
p . 4 1 2 3 5] > 5 2 3 1 4
arent 1 = | Offspring 1=
5 04 2 1 ffspring 2 1 4 3 5
2 5 4 1 3 205 4 1 3
1 3 4 5 2] 13 4 5 2]
Parent? 5 2 3 1 4|—J 5 a1 2 3 5]
arent2 = —) ing 2=
43 2 5 1 Offypring 2= |o— 33
4 5 2 1 3] 14 5 2 1 3]
305 2 1 4]
32 1 5 4
Parent3 =
2 1 4 3 s
13 1 2 4 3]

Figure 4-17. Three-parents / One-row Crossover

4.3.4.3 Mutation Procedures

Four types of mutation operator were introduced in this work. The working
mechanism based on the matrix representation of these types of mutation is

similar to the operation based representation.

81

1.

Research Methodology

Shift Mutation (Insertion Neighbourhood): One row is randomly

selected from the matrix (individual), then one gene (job type) from the
chosen row is also randomly selected and shifted to a different position in
that row. All remaining jobs between these two positions in the row are
pushed one position towards the selected job position in the same row.

This procedure is depicted in Figure 4-18.

135 2 4] 13524

4 1 2 35 41235
Old_Chromosome = :> New_Chromosome =

304 2@ 34215

25 41 3 2541 3]

Figure 4-18. Shift Mutation (Insertion Neighbourhood)

. Pairwise Interchange Mutation (Swap Neighbourhood): One row is

randomly selected from the matrix (individual) then two genes (jobs) from
the chosen row are randomly selected and swap their position in that

row. This procedure is depicted in Figure 4-19.

135 2 4] (1352 4]
41235 41235
Old Chromosome = New Chromosome =
T 75T s (NP
25 41 3) 2541 3]

Figure 4-19. Pairwise Interchange Mutation (Swap Neighbourhood)

Inversion Mutation: one row is randomly selected from the matrix

(individual) then two points from the chosen row are randomly identified
and the genes (jobs) in that segment are reinserted in the reverse order.

These procedures are shown in Figure 4-20.

82

Research Methodology

(1352 4] 1352 4
Old Chromosome = i 5i> New Chromosome = 41235
0000 31245
25 413 25413

Figure 4-20. Inversion Mutation

4.3.5 Solving Scheduling Problems with Machine Setup Time

To solve JSSPs with machine dependent, job sequence independent, and item
availability with anticipatory setup times, complex numbers have been used in
the machine matrix to represent the machine number and setup group for each

operation on that machine. For example if operation g of job a on machine k
belongs to setup group G then it will appear in the machine matrix as (k+Gi).
The real part (k) of the complex number refers to the machine required to
perform operation ¢, and the imaginary part (G) of the complex number refers
to the setup group for the operation q of job a on machine k. For more

illustration assume that; 3 different jobs need to be processed on 3 different
machines. Operation 1 of job 1 and operation 2 of job 2 belong to the same
setup group on machine 1 (setup group 1) with a setup time equal to 13, while
operation 1 of job 3 belongs to a different setup group on machine 1 (setup
group 2) with a setup time equal to 15. For machine 2; operation 1 of job 2
belongs to setup group 1 with a setup time equal to 20, while operation 2 of job
1 and operation 3 of job 3 belong to setup group 2 with a setup time equal to 27.
In machine 3, 3 jobs have the same setup group with setup time equal to 11.
The machine matrix including setup group and setup time for each group in

each machine will appear as follows:

83

Research Methodology

1+l 242 3+li 13 15
Mach=|2+1i 1+1i 3+I1i STime =|20 27
1+21 3+ 242 11 0

The evaluation function takes into account the machine setup times when they
are required. For instance, from the machine matrix (Mach), if operation 2 of job
2 is processed immediately after operation 1 of job 1 on machine 1, then there
is no machine setup time required between these two operations since they
belong to the same setup group in machine 1. However, when operation 2 of
job 2 is processed after operation 1 of job 3 on machine 1, then the setup time
must be added between these two operations as they belong to the different
groups. Machine setup time is also required when a job is processed on a
machine for the first time. Furthermore, the setup can be started before the
corresponding job is available on the machine, which is known as anticipatory

setup time.

4.3.6 Solving Scheduling Problems with Alternative Machines

As mentioned in chapter 3, testing all possible alternative routes for each
chromosome or solution would require an excessive computational effort.
Therefore, having some heuristic procedure to allocate a machine from a given
set of alternative machines, to process a specific type of operation can be very
beneficial. In this research, whenever a job needs to be processed on one
machine from a set of alternative machines, a roulette wheel selection is used
to select the required machine. The probability of a machine being selected is

proportional to the machine processing time to process the job. Thus, the

84

Research Methodology

probability Pk(k) of selecting machine k to process operation j of job i from a

set of alternative machines AMij is given as follows:

> a/

Pk (k) =

)

For more illustration assume that, three alternative machines (M1, M2 and M3)

can perform operation j of job i with different processing times. M1 can
perform operation j in 30 mins, M2 can perform operation j in 35 mins and M3
can perform operation j in 26 mins. The probabilities of selection of M1, M2,

and M3 are 33.2%, 28.5% and 38.3% respectively as shown in Figure 4-21.

Selection
Point

Figure 4-21. Machine Selection Based on the Processing Time

In this selection procedure, the machine with the least processing time to
perform the operation would have a higher probability to be selected. After the
machine is selected, all other required information such as machine processing
time and setup time are extracted and used in the evaluation function. This
information is maintained with the chromosome that used it. Different
chromosomes can have different routes based on the machines that have been

selected.

85

Research Methodology

4.3.7 Representation of Processing Time Uncertainty

In this research an interval numbers theory is used to represent uncertainty of
the processing time. Unlike fuzzy numbers theory and stochastic theory, using
interval numbers theory only requires obtaining the lower and upper bound of
intervals to indicate time uncertainty and does not require probability distribution
or membership function. Here, a set of numbers between the lower bound or
the most optimistic value of the processing time and upper bound or the most
pessimistic value of the processing time, are generated randomly for each task.
Two different scenarios are considered in this research; in the first scenario, the
ratios of change in the processing time for all operations are considered to be
the same. In the second scenario the ratios of change vary from one operation
to another. In both scenarios two different cases are considered and compared
with each other. In the first case, the genetic optimisation process is applied to
find an optimal solution for some benchmark of JSSPs. The optimal sequence is
then evaluated by applying the ratios of change in the processing time to find
the deviation from the optimal solution and compare the results with the second
case, in which the ratios of change in the processing time are applied at the

initial stage to find the optimal sequence with the optimal makespan.

4.4 Summary

GA has been applied to solve many JSSPs and has proven to give very good
results. In this chapter, the concept of GA and its procedure for solving JSSPs
was introduced. The detail of the proposed system for solving MO-JSSPs,
which utilizes GA and ENS was also provided. GA was applied to lead the

search towards the Pareto optimality, while ENS was employed within the GA to

86

Research Methodology

determine the front to which each solution belongs to, thus, evaluating the merit
of each solution. In the GA, a new representation method for the solution called
operation based matrix representation was introduced. The new representation
method for the solution can preserve features of the parent after the crossover
operator without repairing the solution. In the ENS a new strategy for the
comparison called BPSS was proposed. In the proposed BPSS the comparison
starts with the last created front so far and ends up where it finds its dominant
solution. ENS-BPSS can reduce the number of comparisons to O(M(N —1)) in
the best case. The proposed system also takes into consideration the release
date, alternative machines and setup time. In the next chapter, experimental
results and discussion on the research results with key observations in the

research methodology are given.

87

Computational Results and Discussion

Chapter 5. Computational Results and
Discussion

88

Computational Results and Discussion

5.1 Introduction

In order to validate the adopted methodology, this chapter describes the
implementation of the proposed system and provides results of the various
computations conducted in this study. The system was implemented in
MATLAB R2014a on a PC with an AMD A4-5300B APU 3.4 GHz processor and
4GB of RAM. Although the proposed system was developed for a multi-
objective case, the system can also be used for single objective case. At the
beginning, the proposed system was tested with the classical JSSP using a
number of published benchmark problems taken from the OR-Library (Beasley

1990) web site (URL: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt).

Some of these benchmark JSSPs were then modified in order to suit JSSPs
with release dates, setup times, alternative machines, and multi objective

optimization. More details are given in the following sections.

5.2 Computational Results for Classical JSSP

In this section the proposed system was tested using 34 classical benchmark
JSSPs. Benchmark problems provide a common standard to test and compare
the developed system with other developed systems. Here, the aim of using
these benchmark problems was to clearly demonstrate the feasibility and
practicability of the new representation of the chromosome as well as the
effectiveness of the algorithm for solving JSSPs. The computational
experiments were performed with 200 for the population size, 0.7 for the
crossover rate and 0.3 for the mutation rate. The termination condition varies in
different instances. For instance the termination condition set is to be 3000 in

FT10 as the problem is hard to solve to optimality, while in LA1 it is set to be

89

Computational Results and Discussion

100 as it is easy to solve to optimality. These parameters were decided after a

pilot test.

Table 5-1 shows the obtained results from the conducted experiments.

Table 5-1. Obtained Results for Benchmark JSSPs Using Operation Based Matrix
Representation

Instance Size (nxm) Best Achieved Max Number of
Makespan Generations
FT6 6x6 55 50
FT10 10x10 930 3000
ABZ5 10x10 1234 3000
ABZ6 10x10 943 3000
LA1 10x5 666 100
LA2 10x5 655 300
LA3 10x5 597 300
LA4 10x5 590 300
LAS 10x5 593 300
LAG6 15%5 926 300
LA7 15%5 890 300
LAS 15%5 863 400
LA9 15x5 951 200
LA10 15%5 958 400
LA1l 20x5 1222 200
LA12 20x5 1039 200
LA13 20x5 1150 200
LA14 20x5 1292 200
LA1S 20x5 1207 100
LA16 10x10 945 100
LA17 10x10 784 100
LA18 10x10 848 150
LA19 10x10 842 150
LA20 10x10 902 1000
LA31 30x10 1784 1000
LA32 30x10 1850 1000
LA33 30x10 1719 600
LA34 30x10 1721 2000
LA35 30x10 1888 2000
SWV16 50x10 2924 600
SWV17 50x10 2794 600
SWV18 50x10 2852 600
SWV19 50x10 2843 600
SWV20 50x10 2823 600

90

Computational Results and Discussion

The results show that, in all 34 tested benchmark JSSPs the developed system
was able to find the optimal solution using operation based matrix
representation. As these tested problems have different sizes and grades of
difficulty, the times needed to reach optimal solutions vary from one problem to
another. For instance the optimal solutions for some of these problems such as
FT6, LA1 and LA2 were found in relatively small times while in some other
problems such as FT10, ABZ5 and ABZ6, they were found in relatively high
times. However, the optimal solution for some problems with greater size, such
as SWV16 and SWV 20 were found in less time compared with FT10 and

ABZ6.

5.3 Experimental Plan

After the proposed system was tested in different types of benchmark problems
for the classical JSSP, some of these benchmark problems were modified to
suit the JSSPs with included factors that were considered in this research.
Initially, LA1 was used in each section to demonstrate the interpretation for
each considered factor, starting from release time and then gradually building

other factors upon it.

5.3.1 Incorporating Job / Machine Release Time

In this section job and machine release times were incorporated in the system
by considering different arrival dates for the jobs and different initial ready times
for the machines. Table 5-2 presents the Job and machine release times that
were used to modify the selected benchmark problems. The same release time
of each job and each machine was used for all selected benchmark problems in

this work. Note that machines from M11 to M20 were used as alternative

91

Computational Results and Discussion

machines and M21 was added later to be used by some jobs to show the case
of jobs with different numbers of operations as well as jobs with recirculation.
The job processing time of alternative machines were calculated as a

percentage of machine time in the main benchmark problems as shown in

Table 5-4.
Table 5-2. Releas Times for Jobs and Machines
Job ID Job Release Time Machine ID Machine Release
Time
J1 10 M1 11
J2 0 M2 0
J3 17 M3 25
J4 23 M4 0
J5 0 M5 15
J6 39 M6 13
J7 13 M7 7
J8 15 M8 14
J9 7 M9 2
J10 12 M10 0
J11 30 M11 4
J12 12 M12 25
J13 32 M13 16
J14 22 M14 0
J15 41 M15 13
J16 12 M16 12
J17 3 M17 7
J18 0 M18 19
J19 0 M19 26
J20 10 M20 30

To demonstrate how these factors influence the scheduling system, LA1 was
used here to give some details. Figure 5-1 shows the Gantt chart of LA1 with
job and machine release dates. As it has been shown in the Gantt chart, jobs
cannot be processed in a particular machine before the machine release date.
Similarly, a job cannot be processed before it becomes available in the
manufacturing shop floor. These two constraints make the system more
dynamic in the way that, in real manufacturing practice not all the jobs and

machines are available simultaneously. Although these two factors are

92

Computational Results and Discussion

commonly uncertain, the decision maker needs to make a decision based on
the best available information. Therefore considering these two factors will

make the scheduling system more accurate and reliable.

makespan = 683

| |
| | | |
J10is not available | | |
before time 12 though —)_ J9, ta (s5,15) (48,15)

M4 is available at time 0 |

M3 is not available 3|
UAY 5,2 JE 4 J6 5
before time 25 though i H - m _

J7is available at time 13 | ‘

|
|
l

Maghines

_J>

I\)

—

1 1 i i i i
25 100 200 300 400 500 600

Figure 5-1. LA1 with Job and Machine Release Date

5.3.2 Incorporating Machine Setup Time

This section demonstrates how the machine setup times have been
incorporated into the scheduling system. As mentioned earlier, this work deals
with machine dependent setup times of type job sequence independent setup
times. Table 5-3 presents setup groups and setup times in each machine. Jobs
have been divided into different setup groups in each machine and setup time
has been assigned to each setup group. The same setup groups and setup
times in each machine were used for all tested benchmark problems in this
research. Complex numbers have been used in order to incorporate the
operations setup groups in the machine matrix. The real part of the complex
number in the machine matrix represents the machine number for the particular
operation of the particular job, while the imaginary part of the complex number
in the machine matrix represents the setup group of that operation on that

machine.

93

Computational Results and Discussion

Table 5-3. Jobs Setup Groups and Setup Times in Each Machine.

Machines

Ml

M2

M3

M4

M5

M6

M7

M8

M9

M10

Ml11

MI12

M13

M14

M15

Ml16

M17

MI18

M19

M20

gl
J1,J2,J3,J11,
J15,J18
J6,J7,J10,
J12,J14,J16
J4,717,J8,J13,
J15,J16, J20
J1,J2,J4,J8,
J11,J16, J20
J1,J2,J3,J4,
J19, J20
J3,J6,J8,J11,
J15,J17,J20
J4,J7,19,J12,
J14,J18
J1,J3,J5,)7,
J11,1J14,J15
J2,19, 110,
J11,J12,J16
J1,7J4, 18, J10,
J17,1J18,J19
J1,J2,J3,J11,
J15,J18
J6,17,110,
J12,J14,J16
J1,J2,J4,J8,
J11,J16, J20
J1,J2,J4,]8,
J11,1J16, J20
J1,J2,J4,]8,
J11,J16, J20
J1,1J2,J3,J4,
J19, J20
J3,J6,18,J11,
J15,J17,J20
J1,J3,J5,17,
J11,1J14,J15
J1,J3,J5,17,
J11,1J14,J15
J1,7J4, 18, J10,
J17,1J18,J19

Sty
20

18

14
17
13
17
12
19
24
24

24

Setup Groups & Times
Sty

g2
J4,J)6,17,J13,
J16,J17, 19]

J3,J5,J8,J9,
J11,7J15,J17

J1, 13, J6, J10,
J11,J17

J3,J5,J6,17,
112,714, J17

J5,136,717,J11,
112,717, J18

11,175,710,
J13,7J14,J19

J3, 76, J8,J10,
J13,7J15,J20

J2,14,J6,J12,
J13,7J17,J19

11,73, J4, J6,
J13,7J19,J20

12,733,175, J6,
J11,7J13,J16

J4,1J6,77,J13,
J16,J17, 19J)

J3,75,J8, 19,
J11,7J15,J17

J3,75,7J6,17,
112,714, J17

J3,75,7J6,17,
112,714, J17

J3,75,7J6,17,
112,714, J17

J5,176,77,J11,
112,717, J18

11,175,710,
J13,7J14,J19

12,14,J6,J12,
J13,7J17,J19

12,14,J6,J12,
J13,7J17,J19

12,733,175, J6,
J11,7J13,J16

94

15

13

11

14

23

21

22

14

15

12

18

17

13

13

14

20

20

11

11

12

g3
J5,J8, J9,J10,
J12,J14, J20
J1,J2,J4,J13,
J18,7J19, J20
J2,J5,J9,J12,
J14,J18, J19
J9, J10, J13,
J15,J18,J19
18,179,710, J13,
J14, J15,J16
J2,J4,J7,1]9,
J12,J16,J18
J1,J2,J5,J11,
J16,J17,J19
18,19, 710, J16,
J18, 120
J5,J7,18, J14,
J15,J17,J18
J7,19,J12, J14,
J15, 120
J5,18, J9,J10,
J12,J14, J20
J1,J2,J4,J13,
J18,7J19, J20
J9, J10, J13,
J15,J18,J19
J9, J10, J13,
J15,J18,J19
J9, J10, J13,
J15,J18,J19
18,179,710, J13,
J14, J15,J16
J2,J4,J7,]9,
J12,J16, J18
18,179,710, J16,
J18, 120
18,179,710, J16,
J18, 120
17,119,712, J14,
J15, 120

Sty

15
16
11
12
17
15
14
11
15
11
20
10
10
11
11
15
13
13

15

Computational Results and Discussion

LA1 is used here to give some details of how these representations appear in
the machine matrix and how setup time factors affect the scheduling problem.
The matrices below show the representation of machines, with setup groups,

Mach , operation processing times, PTime, and machine setup times, STime, for

LA1.
(1411 5+1i 4+1i 3+2i 2+3i] [21 53 95 55 34
5411 3431 4411 2431 1+1i 21 52 16 26 71
3421 4+21 1+1i 2421 5+1i 39 98 42 31 12 0 15 9 |
1+21 5+1i 4+1i 2431 3+1i 77 55 79 66 77 18 13 15
Mache 5+2} 3+3.1 2+2.1 1+3% 4+2.1 PTime— 83 34 64 19 37 STime=l9 11 16
1421 2+11 4421 5421 3+21 54 43 79 92 62
3+11 4+21 1421 2411 5+2i1 69 77 87 87 93 1414 11
2+21 5431 1431 3+1i 4+1i 38 60 41 24 83 —17 23 12—
3431 1431 4+31 5431 2+2i 17 49 25 44 98
(4431 3+2i 2+1i 1430 5+3i 177 79 43 75 96|

Figure 5-2 shows the Gantt chart with the optimal makespan for LA1 after

including the machine setup times and release times of jobs and machines.

makespan = 756

: : 3:\ : \ | |
(6 (5.,02 ¢ ‘ﬂ(JB,tZ,gS) J9,t4,gal2 J 6,4, ¢2) (.6, Hw’ i)
I ‘ ! (S‘ (\ i 1 |
i ! g ! | y | |
1 reease time 2>) | M (5,802 (7, g1 (8,8,
| AN ! | S

| | | |
R T R I

Machines

M3 release timegf

Time

Figure 5-2. LA1 with Machine Setup times and Release time

95

Computational Results and Discussion

For more illustration, the first operation of J3 is on M3 with a processing time
equal to 39. This operation belongs to setup group 2 with a setup time equal to
11. If operation 2 of J10 is the immediate successor of operation 1 of J3 on M3,
then there is no machine setup time required between these two operations.
However, if the immediate successor of operation 1of J3 on M3 was operation 1
of J7, then machine setup will take place between these two operations
because they belong to different setup groups. This procedure is continually
applied between any two immediate successors for any operations on the same
machine. The setup can also be started before the corresponding job is
available on the machine. For instance the setup between J10 and J2 on M1
was finished before J2 became available on M1.

A comparison can be made here between two cases. The case when machine
setup times were not included with the case when machine setup times were
incorporated in the scheduling system. The total completion time has been
remarkably increased from 683 time units to 756 time units after the setup time
was included. This increase in time of 10.69% indicates that the addition of
setup times gives significant improvements in reliability and accuracy of the

overall scheduling system.

5.3.3 Incorporating Alternative Machines

In JSSPs with alterative machines, an operation can be processed by any
machine from a given set of alternative machines. To extend the selected
benchmark problems in order to be used in partially flexible JSSPs, alternative
machines have been introduced for some operations. Table 5-4 represents the
alternative machines and the ratio of job processing time that was used in each

machine.

96

Computational Results and Discussion

Table 5-4. The Alternative Machines Processing Times

Machine | Alternative Machine | Job Processing Time on Alternative Machine

M1 M11 M11=[0.9M1]
M2 M12 M12 = [1.2M2]
M3 - -
M4 M13 M13=[1.1M4 |
M14 M14 = [0.95M 47
M15
M15 = M4
M5 M16 M16 = [0.85M 5]
M6 M17 M17 = [1.4M6 |
M7 - -
M8 M18 M18 = [1.2M 8]
M19 M19 = [1.2M 8]
M9 - -
M10 M20 M20=M10

Figure 5-3 shows the Gantt chart with the optimal makespan for LA1 after
including the alternative machines with machine independent setup times and

the release times of the jobs and machines.

makespan = 580

| | | | | |

‘ ‘
16 Bl e A oo 1 B wee
| | | |
1511 | | | |
o | | | |
4 | oo | Y R <
| | | | | |
13- ! L T ! ! !
| | | | |
12 ‘ § BT ‘ ‘
| | | | |
- EEpeny & e | ‘ [wnew | ‘ ‘
| | | | | |
17, | | | | | |
[} | | | | | |
k= | | | | | |

=
S | | | | | |
© | | | | | |
| | | | | |
= | | | | | |
5 1 L B				
4	— o]			
"			(55i1)	
3 b. 11, g 5. 12, 46, 15, U8, t4, g				
2r	T R !			
]]]			
1) [osa @ weoy fug S ;
T T
0 | | | | | |
100 200 300 400 500 580
Time

Figure 5-3. Gantt chart LA1 with Alternative Machines

97

Computational Results and Discussion

Compared to the previous result, the makespan has been reduced from 756
time units to 589 time units. This reduction in time by 22.1% shows how the
alternative machines can have a significant benefit to the overall system
performance. The alternative machines are useful when many operations have
to wait for a long time on the same machine in order to be processed, so that
some of these operations can be processed on alternative machines. As a
result, operation waiting time and job lead time is reduced and overall machine
utilization is improved. However, in the partially flexible system, the resulting
schedule mostly depends on those machines that have no alternative
machines. These machines can be very crucial to the system. For instance the

optimal schedule in Figure 5-3 is mainly dependent upon machine M3.

5.3.4 Incorporating Jobs with Recirculation and Various Numbers

of Operations

One other case that usually exists in the job shop manufacturing environment is
jobs with different numbers of operations and jobs with recirculation. In this case
a job does not necessarily visit every machine and it may visit a machine more
than once. In this research machine M21 is introduced to replace machine M3
for jobs J1, J7, J8 and J17. The processing times, machine release times, setup
times and setup groups of M3 for J1, J7, J8 and J17 are used in M21. Another
extra operation is added at the end of J1 and J8 with the same processing time,
but the setup groups have been swapped so that J1 at the second visit to M21
requires setup group 1 and J8 requires setup group 2. Figure 5-4 shows the
Gantt chart with the optimal makespan for the modified LA1 after including jobs
with recirculation, different numbers of operations, alternative machines with

machine independent setup times and release times of jobs and machines.

98

Computational Results and Discussion

makespan = 521

227 | | | | | | | | I I I
AICI T — | | | | X —
20~ | | | | | | | | | Lo
191 | | | | | | | | | Lo
18- | | | | | | | | | Lo
17+ | | | | | | | | | | |
16 o g] e | St — 1 L
151- | | | I T v — | | L
14 — : - 72g : : [CXXY] :] : WBEgl : : :
old B e } } . E— L E— } Lo
212* ! ! ! ! - LN I ‘ CEE | o] | !
S | — : : o
2107 | | | | | | | | | | |
=9- | | | | | | | | | Lo
8- | | | | | | | | | Lo
- | | | | | | | | | Lo
6- | | | l l | | | | Lo
5 ; ! ; 1 -
4 w w w w w w b
3 [
2- B e e e S | b
- i C| ; waw ; | uwgs‘» I i W
0 50 100 150 200 250 300 350 400 450 500 521
Time

Figure 5-4. Jobs with Recirculation and Different Numbers of Operations for LA1

After showing how each factor appears and influences the scheduling system,
the final results including these factors and using different modified benchmark
JSSPs are presented in the next section, with consideration given to multi-

objective optimization.

5.3.5 Scheduling System with Multi-Objective Optimization

To illustrate the effectiveness and performance of the proposed system (GA &
ENS-BPSS) for solving MO-JSSPs with incorporation of release date, setup
times and alternative machines, the system was tested using different modified
benchmark problems. Since this work aims to minimize three objectives

simultaneously; the makespan (C), the maximum tardiness (T_) and the

max

n
weighted number of tardy jobs (_zlwiui), the due date (di) for each job is
I=

needed and was set to be equal to the release date (ri) plus the sum of the

99

Computational Results and Discussion

J.
processing times Z' p..) Of its operations multiplied by a due date tightness
j=1 Y

factor (tf) (Eilon and Chowdhury 1976).
Jj
dl = ri +{tf * JZZI p”w

In this research the values of tf set as follows:

> tf =1.7 for LA1, LA2, LA3, LA4 & LAS.
> tf =2.1 for LAG, LA7, LA8, LA09 & LA10.
» tf =2.5 for LA11, LA12, La13, LA14 & LA15.

> tf =1.3 for LA16, LA17, LA18 LA19 & LA20.

These values were decided after a series of pilot tests. The ratio of the number
of jobs to the number of machines in the system as well as avoiding a single
nondominated solution was considered to decide these values. In the case of
alternative machines, the machine with maximum operational processing time is

selected in jobi to find the due date.

Regarding to the job weight (Wi) ; the following weights were decided randomly
to show the importance of different customers.

> w; =2 for J1, J3, J9 and J12.

> Wi =1 for J2, J5, and J11.

> w, =4 for J4, J6, J14, J16 and J18.

> W, =3 for J7, J10, J15 and J19.

100

Computational Results and Discussion

> W, = 5 for J8, J13, J17 and J20.

The computational experiments were performed with the following parameters.

» Population size: N =250
» Crossover rate: p,=0.7
» Mutation rate: p,=0.3

» Termination condition: 2000 generation

These parameters were also decided after a series of pilot tests. In these tests,
the values of these parameters were identified to balance between
computational time, speeds of convergence, avoiding saturation around one

solution, stability and convergence to a global optimal

The final obtained results of the multi-objective optimization for 20 tested
benchmark problems of JSSP’s after they have been modified are depicted in

Figure 5-5 to Figure 5-24. (Note that M_LA1 means a modified LA1 and so on).

Nondominated Solutions -* Nondominated Solutions -*

=23
oo

S

o
~

ongdy Jobs

NumberofTardy Job
N w -~
B o

htedor;lumber

N

eighted
9

Wei

SW
S o
=
1=}
S~

Maximum Tardiness Maximum Tardiness

Makespan Makespan

Figure 5-5. Pareto Front for M_LA1 Figure 5-6. Pareto Front for M_LA2

101

Iscussion

Computational Results and D

Nondominated Solutions -*

Nondominated Solutions -*

R S i i Wil i Sl
\ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \

o

Tsqof ApiEL 0 equnN payyblo S

Makespan

-8. Pareto Front for M LA4

Maximum Tardiness

Makespan

-7. Pareto Front for M LA3

Maximum Tardiness

Figure 5

Figure 5

Nondominated Solutions -*

Nondominated Solutions -*

e i Sl wltin Wl i
\ \ \ \ \ \
\ \ \ \ \ \

© © - N

“sqof ApieLjosequny perybie

So
ne

I S O T A=
sqor Apiefjolaquny pajyblams

Makespan

5-10. Pareto Front for M LAG6

0 600

Maximum Tardiness

Makespan

-9. Pareto Front for M LAS5

0 450

Maximum Tardiness

Figure

Figure 5

Nondominated Solufions -*

Nondominated Solutions -*

SSqorfpresjossquny paiybio me

ngowmisuﬂo

© ~ <~

Jaquny paybia

oo
S
ne

1100

Makespan
5-12. Pareto Front for M LAS

0 650

Maximum Tardiness

Makespan

5-11. Pareto Front for M LA7

0700

Maximum Tardiness

Figure

Figure

102

Iscussion

Computational Results and D

Nondominated Solutions -*

Nondominated Solutions -*

\

\
\
\

\ \ \ \ \ \
\ \ \ \ \ \
\ \ \ \ \ A/
N VP VI s v
\ \ \ \ \ \
\ \ \ \ \ \ \
\ \ \ \ \ \ \

<~ ==
S

Qﬁomw;ﬂ;wmggﬂz pejybla n3

ﬁmnowmixﬂffpwggﬂz uoﬂgon\usm

1050

Makespan
5-14. Pareto Front for M LA10

0 700

Maximum Tardiness

Makespan
5-13. Pareto Front for M LA9

0 800

Maximum Tardiness

Figure

Figure

Nondominated Solutions -*

Nondominated Solutions -*

“sqop ApiepjoTaquny pajybie p S

“sqop Apie

1

jolequny pajybla S

1200

Makespan

-16. Pareto Front for M LA12

0 850

Maximum Tardiness

Makespan

0 800

Maximum Tardiness

/ /

T

|
4

|

|
N
|

|

|

|
4

|

|
N
|
L

m \\ \\ \0\ 0\\0 /
melT\@\wmv
Do \ Vo g 9Po
M f\\,\@,\@%ﬁ&%\ﬁw
E= \ \ \ &
RN ev 5
g /\\p,\\ro
= '
\ \ o@,on"woﬁm‘wv
[W S
\ \ \ \
\ \ \ \
L N e e O Y
\ \ \
o (R U S W WY
e \ \ \
— \ \ \
mb T @2 ° 2w = Nz
:UU. sqof Apie] jolaquny pajybrap
—
—
A L e e A i
/ / / / /
L / ’ / / /
_ / / / / /
Lo /L /41
M / / / / /
7/ / 7/ 7/ 7/ 7/
— / / / / / /
o) / / / / < ;°
f /T T 7 T T T AT T 7T o7 /T T 7
e AN
+~ . / ’ /o 7 / 2y
n P / / / / ‘o L 7
s 7/ ’ / ’ ’ /FR /o
o S Lo _P_ s _E_
S 3 \ Vo o\ \ \ \
)
e g Vol B B Voot g\ o
B +—-a--+vg < Y
o £ S MWQW« /
= £ \ \ \ S =
O 2 \ \ N
— W LD Y
a \ \ \
[l __ A _ L e
. \ \ \
5 \ \ \
— e e i e e
1

Tsqof ApiELjolsquny pajybiamS

Figure 5

1200

1200

Makespan
5-18. Pareto Front for M_LA14

0900

Maximum Tardiness

Makespan
5-17. Pareto Front for M_LA13

0900

Maximum Tardiness

Figure

Figure

103

Iscussion

Computational Results and D

Nondominated Solutions -*

Nondominated Solutions -*

e N e

\
\

e T
sqor A

\
\

\

\

\

\

\

<

pie

S @ © < g
Liosaquny payyblapme

=3
S
S

I=3
S
=

Makespan
-20. Pareto Front for M LA16

0800

Maximum Tardiness

Makespan

-19. Pareto Front for M LA15

0 900

Maximum Tardiness

Nondominated Solutions -*

%5qoFApi€T Jo fSquiy pefybiopS

Figure 5

Nondominated Solutions -*

T5q0T ApTe [T dUn TpaiThoUS

Figure 5

=
S

Makespan
-22. Pareto Front for M LA18

0800

Maximum Tardiness

Makespan

0 700

Maximum Tardiness

£
s
£
£
m \ \ \ \
\ \ \ \ \ e
e e e wli Sl
\ \ \ \ \
\ \ \ \ \
L e w e e O
\ \ \ \ \
5 NN N o N A
(D] \ \ \ \ \
= \ \ \ \ \
=
) T T I S
; sqor ApieLjosaquny pajybio y=
[
7
—
—
M_
g
[
P
g 2
o =2
S
e
o 2
«nmm 2
[a)
—
A
)
et
=
W.o T5q0T Aple L 1T1adUnN paThaMS
(&

1150

Makespan

-24. Pareto Front for M LA20

0 850

Maximum Tardiness

Makespan
-23. Pareto Front for M LA19

0 800

Maximum Tardiness

Figure 5

Figure 5

104

Computational Results and Discussion

5.3.5.1 Discussion

The 20 modified benchmark JSSPs were tested to validate the system. In each
instance the developed GA started by generating 250 random solutions using
an operation-based matrix representation to create the initial population. Then
the evaluation function was used to obtain the required information, such as job
completion time as well as to calculate the objective functions for each solution.
To decide which machine to be selected when there are a set of alternative
machines, a roulette wheel selection was performed in the evaluation function
to select the machine with its associated information, such as machine
processing time and setup time. This information was maintained with the
chromosome that used it. Different chromosomes can have different routes

based on the machines that have been selected.

The ENS-BPSS was applied after each generation and before the reproduction
stage to determine the front to which each solution belongs, thus, evaluating the
merit of each solution. This process starts with sorting all the solutions in

ascending order based on the Cna values, as mentioned in chapter 4. After

X
sorting all solutions, the BPSS was applied to assign solutions from the sorted
population, starting from the first solution in the list and ending with the last one,
one after another to their fronts. The comparison starts with the last created
front so far and ends where it finds its dominant solution. The number of
comparisons needed by any solution to be assigned to the front is inversely
proportional to the difference between its index and its dominant solution index
in the sorted list. The number of comparisons, the number of fronts, as well as

the number of members in each front varies from one generation to another and

105

Computational Results and Discussion

from one instance to another. Solutions in each front were also sorted in

ascending order based on C max then T hax then zin:IWiUi .

After assigning each solution to the front that it belongs to, solutions were given
fitness values based on their front number. For instance if there is 10 fronts in
the population; the fithess values of the solutions in the first front is 10, while the
fitness values of the solutions in the last front is 1. This ensures that
chromosomes in the higher levels or with better Pareto fronts have a better
chance of selection, whereas chromosomes in the same level or same front
have an equal chance of selection. New generations of solutions were produced
using two-parent / two-row crossover operators with 0.7 probability of crossover
and pairwise interchange mutation and with 0.3 probability of mutation. All
Solutions in the first front were maintained from the current generation to the

next generation.

Evaluation, selection, crossover and mutation were performed repeatedly in
each generation until the last generation was reached. The GA terminated after
2000 generations. The obtained results demonstrated the ability of the system
to find a set of diverse solutions with or close to a Pareto optimal front. The
results also show that the developed system was able to find an optimal point

for a single objective in a Pareto front for most of the instances.

As previously stated, three objectives were considered in this research; the

C < the Ty

ma Xand the zi:IWiUi . Minimizing the C nax objective aims to

a

increase resources utilization, while minimizing the TmaX

and the Zinzl w.U,

reflects factors of external cost based on due dates such as customer

106

Computational Results and Discussion

satisfaction and they also give an indication of whether the job is completed

ahead of, on, or behind its due date. The Tmax represents the worst

performance in the schedule while the Zin:lWiUi represents ranks of customers

that will not be satisfied. These two objectives are directly influenced by the due
date assignment and machines workloads. There are several instances where

the resulted schedule has no tardy jobs, thus TmaX :Zinzlwiui =0, however in

all such cases the Cmax of the other non-dominated solutions was better

(lower). For instance in M_LA1 (Figure 5-5) one of the resulting schedules has

the best values of both T hax (0) and Zin:IWiUi (0) but the worst value of Cnax

(633) in the Pareto front. The other solutions in the Pareto front all have better

(lower) values of Cnax than this solution. If the decision maker only wanted to
consider customer satisfaction, this schedule has a Utopia Point regarding to

T hax and Zin:IWiUi . However when the machine utilization has to also be

considered, the decision requires some compromise on the three objectives.

The number of non-dominated solutions that have been found varied in different
instances. For instance in M-LA1, 11 non-dominated solutions have been found,
while only 4 non-dominated solutions have been found in M-LA2. As the
number of non-dominated solutions increase in the Pareto front, so does the
level of complexity of the decision itself. The results also indicate that the
progress towards the exact Pareto front required a higher number of iterations
when the problem size increased. For instance the obtained results of non-

dominated solutions for M-LA1 to M-LA5 were found before reaching 65% of the

107

Computational Results and Discussion

total number of iterations, whereas in M-LA11 to M-LA15 the non-dominated

solutions were found after reaching 75% of the total number of iterations.

Finally, although was not possible to compare the results for MO-JSSP’s in this
research with any previous results, as the problem has some unique features, it
was possible to demonstrate that the proposed system is computationally
efficient and has less time complexity for sorting the non-dominated solutions
than the current state-of-the-art methods. Even though the developed system
achieved encouraging and promising results, there is still room for improvement
such as testing different types of selection methods for finding an exact Pareto
optimal front. Also machine selection, in the case of alternative machines, has
an important role in finding an exact Pareto front; therefore a good heuristic

selection method needs to be developed.

5.4 The Effect of Uncertainty on the Optimal Makespan

In a real manufacturing environment, the processing time of each job is usually
subject to small changes due to unexpected events. Thus, in most cases, the
processing time can be estimated within a certain Interval, which makes the
system more realistic. However, these small changes of the processing time
can have a significant impact on the optimal schedule. Therefore, in this section
the effect of uncertainty on the optimal makespan was studied using two
different scenarios. In the first scenario, the ratios of change of the processing
times for all operations are considered to be the same. The purpose of this
scenario is to show how the optimal sequence can be affected when the
processing times change with the same ratio and to identify the ultimate

optimistic and the pessimistic value of the makespan within a certain Interval. In

108

Computational Results and Discussion

the second scenario the ratio of change was varied from one operation to
another, which better reflects more to the real manufacturing environment. In
each scenario two cases were considered, one by applying the deviated
processing time to the optimal sequence that was found by using the
benchmark data set and the other by finding the optimal sequence from the
deviated processing time of the benchmark data set. In all cases the lower and
upper bounds (or limits) of the change in the processing time were assumed to
be +30% of the given processing time. More details of these scenarios are

given below.

5.4.1 Change of Processing Times with the Same Ratio

Two cases were considered for this scenario. In the first case the genetic
optimisation process was applied to find the optimal sequence of the optimal
makespan for different benchmark problems. The processing times for each

operation were then decreased by 5, =30% in one set and increased by

52:30% in another set and applied to the optimal sequence to find the

deviation from the optimal makespan in both sets. In the second case each set
of processing times, after they had been increased or decreased, was used to
find the optimal sequences for the deviated processing times. The results from
both cases were then compared to each other to show how the optimal
sequence can be affected when the processing times of all operations change
with the same ratios. Table 5-5 shows the results from 19 benchmark JSSPs

with two different cases for the first scenario.

109

Computational Results and Discussion

Table 5-5. Change of the Processing Times with the Same Ratio

Instance Optimal First case Second case
makespan Deviation Deviation Deviation Deviation
by -30% by +30% by -30% by +30%
FT06 55 38.5 71.5 38.5 71.5
FT10 930 651 1209 651 1209
LAl 666 466.2 865.8 466.2 865.8
LA2 655 458.5 851.5 458.5 851.5
LA3 597 417.9 776.1 417.9 776.1
LA4 590 413 767 413 767
LAS 593 415.1 770.9 415.1 770.9
LA6 926 648.2 1203.8 648.2 1203.8
LA7 890 623 1157 623 1157
LAS 863 604.1 1121.9 604.1 1121.9
LA9 951 665.7 1236.3 665.7 1236.3
LA10 958 670.6 1245.4 670.6 1245.4
LA1l 1222 855.4 1588.6 855.4 1588.6
LAI2 1039 727.3 1350.7 727.3 1350.7
LA13 1150 805 1495 805 1495
LA14 1292 904.4 1679.6 904.4 1679.6
LAIS 1207 844.9 1569.1 844.9 1569.1
ABZ5 1234 863.8 1604.2 863.8 1604.2
ABZ6 943 660.1 1225.9 660.1 1225.9

The results show that when the processing times of all operations increased or
decreased by the same ratio, (£30% in this case), the optimal sequence for the
optimal makespan in both cases remained the same. The resulting values of the
optimal makespan for the deviated processing times in all cases are equal to
multiplying 1£30% by the optimal makespan before deviating the processing
times. It has also been noted that; there are a number of different sequences
that can lead to the optimal value of makespan in the first case, but not all of

these optimal sequences lead to the optimal makespan in the second case.

5.4.2 Change of Processing Times with Different Ratios

Similarly as in the first scenario, the genetic optimisation process was applied to
find the optimal sequence of the optimal makespan for different benchmark

problems. Then a set of combinations of the processing times was generated

110

Computational Results and Discussion

randomly from the [51 pij’52 pij] interval number; where pij is the value of the

processing time in the benchmark data set, 6, =0.70 and 52 =1.3. In this case

the processing time for any operation can be decreased or increased with a

random ratio between-30% & +30% of Pij - This randomly generated set was

then used in the optimal sequence to find the deviation from the optimal
makespan. In the second case, the same set that was generated randomly was
used at the start to find the optimal sequences for the deviated processing
times. A number of experiments were conducted using several sets to compare
between these two cases. Table 5-6 shows the results of 19 benchmark JSSPs

using two different sets for both cases in the second scenario.

Table 5-6. Change of the Processing Times with Different Ratios

Instance | Optimal First Set Second Set

Makespan First Second | Ratio of First Second | Ratio of

Case Case Change Case Case Change
FT06 55 60.18 52.733 | 12.37% 60.57 60.02 0.91%
FT10 930 990.64 981.6 0.91% 0.77 982.82 | 0.77%
LAl 666 713.18 631.78 | 11.41% | 721.11 688.75 | 4.48%
LA2 655 676.3 668.17 | 1.20% 663.62 645.71 | 2.69%
LA3 597 606.1 584.31 | 3.59% 597.09 | 58229 | 2.47%

LA4 590 630.22 629.52 | 0.11% 61426 | 614.26 0%

LAS 593 580.81 580.81 0% 613.99 | 568.63 | 7.38 %
LAG6 926 959.26 897.94 | 6.39% | 959.56 947.9 1.21%
LA7 890 881.94 833.68 | 5.47% 870.29 849.59 | 2.37%
LA 863 858.66 825.27 | 3.88% 882.69 860.73 | 2.48%
LA9 951 1015.2 | 970.05 | 4.45% 949.27 | 906.28 | 4.53%
LA10 958 915.95 904.55 | 1.24% 1030.9 | 961.26 | 6.75%
LA1l 1222 1230.1 1219.7 | 0.84% 1314.6 1158.6 | 11.86%
LA12 1039 1147.5 1005.8 | 12.34% | 1087.9 1047.5 | 3.71%
LAI13 1150 1204.7 | 1189.8 1.23% 1248 1214.8 | 2.66%
LA14 1292 1308.7 1269.5 | 2.99% 1343 1258.9 | 6.26%
LAIS 1207 1280.6 1217.9 | 4.89% 1338.6 1247.8 | 6.78%
ABZ5 1234 1309.5 1246.4 | 4.82% 1296.8 12442 | 4.05%
ABZ6 943 1034.1 987.72 | 4.48% 968.28 944.47 | 2.45%

111

Computational Results and Discussion

The results show that when the processing times of all or some operations
change but with different ratios, the optimal sequence also changes in most
instances. The ratio of change of the objective function between the first and
second cases varies for different combinations of processing times. These
values of the makespan for all sets of each instance in the second scenario are
still within the range of higher and minimum values of makespan that were
found in the first scenario. The ratio of change can be very small, thus its impact
on the optimal sequence is insignificant and can be neglected. For instance the
ratio of change between the first case and second case in LA11, after applying
the processing time uncertainty in the first set of combinations, was 0.84%,
which is very small. However, the ratio of change can be high, thus it has a
significant impact on the resulting schedule. For instance the ratio of change
between the first case and second case in the same instance (LA11), after
applying the processing time uncertainty, in the second set of combinations,
was 11.86%, which is relatively high. Two main factors are considered to be
important here; the ratio of change and the slack time for each operation. In the
next section more details are given for time uncertainty with slack time.

5.4.3 Time Uncertainty with Slack Time

The effect of time uncertainty on different operations will have different
consequences on the objective function. For any specific schedule, when the
time of any operation, that has no slack time, increases or decreases byo, it
will shift all successive operations from the same job, all successive operations
in the same machine and their successive operations from the same jobs, and
successive of successive and so on, with the same amount of time, 5, unless

there is a slack time in the pathway. When an operation has slack time, it will

112

Computational Results and Discussion

recompense the delay or the increase of the processing time by as much as the
amount of that delay or the increase is not more than the operation slack time.
More generally, the amount of change in the objective function for any schedule
with respect to time uncertainty will depend on two main factors; time
uncertainty factor and slack time for each operation. For any given schedule,

the operation slack time can be found from the following equation:

Bk =™06 o Si i~ i
Where: Fijk is the float or slack time for operation j of job i on machine k,
Squ is the start time for the direct successor of operation j of job i on the

same machinek Si 1 is the start time for the direct successor of operation |

2

from the same job i and Ci'

ik is the completion time for operation j of job i on

machine k. To give more illustration let's use La01 from the benchmark

dataset. Machine sequence matrix (M) and Time Matrix Machines (T) are

given below.

1 5 4 3 2] [21 53 95 55 34]
5 3 4 2 1 21 52 16 26 71
3 4 1 2 5 39 98 42 31 12
1 5 4 2 3 77 55 79 66 77

M = 5 3 2 1 4 T = 83 34 64 19 37
1 2 4 5 3 54 43 79 92 62
3 4 1 2 5 69 77 87 87 93
2 5 1 3 4 38 60 41 24 83
3 1 4 5 2 17 49 25 44 98
|4 3 2 1 5] | 77 79 43 75 96 |

The optimal makespan for LAO1 is depicted in the Gantt chart shown in Figure

5-25.

113

Computational Results and Discussion

makespan = 666

Machines
w

N

(48, t1)

| | | | |
100 200 300 400 500 600 700
Time

Figure 5-25. Gant Chart of the Optimal Makespan for LAO1

By using the above equation for Fi' , the float or resulting slack time for each

jk

operation of each job is shown in the matrix below:

2 0 0 0 6
0O 14 0 0 0
o 0 0 5 30
o 0 0 0 0

o |27 0 0 0 0
0 5 0 0 0
g8 0 0 0 0
6 0 7 0 0
o 0 0 0 0
o 0 8 0 0]

The Ft matrix shows the tolerance that each operation can have with time

uncertainty. For example the second operation of J2 (J2, t2) has a tolerance of
time uncertainty equal to 14 time units. This margin of tolerance for time
uncertainty will recompense any delay or increase in the processing time with
no more than 14 time units. On the other hand, any increase or delay for any

operation in machine 4 by o will increase the makespan by J. It has been

114

Computational Results and Discussion

noted that, some machine idle time is not considered as slack time for the
predecessor operation. For example the time from 312 to 448 in machine 3 is
idle time but using this time for (J2, t2) by ¢ will cause of delay on (J2, t3) and
consequently increase the makespan by the same amount of time . Yet,
rearranging (J2, t3) and (J9, t3) on machine 4 so that (J9, t3) is processed
before (J2, t3), the slack time of (J2, t2) will increase by 25 time units so that the
slack time of (J2, t2) will be equal to 39 time units. Considering such an issue
can lead to a more flexible scheduling system. More attention will be given to

these issues in the recommendations for future work section in chapter 6.

5.5 Summary

To evaluate and testify the validity of the system several experiments were
conducted in this chapter. First, the representation method was tested using 34
published benchmark problems. The results show that the developed system
was able to find the optimal solutions for these benchmark problems using
operation based matrix representation. 20 instances of these benchmark
problems (LA1 to LA20) were then modified to incorporate release dates, setup
times, alternative machines and multi-objective to evaluate the practicability and
effectiveness of the proposed system for solving the MO-JSSPs with
incorporated factors. In all instances ENSGA-BPSS was able to find several
non-dominated solutions. The effect of processing time uncertainty on the
optimal makespan was also tested in this chapter. Two main factors were found
to play an important rule on the optimal solution which are; the ratio of change
in the processing time and the slack time for each operation. In the next chapter
a summary and conclusions of this research are presented and directions for

future research are proposed.

115

Conclusions, Contributions to knowledge and Future Work

Chapter 6. Conclusions, Contributions to
knowledge and Future Work

116

Conclusions, Contributions to knowledge and Future Work

6.1 Introduction

In this chapter a summary of this PhD thesis, conclusions and contributions to
knowledge are given and directions for future research are proposed. In the
next section, the research work including the knowledge gaps, methodology,
and the outcome of the developed system are summarized. Conclusions of this
thesis are given in section 6.3 and contributions to knowledge are stated in
section 6.4. The future research directions based on the findings of this

research are proposed in the last section 6.5.

6.2 Summary of the Research work

The Job Shop Scheduling Problem (JSSP) is one of the most difficult
optimization problems in the area of operation research and scheduling. Over
the past decades, a large number of methods have been proposed to solve the
problem optimally, yet there is still no efficient method which can guarantee an
optimal solution consistently, even for a single criterion, and there is no work to
show that any of these methods outperform each other with regards to all
problem aspects. Even though the JSSP with a single-objective has been
widely studied, the research on Multi-Objectives Job Shop Scheduling Problems
(MO-JSSPs) is still relatively limited. Obviously, solving MO-JSSPs is
considered to be more complex than solving JSSPs with single-objectives
because the objectives are often conflicting or even contradictory. Due to the
great difficulty but also necessity, a combination of Genetic Algorithm (GA) and
a modified version of a very recent and computationally efficient approach to
non-dominated sorting, called Efficient Non-dominated Sort (ENS), was

proposed in this research to solve MO-JSSPs. GA was used to lead the search

117

Conclusions, Contributions to knowledge and Future Work

towards the Pareto optimality, while ENS was applied to determine the front to

which each solution belongs to, thus, evaluating the merit of each solution.

In the GA, a new solution representation approach was proposed to represent
the solution. This representation method is an adapted version of operation-
based representation but instead of using a vector to represent the solution, the
solution or chromosome was presented in matrix form and this was termed as
operation-based matrix representation. Relating to the solution representation
method, three forms of crossover and mutation operators were presented. The
proposed method can preserves the features of the parents after the crossover
operation without repairing the algorithm. Thirty-four benchmark instances were
used to demonstrate the feasibility and practicability of the developed GA with
the proposed new representation and to evaluate the performance of the
system. The results show that, in all Thirty-four tested benchmark problems of
the classical JSSP; the developed GA was able to find the optimal makespan

using operation based matrix representation.

In the ENS, a solution in the sorted list that is to be assigned to a front, only
needs to be compared with those solutions that have already been assigned to
a front, thereby avoiding many unnecessary comparisons. Instead of starting
the comparison with the first front, a new strategy called Backward Pass
Sequential Strategy (BPSS) was adopted in this research. In BPSS, a solution
to be assigned to the front starts the comparison with the last created front so
far and ends up where it finds its dominant solution. As with ENS, Efficient Non-

dominated Sorting using the Backward Pass Sequential Strategy (ENS-BPSS)

has a time complexity of O(MN2) in the worst case scenario when all N

118

Conclusions, Contributions to knowledge and Future Work

solutions belong to the same front. The number of comparisons needed for N
solutions with M objectives, when there are N fronts and there exists only one

solution in each front, was reduced in ENS-BPSS to O(M(N -1)). This is

because, in this case, each solution in the sorted list is dominated by the direct
preceding solution as well as the other preceding solutions. Thus, each solution
will be compared only with its direct preceding solution. The obtained results
from different instances demonstrate that the proposed method was able to find

a set of diverse solutions with or close to the Pareto optimal front.

In order to identify the limitations of the previously developed system for solving
MO-JSSPs, a comprehensive literature review was conducted in this research.
The review of MO-JSSPs was based on four main factors; the release times,
the setup times, the alternative machines and unfixed processing times. The
review showed that; amongst fifty three journal articles that were found in the
literature, thirty one journal articles (57%) considered alternative machines,
eleven journal articles (20%) considered job release date, eight journal articles
(15%) considered unfixed processing time and only four journal articles (8%)
considered setup times. None of the articles incorporated all four factors or
even three factors all together, as thirty eight articles (72%) considered only one
factor, mostly the alternative machines, eight articles (15%) considered two
factors and seven articles (13%) did not consider any of these factors.
Therefore, to close the gap of knowledge, a scheduling system for solving MO-
JSSPs that incorporated the release date of jobs and machines, setup times
and alternative machines was developed in this research. The setup time that
was considered is a type of machine dependent setup time with job sequence

independent setup time. Although JSSPs with job sequence dependent setup

119

Conclusions, Contributions to knowledge and Future Work

time are more complicated, there have still been no studies undertaken on MO-
JSSPs with machine dependent setup time and job sequence independent

setup time.

To demonstrate the feasibility and practicability of the proposed system, the
system was tested with different instances. Although the benchmark sets for
JSSPs that are available in the literature provide a common standard and some
insight into the strength and performance of the proposed system, there are
currently no benchmarks for JSSPs that consider all the aforementioned factors.
Therefore, in this research twenty benchmark problems of classical JSSPs were
used after they have been modified to suit the intentional problems. Three
objectives were used to test the system and to find the Pareto front with non-
dominated solutions. The obtained results show that the proposed system was
effective and promising. Yet, there is still room to develop a better selection

method for finding an exact Pareto front and for alternative machines.

The effect of uncertainty on the optimal makespan was also studied using two
different scenarios; first by applying the same ratio of change for all the
processing times and second using different ratios of change. The results show
that when all processing times change with the same ratio the optimal sequence

remains the same and is equal to multiplying (1+5) by the optimal makespan

before deviating the processing time. However, when the processing times
change but with a different ratio, the optimal sequence often changes. Two
main factors are considered to be important here; the ratio of change and slack

time for each operation.

120

Conclusions, Contributions to knowledge and Future Work

6.3 Conclusion

In this thesis, a new system that integrates GA and ENS was developed for
solving MO-JSSPs. In this developed system, GA was used to lead the search
towards the Pareto optimality whilst an ENS was used to determine the front to
which each solution belongs. In the proposed GA a new solution representation
method, called operation based matrix representation, was presented, which
can preserve features of the parent after the crossover operator without
repairing the solution. The evaluation function in the GA also takes into account
machine setup times, alternative machines and release dates for jobs and
machines. In the ENS, a new strategy called BPSS was adopted to determine
the front, to which each solution belongs. The best case time complexity of ENS

was reduced with BPSS to O(M(N —-1)). To testify the validity of the system,

Thirty-four classical benchmark JSSPs were used initially to clearly demonstrate
the feasibility and practicability of the new chromosome representation method
within the GA. In all instances, the optimal solutions were found by using
operation based matrix representation. Twenty benchmark JSSPs were then
modified to include setup times, alternative machines, release dates for jobs
and machines and multi-objective. The experimental results show that the
proposed system was able to find several nondominated solutions and was
effective for solving the Mo-JSSPs with setup times, alternative machines and
release dates. Finally, processing time uncertainty was studied in order to
identify the most important parameters affecting the scheduling objectives. The
study showed that operation slack time and ratio of change in the processing
time can have a major impact on the objective functions in the case of

processing time uncertainty.

121

Conclusions, Contributions to knowledge and Future Work

6.4 Contributions

The uniqueness of this research can be summarized as follows.

1.

Development of a scheduling system for solving MO-JSSPs that
incorporates release dates of jobs and machines, setup times and

alternative machines.

. A modified version of an operation based representation for solving job

shop scheduling problems with genetic algorithm was proposed. The
proposed representation method uses an operation based representation
in the matrix form which can preserve features of the parent after
crossover operator without repairing the solution.

A combination of Genetic Algorithm (GA) and a modified version of a
very recent and computationally efficient approach to non-dominated sort
called Efficient Non-dominated Sorting (ENS) have been introduced to

solve the Multi-Objective Job Shop Scheduling Problem (MO-JSSP).

. A new strategy called Back Pass Sequential Strategy (BPSS) was

adopted within ENS to determine the front, to which each solution

belongs.

. Using complex numbers in the machine matrix to represent the machine

number and setup group for each operation on that machine.
The effect of the processing time uncertainty on the optimal makespan

was also investigated.

122

Conclusions, Contributions to knowledge and Future Work

6.5 Future Research Directions

The multi-objective optimization system that has been developed in this thesis
is useful for solving MO-JSSPs with deterministic time parameters. In the future,
the system can be further developed to solve stochastic MO-JSSPs, where
some characteristics of the job are modelled as random variables with separate
setup times and machines may be subject to random breakdowns. Also
considering the availability of other resources, such as operators and tools, will
benefit the overall scheduling system, and this will be taken into account in the

future research.

In addition using real data from a job shop manufacturing company to test the
developed system is more practical and reflecting to real world manufacturing
practice, therefore acquiring such realistic data and using it in the developed

system will be considered in the future.

The effect of time uncertainty on MO-JSSPs will also be studied in the future
research. Alternative machine selection has been shown to be an important
issue for MO-JSSPs as it has a considerable impact on finding an exact Pareto
front; therefore, in the future research a more sophisticated method for

alternative machine selection should be developed.

123

Appendices

Appendices

Appendix 1. Previous research in MO-JSSP

Factor of Describing

Author(s) and the JSSP Approach
reference ST | AM| RD P

Sakawa and Mori | - - - v" | On the basis of the agreement index of fuzzy

(1999) completion time and fuzzy due date for each job
GA was proposed after incorporating the fuzzy
processing time and fuzzy due date to formulate
the fuzzy JSSPs in order to solve fuzzy JSSPs.

Ponnambalam, - - - - | MOGA was proposed where each Chromosome

Ramkumar et al. was represented based on PDRs using Giffler

(2001) and Thompson (G&T) procedure. To lead the
search in multi direction the weights for
merging the objectives into a scalar fitness
function were specified randomly in each
evaluation and were not constant.

Baykasoglu, - v - - | The problem was presented as a grammar and

Ozbakir et al the productions in the grammar are defined as

(2004) controls. Then MO-TS algorithm was employed
using these controls and G&T priority rule-
based heuristic to solve the problem.

Low, Wu et al.| v - - - | Integer programming model to optimise each

(2005) single objective was developed and an
acceptable trade-off schedule, which made use
of multiple-decision-making technique, the
global criterion method, was obtained by
evaluating three objectives simultaneously.

Xia and Wu| - voo- - PSO was used to assign operations on machines

(2005) and then SA was proposed to schedule
operations on each machine in order to solve
multi objective flexible JSSP.

Suresh and | - - - - | SA was proposed based on the Pareto

Mohanasundaram dominance or through the implementation of a

(2006) simple probability function for searching on the
non-dominated solution to solve MO-JSSP.

Lei (2008) - - - v' | JSSP has been converted to a continuous
optimization problem in order to apply PSO.
Then the proposed algorithm combined the
global best position selection with the external
Pareto archive set.

Xing, Chen et al.| - v - - | A simulation model was presented for

(2009) optimizing the flexible JSSPs with multiple
objectives.

Manikas and | v - - - | GA was applied for solving weighted sum MO-

Chang (2009) JSSPs with sequence-dependent setup times.

124

Appendices

Appendix 1. Continued

Author(s) and

Factor of Describing
the JSSP

Approach

reference

ST | AM| RD

Zhang, Shao et al.
(2009)

- v - -

A hybrid PSO and TS was proposed for
optimizing the flexible JSSP with multiple
objectives.

Li and Huo (2009)

GA was proposed to solve MO-JSSPs with
considering the parallel machines with capacity
and speed constraint, maintenance of machines
as well as intermediate inventory restriction.
The problem was formulated as MIP model to
decide the flexible routes for every job and to
optimize the sequence of jobs On the basis of
the non-linear MIP.

Huang (2010)

ACO was proposed and a heuristic algorithm
was generated to rapidly solve the lot-splitting
JSSPs with multi objective optimisation.

Adibi, Zandieh et
al. (2010)

VNS was proposed for solving multi objective
JSSP with random job arrivals and machine
breakdowns. To enhance the performance of
VNS, weights obtained from ANN at any
rescheduling point were used to calculate proper
parameters for VNS.

Li, Pan al.

(2010)

et

A hybrid TS algorithm with two adaptive
neighbourhood structures, which builds better
local search in the machine assignment
component, was developed for solving the multi
objective Flexible JSSP. In addition, VNS with
three insert and swap neighbourhood structures
was presented to perform local search in the
operation scheduling part.

Wang, Gao et al.
(2010)

An improved GA based on immune and entropy
principle was proposed to solve the multi
objective flexible JSSPs. The applied fitness
scheme was based on the Pareto optimality.

Sha
(2010)

and Lin

PSO was used after modifying the particle
position representation, particle movement and
particle velocity in order to solve MO-JSSP.

Moslehi and
Mahnam (2011)

A Pareto approach and an integrated method
based on a hybridization of PSO and local
search algorithm was applied for solving multi-
objective flexible JSSPs. PSO was employed to
allow a wide search of solution space while the
local search algorithm was employed to
reschedule the results achieved by the PSO, to
increase convergence speed.

125

Appendices

Appendix 1. Continued

Factor of Describing

Author(s) and the JSSP Approach
reference ST | AM| RD IS

Zheng, Li et al.| - vl o- v' | A multi objective swarm-based neighborhood

(2011) search was proposed to solve fuzzy flexible
JSSP. Two swaps and an insertion were applied
to produce new solutions and simple weighted
objective-based methods were used to update
swarm and external archive in order to obtain a
set of non-dominated solutions.

Kachitvichyanukul | - - - - | A two stage GA was proposed. In the first stage

and Sitthitham parallel GA was applied to find the best solution

(2011) for each objective individually with migration
among populations. In the second stage the
populations were combined all together and the
final schedule was identified based on the
weighted aggregating objective function.

Li, Pan et al| - v - - | A hybrid Pareto-based discrete ABC was

(2011) presented to solve multi objective flexible JSSP.
To record the non-dominated solutions, an
external Pareto archive set was introduced. In
addition, a fast Pareto set update function was
developed to reduce the computational times.

Tavakkoli- v - v A hybrid PSO and VNS based on Pareto archive

Moghaddam, was proposed and character of scatter search to

Azarkish et al. select new swarm in each iteration was

(2011) employed in order to find Pareto optimal
solutions for bi-objective JSSP with sequence-
dependent setup times.

Ramkumar, - - - v" | FL for solving multi objective fuzzy JSSP was

Tamilarasi et al. proposed where a triangular fuzzy membership

(2012) function was used to represent customer priority
and due date with the aim of maximizing the
minimum agreement index, maximizing the
average agreement index and minimizing the
maximum fuzzy completion time.

Wang, Zhou et al. | - v - - | An enhanced Pareto-based ABC algorithm was

(2012) presented to solve the multi objective flexible
JSSP.

Li, Pan et al |- v - A hybrid Pareto-based local search algorithm

(2012) was developed to solve multi criteria flexible
JSSP. An external Pareto archive set was used
to record the non-dominated solutions.

Li, Pan et al.| - v - - | A very recently method known as shuffled

(2012) frog-leaping algorithm was proposed with two
crossover operators for solving multi objective
flexible JSSP.

126

Appendices

Appendix 1. Continued

Factor of Describing

Author(s) and the JSSP Approach
reference ST | AM| RD IS

Frutos and Tohmé | - - - - | A multi objective memetic algorithm was

(2012) introduced for the treatment of the JSSP
combining a multi Objective evolutionary
algorithm and multi objective SA.

Dalfard and | - v | v | - | A hybrid GA and a SA algorithm were

Mohammadi proposed to solve multi objective flexible JSSP

(2012) with parallel machines and maintenance
constraints.

Lei (2012) - - - v' | A multi objective ABC was proposed for
solving interval JSSP with non-resumable jobs
and flexible preventive maintenance.

Rahmati, Zandieh | - v - - | Non-dominated sorting genetic algorithm and

et al. (2012) non-dominated ranking genetic algorithm were
adapted for solving multi objective flexible
JSSP. These two algorithms used new multi
objective Pareto-based modules instead of
multi-criteria concepts to guide their process.

Zhang, Gao et al. | - - v - | A rescheduling method based on the hybrid GA

(2013) and TS was introduced to solve multi objective
JSSP with random job arrivals and machine
breakdowns.

Wang, Wang et al. | - v - - | A Pareto-optimality-based fitness evaluation

(2013) was employed and a probability model with the
Pareto superior population was designed to
solve multi objective flexible JSSP.

Shahsavari-Pour - vio- - A new hybrid GA and SA that using Pareto

and optimal solution approach in its process was

Ghasemishabankar introduced to solve multi objective flexible

eh (2013) JSSP.

Shao, Liu et al.| - v - - | A hybrid PSO and SA was proposed to solve

(2013) the multi objective flexible JSSP. In the
proposed method, Non-dominated solutions
were stored by using best position of particles.

Quu and Lau| - - v - | An artificial immune systems that dynamically

(2013) select the most appropriate PDRs for the jobs
waiting for an available machine was developed
for solving multi objective dynamic online
JSSP.

Niu, Ong et al.| - - - - | A new meta-heuristic algorithm, namely the

(2013) Intelligent Water Drops algorithm was
employed for solving multi objective JSSP.

Gao, Suganthan et | - vio- - A Pareto-based grouping discrete harmony

al. (2014) search algorithm was proposed to solve
bicriteria flexible JSSPs.

127

Appendices

Appendix 1. Continued

Author(s) and

Factor of Describing
the JSSP

reference

ST | AM| RD| =

Approach

Li, Pan et al

(2014)

- v - -

A hybrid ABC algorithm and TS based on the
Pareto archive set to record the non-dominated
solutions was proposed for solving the multi
objective flexible JSSPs with preventive
maintenance activities.

Zhao, Tang et al.
(2014)

An improved multi objective PSO with decline
disturbance index was presented to solve MO-
JSSP. The decline disturbance index was used
to improve particles ability for exploring the
local and global optimization solutions, as well
as decreasing the probability of being trapped
into the local optima.

Su, Mengjie et al.
(2014)

NSGA II, SPEA2, and harmonic distance-based
multi-objective evolutionary algorithm were
employed to solve MO-JSSP. In addition, a new
method called diversified multi objective
cooperative evolution was also proposed.

Gao, Suganthan et
al. (2014)

A Pareto-based grouping discrete harmony
search algorithm was proposed to solve
bicriteria flexible JSSPs.

Jia and Hu (2014)

A new path-relinking algorithm based on the TS
algorithm with back-jump tracking was
proposed for solving multi objective flexible
JSSPs.

Hosseinabadi, Siar
et al. (2014)

A new method called TIME GELS that uses the
gravitational emulation local search algorithm
was proposed to solve the multi objective
flexible dynamic JSSP.

Xue, Zhang et al.
(2014)

A quantum immune algorithm based on the
quantum and immune principles was presented
to solve multi objective flexible JSSP.

Karthikeyan,
Asokan et al.
(2014)

A discrete firefly algorithm was adopted to
solve multi objective flexible JSSP, in which
the operation sequence and machine assignment
are treated by building an appropriate
conversion of the continuous functions as
attractiveness, distance and movement, into new
discrete functions. In addition, local search
algorithm with neighbourhood structures was
hybridised to improve the exploitation ability.

Pérez and Raupp
(2014)

A new hierarchical approach was proposed to
solve the multi objective flexible JSSP. In this
method each new iterated solution improves all
the objective functions simultaneously.

128

Appendices

Appendix 1. Continued

Factor of Describing

Author(s) and the JSSP Approach
reference ST | AM| RD E’

Yang and Gu| - - - - | GA and TS were incorporated in the frame of a

(2014) new cultural algorithm to search for the Pareto-
optimal solution in order to solve MO-JSSPs

Shen and Yao| - v |V - | A multi objective evolutionary algorithm-based

(2015) proactive-reactive method was developed in
order to solve the multi objective dynamic
flexible JSSP, and provide different trade-offs
between different objectives.

Huang and Sier | - - - v" | A dispatching rule based genetic algorithm with

(2015) fuzzy satisfaction levels was proposed to solve
the multi objective JSSP.

Shivasankaran, - v |V - | Hybrid sorting immune SA technique was

Kumar et al proposed for solving the multi objective flexible

(2015) JSSP.

Zhao, Gao et al.| - v - - | A two generation ACO for solving the multi

(2015) objective flexible JSSP with alternative process
plans and unrelated parallel machines was
proposed. The Pareto ACO built the applicable
pheromone matrixes and heuristic information
with respect to the flexible processing route
decision and task sorting, then objectives and
NSGAII was used for comparison.

Singh, Singh et al. | - v - - | A new PSO algorithm for solving multi-

(2015) objective flexible JSSPs was proposed.

Zhang and Chiong | - - - v | A multi objective GA incorporated with two

(2016) local improvement strategies was proposed to
solve a MO-JSSP. These local improvement
strategies aim to enhance the solution quality by
utilizing the mathematical models of the two
subproblems derived from the original problem.

Kaplanoglu (2016) | - v - - | An object-oriented approach along with SA
optimization algorithm was proposed for
solving multi objective Flexible JSSP.

129

Appendices

Appendix 2. Optimal sequence for C__using operation based matrix representation

m N N N O
- Ll
n .00
~ 9
A=
©w o
N -
™M —
111
-
N~ g =%
-~ i
~N
o~
[
<< 499
NMONONON—AOMMNOOANNONNILIIOOONDINOONOANMONOTM O OOFTO|OM®OVO O|NTOANOCKONO 0 = T
i - i i — i | — — i
n
- ™M
HMO N TONGOTN DA OO N XN OMAGGN G ™M 0O 0 [N g O NN G N0 AT TN
o
OO NN ™ © O N - NS NG N AN, 0S|t OO 0 < S N—HONL_HOg 0|l o
S~ 0~ S “o~ "o~ o © ~ o) S Y alo ™ SN ~N"Q o = -
o N (@M ®O [MggNOD g V0N RT QDG gTDENSTM g™ G WO T 00 S0 G0 T 10
o
Cl¢mmoinm CNNNEYCCL 18 NPT N8N8 VNS 0"t NP 0NN TG0 P22 Ynoasr~No|To T ow
(]
w14221%m93311m7381594958589541m844756652263m71856627m5w7N6376556817
%52564%8745821976882m3w43151291162m33987m9624954m794986494632735371
m66316%54687935227238w739686379636325735182825321N865N36815512m4235
..Wu33445w47m944m566451658124974546325881m44725733974378399563425422144
O21132%461626749523532468563125751218261651512212243212232214311523
Q
ol o N N | I I90) < LN w0
0| O — P o0 o o o (=] o o
“ = © © © 5] © ©
o [T < < — — — — — —

130

Appendices

Appendix 2. Continued

Problem | Optimal sequence
La07 3 212 4 1 6 10 7 9 13 11 8 14 15 5
1 2 5 3 4 6 7 8 12 10 14 15 9 13 11
1 3 4 2 8 9 7 6 13 15 10 11 14 12 5
114 2 4 10 13 3 5 9 6 7 12 11 8 15
3 9 1 7 11 14 12 10 4 15 13 5 6 2 8
La0s8 6 7 4 5 9 12 1 13 15 8 11 2 14 10 3
1 9 5 7 411 15 10 6 12 14 13 8 3 2
4 2 311 1 5 8 10 15 13 9 14 6 7 12
2 81 4 9 7 514 6 12 3 15 13 11 10
3 512 413 7 9 1 10 14 15 8 11 2 6
La09 1 5 8 6 9 2 3 13 4 7 15 11 12 10 14
2 1 915 3 6 7 5 10 12 13 8 14 11 4
341 2 5 6 810 9 11 7 13 14 12 15
2 512 1 10 11 14 6 15 3 13 7 4 8 9
4 3 615 11 1 2 7 5 9 12 14 8 13 10
La10 2 5 6 1 3 9 11 10 12 7 13 15 8 4 14
1 5 6 2 3 412 8 9 14 7 11 10 13 15
36 1 5 2 4 7 11 8 9 10 12 13 15 14
2 41 6 5 13 8 14 10 15 3 7 9 11 12
3 54 16 9 7 12 8 11 14 2 15 10 13
Lall 1 3 4 2 5 8 9 6 14 17 19 7 20 12 15 18 11 16 13 10
1 2 3 7 6 9 8 11 12 14 20 13 18 19 4 15 10 16 5 17
36 1 213 5 7 10 8 18 19 16 14 11 15 20 4 12 17 9
2 5 4 618 7 3 9 11 12 15 8 19 10 17 16 14 13 20 1
2 1 5 6 8 3 7 11 13 15 17 20 9 14 16 18 12 19 10 4
La12 7 2 9 511 3 1 14 10 8 17 19 12 20 16 18 4 15 13 6
2 316 1 6 7 8 9 10 13 12 11 14 17 19 5 18 20 15 4
1 3 4 8 11 14 19 2 5 7 15 16 9 20 18 10 6 12 13 17
2 3 7 417 1 10 16 15 19 13 9 11 5 20 14 6 18 8 12
4 11 1 2 16 3 8 5 14 18 7 6 12 13 20 10 19 17 15 9
La13 1 5 6 2 4 7 3 8 13 18 14 19 16 12 20 10 15 9 17 11
2 6 5 3 414 9 7 16 12 15 18 8 11 17 13 1 19 20 10
3 81 5 4 210 12 6 16 17 14 20 18 13 19 7 11 15 9
510 4 7 6 8 15 2 16 3 13 17 9 1 11 20 14 19 12 18
4 3 1 6 8 13 19 11 5 9 20 10 14 12 15 17 2 18 16 7
Lal4 1 2 9 6 8 11 18 12 17 5 19 16 3 20 14 15 10 13 7 4
1 2 817 16 5 15 14 4 13 11 9 18 6 10 20 12 19 3 7
1 6 18 13 3 14 7 20 11 16 5 4 2 12 19 17 15 8 10 9
3 5 7 10 12 14 9 17 20 18 13 6 11 15 8 16 4 19 2 1
114 2 11 3 20 4 13 9 8 6 15 19 16 10 5 18 12 17 7
La15 11 15 14 17 13 2 9 16 12 19 20 1 7 6 8 5 4 18 3 10
2 412 5 13 14 19 9 11 20 3 16 8 17 18 15 10 1 7 6
312 10 15 11 4 7 20 18 5 8 19 13 1 2 16 6 9 14 17
1 3 9 19 15 12 10 8 13 16 2 11 17 14 18 6 7 4 5 20
3 16 1 18 19 15 11 5 10 17 12 4 2 14 7 20 13 9 8 6
Lal6 1 2 3 4 7 10 5 9 8 6
36 7 2 910 1 8 4 5
1 2 35 7 610 4 9 8
6 10 1 2 8 4 5 3 9 7
6 3 4 8 7 5 9 1 2 10
8 10 7 1 2 3 5 9 6 4
2 810 5 3 1 4 6 7 9
4 2 5 8 6 1 7 9 10 3
31710 5 4 6 2 8 9
1 6 7 4 3 8 910 5 2
Lal7 1 4 2 6 8 3 9 5 10 7
2 83 45 7 6 1 9 10
1 4 7 8 3 2 910 5 6
1 5 7 6 810 2 3 9 4
3456 110 7 9 2 8
38 457 2 19 610
2 7 54 9 1 3 8 6 10
6 2 8 10 4 9 1 7 5 3
17 9 2 3 6 10 4 8 5
5 6 7 9 1 2 3 8 4 10

131

Appendices

Appendix 2. Continued

0 N O O < OCmnmosT O NoOoOWnsT O« < N
NNMAAO0OON ANt AAANN A0S NAAANODMN D N
N e g < N O N O N O N O N wn n N OUoo N
AN A AT NN NANAANNN AN AN o0 N NN AN o
~N oM o non - DO N muwowaAN o o ~N O 0 0 ™~
N NN AN AN AN AONAN A A A MmN AN N 0O AN
0 m o © o X %) od¥INgesTomm~NnM0O2~m8 o S m
A VNN NN NAYOoN AR A" TN A VYTA AATNNTYNA AT ANT N
NDODONILO oN~NmMNWO N oo oo 0 O
ANHAANMNANATATANNOVOINNAAONNNDDST T NNWD® A
— O N OO OMN~NN O ~N o o - O — o - O un
A AN A A A A AN NN ANOM A A NN~ AN O A N~
()] 0 o N OMN~N - 00 O mn N <t N ANO NS (<)} 00
AV A RNNANOAATNNNDINNNIAAND® AN N N
ToR0OIgNHOTOONOLQOMNO®MIn®NDoOm~®©g O~
n <t mn wn o o N o o 00 <t O < 0 N AN A< m
CuNRNOGTROANNOAN g AN B Towam NITNHAOLT AT AN N ATNNT N A AN AN AN
- -
o, © wWowolomM~NO MMt A®0ONL Omin < ®
— ® T 40 ® QTG Qe ™Y ~ S o
o~
o~ o (e} < o O N O AN NS N < - [e)Ne)
1) n N o <+ o~ 1~ o0 < o B R o0 N ™M nono N N ™ < - ©
o ~ N O AdN AN ANNNNN—A—TNANNNOAN®ON- 00— N
Cl9a " N M N min " P o TR A AT g AN NN
(]
=] < o L ~ o m o~ <+ o|lo =™ o o n o
o L R = A I + 39 NS Qg
e o o ~ o o - o ~N oW ~ o
TO NO 4O O TNo OO N ~
NP X TN G® TRNAEN GO g MmN MO0 Y g IR N A NS AR AT AN AR NN A NN 0
© =]
m367346953899483668m419 nanm Y Noo
— o
e o = =] =] =] — o 0 < wn o ~ @ (2} -
4= (N < =t N ™~ AN N N(oO < 00 < N 0 -~ O wn <t NN O — -
o - - - - - 2 2 2 2 2 2 2 2 2 2
o o S S o o [5) [5) [S) [S) o o
AMLWONLIOGO AT NI —AANN©OOOANO A OOCNMM[E -3 -3 -3 (-3 (-3 (-3 (-3 @ @
<o
0|0 (o)) o —
Ol — (o] o
—~| (@ O © ©
a |4 - | |

132

Appendix 2. Continued

Appendices

Problem | Optimal sequence
La32 Rowl 2 3 9 14 29 25 19 28 7 11
5 30 15 12 24 18 10 23 6 22
26 13 1 20 16 21 27 17 4 8
Row2 15 7 10 6 26 2 1 11 12 14
17 24 18 23 29 9 20 4 28 8
21 13 30 19 27 5 25 3 16 22
Row3 26 4 7 16 19 15 18 20 2 6
9 1 22 25 21 27 8 29 11 30
23 3 5 10 14 24 13 12 17 28
Rowd 6 7 15 27 5 12 9 10 13 3
25 23 1 22 18 16 19 21 2 14
28 17 4 29 30 11 24 26 8 20
Row5 8 27 15 12 14 21 23 29 5 16
1 24 17 4 7 22 3 9 18 10
20 2 11 28 26 13 6 25 30 19
Row6 1 13 17 22 4 10 3 2 26 7
8 28 27 21 9 14 5 11 30 6
15 19 23 25 24 29 12 16 20 18
Row7| 10 24 3 15 11 17 19 1 16 27
20 21 25 14 2 28 6 29 12 22
7 30 13 18 9 23 26 5 8 4
Row8 3 22 12 28 29 16 27 8 18 6
7 11 2 19 13 4 15 30 26 17
5 25 23 1 21 10 9 20 14 24
Rowd| 19 26 5 1 27 3 30 15 25 14
6 24 11 2 16 10 28 18 23 9
17 20 29 12 7 22 8 21 4 13
Rowl0 7 5 14 11 18 25 6 9 20 22
21 30 23 27 8 1 4 13 16 26
10 24 15 3 28 12 2 29 17 19
La33 Rowl 14 24 25 8 11 20 4 5 18 29
26 2 13 30 1 9 22 3 10 7
21 19 16 17 23 15 12 27 6 28
Row2 18 1 8 6 23 10 28 4 3 30
7 13 17 15 22 19 9 24 16 14
11 29 21 20 2 26 25 5 27 12
Rowa 4 5 14 16 1 19 22 26 9 7
25 15 6 18 11 12 13 20 23 27
30 2 10 17 28 21 8 3 29 24
Rowd o 10 12 13 19 16 17 15 20 28
3 8 4 23 18 24 7 6 29 14
5 25 30 1 2 11 21 26 22 27
Rows 1 2 18 4 23 8 3 9 16 12
27 20 14 29 30 19 6 26 15 13
7 25 24 11 21 28 22 17 5 10
Rowé 5 12 19 22 9 1 7 2 13 21
11 8 24 27 3 25 6 10 20 26
28 4 23 30 14 16 29 15 18 17
Row7 2 6 8 12 9 22 4 10 13 15
17 21 1 16 14 26 19 7 28 30
3 29 18 11 27 5 24 20 23 25
Rows 12 17 25 3 21 23 30 14 5 2
20 11 22 24 9 15 16 27 28 1
10 29 6 26 7 19 4 13 8 18
Rowd 3 22 10 11 15 25 8 12 23 19
27 24 7 17 26 18 30 29 13 20
6 4 9 16 5 2 28 14 21 1
Rowl0 3 7 4 8 18 10 11 23 1 12
27 28 21 5 14 25 30 22 9 6
17 13 19 20 24 29 26 16 2 15

133

Appendix 2. Continued

Appendices

Problem | Optimal sequence
La34 Rowl 7 9 19 3 6 20 4 1 8 5
10 12 11 23 30 25 14 13 24 21
16 18 2 15 17 26 22 27 28 29
Row2 1 4 22 23 27 5 3 12 29 8
6 10 11 7 17 15 2 19 26 14
28 25 30 18 9 16 20 21 24 13
Row3 2 8 16 20 7 12 14 25 3 4
13 18 17 21 5 24 6 23 15 19
11 29 22 30 27 1 9 10 26 28
Rowd 3 9 17 8 16 13 21 28 1 6
14 27 15 5 7 10 18 4 12 23
24 22 20 26 25 29 11 2 30 19
Row5 6 2 10 5 1 7 26 12 13 14
17 4 20 25 28 9 21 16 23 30
8 29 11 19 3 15 18 22 24 27
Rowé 17 7 4 21 8 22 10 9 25 26
29 3 6 13 19 20 16 28 30 15
18 5 24 23 2 12 11 14 27 1
Row7 7 14 21 1 29 2 15 16 20 3
12 24 10 8 4 26 30 5 9 6
19 13 22 27 11 23 17 25 28 18
Row8 5 9 17 2 11 13 18 23 25 27
7 21 15 24 16 26 28 4 19 8
6 1 30 12 10 3 14 20 29 22
Rowd 7 1 9 29 6 2 8 3 10 14
25 19 17 18 20 4 11 22 16 23
24 5 15 21 28 12 26 30 27 13
Rowl0 12 2 11 28 3 22 1 7 17 15
6 13 14 4 21 9 10 18 25 23
5 27 20 16 30 19 24 29 8 26
La35 Rowl 2 7 13 12 18 19 8 27 29 20
21 22 14 17 24 30 28 11 5 10
4 3 23 1 6 9 15 16 26 25
Row2 5 28 1 19 6 8 20 21 2 11
22 10 3 27 14 25 16 7 9 15
12 17 18 24 23 29 30 26 13 4
Row3 3 5 8 9 11 7 21 1 19 23
16 17 12 24 10 29 15 25 27 2
6 13 30 4 22 18 26 20 28 14
Rowd 1 8 3 10 5 12 11 6 24 21
19 7 13 16 18 28 22 14 4 17
20 26 2 23 9 30 15 25 27 29
Row5 3 8 9 11 20 10 16 12 13 17
29 14 18 27 2 5 19 30 4 22
6 24 26 21 15 25 1 7 28 23
Rowé 3 13 1 16 8 9 22 10 4 24
14 11 21 23 15 7 6 17 18 26
30 20 2 19 27 25 12 28 29 5
Row7s 4 5 11 24 12 7 15 25 26 29
2 28 3 22 6 8 9 10 13 16
14 19 20 30 1 17 23 21 27 18
Row8 5 6 24 3 9 7 14 18 21 23
20 22 27 11 28 30 29 2 8 13
15 26 16 10 17 19 25 4 12 1
Rowd 13 1 10 5 6 8 14 16 12 20
29 15 27 4 2 9 11 17 28 19
23 7 18 22 24 3 30 21 26 25
Rowl0 4 10 18 14 16 12 7 27 15 23
11 17 20 19 21 28 22 2 6 3
5 8 26 13 25 24 1 9 30 29

134

Appendix 2. Continued

Appendices

Problem | Optimal sequence

swvl6 Rowl 20 22 21 30 5 6 26 45 34 18
15 43 16 31 23 28 35 41 32 3

46 9 19 33 44 49 13 8 42 36

37 11 25 27 14 29 10 4 12 2

24 39 50 38 48 47 7 1 40 17

Row2 1 9 7 33 38 44 26 13 11 46
19 37 28 14 35 30 40 10 18 23

12 39 8 6 25 16 2 48 15 32

31 21 22 5 20 45 29 34 47 27

17 4 3 49 36 42 24 41 43 50

Row3a| 11 20 21 12 23 34 6 29 30 43
24 19 26 15 10 46 9 49 40 45

42 47 16 17 31 36 5 33 44 48

8 4 2 35 32 1 27 38 50 3

39 37 22 28 7 41 14 25 13 18

Rowd 3 4 14 12 26 30 21 37 50 17
1 18 19 33 16 25 11 29 9 23

41 40 42 39 32 49 2 13 47 46

10 31 28 27 34 22 7 15 48 43

44 38 36 5 20 24 35 8 6 45

Rows 29 1 17 4 39 13 49 14 23 47
28 44 40 32 3 26 43 30 18 16

10 35 38 20 11 46 42 50 22 7

24 33 37 48 12 27 21 2 15 9

45 31 41 19 6 34 8 36 25 5

Row6 3 20 6 48 12 10 46 47 16 22
31 26 39 29 4 1 28 36 9 42

33 38 23 24 2 44 13 17 30 5

7 35 27 18 43 49 50 45 34 32

21 11 14 37 40 15 19 41 25 8

Row7 3 10 5 16 1 22 23 43 29 31
25 17 32 33 38 42 48 13 8 19

34 36 2 50 39 40 7 21 18 15

11 4 9 44 46 49 24 26 37 30

27 45 47 35 20 28 41 12 6 14

Rows| 11 6 19 9 14 43 28 18 47 41
27 29 24 50 31 16 20 17 39 32

23 8 37 26 12 34 33 1 45 5

22 2 40 48 10 49 44 7 25 13

42 3 15 46 36 4 30 35 38 21

Rowd 1 25 6 9 43 44 34 32 31 38
18 35 40 17 23 13 11 49 42 27

30 12 41 2 50 19 4 36 48 28

47 3 14 45 7 39 5 8 20 29

22 46 24 10 26 15 33 16 37 21
Rowid 19 5 20 10 28 24 26 47 1 2
7 35 49 11 6 39 31 32 13 17

21 46 25 38 8 29 16 41 27 34

9 18 37 14 3 43 48 22 42 40

12 30 44 15 33 36 23 50 45 4

135

Appendix 2. Continued

Appendices

Problem | Optimal sequence

swvl7 Rowl 3 7 14 29 8 24 33 25 22 16
27 32 43 49 12 17 30 1 38 34

35 31 44 15 37 41 20 19 6 28

45 40 21 13 2 9 39 48 18 5

46 36 47 11 26 50 23 42 10 4

Row2 5 8 12 15 14 25 20 38 43 21
13 29 26 37 46 45 18 19 31 50

30 33 48 32 17 23 49 34 3 10

24 41 35 16 4 22 6 47 39 28

7 11 40 36 2 1 9 44 27 42

Row3 16 9 46 12 44 15 47 1 19 21
18 35 28 7 22 34 38 17 4 14

49 5 26 50 10 45 25 30 32 27

24 11 36 40 3 13 41 2 31 23

43 29 20 8 33 39 6 42 48 37

Rowd 1 21 36 18 13 29 31 39 19 43
27 22 44 4 38 23 33 46 45 15

41 47 30 16 49 40 12 10 20 25

48 42 28 50 32 17 34 9 5 35

6 8 14 37 2 24 11 26 3 7

Rows 13 3 11 22 9 30 23 34 32 8
36 25 14 40 31 47 16 24 33 46

37 10 29 42 20 26 35 44 28 6

41 39 1 27 19 49 43 15 17 5

38 18 50 2 7 48 45 4 21 12

Row6 8 4 2 15 16 23 3 18 36 45
19 30 24 39 48 6 13 32 50 27

46 21 10 41 47 42 37 33 38 28

7 31 9 12 14 34 35 22 44 25

49 20 40 17 43 29 5 1 26 11

Row7Z 15 41 3 26 2 6 32 31 46 28
5 4 12 1 45 29 10 20 22 21

9 36 23 40 25 38 44 48 47 39

43 42 14 35 33 30 49 11 34 37

16 27 19 13 24 50 8 17 7 18

Row8 7 15 30 3 11 1 5 33 6 14
38 49 32 29 18 21 25 45 35 47

28 24 9 50 19 31 41 26 27 17

48 46 20 37 44 12 40 34 43 8

4 2 39 22 23 42 10 36 16 13

Rowd 3 16 13 23 2 30 14 41 8 1
48 29 33 6 26 39 44 20 24 19

18 4 7 34 5 38 17 49 21 37

50 45 46 22 15 36 27 40 11 12

42 47 32 35 10 9 28 31 43 25
Rowl0 18 10 2 16 7 22 40 33 25 24
23 37 45 26 4 5 36 15 3 27

47 14 8 28 48 34 50 32 17 44

29 38 19 41 1 35 42 9 46 31

39 43 21 11 13 12 30 6 20 49

136

Appendix 2. Continued

Appendices

Problem | Optimal sequence

Swvis Rowl 15 1 16 21 12 44 25 3 45 7
50 22 26 31 36 37 19 9 40 48

17 23 10 27 11 34 5 33 38 46

49 13 20 8 18 28 32 47 14 6

2 39 43 35 4 30 41 42 29 24

Row2 13 17 32 43 29 47 30 49 25 1
46 27 23 28 48 6 12 15 41 42

37 33 19 24 45 3 40 8 22 21

4 35 36 18 10 14 26 7 11 50

44 31 5 2 16 39 38 34 20 9

Row3 19 17 18 2 27 22 33 25 29 50
39 42 36 23 45 38 24 35 21 9

48 40 10 26 3 15 12 47 14 1

7 16 30 34 4 11 32 6 44 37

49 41 20 31 5 13 8 43 28 46

Rowd 12 26 32 33 47 17 11 5 19 45
31 49 41 30 25 35 28 50 16 39

13 48 36 22 34 14 29 43 6 2

38 18 8 1 3 21 20 42 15 44

24 4 23 10 7 46 40 9 27 37

Rows| 25 13 3 8 45 4 5 27 6 50
43 11 37 35 14 26 39 36 29 31

18 2 20 42 40 41 49 21 24 48

17 44 12 38 28 15 19 30 9 46

22 10 16 23 32 33 1 34 7 47

Rowe 32 5 30 17 13 10 22 46 47 36
43 40 2 3 14 31 34 19 11 33

42 27 16 8 28 7 39 37 21 38

26 23 49 4 35 44 9 41 29 25

45 20 18 50 24 6 15 1 12 48

Rowz 12 11 42 45 29 3 15 36 23 19
35 47 32 48 44 25 21 18 24 13

38 31 30 50 2 1 14 40 34 41

10 5 8 37 39 27 20 16 43 49

26 9 46 33 22 17 6 28 7 4

Row8 7 14 12 20 25 47 35 10 8 30
34 27 16 23 38 13 43 3 45 44

17 26 5 18 29 48 19 21 6 1

40 39 28 36 50 15 49 46 22 9

2 24 11 42 31 4 37 41 33 32

Rowd 2 12 16 9 26 23 35 46 29 32
49 22 10 13 50 27 39 8 17 34

48 6 11 25 37 24 44 41 31 36

14 7 33 3 42 30 5 28 19 15

40 18 1 20 4 45 43 38 47 21
Rowl0 5 19 2 42 24 7 18 8 49 13
40 35 47 30 17 16 45 34 29 31

27 41 37 25 10 11 21 50 32 39

33 38 1 46 20 12 23 48 43 28

26 36 22 15 44 14 6 9 3 4

137

Appendix 2. Continued

Appendices

Problem | Optimal sequence

Swv19 Rowl 4 14 27 6 49 5 30 10 21 29
39 8 28 36 42 9 43 35 24 47

46 17 50 38 45 13 23 19 40 12

41 1 26 15 48 32 31 2 22 25

34 3 18 33 20 7 44 37 11 16

Row2z 20 21 5 2 10 38 39 26 1 47
45 28 32 17 6 8 14 15 33 7

50 27 16 13 11 48 49 34 24 3

29 36 25 4 37 18 9 35 19 23

42 44 30 40 41 22 46 31 12 43

Row3 5 11 36 16 33 27 42 14 40 29
43 2 20 26 44 25 6 10 37 9

30 32 3 8 18 12 4 17 1 45

22 24 28 35 13 21 34 50 38 31

23 48 15 41 19 47 39 46 7 49

Rowd 3 2 6 21 23 39 16 33 50 12
11 26 28 46 8 7 5 15 18 32

38 22 27 44 24 9 45 49 43 4

19 29 20 30 1 42 25 40 36 31

37 17 13 48 10 41 34 35 14 47

Rows 44 3 24 46 34 23 41 1 9 43
10 2 50 40 4 22 29 20 19 48

12 13 33 32 38 18 11 5 47 15

27 8 16 7 26 21 42 31 45 39

6 36 49 30 17 25 28 14 37 35

Rowe 26 39 23 4 36 49 40 22 50 44
18 12 15 34 11 14 3 27 41 32

1 6 38 31 35 42 21 46 17 33

45 5 13 29 20 24 30 37 43 47

16 2 19 9 48 8 10 7 25 28

Row7 13 22 4 16 8 26 23 47 49 19
33 50 28 18 5 30 45 21 34 6

15 44 14 25 17 38 37 42 9 39

24 1 41 7 12 31 48 11 3 46

40 35 32 27 43 20 2 36 29 10

Rows 2 5 9 29 15 24 17 33 39 20
6 23 41 35 4 50 26 46 49 7

16 19 28 40 43 44 48 3 42 31

27 45 12 36 34 14 11 13 8 22

37 21 1 10 38 47 32 25 18 30

Rowd! o9 12 29 26 15 13 33 35 43 34
4 19 39 20 11 44 48 41 2 3

21 24 36 16 6 40 17 27 37 14

45 7 23 30 28 49 46 18 1 47

10 42 50 22 5 31 25 8 32 38
Rowl0 6 10 14 17 4 18 5 26 30 9
36 37 46 21 1 24 43 42 15 31

40 11 34 23 8 45 33 25 28 47

41 50 39 32 38 7 27 16 12 48

13 22 44 29 3 35 19 20 2 49

138

Appendix 2. Continued

Appendices

Problem | Optimal sequence

Swv20 Rowl 4 28 19 10 21 16 38 27 44 48
33 34 46 8 12 45 1 6 14 23

17 24 42 18 39 2 29 9 37 41

7 11 20 15 49 31 47 25 30 13

22 5 36 35 40 32 3 26 43 50

Row2 &5 23 7 44 3 4 47 14 17 38
41 8 9 29 45 16 18 21 2 42

30 6 34 15 37 31 20 27 33 10

22 28 43 46 25 39 13 11 36 49

40 32 19 1 48 35 26 50 24 12

Row3 15 24 19 29 30 31 3 25 43 41
12 7 39 49 17 22 40 9 4 1

20 26 23 50 6 35 34 47 2 18

8 37 5 44 46 21 38 11 36 45

28 33 32 13 10 48 16 14 42 27

Rowd 3 6 1 4 22 18 10 34 44 47
2 40 5 23 36 26 7 13 20 39

38 41 21 30 25 28 24 33 17 27

46 48 49 12 14 42 32 15 43 29

50 16 8 45 11 31 35 19 9 37

Rows| 18 6 45 28 35 2 13 12 3 25
39 47 9 20 23 19 16 32 48 37

4 5 49 50 26 36 40 41 44 27

8 42 11 22 43 7 30 46 21 34

38 10 17 31 29 14 24 33 15 1

Rowe 11 41 5 7 9 3 25 21 34 50
37 38 23 15 14 28 48 30 39 29

13 31 44 1 27 42 43 8 20 6

19 17 16 32 26 36 4 49 46 2

12 35 22 40 10 24 18 47 45 33

Row7Z 29 32 20 5 7 1 28 14 15 8
36 22 19 11 34 4 27 49 37 16

44 18 39 33 24 17 40 21 9 12

13 30 23 2 42 10 3 26 43 47

31 50 38 6 48 41 35 46 45 25

Rows 32 5 12 37 14 42 20 45 47 28
22 4 33 21 50 24 6 29 26 10

38 30 3 44 46 17 48 16 1 15

19 11 18 25 31 36 8 7 41 34

35 39 2 13 43 9 27 23 49 40

Rowd o 8 10 23 15 17 35 24 21 25
26 13 50 38 11 20 31 22 27 33

34 3 42 41 30 6 36 1 48 32

2 44 7 45 40 49 28 14 18 16

37 46 29 43 5 19 4 12 39 47
Rowl10 33 15 22 35 8 24 28 2 44 46
12 30 16 40 27 21 3 6 36 11

50 25 43 17 32 1 19 26 31 9

47 38 42 4 39 5 34 7 48 45

14 10 18 49 41 23 20 37 13 29

139

Appendices

Appendix 3. Non-dominated solutions for M-La01 to M-La20

Non-dominated Solutions

C T " C T " C T " C T "
max max Z max max ZV\{UI max max V\{Ui max max Z]
i=l i= i= i=
M-La01 M-La07 M-Lal3 M-Lal7
521 79 4 710 186 3 934 342 8 757 156 6
521 191 3 718 151 5 934 391 6 766 102 6
523 120 3 719 61 3 952 317 11 808 153 5
526 96 3 748 33 2 954 245 6 882 219 4
530 58 3 755 23 4 963 210 9 923 208 4
539 76 2 766 24 3 971 199 10 945 63 5
597 38 3 773 6 1 979 226 8 970 86 4
603 54 2 774 0 0 994 392 4 1033 112 2
614 143 1 M-La08 1019 307 5 M-Lal8
620 73 1 689 146 5 1034 125 9 834 206 3
633 0 0 696 124 6 1080 144 8 882 184 4
M-La02 697 117 7 M-Lal4 922 278 2
596 86 2 705 133 4 925 359 8 978 235 2
607 11 2 746 91 7 947 153 6 998 69 4
610 11 1 755 116 6 961 114 8 998 149 3
626 6 2 755 132 5 976 25 4 M-Lal9
M-La03 757 113 6 977 14 4 850 126 3
451 161 3 762 28 2 1030 467 3 872 77 4
454 143 3 783 0 0 1063 34 3 882 56 3
461 129 3 M-La9 M-Lal5 1000 212 2
475 83 4 809 17 3 978 441 6 La20
477 65 3 809 23 2 989 338 11 870 240 3
482 34 3 879 276 1 989 354 8 875 84 4
497 30 2 Lal0 991 228 9 875 175 3
581 20 1 781 21 3 1006 199 10 879 88 3
616 2 1 806 8 1 1014 160 6 902 66 5
655 0 0 824 2 1 1039 441 5 920 36 4
M-La04 890 0 0 1049 465 4 958 347 2
543 108 4 M-Lall 1088 371 5 963 169 2
552 276 3 879 360 9 1108 391 2 1018 34 3
553 63 3 911 343 10 1122 89 11 1079 228 1
554 12 3 919 304 10 1132 113 8
558 4 1 919 343 9 1133 96 10
691 0 0 923 308 8 1159 129 7
M-La05 925 301 7 M-Lal6
476 16 3 927 97 4 879 203 6
476 46 2 932 46 3 881 195 7
480 26 2 956 9 2 881 214 5
496 135 1 M-Lal12 895 176 6
513 45 1 862 308 12 895 191 5
551 12 3 862 501 8 897 148 7
566 12 2 887 187 11 915 154 6
569 8 2 887 282 10 922 173 4
611 7 1 887 411 9 987 327 3
M-La06 891 234 10 998 246 3
664 140 4 896 239 9 1017 134 8
664 198 3 897 372 8 1072 313 2
673 115 5 898 104 5 1112 103 7
755 235 1 945 102 6 1117 88 8
763 78 5 1122 144 6
764 24 3 1125 101 7
776 10 3
779 11 1

140

REFERENCES

REFERENCES

(1988). "OPERATIONS RESEARCH: THE NEXT DECADE." Operations Research 36(4): 619.

Abdullah, S. and M. Abdolrazzagh-Nezhad (2014). "Fuzzy job-shop scheduling problems: A
review." Information Sciences 278(0): 380-407.

Adams, J., E. Balas and D. Zawack (1988). "The shifting bottleneck procedure for job shop
scheduling." Manage. Sci. 34(3): 391-401.

Adibi, M. A., M. Zandieh and M. Amiri (2010). "Multi-objective scheduling of dynamic job shop
using variable neighborhood search." Expert Systems with Applications 37(1): 282-287.

Allahverdi, A. (2015). "The third comprehensive survey on scheduling problems with setup
times/costs." European Journal of Operational Research 246(2): 345-378.

Allahverdi, A., J. N. D. Gupta and T. Aldowaisan (1999). "A review of scheduling research
involving setup considerations." Omega 27(2): 219-239.

Allahverdi, A., C. T. Ng, T. C. E. Cheng and M. Y. Kovalyov (2008). "A survey of scheduling
problems with setup times or costs." European Journal of Operational Research 187(3): 985-
1032.

Balas, E. (1965). "AN ADDITIVE ALGORITHM FOR SOLVING LINEAR PROGRAMS WITH ZERO-ONE
VARIABLES." Operations Research 13(4): 517.

Balas, E. (1967). "DISCRETE PROGRAMMING BY THE FILTER METHOD." Operations Research
15(5): 915.

Bandyopadhyay, S. and S. Saha (2013). Unsupervised Classification, Similarity Measures,
Classical and Metaheuristic Approaches, and Applications, Springer London.

Bayindir, Z., P. (2005). "Production and Distribution Systems class notes."

Baykasoglu, A., L. 6zbakir and A. S6nmez (2004). "Using multiple objective tabu search and
grammars to model and solve multi-objective flexible job shop scheduling problems." Journal
of Intelligent Manufacturing 15(6): 777-785.

Bean, J. C. (1994). "Genetic Algorithms and Random Keys for Sequencing and Optimization."
ORSA Journal on Computing 6(2): 154.

Beasley, J. E. (1990). "OR-Library: Distributing Test Problems by Electronic Mail." J Oper Res Soc
41(11): 1069-1072.

Bertsimas, D. and J. Tsitsiklis (1993). "Simulated Annealing." Statistical Science 8(1): 10-15.

Bilkay, O., O. Anlagan and S. E. Kilic (2004). "Job shop scheduling using fuzzy logic." The
International Journal of Advanced Manufacturing Technology 23(7): 606-619.

Bowman, E. H. (1959). "THE SCHEDULE-SEQUENCING PROBLEM." Operations Research 7(5):
621.

Browne, J., M. E. J. O'Kelly and B. J. Davies (1982). "Scheduling in a batch or job shop
production environment." Engineering Management International 1(3): 173-184.

141

REFERENCES

Calis, B. and S. Bulkan (2013). "A research survey: review of Al solution strategies of job shop
scheduling problem." Journal of Intelligent Manufacturing: 1-13.

Calis, B. and S. Bulkan (2015). "A research survey: review of Al solution strategies of job shop
scheduling problem." Journal of Intelligent Manufacturing 26(5): 961-973.

Caramia, M. and P. Dell'Olmo (2008). Multi-objective Management in Freight Logistics:
Increasing Capacity, Service Level and Safety with Optimization Algorithms, Springer London.

Chakraborty, U. K. (2009). Computational Intelligence in Flow Shop and Job Shop Scheduling,
Springer Publishing Company, Incorporated.

Chankong, V. and Y. Y. Haimes (1983). "Multiobjective Decision Making: Theory and
Methodology. Elsevier Science Publishing, New York."

Charnes, A. and W. W. Cooper (1961). "Management models and industrial applications of
linear programming." Journal of the Franklin Institute 272(4): 334.

Charnes, A., W. W. Cooper and R. O. Ferguson (1955). "OPTIMAL ESTIMATION OF EXECUTIVE
COMPENSATION BY LINEAR PROGRAMMING." Management Science 1(2): 138-151.

Chaudhry, I. A. (2012). "Job shop scheduling problem with alternative machines using genetic
algorithms." Journal of Central South University 19(5): 1322-1333.

Chaudhry, I. A. and A. A. Khan (2015). "A research survey: review of flexible job shop
scheduling techniques." International Transactions in Operational Research: n/a-n/a.

Cheng, R., M. Gen and Y. Tsujimura (1996). "A tutorial survey of job-shop scheduling problems
using genetic algorithms—I. representation." Computers & Industrial Engineering 30(4): 983-
997.

Chin Soon, C., M. Y. H. Low, A. |. Sivakumar and G. Kheng Leng (2006). A Bee Colony
Optimization Algorithm to Job Shop Scheduling. Simulation Conference, 2006. WSC 06.
Proceedings of the Winter.

Coello Coello, C. A., G. B. Lamont and D. A. Van Veldhuisen. (2007). "Evolutionary algorithms
for solving multi-objective problems." from http://dx.doi.org/10.1007/978-0-387-36797-2.

Collier, D. A. and J. R. Evans (2009). OM, an Innovative Approach to Teaching Operation
Management Mason, OH, US, Cengage

Colorni, A., M. Dorigo and V. Maniezzo (1991). "Distributed optimization by ant colonies."
Proceedings of the first European conference on artificial life 142: 134-142.

Dalfard, V. M. and G. Mohammadi (2012). "Two meta-heuristic algorithms for solving multi-
objective flexible job-shop scheduling with parallel machine and maintenance constraints."
Computers & Mathematics with Applications 64(6): 2111-2117.

Darwin, C. (1859). On the Origin of Species. . John Murray, London.

Davis, L. (1985). Applying adaptive algorithms to epistatic domains. Proceedings of the 9th
international joint conference on Artificial intelligence - Volume 1. Los Angeles, California,
Morgan Kaufmann Publishers Inc.: 162-164.

Davis, L. (1985). Job Shop Scheduling with Genetic Algorithms. Proceedings of the 1st
International Conference on Genetic Algorithms, L. Erlbaum Associates Inc.: 136-140.

142

REFERENCES

Deb, K., A. Pratap, S. Agarwal and T. Meyarivan (2002). "A fast and elitist multiobjective genetic
algorithm: NSGA-II." Evolutionary Computation, IEEE Transactions on 6(2): 182-197.

Dorndorf, U. and E. Pesch (1995). "Evolution based learning in a job shop scheduling
environment." Computers & Operations Research 22(1): 25-40.

Ebadian, M., M. Rabbani, S. A. Torabi and F. Jolai (2009). "Hierarchical production planning and
scheduling in make-to-order environments: reaching short and reliable delivery dates."
International Journal of Production Research 47(20): 5761-5789.

Eilon, S. and I. G. Chowdhury (1976). "Due dates in job shop scheduling." International Journal
of Production Research 14(2): 223-237.

Fang, H. L., P. Ross and D. Corne (1993). A Promising Genetic Algorithm Approach to Job-Shop
Scheduling, Rescheduling, and Open-Shop Scheduling Problems. Proceedings of the Fifth
Annual Conference on Genetic Algorithms, Morgan Kaufmann: 375-382.

Feo, T. A. and M. G. C. Resende (1989). "A probabilistic heuristic for a computationally difficult
set covering problem." Oper. Res. Lett. 8(2): 67-71.

Fera, M., F. Fruggiero, A. Lambiase, G. Martino and M. E. Nenni (2013). Production Scheduling
Approaches for Operations Management.

Fishburn, P. C. (1967). ADDITIVE UTILITIES WITH INCOMPLETE PRODUCT SETS: APPLICATION
TO PRIORITIES AND ASSIGNMENTS, INFORMS: Institute for Operations Research. 15: 537-542.

Fonseca, C. M. and P. J. Fleming (1993). Genetic Algorithms for Multiobjective Optimization:
FormulationDiscussion and Generalization. Proceedings of the 5th International Conference on
Genetic Algorithms, Morgan Kaufmann Publishers Inc.: 416-423.

Fox, B., W. Xiang and H. Lee (2007). "Industrial applications of the ant colony optimization
algorithm." The International Journal of Advanced Manufacturing Technology 31(7-8): 805-
814.

Framifidn Torres, J. M., R. Leisten and R. Ruiz Garcia (2014). Manufacturing scheduling systems
: an integrated view on models, methods and tools. London, Springer.

Frutos, M. and F. Tohmé (2012). "A Multi-objective Memetic Algorithm for the Job-Shop
Scheduling Problem." Operational Research 13(2): 233-250.

Gao, K. Z., P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai and C. S. Chong (2014). "Pareto-based
grouping discrete harmony search algorithm for multi-objective flexible job shop scheduling."
Information Sciences 289: 76-90.

Gembicki, F. and Y. Y. Haimes (1975). "Approach to performance and sensitivity multiobjective
optimization: The goal attainment method." Automatic Control, IEEE Transactions on 20(6):
769-771.

Gen, M. and R. Cheng (2000). Genetic Algorithms and Engineering Optimization, Wiley.

Gen, M., Y. Tsujimura and E. Kubota (1994). Solving job-shop scheduling problems by genetic
algorithm. Systems, Man, and Cybernetics, 1994. Humans, Information and Technology., 1994
IEEE International Conference on.

Glover, F. (1989,1990). "Tabu Search-- Part I." ORSA Journal on Computing 1(3): 190.

143

REFERENCES

Glover, F. (1990). "Tabu Search: A Tutorial." Interfaces 20(4): 74-94.

Goldberg, D. E. and J. Robert Lingle (1985). AllelesLociand the Traveling Salesman Problem.
Proceedings of the 1st International Conference on Genetic Algorithms, L. Erlbaum Associates
Inc.: 154-159.

Holland, J. H. (1975). Adaptation in natural and artificial systems : an introductory analysis with
applications to biology, control, and artificial intelligence. Ann Arbor, University of Michigan
Press.

Hollier, R. H. (1975). "A review of: “Introduction to Sequencing and Scheduling.” By K. R.
BAKER. (New York : Wiley, 1974.) [Pp. 305] Price £8-50." International Journal of Production
Research 13(6): 654-654.

Horn, J., N. Nafpliotis and D. E. Goldberg (1994). A niched Pareto genetic algorithm for
multiobjective optimization. Evolutionary Computation, 1994. IEEE World Congress on
Computational Intelligence., Proceedings of the First IEEE Conference on.

Hosseinabadi, A. A. R., H. Siar, S. Shamshirband, M. Shojafar and M. H. N. M. Nasir (2014).
"Using the gravitational emulation local search algorithm to solve the multi-objective flexible
dynamic job shop scheduling problem in Small and Medium Enterprises." Annals of Operations
Research 229(1): 451-474.

Hsu, T. C. (2006). "New expression of scheduling performance measures." International Journal
of Production Research 44(15): 3147-3158.

Huang, J. and G. A. Siier (2015). "A dispatching rule-based genetic algorithm for multi-objective
job shop scheduling using fuzzy satisfaction levels." Computers & Industrial Engineering 86: 29-
42.

Huang, R.-H. (2010). "Multi-objective job-shop scheduling with lot-splitting production."
International Journal of Production Economics 124(1): 206-213.

Jain, A. S. and S. Meeran (1999). "Deterministic job-shop scheduling: Past, present and future."
European Journal of Operational Research 113(2): 390-434.

Jia, S. and Z.-H. Hu (2014). "Path-relinking Tabu search for the multi-objective flexible job shop
scheduling problem." Computers & Operations Research 47: 11-26.

Jin, Y. (2003). Advanced Fuzzy Systems Design and Applications, Physica-Verlag.

Jones, A,, L. C. Rabelo and A. T. Sharawi (2001). Survey of Job Shop Scheduling Techniques.
Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc.

Kacem, I., S. Hammadi and P. Borne (2002). "Approach by localization and multiobjective
evolutionary optimization for flexible job-shop scheduling problems." Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 32(1): 1-13.

Kachitvichyanukul, V. and S. Sitthitham (2011). "A two-stage genetic algorithm for multi-
objective job shop scheduling problems." Journal of Intelligent Manufacturing 22(3): 355-365.

Kaplanoglu, V. (2016). "An object-oriented approach for multi-objective flexible job-shop
scheduling problem." Expert Systems with Applications 45: 71-84.

144

REFERENCES

Karthikeyan, S., P. Asokan and S. Nickolas (2014). "A hybrid discrete firefly algorithm for multi-
objective flexible job shop scheduling problem with limited resource constraints." The
International Journal of Advanced Manufacturing Technology 72(9): 1567-1579.

Kennedy, J. and R. Eberhart (1995). Particle swarm optimization. Neural Networks, 1995.
Proceedings., IEEE International Conference on.

Kim, S. C. and P. M. Bobrowski (1994). "Impact of sequence-dependent setup time on job shop
scheduling performance." International Journal of Production Research 32(7): 1503-1520.

Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi (1983). "Optimization by Simulated Annealing."
Science, Number 4598, 13 May 1983 220, 4598: 671-680.

Kobayashi, S., . Ono and M. Yamamura (1995). An Efficient Genetic Algorithm for Job Shop
Scheduling Problems. Proceedings of the 6th International Conference on Genetic Algorithms,
Morgan Kaufmann Publishers Inc.: 506-511.

Kolen, A. W. J., J. K. Lenstra, C. H. Papadimitriou and F. C. R. Spieksma (2007). "Interval
scheduling: A survey." Naval Research Logistics (NRL) 54(5): 530-543.

Korytkowski, P., S. Rymaszewski and T. Wisniewski (2013). "Ant colony optimization for job
shop scheduling using multi-attribute dispatching rules." The International Journal of Advanced
Manufacturing Technology 67(1-4): 231-241.

Lei, D. (2008). "A Pareto archive particle swarm optimization for multi-objective job shop
scheduling." Computers & Industrial Engineering 54(4): 960-971.

Lei, D. (2011). "Simplified multi-objective genetic algorithms for stochastic job shop
scheduling." Applied Soft Computing 11(8): 4991-4996.

Lei, D. (2012). "Interval job shop scheduling problems." The International Journal of Advanced
Manufacturing Technology 60(1-4): 291-301.

Lei, D. (2012). "Multi-objective artificial bee colony for interval job shop scheduling with
flexible maintenance." The International Journal of Advanced Manufacturing Technology 66(9):
1835-1843.

Li, J.-Q., Q.-K. Pan and J. Chen (2012). "A hybrid Pareto-based local search algorithm for multi-
objective flexible job shop scheduling problems." International Journal of Production Research
50(4): 1063-1078.

Li, J.-Q., Q.-K. Pan and K.-Z. Gao (2011). "Pareto-based discrete artificial bee colony algorithm
for multi-objective flexible job shop scheduling problems." The International Journal of
Advanced Manufacturing Technology 55(9-12): 1159-1169.

Li, J.-g., Q.-k. Pan and Y.-C. Liang (2010). "An effective hybrid tabu search algorithm for multi-
objective flexible job-shop scheduling problems." Computers & Industrial Engineering 59(4):
647-662.

Li, J.-Q., Q.-K. Pan and M. F. Tasgetiren (2014). "A discrete artificial bee colony algorithm for
the multi-objective flexible job-shop scheduling problem with maintenance activities." Applied
Mathematical Modelling 38(3): 1111-1132.

145

REFERENCES

Li, J., Q. Pan and S. Xie (2012). "An effective shuffled frog-leaping algorithm for multi-objective
flexible job shop scheduling problems." Applied Mathematics and Computation 218(18): 9353-
9371.

Li, L. and J.-z. Huo (2009). "Multi-Objective Flexible Job-Shop Scheduling Problem in Steel
Tubes Production." Systems Engineering - Theory & Practice 29(8): 117-126.

Lin, S.-C., E. D. Goodman and W. F. Punch A Genetic Algorithm Approach to Dynamic Job Shop
Scheduling Problems. Michigan State University, Genetic Algorithms Research and Applications
Group.

Low, C., T.-H. Wu and C.-M. Hsu (2005). "Mathematical modelling of multi-objective job shop
scheduling with dependent setups and re-entrant operations.” The International Journal of
Advanced Manufacturing Technology 27(1-2): 181-189.

M’Hallah, R. and R. L. Bulfin (2007). "Minimizing the weighted number of tardy jobs on a single
machine with release dates." European Journal of Operational Research 176(2): 727-744.

Manikas, A. and Y.-L. Chang (2009). "Multi-criteria sequence-dependent job shop scheduling
using genetic algorithms." Computers & Industrial Engineering 56(1): 179-185.

Mladenovi, N. and P. Hansen (1997). "Variable neighborhood search." Comput. Oper. Res.
24(11): 1097-1100.

Moreno Pérez, J. A., J. Marcos Moreno-Vega and |. Rodriguez Martin (2003). "Variable
neighborhood tabu search and its application to the median cycle problem." European Journal
of Operational Research 151(2): 365-378.

Moslehi, G. and M. Mahnam (2011). "A Pareto approach to multi-objective flexible job-shop
scheduling problem using particle swarm optimization and local search." International Journal
of Production Economics 129(1): 14-22.

Nakano, R. and T. Yamada (1991). Conventional Genetic Algorithm for Job Shop Problems.
Proceedings of the 4th International Conference on Genetic Algorithms. B. a. Booker, Morgan
Kaufman.

Niu, S. H., S. K. Ong and A. Y. C. Nee (2013). "An improved intelligent water drops algorithm for
solving multi-objective job shop scheduling." Engineering Applications of Artificial Intelligence
26(10): 2431-2442.

Norman, B. (1995). Random keys genetic algorithm for scheduling unabridged version.
Technical report, Department of Industrial and Operations Engineering, University of Michigan,
Ann Arbor.

Oliver, I. M., D. J. Smith and J. R. C. Holland (1987). A study of permutation crossover operators
on the traveling salesman problem. Proceedings of the Second International Conference on
Genetic Algorithms on Genetic algorithms and their application. Cambridge, Massachusetts,
USA, L. Erlbaum Associates Inc.: 224-230.

Ono, |., M. Yamamura and S. Kobayashi (1996). A genetic algorithm for job-shop scheduling
problems using job-based order crossover. Evolutionary Computation, 1996., Proceedings of
IEEE International Conference on.

Oyetuniji, E. 0. (2009). "Some Common Performance Measures in Scheduling Problems: Review
Article." Research Journal of Applied Sciences, Engineering and Technology 1(2): 6-9.

146

REFERENCES

Pérez, M. A. F. and F. M. P. Raupp (2014). "A Newton-based heuristic algorithm for multi-
objective flexible job-shop scheduling problem." Journal of Intelligent Manufacturing: 1-8.

Pham, D. T., A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim and M. Zaidi (2006). The Bees
Algorithm, A Novel Tool for Complex Optimisation Problems. Proceedings of the 2nd
International Virtual Conference on Intelligent Production Machines and Systems (IPROMS
2006), Oxford, Elsevier.

Pham, D. T. and D. Karaboga (1998). Intelligent Optimisation Techniques: Genetic Algorithms,
Tabu Search, Simulated Annealing and Neural Networks, Springer-Verlag New York, Inc.

Pinedo, L. (2005). Planning And Scheduling In Manufacturing And Services, Springer
Science+Business Media.

Pinedo, M. (1995). "Scheduling-theory, algorithms and systems." Prentice-Hall, Englewood
Cliffs, NJ.

Pinedo, M. and X. A. CHAO (1999). Operations scheduling with applications in manufacturing
and services, McGraw-Hill Companies.

Ponnambalam, S. G., V. Ramkumar and N. Jawahar (2001). "A multiobjective genetic algorithm
for job shop scheduling.” Production Planning & Control 12(8): 764-774.

Qiu, X. and H. Y. K. Lau (2013). "An AlS-based hybrid algorithm with PDRs for multi-objective
dynamic online job shop scheduling problem." Applied Soft Computing 13(3): 1340-1351.

Rahmati, S. H. A., M. Zandieh and M. Yazdani (2012). "Developing two multi-objective
evolutionary algorithms for the multi-objective flexible job shop scheduling problem." The
International Journal of Advanced Manufacturing Technology 64(5): 915-932.

Ramkumar, R., A. Tamilarasi and T. Devi (2012). "A real time practical approach for multi
objective job shop scheduling using fuzzy logic approach." J. Comput. Sci., 8: 606-612.

Rangaiah, G. P. and A. Bonilla-Petriciolet (2013). Multi-Objective Optimization in Chemical
Engineering : Developments and Applications. Somerset, Wiley.

Rodammer, F. A. and K. P. White, Jr. (1988). "A recent survey of production scheduling."
Systems, Man and Cybernetics, IEEE Transactions on 18(6): 841-851.

Sabuncuoglu, I. and M. Bayiz (1999). "Job shop scheduling with beam search." European
Journal of Operational Research 118(2): 390-412.

Sakawa, M. and T. Mori (1999). "An efficient genetic algorithm for job-shop scheduling
problems with fuzzy processing time and fuzzy duedate." Computers & Industrial Engineering
36(2): 325-341.

Sawik, T. (2006). "Hierarchical approach to production scheduling in make-to-order assembly."
International Journal of Production Research 44(4): 801-830.

Schaffer, J. D. (1985). Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. Proceedings of the 1st International Conference on Genetic Algorithms, L. Erlbaum
Associates Inc.: 93-100.

Sha, D. Y. and C.-Y. Hsu (2006). "A hybrid particle swarm optimization for job shop scheduling
problem." Computers & Industrial Engineering 51(4): 791-808.

147

REFERENCES

Sha, D. Y. and H.-H. Lin (2010). "A multi-objective PSO for job-shop scheduling problems."
Expert Systems with Applications 37(2): 1065-1070.

Shah, S. C. and A. Kusiak (2004). "Data mining and genetic algorithm based gene/SNP
selection." Artificial Intelligence in Medicine 31(3): 183-196.

Shahsavari-Pour, N. and B. Ghasemishabankareh (2013). "A novel hybrid meta-heuristic
algorithm for solving multi objective flexible job shop scheduling." Journal of Manufacturing
Systems 32(4): 771-780.

Shao, X., W. Liu, Q. Liu and C. Zhang (2013). "Hybrid discrete particle swarm optimization for
multi-objective flexible job-shop scheduling problem." The International Journal of Advanced
Manufacturing Technology 67(9): 2885-2901.

Sharma, P. and A. Jain (2015). "A review on job shop scheduling with setup times." Proceedings
of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture.

Shen, X.-N. and X. Yao (2015). "Mathematical modeling and multi-objective evolutionary
algorithms applied to dynamic flexible job shop scheduling problems." Information Sciences
298: 198-224.

Shivasankaran, N., P. S. Kumar and K. V. Raja (2015). "Hybrid Sorting Immune Simulated
Annealing Algorithm For Flexible Job Shop Scheduling." International Journal of Computational
Intelligence Systems 8(3): 455-466.

Singh, M., M. Singh, S. S. Mahapatra and N. Jagadev (2015). "Particle swarm optimization
algorithm embedded with maximum deviation theory for solving multi-objective flexible job
shop scheduling problem." The International Journal of Advanced Manufacturing Technology:
1-14.

SMITH, R. D. (1966). A SOLUTION TO ONE TYPE OF THE N-JOB, M-MACHINE SEQUENCING
PROBLEM. MASTER OF SCIENCE Master's thesis, Texas Technological College.

Sotskov, J. N., T. Tautenhahn and F. Werner (1996). On the Application of Insertion Technigues
for Job Shop Problems with Setup Times, Otto-von-Guericke-Univ., Fak. fiir Math.

Srinivas, N. and K. Deb (1994). "Muiltiobjective optimization using nondominated sorting in
genetic algorithms." Evol. Comput. 2(3): 221-248.

Srinivasan, V. (1971). "A hybrid algorithm for the one machine sequencing problem to
minimize total tardiness." Naval Research Logistics Quarterly 18(3): 317-327.

Su, N., Z. Mengjie, M. Johnston and T. Kay Chen (2014). "Automatic Design of Scheduling
Policies for Dynamic Multi-objective Job Shop Scheduling via Cooperative Coevolution Genetic
Programming." Evolutionary Computation, IEEE Transactions on 18(2): 193-208.

Suresh, R. K. and K. M. Mohanasundaram (2006). "Pareto archived simulated annealing for job
shop scheduling with multiple objectives." The International Journal of Advanced
Manufacturing Technology 29(1-2): 184-196.

Syswerda, G. (1990). Schedule optimization using genetic algorithms. New York, | Davis, edVan
Nostrand Reinhold.

148

REFERENCES

Tamaki, H. and Y. Nishikawa (1992). A Paralleled Genetic Algorithm Based on a Neighborhood
Model and Its Application to the Jobshop Scheduling. In Proc. of the Second Int. Conf. on
Parallel Problem Soloing from Nature, Elsevier

Science Publishers, North-Holland: 573-582.

Tavakkoli-Moghaddam, R., M. Azarkish and A. Sadeghnejad-Barkousaraie (2011). "A new
hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling
problem." Expert Systems with Applications 38(9): 10812-10821.

Teodorovic, D. and M. Dell'Orco (2005). Bee Colony Optimization -- A Cooperative Learning
Approach to Complex Transportation Problems. 10th EWGT Meeting and 16th Mini-EURO
Conference.

Tu, J. V. (1996). "Advantages and disadvantages of using artificial neural networks versus
logistic regression for predicting medical outcomes." Journal of Clinical Epidemiology 49(11):
1225-1231.

Van Veldhuizen, D. A. (1999). Multiobjective evolutionary algorithms: Classifications, analyses,
and new innovations. 9928483 Ph.D., Air Force Institute of Technology.

Vilcot, G. and J.-C. Billaut (2008). "A tabu search and a genetic algorithm for solving a bicriteria
general job shop scheduling problem." European Journal of Operational Research 190(2): 398-
411.

Wang, L. (1984). On the solution of special sequencing problems, TU

Magdeburg.

Wang, L., S. Wang and M. Liu (2013). "A Pareto-based estimation of distribution algorithm for
the multi-objective flexible job-shop scheduling problem." International Journal of Production
Research 51(12): 3574-3592.

Wang, L., G. Zhou, Y. Xu and M. Liu (2012). "An enhanced Pareto-based artificial bee colony
algorithm for the multi-objective flexible job-shop scheduling." The International Journal of
Advanced Manufacturing Technology 60(9-12): 1111-1123.

Wang, X., L. Gao, C. Zhang and X. Shao (2010). "A multi-objective genetic algorithm based on
immune and entropy principle for flexible job-shop scheduling problem." The International
Journal of Advanced Manufacturing Technology 51(5): 757-767.

Weckman, G., C. Ganduri and D. Koonce (2008). "A neural network job-shop scheduler."
Journal of Intelligent Manufacturing 19(2): 191-201.

Werner, F. (2011) "GENETIC ALGORITHMS FOR SHOP SCHEDULING PROBLEMS: A SURVEY." 1-
66.

Werner, F. and A. Winkler (1995). "Insertion techniques for the heuristic solution of the job
shop problem." Discrete Applied Mathematics 58(2): 191-211.

Wilbrecht, J. K. and W. B. Prescott (1969). "THE INFLUENCE OF SETUP TIME ON JOB SHOP
PERFORMANCE." Management Science 16(4): B-274-B-280.

Wilhelm, W. E. and S. Hyun-Myung (1985). "Effectiveness of alternate operations in a flexible
manufacturing system." International Journal of Production Research 23(1): 65.

149

REFERENCES

Xhafa, F. and A. Abraham (2008). Metaheuristics for Scheduling in Industrial and
Manufacturing Applications, Springer Publishing Company, Incorporated.

Xia, W. and Z. Wu (2005). "An effective hybrid optimization approach for multi-objective
flexible job-shop scheduling problems." Computers & Industrial Engineering 48(2): 409-425.

Xiao-Juan, W., Z. Chao-Yong, G. Liang and L. Pei-Gen (2008). A Survey and Future Trend of
Study on Multi-Objective Scheduling. Natural Computation, 2008. ICNC '08. Fourth
International Conference on.

Xiaoyan, Z. and W. E. Wilhelm (2006). "Scheduling and lot sizing with sequence-dependent
setup: A literature review." |IE Transactions 38(11): 987-1007.

Xing, L.-N., Y.-W. Chen, P. Wang, Q.-S. Zhao and J. Xiong (2010). "A Knowledge-Based Ant
Colony Optimization for Flexible Job Shop Scheduling Problems." Applied Soft Computing
10(3): 888-896.

Xing, L.-N., Y.-W. Chen and K.-W. Yang (2009). "Multi-objective flexible job shop schedule:
Design and evaluation by simulation modeling." Applied Soft Computing 9(1): 362-376.

Xingyi, Z., T. Ye, C. Ran and J. Yaochu (2015). "An Efficient Approach to Nondominated Sorting
for Evolutionary Multiobjective Optimization." Evolutionary Computation, IEEE Transactions on
19(2): 201-213.

Xue, H., P. Zhang, S. Wei and L. Yang (2014). An Improved Immune Algorithm for Multi-
objective Flexible Job-shop Scheduling.

Yamada, T. and R. Nakano (1992). A Genetic Algorithm Applicable to Large-Scale Job-Shop
Problems. In Proc. of the Second Int. Conf. on Parallel Problem Solving from Nature, Elsevier:
283-292.

Yang, Y. and X. Gu (2014). "Cultural-Based Genetic Tabu Algorithm for Multiobjective Job Shop
Scheduling." Mathematical Problems in Engineering 2014: 14.

Zadeh, L. A. (1965). "Fuzzy sets." Information and Control 8(3): 338-353.

Zhang, G., X. Shao, P. Li and L. Gao (2009). "An effective hybrid particle swarm optimization
algorithm for multi-objective flexible job-shop scheduling problem." Computers & Industrial
Engineering 56(4): 1309-1318.

Zhang, L., L. Gao and X. Li (2013). "A hybrid genetic algorithm and tabu search for a multi-
objective dynamic job shop scheduling problem." International Journal of Production Research
51(12): 3516-3531.

Zhang, R. and R. Chiong (2016). "Solving the energy-efficient job shop scheduling problem: a
multi-objective genetic algorithm with enhanced local search for minimizing the total weighted
tardiness and total energy consumption." Journal of Cleaner Production 112, Part 4: 3361-
3375.

Zhang, W. (1999). State-Space Search: Algorithms, Complexity, Extensions, and Applications,
Springer New York.

Zhao, B., J. Gao, K. Chen and K. Guo (2015). "Two-generation Pareto ant colony algorithm for
multi-objective job shop scheduling problem with alternative process plans and unrelated
parallel machines." Journal of Intelligent Manufacturing: 1-16.

150

REFERENCES

Zhao, F., J. Tang, J. Wang and Jonrinaldi (2014). "An improved particle swarm optimization with
decline disturbance index (DDPSO) for multi-objective job-shop scheduling problem."
Computers & Operations Research 45: 38-50.

Zheng, Y.-l., Y.-x. Li and D.-m. Lei (2011). "Multi-objective swarm-based neighborhood search
for fuzzy flexible job shop scheduling." The International Journal of Advanced Manufacturing
Technology 60(9): 1063-1069.

Zitzler, E., M. Laumanns and L. Thiele (2002). Improving the strength pareto evolutionary
algorithm for multiobjective optimization. International Center for Numerical Methods in
Engineering. Athens, Greece: 95--100.

Zitzler, E. and L. Thiele (1999). "Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach." Trans. Evol. Comp 3(4): 257-271.

Zydallis, J. B. (2003). Explicit building-block multiobjective genetic algorithms: Theory, analysis,
and development. 3077559 Ph.D., Air Force Institute of Technology.

151

