
Northumbria Research Link

Citation: Guo, Yuchen, Ding, Guiguang, Liu, Li, Han, Jungong and Shao, Ling (2017)
Learning to Hash With Optimized Anchor Embedding for Scalable Retrieval. IEEE
Transactions on Image Processing, 26 (3). pp. 1344-1354. ISSN 1057-7149

Published by: IEEE

URL: https://doi.org/10.1109/TIP.2017.2652730
<https://doi.org/10.1109/TIP.2017.2652730>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/30191/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

IEE
E P

ro
of

IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Learning to Hash With Optimized Anchor
Embedding for Scalable Retrieval

Yuchen Guo, Guiguang Ding, Li Liu, Jungong Han, and Ling Shao, Senior Member, IEEE

Abstract— Sparse representation and image hashing are1

powerful tools for data representation and image retrieval respec-2

tively. The combinations of these two tools for scalable image3

retrieval, i.e., sparse hashing (SH) methods, have been proposed4

in recent years and the preliminary results are promising. The5

core of those methods is a scheme that can efficiently embed6

the (high-dimensional) image features into a low-dimensional7

Hamming space, while preserving the similarity between features.8

Existing SH methods mostly focus on finding better sparse9

representations of images in the hash space. We argue that the10

anchor set utilized in sparse representation is also crucial, which11

was unfortunately underestimated by the prior art. To this end,12

we propose a novel SH method that optimizes the integration of13

the anchors, such that the features can be better embedded and14

binarized, termed as Sparse Hashing with Optimized Anchor15

Embedding. The central idea is to push the anchors far from the16

axis while preserving their relative positions so as to generate17

similar hashcodes for neighboring features. We formulate this18

idea as an orthogonality constrained maximization problem19

and an efficient and novel optimization framework is system-20

atically exploited. Extensive experiments on five benchmark21

image data sets demonstrate that our method outperforms22

several state-of-the-art related methods.23

Index Terms— Sparse representation, hashing, retrieval,24

scalability, orthogonality, optimization.25

I. INTRODUCTION26

APPROXIMATE Nearest Neighbor (ANN) search has27

become a fundamental paradigm in various applications,28

such as image recognition and image retrieval [1], [2]. Its aimAQ:1 29

is to find some approximate nearest neighbors for a query30

from a collection of data. To cope with large-scale data, many31

techniques for fast ANN search have been proposed in the past.32

One popular pathway is based on trees, e.g. kd-tree [3], which33

has logarithmic retrieval complexity for low-dimensional data.34

However, most tree-based methods may reduce to exhaustive35

Manuscript received July 30, 2016; revised December 2, 2016; accepted
AQ:2 December 28, 2016. This work was supported in part by the National Natural

Science Foundation of China under Grant 61571269 and Grant 61271394,
in part by the National Basic Research Project of China under
Grant 2015CB352300, and in part by the Royal Society Newton Mobility
under Grant IE150997. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Lei Zhang.

AQ:3 (Corresponding authors: Guiguang Ding; Jungong Han.)
AQ:4 Y. Guo and G. Ding are with the School of Software, Tsinghua

University, Beijing 100084, China (e-mail: yuchen.w.guo@gmail.com;
dinggg@tsinghua.edu.cn).

L. Liu and J. Han are with the Department of Computer and Information
Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.
(e-mail: li2.liu@northumbria.ac.uk; jungong.han@northumbria.ac.uk).

L. Shao is with the School of Computing Sciences, University of East
Anglia, Norwich NR4 7TJ, U.K. (e-mail: ling.shao@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2652730

linear scanning for high-dimensional data because of the 36

curse of dimensionality. Another pathway, called hashing [4], 37

represents data by a sequence of binary codes. Benefiting 38

from the binary representation, the storage can be dramatically 39

reduced and the search can be quite efficient, even with a large- 40

scale dataset [5]–[10]. With proper designs, hashing will not 41

necessarily degrade the search accuracy. In view of the above 42

advantages, hashing methods have drawn increasing attention 43

recently from the industry and academia. 44

The key problem in hashing is how to embed the orig- 45

inal features, which are usually high-dimensional floating- 46

point number representations, into the low-dimensional binary 47

Hamming space while the similarity between the original fea- 48

tures can be preserved. Locality Sensitive Hashing (LSH) [11], 49

as the most notable and fundamental hashing method, adopts 50

random projections to generate hashcodes. Theoretically, the 51

Hamming distance between those hashcodes can progressively 52

approximate the Euclidean distance between the original fea- 53

tures. But in practice, very long hashcodes (say, 1, 024 bits) 54

are required in this approach so as to achieve satisfactory 55

performance. To address this issue, several learning based 56

methods have been proposed, such as PCA Hashing [12], 57

Spectral Hashing [13], and Iterative Quantization [14]. Though 58

better performance can be obtained, compared to LSH, these 59

methods still suffer from two shortcomings due to the linear 60

projections employed by them: 1) they may fail to preserve 61

the non-linear manifold structure of data; and 2) they may 62

achieve high precision but low recall as the feature space is 63

segmented so finely that data may be scatted in the Hamming 64

space, which leads to extremely low collision probability [15]. 65

Alternatively, methods exploiting non-linear projections [6], 66

[16], [17] have gained increasing popularity due to their 67

superior performance. Specifically, these methods, thanks to 68

the non-linear projections, can better preserve the complicated 69

geometric structure of data, especially the manifold structure. 70

One representative framework is called Sparse Hashing (SH) 71

[6], [16]–[20] since it is based on the Sparse Coding (SC) 72

that was successfully used in image representation [21], [22], 73

classification [23], and denoising [24]. Basically, the algorithm 74

is carried out by two forms of transformation. First, a non- 75

linear transformation converts the original features to the 76

sparse representations. Second, a linear transformation further 77

transfers the sparse representations generated in the previous 78

step to the Hamming space. Generally, non-linear SH methods 79

are capable of overcoming two shortcomings of the linear 80

methods if a proper learning strategy is deployed. However, 81

these two problems, i.e., how to generate effective sparse 82

representations for hashing and how to transform the sparse 83

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEE
E P

ro
of

2 IEEE TRANSACTIONS ON IMAGE PROCESSING

representation into the Hamming space with data similarity84

preserved, still need to be solved.85

In this paper, we propose a novel SH method, aiming at86

preserving the non-linear manifold structure of the original87

features in the Hamming space. In particular, motivated by88

Locally Linear Embedding (LLE) [25] and Anchor Graph [17],89

we learn a non-linear locality-preserving dimension reduction90

function via the sparse representation of data. This non-91

linear function secures similar low-dimensional representa-92

tions for neighboring points. After such an effective dimension93

reduction, we can easily generate binary hashcodes from94

the embedded low-dimensional features. When learning this95

function, previous works [6], [16]–[18], [20] only looked into96

the sparse representation of data but ignored the importance97

of the anchors [17] utilized in constructing the sparse rep-98

resentation. We notice that the low-dimensional embedding99

of the anchors has a significant impact on the hash function.100

Specifically, it is discovered that pushing anchors far from101

axis while preserving the geometric structure of them during102

the anchor embedding usually leads to high-quality hashcodes.103

We investigate this phenomenon and mathematically formulate104

the implementation of this idea to an orthogonality constrained105

maximization problem which optimizes the anchor embedding106

with the aim to avoid generating two different hashcodes for107

neighboring low-dimensional points. With such an optimiza-108

tion, the locality of original features can be well preserved and109

better ANN search performance can be achieved. Moreover,110

we put forward an efficient learning algorithm to solve the111

complicated orthogonality constrained optimization problem.112

The rest of this paper is organized as follows. In Section II,113

we briefly describe some preliminaries and review the related114

hashing works. The proposed SHODE is introduced detailedly115

in Section III. The experimental results and discussion are116

given in Section IV, and we draw conclusions in Section V.117

II. PRELIMINARIES AND RELATED WORK118

A. Formulation119

Given a set of d-dimensional features X = [x1, ..., xn] ∈120

R
d×n , we can design a hash function h(·) to generate121

k-bit binary representations, i.e., hashcodes, for them as122

bi = h(xi) ∈ {−1, 1}k,1 such that the similarity between123

features can be preserved, i.e., similar features have similar124

hashcodes. This idea can be formulated as the following125

learning problem,126

min
h

∑

i, j

si j dH (h(xi), h(x j)), s.t. C(h), (1)127

where dH is the Hamming distance between hashcodes, si j is128

the similarity between xi and x j , and C(h) is the constraints129

applied to h, for example, we always expect the hashcodes to130

be balanced (
∑

i bi = 0k) and uncorrelated (BBT = nIk).131

Since it is difficult, if not impossible, to design an effective132

hash function by directly converting X to hashcodes, a133

two-step strategy is widely adopted [12]–[14], [16]. In the134

first step, the original features X are projected into a135

1In implementation, we can use {0, 1}. In fact, these two representations
are equivalent. So we use {−1, 1} in this paper for convenience as in [17].

TABLE I

NOTATIONS AND DESCRIPTIONS IN THIS PAPER

k-dimensional space as Y = [y1, ..., yn] ∈ R
k×n by a 136

projection function φ(·). Because we usually have k < d , this 137

step can be regarded as a dimension reduction step. Then, the 138

low-dimensional embedded representations Y are quantified 139

into binary codes by, in most cases, the sign function as 140

B = [b1, ..., bn] = sign(Y), where sign(x) = 1 if x > 0 141

or −1 otherwise. By doing so, the overall hash function 142

becomes h(·) = sign(φ(·)). In this way, learning h can be 143

achieved by learning φ instead. However, the sign function 144

still makes the learning intractable in many cases [13]. 145

A common solution is to remove the sign function and to 146

further relax the learning problem as a real-valued problem, 147

min
φ

∑

i, j

si j d(φ(xi), φ(x j)), s.t. C(φ). (2) 148

B. Linear Hashing 149

Several methods [13], [16], [26]–[29] assume a linear 150

projection for φ, i.e., φ(x) = Px, where P ∈ R
k×d is a 151

linear projection matrix. After proper algebra operations and 152

transformations, the learning problem can be rewritten into a 153

simple formulation as follows: 154

max
P

tr(PXSXT PT), s.t. PPT = Ik, (3) 155

where tr(·) is the trace function, S = [si j] is the sim- 156

ilarity matrix among training samples, and the orthogonal 157

constraint requires the selected directions to be uncorrelated. 158

S determines what kind of information is preserved depending 159

on the intentions of different methods. The statistics reveal 160

that the majority of existing works choose to preserve the 161

local manifold structure of data [13], [30]. After the above 162

assumption and operations, the problem defined in Eq. (3) can 163

be easily solved. However, since only linear projections are 164

used, these methods may still fail to preserve the similarity.

AQ:5

165

C. Sparse Hashing 166

To preserve the non-linear manifold structure, Sparse 167

Hashing [6], [16]–[18], [20], which learns a non-linear φ, 168

has attracted considerable attention. Given a set of 169

anchors D = [d1, ..., dm] ∈ R
d×m , a sparse presentation 170

A = [a1, ..., an] ∈ R
m×n is constructed by A = ρ(X, D). This 171

can be done by conventional sparse reconstruction [31] as 172

min
A
‖X− DA‖2F +R(A), s.t. C(A), (4) 173

IEE
E P

ro
of

GUO et al.: LEARNING TO HASH WITH OPTIMIZED ANCHOR EMBEDDING FOR SCALABLE RETRIEVAL 3

where R(A) denotes regularization terms, such as �1-norm174

regularization for sparsity, and other terms like Graph175

regularization [32], and C(A) is a constraint on A. Obviously,176

this method is non-linear. in [19] and [33], such schemes are177

employed, and the sparse codes are then encoded into a set178

of integers which are composed of the nonzero indices. This179

index set sacrifices the advantages of efficient storage and180

speedy binary code matching. Alternatively, in [20], Zhu et al.181

proposed an encoding method in which the binary codes are182

generated by setting nonzero elements in A as 1 and the others183

as 0. The problem of this method lies in its incapability of184

generating compact and balanced representations because of185

the sparsity of A, thereby degrading the quality of hashcodes.186

In addition, Ye and Li [34] proposed the Compact Structure187

Hashing that combines the linear projection learning in Eq. (3)188

and sparse reconstruction in Eq. (4) in a unified objective189

function to simultaneously exploits the non-linear structure of190

data and finds the optimal projection function. However, this191

method intrinsically adopts a linear projection to the Hamming192

space such that it still suffers from the low-recall problem.193

A possible way of solving this problem is the usage of the194

Anchor Graph [17], in which each anchor is either randomly195

sampled from the data or the cluster centroids after applying196

a data clustering algorithm, such as Kmeans. The sparse197

representation can be build in the Anchor Graph as follows:198

a j i =

⎧
⎪⎨

⎪⎩

exp(−‖xi − d j‖2/σ 2)∑
j ′∈N (xi)

exp(−‖xi − d j ′‖2/σ 2)
, ∀ j ∈ N (xi)

0, otherwise,

199

(5)200

where N (xi) is the p-NN of xi in D and σ is the bandwidth201

parameter. The obtained sparse representation is claimed to202

preserve the similarity between data. Obviously, ai has at203

most p nonzero elements, implying that a is sparse. Finally,204

φ(·) is constructed by projecting the sparse representation to205

a low-dimensional space, i.e., φ(x) = Pρ(x, D). To preserve206

the similarity, Liu et al. [17] proposed the Anchor Graph207

Hashing that constructs P by solving an eigenvalue problem208

on the Anchor Graph. Lin et al. [16] proposed the Compressed209

Hashing in which the sampled pi j from N (0, 1/k) can con-210

struct a projection satisfying Restricted Isometry Property [35]211

in Compressed Sensing theory [36]. Similarly, Shen et al. [6]212

proposed an inductive method to construct P. Zhu et al. [37]213

proposed a sparse embedding and least variance encoding214

approach to hashing, which constructs P by solving a recon-215

struction problem and adjusts the projected representation to216

minimize the variance for preserving similarity. Even though217

promising results have been obtained, how to design effective218

ρ and P is still an open issue, which is the focus of this paper.219

Moreover, it is noticed that in recent years many works220

have attempted to combine the deep convolutional neural221

network [38] with hashing, i.e., deep hashing [39]–[43].222

For example, Liong et al. [39] proposed a deep hashing223

method in which the output of the networks is required to224

preserve the supervised similarity. Lai et al. [40] proposed225

a piece-wise function for the network to address the discrete226

optimization problem in deep hashing. Zhang et al. [41]227

presented a network using similarity regularized triplet loss 228

for person re-identification. However, it should be pointed 229

out that these deep hashing approaches should be categorized 230

into the supervised hashing methods in which supervised 231

knowledge (e.g., label information) is required for model 232

training. As is known to all, collecting sufficient supervised 233

knowledge is expensive in many applications [44]. On the 234

contrary, this paper, and many SH methods focus on the 235

unsupervised hashing which only exploits the intrinsic 236

unsupervised information of data and thus they are free from 237

the lack of the supervised knowledge. 238

III. THE PROPOSED METHOD 239

Our method follows the framework of SH. Firstly, we 240

construct a sparse representation for the original features in 241

a non-linear manner. Secondly, we linearly project the sparse 242

representation into the low-dimensional space. Thirdly, we 243

obtain hashcodes from low-dimensional embedding using the 244

sign function. The special properties of our projection are 245

1) the low-dimensional embedding preserves the local man- 246

ifold structure of original data, and 2) the similarity structure 247

is preserved as well after the sign quantization. The following 248

two subsections will elaborate on them one by one. Since all 249

involved steps take data similarity preservation into account, 250

the obtained hashcodes, without saying, will naturally preserve 251

the similarity relationship of original features, thus resulting 252

in superior ANN search and image retrieval performance. 253

A. Locality-Preserving Dimension Reduction 254

In this subsection, we will provide an effective method for 255

non-linear dimension reduction based on Sparse Coding which 256

can well preserve the non-linear local manifold structure. 257

Locality-preserving dimension reduction aims to find low- 258

dimensional embedding which can preserve the neighborhood 259

structure or manifold structure of the original data. One 260

representative and seminal work is Locally Linear Embed- 261

ding (LLE) [25] which can find a linear embedding for non- 262

linear manifold. However, LLE does not provide an explicit 263

dimension reduction function for the out-of-sample data (data 264

which is not in the training set). Another celebrated method is 265

called Locality Preserving Projections (LPP) [30] which learns 266

an explicit linear projection function instead. Despite its ability 267

of easily addressing the out-of-sample data, the linear function 268

adopted by LPP may perform worse than the non-linear ones. 269

Although LLE does not provide the projection function for 270

out-of-sample data, it still reveals an important property of 271

the non-linear manifold: local linearity. That is, the manifold 272

structure is locally linear even though it is non-linear globally. 273

Such a property is also utilized in [45] and [46], which can be 274

further interpreted below. Given some points D = [d1, ..., dm] 275

and their corresponding low-dimensional embeddings 276

Y = [y1, ..., ym] obtained by non-linear methods like LLE, 277

the low-dimensional embedding y for a new data point x is 278

given by 279

y←
∑

i∈N (x)

ai yi , (6) 280

IEE
E P

ro
of

4 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 1. Sparse representation by different methods. (a) by Eq. (5).
(b) by Eq. (7).

where N (x) is the p-NN of x in D, and ai is the corresponding281

weight. One straightforward way to compute ai is based on282

Eq. (5). But it should be noticed that such a formulation only283

defines the weight and does not reflect the relative position284

between x and N (x). Therefore, the embedding y relying on285

the weight may lose important information. Therefore, to make286

use of the local linearity better, in this paper, we propose to287

generate a by a sparse reconstruction procedure as follows:288

min
a
‖x − Da‖2F , s.t. ai ≥ 0, a j = 0 if j /∈ N (x). (7)289

Here, we require a to be nonnegative so that it can serve as290

“weight”. Moreover, only N (x) is used to reconstruct x for291

preserving the locality. Obviously, the solution a is sparse in292

the sense that it has at most p nonzero elements (p� m).293

By combining Eq. (6) and Eq. (7), the overall dimension294

reduction can be summarized as follows: 1) An anchor set D295

is generated from training data by K-means clustering; 2) We296

find the locality preserving embedding Y for it by a non-297

linear method, called Laplacian Eigenmap [47]. As this step298

is only conducted for the anchor set, there is no need to learn299

a projection function for the out-of-sample data; 3) For a new300

data point x, the sparse representation a is obtained by solving301

Eq. (7); 4) The low-dimensional embedding y is obtained by302

Eq. (6). As a result, the projection function P in our method303

can be considered as the low-dimensional embedding Y of304

the anchor set. Due to the non-linearity in Eq. (7), the entire305

procedure is non-linear as in LLE. Meanwhile, it also has an306

explicit projection function (Eq. (6) and (7)) for out-of-sample307

data. Hence, it can be concluded that our method combines the308

advantages of LLE and LPP but gets rid of their shortcomings.309

Seen from Eq. (6) and Eq. (7), two points that are close310

in the original feature space will also have similar low-311

dimensional representations after the projection, because they312

will choose similar p-NN anchor sets from D. In other words,313

these two points will finally lie very close to the embeddings314

of their corresponding anchor sets, which are also similar.315

Here, we discuss the difference between our sparse repre-316

sentation constructed by Eq. (7) and the widely used version317

expressed in Eq. (5). In principle, representations based on318

Eq. (5) fail to consider the relative position of x and N (x)319

while using Eq. (7) can achieve this goal. An intuitive illus-320

tration is shown in Figure 1, in which x1 and x2 have the same321

p-NN anchors d1 and d2. If we adopt Eq. (5), they will end up 322

with the same sparse representation (shown in bracket) because 323

they have the same distances to the anchors, and the same low- 324

dimensional representation because only distance to anchors 325

is considered, even though they might be different. On the 326

contrary, using Eq. (7) will generate the similar representations 327

but with different values, which is more reasonable in reality. 328

The above analysis clearly states that Eq. (7) and Eq. (6) 329

can lead to non-linear locality-preserving dimension reduction. 330

Then, how to solve Eq. (7) becomes the next problem. Since 331

we are aware of that some elements a j are definitely zero if 332

j /∈ N (x), it is possible to simplify Eq. (7) by discarding zero 333

elements and only focusing on the possibly non-zero ones: 334

min
ã
‖x − D̃ã‖2F s.t. ãi ≥ 0, (8) 335

where D̃ ∈ R
d×p is the p-NN of x in D and ã ∈ R

p . Since D̃ 336

contains mixed signs and ã is constrained to be nonnegative, 337

Eq. (8) is actually a Semi-nonnegative Matrix Factoriza- 338

tion (SNMF) problem, which has been extensively studied 339

in [48]. An effective and efficient optimization algorithm for 340

Eq. (8) consists of two steps: 1) ã is randomly initialized 341

by non-negative values, and 2) the following multiplicative 342

updating rule is iteratively applied until ã arrives at a stationary 343

point, 344

ãi ← ãi

√√√√ (D̃T x)+i + [(D̃T D̃)−ã]i
(D̃T x)−i + [(D̃T D̃)+ã]i

, (9) 345

where M+ = 1
2 (|M| + M) and M− = 1

2 (|M| − M). The 346

above updating rule guarantees a local convergence of the 347

optimization. Please refer to [48] for more details. In our 348

experiments, we find that 10 to 20 iterations can lead to 349

satisfactory performance because p is usually quite small such 350

that the optimization problem is simple enough in most cases. 351

B. Optimized Anchor Embedding 352

Until now, we have introduced the non-linear locality- 353

preserving dimension reduction method, which can exploit the 354

non-linear manifold structure and has an explicit function for 355

out-of-sample data. However, there is a sign function between 356

the low-dimensional representation and the hashcode. In order 357

to preserve manifold structure in the final hashcodes, it is 358

necessary to further consider the influence of the sign function. 359

From Eq. (6) and Eq. (7) in the previous subsection, it can 360

be observed that a point will fall close to the low-dimensional 361

embedding of its p-NN anchors. Hence, the embedding of the 362

anchor set is certainly influential on the quality of hashcodes. 363

We take Figure 2(a) as an example to further explain it. 364

In this figure, red triangles represent embeddings of anchors. 365

The surrounding circles represent points that lie close to the 366

corresponding anchors.2 In good cases, near points in a circle 367

are in the same quadrant so that they will obtain the same 368

hashcodes after that sign function. In this way, the similarity 369

between data can be preserved. On the contrary, in bad cases, 370

2We use circles for the convenience of illustration. The real-world situation
is surely more complicated but intrinsically it has the same problem.

IEE
E P

ro
of

GUO et al.: LEARNING TO HASH WITH OPTIMIZED ANCHOR EMBEDDING FOR SCALABLE RETRIEVAL 5

Fig. 2. The influence of anchor embedding. (a) Original embedding.
(b) Optimized embedding.

points in a circle may fall into different quadrants resulting in371

different hashcodes after applying the sign function. In such372

situations, the similarity is no longer preserved in hashcodes.373

To avoid the bad cases, we need to adjust the embedding of374

the anchor set such that it can better preserve the similarity375

after the sign function while the initial properties in the376

embedding are retained, as illustrated in Figure 2(b). Previous377

SH methods [6], [16]–[18], [20] mostly ignored the influence378

of the anchor set but focused on the sparse representation379

only. From the above discussion, the conclusion is clear: the380

anchor set embedding plays an important role in SH methods.381

Next, we continue to introduce how to optimize the anchor382

embedding.383

From Figure 2, we can observe that the bad cases usually384

happen when the embeddings of anchors lie close to the385

coordinate axis because such a point by nature is likely to386

fall into the other side of axis and thereby obtain different387

hashcodes after the sign function. To prevent it, our intuitive388

idea is to push the close-to-axis anchors far from axis while389

preserving the geometric structure. We carry out a two-step390

scheme here to implement our idea, in which an anchor-391

embedding initialization step is followed by an anchor rotation392

step. In our scheme, the initial embedding of anchors Y is393

obtained by means of Laplacian Eigenmap [47] which solves394

the optimization problem below,395

min
Y

tr(YLYT), s.t. YMYT = Ik, YM1m = 0, (10)396

where SD ∈ R
m×m is a pD-NN graph constructed from D,397

M is a diagonal matrix with elements Mii = ∑
j Si j , and398

L =M − SD is the Laplacian of the graph. This problem can399

be transferred to a generalized eigenvalue problem Lv = λMv,400

and can be solved by selecting the eigenvectors corresponding401

to the smallest k positive eigenvalues. After the above initial-402

ization step, it is very likely that many anchor embeddings403

are close to axis, which is harmful for hashing as we have404

explained before. In the second step of our scheme, we apply405

a rotation to Y subject to a condition that the optimized anchor406

embedding Ỹ after rotation is also the solution to Eq. (10). To407

do so, one good choice is the exploitation of an orthogonal408

rotation matrix R ∈ R
k×k (RRT = Ik and RT R = Ik), and409

set Ỹ = RY. Because we have tr(RYLYT RT) = tr(YLYT),410

RYMYT RT = RIkRT = Ik , and RYM1m = R0 = 0, Ỹ turns411

out to be also a solution of Eq. (10), meaning that the original 412

geometric structure in Y is perfectly preserved after a rotation 413

operation. 414

At this point, our goal becomes finding an orthogonal 415

rotation matrix R for Y such that fewer points after the rotation 416

operation (i.e., in RY) lie close to the axis, which can be 417

formulated as maximizing the total distance between RY and 418

axis below 419

max
R

O =
∑

i j

|(RY)i j |r , s.t. RRT = RT R = Ik . (11) 420

In fact, there is still an argument: a rotation can push a close- 421

to-axis anchor far from the axis, and meanwhile, it can also 422

make a far-from-axis anchor closer to the axis. This is true, 423

but the problem is not that vital. Seen from Figure 2, pushing 424

a close-to-axis anchor far is more important, because a subtle 425

change in a close-to-axis anchor can significantly reduce the 426

number of points falling into different quadrants which results 427

in different hashcodes. However, even a huge change in a far- 428

from-axis anchor may not make any difference as long as it 429

is not very close to the axis. In view of this observation, we 430

set the power parameter r ∈ (0, 1) such that the change in the 431

smaller entries has more effect on O than the larger entries. 432

Next, we need to solve this orthogonality constrained 433

optimization problem (11). The basic idea is to construct a 434

gradient flow in the feasible set which keeps increasing O 435

until it reaches a stationary point [49]. Specifically, we adopt 436

an iterative algorithm, in which the rotation R is randomly 437

initialized. At the t-th iteration, the upgradient of O at Rt is: 438

Ut = −DO(Rt) = −r · sign(Rt Y) ◦ |Rt Y|r−1YT , (12) 439

where ◦ denotes element-wise multiplication between two 440

matrices, |·|r−1 refers to the element-wise power operation for 441

a matrix.3 A traditional gradient method will move the current 442

point along this direction with a proper step size to obtain 443

the next point. However, the new point will fail to satisfy 444

the constraint, i.e., it is not in the feasible set. Instead, the 445

upgradient is first transformed to a skew-symmetric matrix 446

Wt = Ut RT
t − Rt UT

t . (13) 447

We use a Crank-Nicolson-like scheme [50] for the next point: 448

Rt+1 = Rt − τWt (
Rt + Rt+1

2
), (14) 449

where τ is a step size satisfying Armijo-Wolfe conditions [51]. 450

Solving the above equation offers us the updating rule below: 451

Rt+1 = (Ik + τ

2
Wt)

−1(Ik − τ

2
Wt)Rt . (15) 452

The above rule is called Cayley transformation. Considering 453

Wt is a skew-symmetric matrix, i.e., WT
t = −Wt , the matrix 454

Ik+ τ
2 Wt is definitely invertible and Rt+1 is orthogonal. Such 455

an updating rule will increase the value of O until conver- 456

gence. Please refer to [49, Lemma 3] for the detailed proof. 457

The overall learning algorithm for SHODE is summarized 458

3Because r ∈ (0, 1), a numeric problem may happen if (RY)i j = 0. So in
the implementation, we add a small number ε (say, 10−6) to |(RY)i j |.

IEE
E P

ro
of

6 IEEE TRANSACTIONS ON IMAGE PROCESSING

Algorithm 1 Learning SHODE

in Algorithm 1, which at last outputs two key parts for the459

hashing function φ: the anchor set D and the projection P.460

For a new data point x, we first find p-NN from D and461

obtain D̃. Afterwards, we generate sparse representation a by462

solving Eq. (8). Next, we obtain a low-dimensional embedding463

y = Pa. Finally, the binary hashcode is given by h = sign(y).464

C. Complexity Analysis465

The training time of Algorithm 1 basically consists of466

3 parts. The first part is the K-means in line 1. Suppose467

Kmeans stops at the t1-th iteration, the time complexity is468

O(nmdt1). The second part is to seek the initial embedding469

described in lines 2 to 4. Precisely, constructing a pD-NN470

graph needs O(m2d + mpD), and solving Eq. (10) requires471

O(mkpDt2) if the Lanczos algorithm [52] is adopted, where t2472

means the iteration number which is usually rather small [53].473

The third part is learning R, which can be further decom-474

posed into computing Ut by Eq. (12) (O(mk2)), computing475

Wt by Eq. (13) (O(k3)), and computing Rt+1 by Eq. (15)476

(O(k3)). Suppose the iteration depicted from lines 6 to 10477

converges at t3, the total time complexity for learning R is478

O((mk2+k3)t3). Adding them up, the overall complexity will479

be O(nmdt1 + m2d + mpD + mkpDt2 + (mk2 + k3)t3).480

Given a new data point x, the complexity to generate hash-481

codes is as follows. Searching p-NN from D needs O(pmd).482

Solving Eq. (8) via Eq. (15) requires O((pd + p2d + p2)t),483

where t is the number of iterations. And generating the low-484

dimensional representation by Eq. (6) has the complexity485

of O(pk). Therefore, the overall complexity is O(pm+(pd+486

p2d+p2)t+pk). Because t and p are usually small in practice,487

this complexity is comparable to the method in [16] and [17].488

IV. EXPERIMENTS489

A. Datasets, Metrics, Baselines and Details490

To demonstrate the effectiveness of SHODE, we adopt five491

widely used benchmark datasets for evaluation. The first one492

is CIFAR-10 [54] consisting of 60, 000 images which are493

manually divided into 10 classes each with 6, 000 images.494

Each image is represented by a 512-dimensional GIST [55]495

feature. The second one is MNIST which has 70, 000 images496

TABLE II

THE STATISTICS OF DATASETS

of handwritten digits from ‘0’ to ‘9’. The 784-dimensional 497

gray scale feature is utilized to represent each image. The third 498

dataset is NUS-WIDE [56] with 186, 577 images and each 499

image is annotated by at least one of ten classes. Each image is 500

represented by a 500-dimensional bag-of-visual-words feature 501

based on SIFT [57]. The forth dataset is SIFT1M [12] which 502

contains more than 1 million SIFT points. The fifth dataset is 503

CIFAR-100 which is similar to CIFAR-10. It has 100 classes 504

and each class has 600 images. For CIFAR-100, we adopt 505

the deep features for images which are extracted by the 506

ILSVRC2014 challenge winner GoogLeNet [58] pre-trained 507

on ImageNet. Specifically, we adopt the outputs of the last 508

fully-connected layer as the feature for each image which 509

is a 1, 024-dimensional vector. For CIFAR-10, MNIST, and 510

CIFAR-100, 10, 000 samples are randomly selected as the 511

query set and the remaining samples form the database. For 512

NUS-WIDE, 1% (1, 866) images are randomly sampled as the 513

query set, while the remaining images make up the database. 514

We refer to TableII for more detailed statistics of them. 515

We adopt two retrieval procedures, i.e., Hamming rank- 516

ing and hash lookup. Hamming ranking first computes the 517

Hamming distance between the query and all points in the 518

database and then sorts points by the distance. Points with 519

smaller distances are first returned. Hamming ranking needs a 520

linear scanning of the database. But since only bit operations 521

are required, it is usually very fast in practice. Hash lookup 522

emphasizes more on retrieval speed because it has constant 523

query time [17] with a single hash table. Following [13], [17], 524

we search within Hamming radius 2 to retrieve neighbors for 525

each query. For a Hamming ranking, we employ Precision- 526

recall curve, Precision curve and Recall curve as evaluation 527

metrics, in which the former shows the precision at different 528

recall levels, the middle reflects the precision level w.r.t. the 529

number of retrieved samples, and the latter reflects the recall 530

level w.r.t. the number of retrieved samples. On top of them, 531

mean Average Precision (mAP) defined as the area under 532

Precision-recall curve is also used. For hash lookup, we use 533

F-measure and Recall within Hamming radius 2 as metrics, 534

in which the former is the harmonic average of precision and 535

recall. For CIFAR-10, MNIST, NUS-WIDE and CIFAR-100, 536

images sharing class labels with the query are considered as 537

true positives. For SIFT1M, following [6], [59], the closest 2 538

percent of database points to the query measured by the 539

Euclidean distance are defined as the true positives of a query. 540

We employ the following unsupervised hashing methods as 541

baselines, Anchor Graph Hashing (AGH) [17], Compressed 542

Hashing (CH) [16], Compact Structure Hashing (CSH) [34], 543

IEE
E P

ro
of

GUO et al.: LEARNING TO HASH WITH OPTIMIZED ANCHOR EMBEDDING FOR SCALABLE RETRIEVAL 7

Fig. 3. Results on CIFAR-10 dataset. (a) F-measure in Hamming 2. (b) Recall in Hamming 2. (c) mean Average Precision. (d) Precision-recall curve,
64 bits. (e) Precision curve, 64 bits. (f) Recall curve, 64 bits.

Harmonious Hashing (HamH) [59], Inductive Manifold Hash-544

ing (IMH) [6] with LE and ITQ, Isotropic Hashing (IsoH) [60],545

Iterative Quantization (ITQ) [14], Sparse Embedding and546

Least Variance Encoding (SELVE) [37], and Spectral Hash-547

ing (SpH) [13]. For Ch, CSH, and HamH, we implemented548

them ourselves. And we used the author-provided codes for the549

other methods. IMH, AGH, and CH, as well as Sparse Hashing550

methods like SHODE, rely on two parameters. The first is the551

size of the anchor set, i.e., m, and the second is p for searching552

p-NN from anchor set to construct sparse representation a for553

a new data point. For a meaningful comparison, we perform554

grid search (m ∈ [100 : 100 : 2000] and p ∈ [1 : 10]) and555

report the best results of them. For the other baselines like556

ITQ, we use the default settings provided by their authors557

since most of them do not have important model parameters.558

Moreover, because this paper focuses on the unsupervised559

setting where no supervision is provided, thereby not560

comparing it to the supervised hashing methods, like561

Kernelized Supervised Hashing [61] and deep hashing562

methods shown in Section II.563

When compared to baselines, we consistently use the564

following settings. To generate the anchor set, we run565

K-means and stop at the 100th iteration, and the anchor set566

size is m = 1, 000. To generate initial embedding Y by567

Laplacian Eigenmap, we set pD = 5 with the Heat kernel.568

In Algorithm 1, the power parameter r is set to 0.5, p is set to569

3 for constructing sparse representation a, and when solving ã570

iteratively by Eq. (8), we terminate at the 20th iteration. The571

effect of two key parameters, m and p, will be shown later.572

Experiments are conducted on a computer with Intel Core573

i7-2600 CPU and 16GB RAM. All numeric results reported574

in this paper are the average values of 25 repeated runs.575

B. Results and Discussions 576

The results on five datasets are shown in Figures 3 to 7 577

respectively. It can be observed that SHODE significantly 578

outperforms the baselines. Besides, the results also reveal the 579

following important points. 1) SHODE and IMH achieve the 580

best performance, especially when measured by F-measure 581

with long hashcodes. This is because they adopt non-linear 582

projection which can better preserve the manifold structure. 583

In addition, their non-linear function can avoid over- 584

segmentation of space as in linear methods like ITQ, which 585

increases the collision probability in the hashtable. Thus, they 586

can retrieve more points (high recall) with high precision, 587

which highlights the advantage of SH. 2) SHODE takes the 588

influence of anchors on hashcodes into consideration and 589

finds the optimal embedding of anchors, thereby improving 590

the quality of hashcodes. In comparison with other Sparse 591

Hashing methods that completely neglect the effect of anchor 592

embedding, e.g., IMH and AGH, our performance is much 593

better than theirs. 594

In addition, to evaluate the significance of the improvements 595

by SHODE over the other baseline methods, we perform 596

paired-sample t-test on all datasets with different hashcode 597

length. In our experiment, we perform 25 repeated runs for 598

each hashcode length with random data split and all methods 599

follow the same data split. For each method, we take the 600

corresponding mAP values of 25 runs as samples from its 601

mAP distribution, and compare them between algorithms for 602

the significant tests. The significance level is set to 0.01 603

as a typical value. The results show that the p-value in 604

almost all significance tests between SHODE and the other 605

baseline methods is smaller than 10−7, which is far less 606

than the significance level 0.01, indicating that the improve- 607

IEE
E P

ro
of

8 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 4. Results on MNIST dataset. (a) F-measure in Hamming 2. (b) Recall in Hamming 2. (c) mean Average Precision. (d) Precision-recall curve, 64 bits.
(e) Precision curve, 64 bits. (f) Recall curve, 64 bits.

Fig. 5. Results on NUS-WIDE dataset. (a) F-measure in Hamming 2. (b) Recall in Hamming 2. (c) mean Average Precision. (d) Precision-recall curve,
64 bits. (e) Precision curve, 64 bits. (f) Recall curve, 64 bits.

ments gained by SHODE over the baselines are statistically608

significant.609

The effects of m and p on system performance are shown610

in Figures 8(a) and 8(b) respectively. Seen from the results,611

on the one hand, if m is too small, the non-linear manifold612

cannot be well preserved. On the other hand, increasing m can613

help to improve the performance in the beginning but it will 614

be saturated at a certain point, which means further increase 615

of m after this point does not improve the performance that 616

much. Differently, varying value p within a certain range 617

(e.g., p < 20) does not seem to influence the performance 618

dramatically in the sense that the p-mAP curve looks like a 619

IEE
E P

ro
of

GUO et al.: LEARNING TO HASH WITH OPTIMIZED ANCHOR EMBEDDING FOR SCALABLE RETRIEVAL 9

Fig. 6. Results on SIFT1M dataset. (a) F-measure in Hamming 2. (b) Recall in Hamming 2. (c) mean Average Precision. (d) Precision-recall curve, 64 bits.
(e) Precision curve, 64 bits. (f) Recall curve, 64 bits.

Fig. 7. Results on CIFAR-100 dataset. (a) F-measure in Hamming 2. (b) Recall in Hamming 2. (c) mean Average Precision. (d) Precision-recall curve,
64 bits. (e) Precision curve, 64 bits. (f) Recall curve, 64 bits.

flat line. However, if p is too large (say, 50), anchors not620

close to data will be selected to compute a, which will break621

the locality and decrease the performance. Figure 8(c) shows622

the objective function value in Eq. (11) w.r.t. the number of623

iterations. We can observe the objective function can increase624

steadily with more iterations and will converge within 100 iter-625

ations, which validates the effectiveness of Algorithm 1.626

Figure 8(d) plots the mAP w.r.t. the number of iterations 627

in Algorithm 1. It can be observed that mAP value keeps 628

increasing with more iterations until the algorithm converges. 629

In addition, there is an important result we need to mention 630

that the mAP of SHODE at iteration 0 is much worse than 631

the optimal mAP. In fact, at iteration 0, the anchor embedding 632

is not optimized at all. This phenomenon demonstrates that 633

IEE
E P

ro
of

10 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 8. Effects on parameters (all under 32 bits). (a) Effect of m (p = 3). (b) Effect of p (m = 1, 000). (c) Convergence study. (d) mAP w.r.t. #iteration.

1) the anchor embedding is indeed important for sparse634

hashing and optimizing the embedding of anchors does lead to635

higher hashing quality, and 2) with better anchor embedding,636

SHODE performs better, which is also the motivation of this637

paper.638

V. CONCLUSION639

In this paper, we proposed a novel Sparse Hashing method,640

namely SHODE, for scalable retrieval. Based on the sparse641

representation, a non-linear locality-preserving dimension642

reduction method was presented. Moreover, we discovered643

the importance of the anchor embedding for Sparse Hashing644

and proposed a novel method to find the optimized anchor645

embedding. An efficient learning algorithm was given for opti-646

mization. Extensive experiments on five benchmark datasets647

have verified our motivation and the superiority of SHODE.648

REFERENCES649

[1] X. Yang, X. Qian, and T. Mei, “Learning salient visual word for650

scalable mobile image retrieval,” Pattern Recognit., vol. 48, no. 10,651

pp. 3093–3101, 2015.652

[2] X. Yang, X. Qian, and Y. Xue, “Scalable mobile image retrieval by653

exploring contextual saliency,” IEEE Trans. Image Process., vol. 24,654

no. 6, pp. 1709–1721, Jun. 2015.655

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding656

best matches in logarithmic expected time,” ACM Trans. Math. Softw.,657

vol. 3, no. 3, pp. 209–226, 1997.658

[4] G. Ding, Y. Guo, J. Zhou, and Y. Gao, “Large-scale cross-modality659

search via collective matrix factorization hashing,” IEEE Trans. Image660

Process., vol. 25, no. 11, pp. 5427–5440, Sep. 2016.661

[5] Z. Lin, G. Ding, J. Han, and J. Wang, “Cross-view retrieval via662

probability-based semantics-preserving hashing,” IEEE Trans. Cybern.,663

to be published. doi: 10.1109/TCYB.2016.2608906.664

[6] F. Shen, C. Shen, Q. Shi, A. V. D. Hengel, Z. Tang, and H. T. Shen,665

“Hashing on nonlinear manifolds,” IEEE Trans. Image Process., vol. 24,666

no. 6, pp. 1839–1851, Jun. 2015.667

[7] L. Liu, Z. Lin, L. Shao, F. Shen, G. Ding, and J. Han, “Sequential668

discrete hashing for scalable cross-modality similarity retrieval,” IEEE669

Trans. Image Process., vol. 26, no. 1, pp. 107–118, Oct. 2017.670

[8] X. Lu, X. Zheng, and X. Li, “Latent semantic minimal hashing671

for image retrieval,” IEEE Trans. Image Process., vol. 26, no. 1,672

pp. 355–368, Jan. 2017.673

[9] X. Li, Q. Guo, and X. Lu, “Spatiotemporal statistics for video quality674

assessment,” IEEE Trans. Image Process., vol. 25, no. 7, pp. 3329–3342,675

Jul. 2016.676

[10] Y. Guo, G. Ding, X. Jin, and J. Wang, “Learning predictable and677

discriminative attributes for visual recognition,” in Proc. 29th AAAI678

Conf. Artif. Intell., 2015, pp. 3783–3789.679

[11] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-680

mate nearest neighbor in high dimensions,” in Proc. Annu. IEEE Symp.681

Found. Comput. Sci., Oct. 2006, pp. 459–468.682

[12] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid,683

“Aggregating local image descriptors into compact codes,” IEEE684

Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1704–1716,685

Sep. 2012.686

[13] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. Adv. 687

Neural Inf. Process. Syst., 2008, pp. 1753–1760. 688

[14] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quanti- 689

zation: A procrustean approach to learning binary codes for large-scale 690

image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, 691

pp. 2916–2929, Dec. 2013. 692

[15] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,” 693

in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 3419–3427. 694

[16] Y. Lin, R. Jin, D. Cai, S. Yan, and X. Li, “Compressed hashing,” in Proc. 695

IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 446–451. 696

[17] W. Liu, J. Wang, S. Kumar, and S. F. Chang, “Hashing with graphs,” in 697

Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 1–8. 698

[18] T. Ge, Q. Ke, and J. Sun, “Sparse-coded features for image retrieval,” 699

in Proc. Brit. Mach. Vis. Conf., 2013, pp. 1–11. 700

[19] F. Wu, Z. Yu, Y. Yang, S. Tang, Y. Zhang, and Y. Zhuang, “Sparse multi- 701

modal hashing,” IEEE Trans. Multimedia, vol. 16, no. 2, pp. 427–439, 702

Feb. 2014. 703

[20] X. Zhu, Z. Huang, H. Cheng, J. Cui, and H. T. Shen, “Sparse hashing for 704

fast multimedia search,” ACM Trans. Inf. Syst., vol. 31, no. 2, May 2013, 705

Art. no. 9. 706

[21] D. Zhang, J. Han, C. Li, J. Wang, and X. Li, “Detection of co-salient 707

objects by looking deep and wide,” Int. J. Comput. Vis., vol. 120, no. 2, 708

pp. 215–232, 2016. 709

[22] J. Han, D. Zhang, X. Hu, L. Guo, J. Ren, and F. Wu, “Background 710

prior-based salient object detection via deep reconstruction residual,” 711

IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 8, pp. 1309–1321, 712

Aug. 2015. 713

[23] J. Mairal, F. R. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised 714

dictionary learning,” in Proc. Adv. Neural Inf. Process. Syst., 2008, 715

pp. 1033–1040. 716

[24] Y. Guo, G. Ding, J. Zhou, and Q. Liu, “Robust and discrimina- 717

tive concept factorization for image representation,” in Proc. 5th 718

ACM Int. Conf. Multimedia Retr., Shanghai, China, Jun. 2015, 719

pp. 115–122. 720

[25] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by 721

locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 722

2000. 723

[26] L. Chen, D. Xu, I. W. Tsang, and X. Li, “Spectral embedded hashing 724

for scalable image retrieval,” IEEE Trans. Cybern., vol. 44, no. 7, 725

pp. 1180–1190, Jul. 2014. 726

[27] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for 727

scalable image retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern 728

Recognit., Jun. 2010, pp. 3424–3431. 729

[28] D. Zhang, F. Wang, and L. Si, “Composite hashing with multiple 730

information sources,” in Proc. 34th Int. ACM SIGIR Conf. Res. Develop. 731

Inf. Retr., 2011, pp. 225–234. 732

[29] X. Zhu, Z. Huang, H. T. Shen, and X. Zhao, “Linear cross-modal hashing 733

for efficient multimedia search,” in Proc. ACM Multimedia Conf., 2013, 734

pp. 143–152. 735

[30] X. He and P. Niyogi, “Locality preserving projections,” in Proc. Adv. 736

Neural Inf. Process. Syst., 2003, pp. 153–160. 737

[31] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse cod- 738

ing algorithms,” in Proc. Adv. Neural Inf. Process. Syst., 2006, 739

pp. 801–808. 740

[32] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative 741

matrix factorization for data representation,” IEEE Trans. Pattern Anal. 742

Mach. Intell., vol. 33, no. 8, pp. 1548–1560, Aug. 2011. 743

[33] A. Cherian, “Nearest neighbors using compact sparse codes,” in Proc. 744

31th Int. Conf. Mach. Learn., 2014, pp. 1053–1061. 745

IEE
E P

ro
of

GUO et al.: LEARNING TO HASH WITH OPTIMIZED ANCHOR EMBEDDING FOR SCALABLE RETRIEVAL 11

[34] R. Ye and X. Li, “Compact structure hashing via sparse and sim-746

ilarity preserving embedding,” IEEE Trans. Cybern., vol. 46, no. 3,747

pp. 718–729, Mar. 2016.748

[35] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE749

Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.750

[36] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,751

no. 4, pp. 1289–1306, Apr. 2006.752

[37] X. Zhu, L. Zhang, and Z. Huang, “A sparse embedding and least variance753

encoding approach to hashing,” IEEE Trans. Image Process., vol. 23,754

no. 9, pp. 3737–3750, Sep. 2014.755

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification756

with deep convolutional neural networks,” in Proc. Adv. Neural Inf.757

Process. Syst., 2012, pp. 1106–1114.758

[39] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing759

for compact binary codes learning,” in Proc. IEEE Conf. Comput. Vis.760

Pattern Recognit., Jun. 2015, pp. 2475–2483.761

[40] H. Lai, Y. Pan, Y. Liu, and S. Yan, “Simultaneous feature learning and762

hash coding with deep neural networks,” in Proc. IEEE Conf. Comput.763

Vis. Pattern Recognit., Jun. 2015, pp. 3270–3278.764

[41] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable765

deep hashing with regularized similarity learning for image retrieval and766

person re-identification,” IEEE Trans. Image Process., vol. 24, no. 12,767

pp. 4766–4779, Dec. 2015.768

[42] H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing for769

fast image retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,770

Jun. 2016, pp. 2064–2072.771

[43] W. Li, S. Wang, and W. Kang, “Feature learning based deep supervised772

hashing with pairwise labels,” in Proc. 25th Int. Joint Conf. Artif. Intell.,773

Dec. 2016, pp. 1711–1717.774

[44] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie,775

“The caltech-UCSD birds-200-2011 dataset,” California Inst. Technol.,776

California, CA, USA, Tech. Rep. CNS-TR-2011-001, 2011.777

[45] M. Belkin and P. Niyogi, “Using manifold stucture for partially778

labeled classification,” in Proc. Adv. Neural Inf. Process. Syst., 2002,779

pp. 929–936.780

[46] B. Shen, B. Liu, Q. Wang, Y. Fang, and J. P. Allebach, “SP-SVM: Large781

margin classifier for data on multiple manifolds,” in Proc. 29th AAAI782

Conf. Artif. Intell., 2015, pp. 2965–2971.783

[47] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality784

reduction and data representation,” Neural Comput., vol. 15, no. 6,785

pp. 1373–1396, 2003.786

[48] C. Ding, T. Li, and M. I. Jordan, “Convex and semi-nonnegative matrix787

factorizations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1,788

pp. 45–55, Jan. 2010.789

[49] Z. Wen and W. Yin, “A feasible method for optimization with orthog-790

onality constraints,” Math. Program., vol. 142, no. 1, pp. 397–434,791

2013.792

[50] D. Goldfarb, Z. Wen, and W. Yin, “A curvilinear search method for793

p-harmonic flows on spheres,” SIAM J. Imag. Sci., vol. 2, no. 1,794

pp. 84–109, 2009.795

[51] J. Nocedal and S. Wright, Numerical Optimization. 1999.AQ:6 796

[52] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed.797

Baltimore, MD, USA: Johns Hopkins Univ. Press, 1996.798

[53] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast799

similarity search,” in Proc. 33rd Int. ACM SIGIR Conf. Res. Develop.800

Inf. Retr., 2010, pp. 18–25.801

[54] A. Krizhevsky, “Learning multiple layers of features from tiny images,”802

Univ. Toronto, Toronto, ON, Canada, Tech Rep., 2009.AQ:7 803

[55] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic804

representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42,805

no. 3, pp. 145–175, 2001.806

[56] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “NUS-WIDE: A807

real-world Web image database from national University of Singapore,”808

in Proc. 8th ACM Int. Conf. Image Video Retr., 2009, Art. no. 48.809

[57] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”810

Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.811

[58] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE812

Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.813

[59] B. Xu, J. Bu, Y. Lin, C. Chen, X. He, and D. Cai, “Harmonious hashing,”814

in Proc. 23rd Int. Joint Conf. Artif. Intell., 2013, pp. 1820–1826.815

[60] W. Kong and W. Li, “Isotropic hashing,” in Proc. Adv. Neural Inf.816

Process. Syst., 2012, pp. 1655–1663.817

[61] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hash-818

ing with kernels,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,819

2012, pp. 2074–2081.820

Yuchen Guo received the B.Sc. degree from the 821

School of Software, and the B.Ec. degree from the 822

School of Economics and Management, Tsinghua 823

University, Beijing, China, in 2013, where he is cur- 824

rently pursuing the Ph.D. degree with the School of 825

Software. His research interests include multimedia 826

information retrieval, computer vision, and machine 827

learning. 828

AQ:8

Guiguang Ding received the Ph.D. degree in elec- 829

tronic engineering from Xidian University, China, 830

in 2014. In 2006, he has been a Post-Doctoral 831

Research Fellow with the Department of Automa- 832

tion, Tsinghua University. He is currently an 833

Associate Professor with the School of Software, 834

Tsinghua University. He has authored 80 papers 835

in major journals and conferences, including the 836

IEEE TIP, TMM, TKDE, SIG IR, AAAI, ICML, 837

IJCAI, CVPR, and ICCV. His current research cen- 838

ters on the area of multimedia information retrieval, 839

computer vision and machine learning. 840

AQ:9

Li Liu received the Ph.D. degree from the Depart- 841

ment of Electronic and Electrical Engineering, The 842

University of Shefeld, Shefeld, U.K., in 2014. He is 843

currently a Research Fellow with the Department 844

of Computer and Information Sciences, Northumbria 845

University, Newcastle upon Tyne, U.K. 846

Jungong Han was a Senior Scientist with Civolution 847

Technology (a combining synergy of Philips CI and 848

Thomson STS) from 2012 to 2015, a Research Staff 849

with the Centre for Mathematics and Computer 850

Science from 2010 to 2012, and a Researcher 851

with the Technical University of Eindhoven, 852

The Netherlands from 2005 to 2010. He is currently 853

a Senior Lecturer with the Department of Computer 854

Science, Northumbria University, U.K. 855

Ling Shao (M’09–SM’10) was a Professor with 856

Northumbria University from 2014 to 2016, a Senior 857

Lecturer with the University of Sheffield from 858

2009 to 2014, and a Senior Scientist with Philips 859

Research, The Netherlands, from 2005 to 2009. He is 860

currently a Professor with the School of Comput- 861

ing Sciences, University of East Anglia, Norwich, 862

U.K. His research interests include computer vision, 863

image/video processing, and machine learning. He is 864

a fellow of the British Computer Society and the 865

Institution of Engineering and Technology. He is an 866

Associate Editor of the IEEE TRANSACTIONS ON IMAGE PROCESSING, the 867

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 868

and several other journals. 869

IEE
E P

ro
of

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF
proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us
your corrections in list format. You may also upload revised graphics via the Author Gateway.

AQ:1 = Please note that there were discrepancies between the accepted pdf [SHODE_R1.pdf] and the
[bare_jrnl_final.tex] in Reference citations. We have followed [bare_jrnl_final.tex].

AQ:2 = Please confirm/give details of funding source.
AQ:3 = Please confirm whether the corresponding authors information is correct as set.
AQ:4 = Please note that there were discrepancies between the accepted pdf [SHODE_R1.pdf] and the

[bare_jrnl_final.tex] in First Footnote. We have followed [bare_jrnl_final.tex].
AQ:5 = Table I is not cited in body text. Please indicate where it should be cited.
AQ:6 = Please provide the publisher name and location for ref. [51].
AQ:7 = Please provide the report no. for ref. [54].
AQ:8 = Please note that there were discrepancies between the accepted pdf [SHODE_R1.pdf] and the

[bare_jrnl_final.tex] in biographies. We have followed [bare_jrnl_final.tex].
AQ:9 = Please confirm whether the edits made in the sentence “He has authored …” are OK.

IEE
E P

ro
of

IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Learning to Hash With Optimized Anchor
Embedding for Scalable Retrieval

Yuchen Guo, Guiguang Ding, Li Liu, Jungong Han, and Ling Shao, Senior Member, IEEE

Abstract— Sparse representation and image hashing are1

powerful tools for data representation and image retrieval respec-2

tively. The combinations of these two tools for scalable image3

retrieval, i.e., sparse hashing (SH) methods, have been proposed4

in recent years and the preliminary results are promising. The5

core of those methods is a scheme that can efficiently embed6

the (high-dimensional) image features into a low-dimensional7

Hamming space, while preserving the similarity between features.8

Existing SH methods mostly focus on finding better sparse9

representations of images in the hash space. We argue that the10

anchor set utilized in sparse representation is also crucial, which11

was unfortunately underestimated by the prior art. To this end,12

we propose a novel SH method that optimizes the integration of13

the anchors, such that the features can be better embedded and14

binarized, termed as Sparse Hashing with Optimized Anchor15

Embedding. The central idea is to push the anchors far from the16

axis while preserving their relative positions so as to generate17

similar hashcodes for neighboring features. We formulate this18

idea as an orthogonality constrained maximization problem19

and an efficient and novel optimization framework is system-20

atically exploited. Extensive experiments on five benchmark21

image data sets demonstrate that our method outperforms22

several state-of-the-art related methods.23

Index Terms— Sparse representation, hashing, retrieval,24

scalability, orthogonality, optimization.25

I. INTRODUCTION26

APPROXIMATE Nearest Neighbor (ANN) search has27

become a fundamental paradigm in various applications,28

such as image recognition and image retrieval [1], [2]. Its aimAQ:1 29

is to find some approximate nearest neighbors for a query30

from a collection of data. To cope with large-scale data, many31

techniques for fast ANN search have been proposed in the past.32

One popular pathway is based on trees, e.g. kd-tree [3], which33

has logarithmic retrieval complexity for low-dimensional data.34

However, most tree-based methods may reduce to exhaustive35

Manuscript received July 30, 2016; revised December 2, 2016; accepted
AQ:2 December 28, 2016. This work was supported in part by the National Natural

Science Foundation of China under Grant 61571269 and Grant 61271394,
in part by the National Basic Research Project of China under
Grant 2015CB352300, and in part by the Royal Society Newton Mobility
under Grant IE150997. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Lei Zhang.

AQ:3 (Corresponding authors: Guiguang Ding; Jungong Han.)
AQ:4 Y. Guo and G. Ding are with the School of Software, Tsinghua

University, Beijing 100084, China (e-mail: yuchen.w.guo@gmail.com;
dinggg@tsinghua.edu.cn).

L. Liu and J. Han are with the Department of Computer and Information
Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.
(e-mail: li2.liu@northumbria.ac.uk; jungong.han@northumbria.ac.uk).

L. Shao is with the School of Computing Sciences, University of East
Anglia, Norwich NR4 7TJ, U.K. (e-mail: ling.shao@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2652730

linear scanning for high-dimensional data because of the 36

curse of dimensionality. Another pathway, called hashing [4], 37

represents data by a sequence of binary codes. Benefiting 38

from the binary representation, the storage can be dramatically 39

reduced and the search can be quite efficient, even with a large- 40

scale dataset [5]–[10]. With proper designs, hashing will not 41

necessarily degrade the search accuracy. In view of the above 42

advantages, hashing methods have drawn increasing attention 43

recently from the industry and academia. 44

The key problem in hashing is how to embed the orig- 45

inal features, which are usually high-dimensional floating- 46

point number representations, into the low-dimensional binary 47

Hamming space while the similarity between the original fea- 48

tures can be preserved. Locality Sensitive Hashing (LSH) [11], 49

as the most notable and fundamental hashing method, adopts 50

random projections to generate hashcodes. Theoretically, the 51

Hamming distance between those hashcodes can progressively 52

approximate the Euclidean distance between the original fea- 53

tures. But in practice, very long hashcodes (say, 1, 024 bits) 54

are required in this approach so as to achieve satisfactory 55

performance. To address this issue, several learning based 56

methods have been proposed, such as PCA Hashing [12], 57

Spectral Hashing [13], and Iterative Quantization [14]. Though 58

better performance can be obtained, compared to LSH, these 59

methods still suffer from two shortcomings due to the linear 60

projections employed by them: 1) they may fail to preserve 61

the non-linear manifold structure of data; and 2) they may 62

achieve high precision but low recall as the feature space is 63

segmented so finely that data may be scatted in the Hamming 64

space, which leads to extremely low collision probability [15]. 65

Alternatively, methods exploiting non-linear projections [6], 66

[16], [17] have gained increasing popularity due to their 67

superior performance. Specifically, these methods, thanks to 68

the non-linear projections, can better preserve the complicated 69

geometric structure of data, especially the manifold structure. 70

One representative framework is called Sparse Hashing (SH) 71

[6], [16]–[20] since it is based on the Sparse Coding (SC) 72

that was successfully used in image representation [21], [22], 73

classification [23], and denoising [24]. Basically, the algorithm 74

is carried out by two forms of transformation. First, a non- 75

linear transformation converts the original features to the 76

sparse representations. Second, a linear transformation further 77

transfers the sparse representations generated in the previous 78

step to the Hamming space. Generally, non-linear SH methods 79

are capable of overcoming two shortcomings of the linear 80

methods if a proper learning strategy is deployed. However, 81

these two problems, i.e., how to generate effective sparse 82

representations for hashing and how to transform the sparse 83

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEE
E P

ro
of

2 IEEE TRANSACTIONS ON IMAGE PROCESSING

representation into the Hamming space with data similarity84

preserved, still need to be solved.85

In this paper, we propose a novel SH method, aiming at86

preserving the non-linear manifold structure of the original87

features in the Hamming space. In particular, motivated by88

Locally Linear Embedding (LLE) [25] and Anchor Graph [17],89

we learn a non-linear locality-preserving dimension reduction90

function via the sparse representation of data. This non-91

linear function secures similar low-dimensional representa-92

tions for neighboring points. After such an effective dimension93

reduction, we can easily generate binary hashcodes from94

the embedded low-dimensional features. When learning this95

function, previous works [6], [16]–[18], [20] only looked into96

the sparse representation of data but ignored the importance97

of the anchors [17] utilized in constructing the sparse rep-98

resentation. We notice that the low-dimensional embedding99

of the anchors has a significant impact on the hash function.100

Specifically, it is discovered that pushing anchors far from101

axis while preserving the geometric structure of them during102

the anchor embedding usually leads to high-quality hashcodes.103

We investigate this phenomenon and mathematically formulate104

the implementation of this idea to an orthogonality constrained105

maximization problem which optimizes the anchor embedding106

with the aim to avoid generating two different hashcodes for107

neighboring low-dimensional points. With such an optimiza-108

tion, the locality of original features can be well preserved and109

better ANN search performance can be achieved. Moreover,110

we put forward an efficient learning algorithm to solve the111

complicated orthogonality constrained optimization problem.112

The rest of this paper is organized as follows. In Section II,113

we briefly describe some preliminaries and review the related114

hashing works. The proposed SHODE is introduced detailedly115

in Section III. The experimental results and discussion are116

given in Section IV, and we draw conclusions in Section V.117

II. PRELIMINARIES AND RELATED WORK118

A. Formulation119

Given a set of d-dimensional features X = [x1, ..., xn] ∈120

R
d×n , we can design a hash function h(·) to generate121

k-bit binary representations, i.e., hashcodes, for them as122

bi = h(xi) ∈ {−1, 1}k,1 such that the similarity between123

features can be preserved, i.e., similar features have similar124

hashcodes. This idea can be formulated as the following125

learning problem,126

min
h

∑

i, j

si j dH (h(xi), h(x j)), s.t. C(h), (1)127

where dH is the Hamming distance between hashcodes, si j is128

the similarity between xi and x j , and C(h) is the constraints129

applied to h, for example, we always expect the hashcodes to130

be balanced (
∑

i bi = 0k) and uncorrelated (BBT = nIk).131

Since it is difficult, if not impossible, to design an effective132

hash function by directly converting X to hashcodes, a133

two-step strategy is widely adopted [12]–[14], [16]. In the134

first step, the original features X are projected into a135

1In implementation, we can use {0, 1}. In fact, these two representations
are equivalent. So we use {−1, 1} in this paper for convenience as in [17].

TABLE I

NOTATIONS AND DESCRIPTIONS IN THIS PAPER

k-dimensional space as Y = [y1, ..., yn] ∈ R
k×n by a 136

projection function φ(·). Because we usually have k < d , this 137

step can be regarded as a dimension reduction step. Then, the 138

low-dimensional embedded representations Y are quantified 139

into binary codes by, in most cases, the sign function as 140

B = [b1, ..., bn] = sign(Y), where sign(x) = 1 if x > 0 141

or −1 otherwise. By doing so, the overall hash function 142

becomes h(·) = sign(φ(·)). In this way, learning h can be 143

achieved by learning φ instead. However, the sign function 144

still makes the learning intractable in many cases [13]. 145

A common solution is to remove the sign function and to 146

further relax the learning problem as a real-valued problem, 147

min
φ

∑

i, j

si j d(φ(xi), φ(x j)), s.t. C(φ). (2) 148

B. Linear Hashing 149

Several methods [13], [16], [26]–[29] assume a linear 150

projection for φ, i.e., φ(x) = Px, where P ∈ R
k×d is a 151

linear projection matrix. After proper algebra operations and 152

transformations, the learning problem can be rewritten into a 153

simple formulation as follows: 154

max
P

tr(PXSXT PT), s.t. PPT = Ik, (3) 155

where tr(·) is the trace function, S = [si j] is the sim- 156

ilarity matrix among training samples, and the orthogonal 157

constraint requires the selected directions to be uncorrelated. 158

S determines what kind of information is preserved depending 159

on the intentions of different methods. The statistics reveal 160

that the majority of existing works choose to preserve the 161

local manifold structure of data [13], [30]. After the above 162

assumption and operations, the problem defined in Eq. (3) can 163

be easily solved. However, since only linear projections are 164

used, these methods may still fail to preserve the similarity.

AQ:5

165

C. Sparse Hashing 166

To preserve the non-linear manifold structure, Sparse 167

Hashing [6], [16]–[18], [20], which learns a non-linear φ, 168

has attracted considerable attention. Given a set of 169

anchors D = [d1, ..., dm] ∈ R
d×m , a sparse presentation 170

A = [a1, ..., an] ∈ R
m×n is constructed by A = ρ(X, D). This 171

can be done by conventional sparse reconstruction [31] as 172

min
A
‖X− DA‖2F +R(A), s.t. C(A), (4) 173

IEE
E P

ro
of

GUO et al.: LEARNING TO HASH WITH OPTIMIZED ANCHOR EMBEDDING FOR SCALABLE RETRIEVAL 3

where R(A) denotes regularization terms, such as �1-norm174

regularization for sparsity, and other terms like Graph175

regularization [32], and C(A) is a constraint on A. Obviously,176

this method is non-linear. in [19] and [33], such schemes are177

employed, and the sparse codes are then encoded into a set178

of integers which are composed of the nonzero indices. This179

index set sacrifices the advantages of efficient storage and180

speedy binary code matching. Alternatively, in [20], Zhu et al.181

proposed an encoding method in which the binary codes are182

generated by setting nonzero elements in A as 1 and the others183

as 0. The problem of this method lies in its incapability of184

generating compact and balanced representations because of185

the sparsity of A, thereby degrading the quality of hashcodes.186

In addition, Ye and Li [34] proposed the Compact Structure187

Hashing that combines the linear projection learning in Eq. (3)188

and sparse reconstruction in Eq. (4) in a unified objective189

function to simultaneously exploits the non-linear structure of190

data and finds the optimal projection function. However, this191

method intrinsically adopts a linear projection to the Hamming192

space such that it still suffers from the low-recall problem.193

A possible way of solving this problem is the usage of the194

Anchor Graph [17], in which each anchor is either randomly195

sampled from the data or the cluster centroids after applying196

a data clustering algorithm, such as Kmeans. The sparse197

representation can be build in the Anchor Graph as follows:198

a j i =

⎧
⎪⎨

⎪⎩

exp(−‖xi − d j‖2/σ 2)∑
j ′∈N (xi)

exp(−‖xi − d j ′‖2/σ 2)
, ∀ j ∈ N (xi)

0, otherwise,

199

(5)200

where N (xi) is the p-NN of xi in D and σ is the bandwidth201

parameter. The obtained sparse representation is claimed to202

preserve the similarity between data. Obviously, ai has at203

most p nonzero elements, implying that a is sparse. Finally,204

φ(·) is constructed by projecting the sparse representation to205

a low-dimensional space, i.e., φ(x) = Pρ(x, D). To preserve206

the similarity, Liu et al. [17] proposed the Anchor Graph207

Hashing that constructs P by solving an eigenvalue problem208

on the Anchor Graph. Lin et al. [16] proposed the Compressed209

Hashing in which the sampled pi j from N (0, 1/k) can con-210

struct a projection satisfying Restricted Isometry Property [35]211

in Compressed Sensing theory [36]. Similarly, Shen et al. [6]212

proposed an inductive method to construct P. Zhu et al. [37]213

proposed a sparse embedding and least variance encoding214

approach to hashing, which constructs P by solving a recon-215

struction problem and adjusts the projected representation to216

minimize the variance for preserving similarity. Even though217

promising results have been obtained, how to design effective218

ρ and P is still an open issue, which is the focus of this paper.219

Moreover, it is noticed that in recent years many works220

have attempted to combine the deep convolutional neural221

network [38] with hashing, i.e., deep hashing [39]–[43].222

For example, Liong et al. [39] proposed a deep hashing223

method in which the output of the networks is required to224

preserve the supervised similarity. Lai et al. [40] proposed225

a piece-wise function for the network to address the discrete226

optimization problem in deep hashing. Zhang et al. [41]227

presented a network using similarity regularized triplet loss 228

for person re-identification. However, it should be pointed 229

out that these deep hashing approaches should be categorized 230

into the supervised hashing methods in which supervised 231

knowledge (e.g., label information) is required for model 232

training. As is known to all, collecting sufficient supervised 233

knowledge is expensive in many applications [44]. On the 234

contrary, this paper, and many SH methods focus on the 235

unsupervised hashing which only exploits the intrinsic 236

unsupervised information of data and thus they are free from 237

the lack of the supervised knowledge. 238

III. THE PROPOSED METHOD 239

Our method follows the framework of SH. Firstly, we 240

construct a sparse representation for the original features in 241

a non-linear manner. Secondly, we linearly project the sparse 242

representation into the low-dimensional space. Thirdly, we 243

obtain hashcodes from low-dimensional embedding using the 244

sign function. The special properties of our projection are 245

1) the low-dimensional embedding preserves the local man- 246

ifold structure of original data, and 2) the similarity structure 247

is preserved as well after the sign quantization. The following 248

two subsections will elaborate on them one by one. Since all 249

involved steps take data similarity preservation into account, 250

the obtained hashcodes, without saying, will naturally preserve 251

the similarity relationship of original features, thus resulting 252

in superior ANN search and image retrieval performance. 253

A. Locality-Preserving Dimension Reduction 254

In this subsection, we will provide an effective method for 255

non-linear dimension reduction based on Sparse Coding which 256

can well preserve the non-linear local manifold structure. 257

Locality-preserving dimension reduction aims to find low- 258

dimensional embedding which can preserve the neighborhood 259

structure or manifold structure of the original data. One 260

representative and seminal work is Locally Linear Embed- 261

ding (LLE) [25] which can find a linear embedding for non- 262

linear manifold. However, LLE does not provide an explicit 263

dimension reduction function for the out-of-sample data (data 264

which is not in the training set). Another celebrated method is 265

called Locality Preserving Projections (LPP) [30] which learns 266

an explicit linear projection function instead. Despite its ability 267

of easily addressing the out-of-sample data, the linear function 268

adopted by LPP may perform worse than the non-linear ones. 269

Although LLE does not provide the projection function for 270

out-of-sample data, it still reveals an important property of 271

the non-linear manifold: local linearity. That is, the manifold 272

structure is locally linear even though it is non-linear globally. 273

Such a property is also utilized in [45] and [46], which can be 274

further interpreted below. Given some points D = [d1, ..., dm] 275

and their corresponding low-dimensional embeddings 276

Y = [y1, ..., ym] obtained by non-linear methods like LLE, 277

the low-dimensional embedding y for a new data point x is 278

given by 279

y←
∑

i∈N (x)

ai yi , (6) 280

IEE
E P

ro
of

4 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 1. Sparse representation by different methods. (a) by Eq. (5).
(b) by Eq. (7).

where N (x) is the p-NN of x in D, and ai is the corresponding281

weight. One straightforward way to compute ai is based on282

Eq. (5). But it should be noticed that such a formulation only283

defines the weight and does not reflect the relative position284

between x and N (x). Therefore, the embedding y relying on285

the weight may lose important information. Therefore, to make286

use of the local linearity better, in this paper, we propose to287

generate a by a sparse reconstruction procedure as follows:288

min
a
‖x − Da‖2F , s.t. ai ≥ 0, a j = 0 if j /∈ N (x). (7)289

Here, we require a to be nonnegative so that it can serve as290

“weight”. Moreover, only N (x) is used to reconstruct x for291

preserving the locality. Obviously, the solution a is sparse in292

the sense that it has at most p nonzero elements (p� m).293

By combining Eq. (6) and Eq. (7), the overall dimension294

reduction can be summarized as follows: 1) An anchor set D295

is generated from training data by K-means clustering; 2) We296

find the locality preserving embedding Y for it by a non-297

linear method, called Laplacian Eigenmap [47]. As this step298

is only conducted for the anchor set, there is no need to learn299

a projection function for the out-of-sample data; 3) For a new300

data point x, the sparse representation a is obtained by solving301

Eq. (7); 4) The low-dimensional embedding y is obtained by302

Eq. (6). As a result, the projection function P in our method303

can be considered as the low-dimensional embedding Y of304

the anchor set. Due to the non-linearity in Eq. (7), the entire305

procedure is non-linear as in LLE. Meanwhile, it also has an306

explicit projection function (Eq. (6) and (7)) for out-of-sample307

data. Hence, it can be concluded that our method combines the308

advantages of LLE and LPP but gets rid of their shortcomings.309

Seen from Eq. (6) and Eq. (7), two points that are close310

in the original feature space will also have similar low-311

dimensional representations after the projection, because they312

will choose similar p-NN anchor sets from D. In other words,313

these two points will finally lie very close to the embeddings314

of their corresponding anchor sets, which are also similar.315

Here, we discuss the difference between our sparse repre-316

sentation constructed by Eq. (7) and the widely used version317

expressed in Eq. (5). In principle, representations based on318

Eq. (5) fail to consider the relative position of x and N (x)319

while using Eq. (7) can achieve this goal. An intuitive illus-320

tration is shown in Figure 1, in which x1 and x2 have the same321

p-NN anchors d1 and d2. If we adopt Eq. (5), they will end up 322

with the same sparse representation (shown in bracket) because 323

they have the same distances to the anchors, and the same low- 324

dimensional representation because only distance to anchors 325

is considered, even though they might be different. On the 326

contrary, using Eq. (7) will generate the similar representations 327

but with different values, which is more reasonable in reality. 328

The above analysis clearly states that Eq. (7) and Eq. (6) 329

can lead to non-linear locality-preserving dimension reduction. 330

Then, how to solve Eq. (7) becomes the next problem. Since 331

we are aware of that some elements a j are definitely zero if 332

j /∈ N (x), it is possible to simplify Eq. (7) by discarding zero 333

elements and only focusing on the possibly non-zero ones: 334

min
ã
‖x − D̃ã‖2F s.t. ãi ≥ 0, (8) 335

where D̃ ∈ R
d×p is the p-NN of x in D and ã ∈ R

p . Since D̃ 336

contains mixed signs and ã is constrained to be nonnegative, 337

Eq. (8) is actually a Semi-nonnegative Matrix Factoriza- 338

tion (SNMF) problem, which has been extensively studied 339

in [48]. An effective and efficient optimization algorithm for 340

Eq. (8) consists of two steps: 1) ã is randomly initialized 341

by non-negative values, and 2) the following multiplicative 342

updating rule is iteratively applied until ã arrives at a stationary 343

point, 344

ãi ← ãi

√√√√ (D̃T x)+i + [(D̃T D̃)−ã]i
(D̃T x)−i + [(D̃T D̃)+ã]i

, (9) 345

where M+ = 1
2 (|M| + M) and M− = 1

2 (|M| − M). The 346

above updating rule guarantees a local convergence of the 347

optimization. Please refer to [48] for more details. In our 348

experiments, we find that 10 to 20 iterations can lead to 349

satisfactory performance because p is usually quite small such 350

that the optimization problem is simple enough in most cases. 351

B. Optimized Anchor Embedding 352

Until now, we have introduced the non-linear locality- 353

preserving dimension reduction method, which can exploit the 354

non-linear manifold structure and has an explicit function for 355

out-of-sample data. However, there is a sign function between 356

the low-dimensional representation and the hashcode. In order 357

to preserve manifold structure in the final hashcodes, it is 358

necessary to further consider the influence of the sign function. 359

From Eq. (6) and Eq. (7) in the previous subsection, it can 360

be observed that a point will fall close to the low-dimensional 361

embedding of its p-NN anchors. Hence, the embedding of the 362

anchor set is certainly influential on the quality of hashcodes. 363

We take Figure 2(a) as an example to further explain it. 364

In this figure, red triangles represent embeddings of anchors. 365

The surrounding circles represent points that lie close to the 366

corresponding anchors.2 In good cases, near points in a circle 367

are in the same quadrant so that they will obtain the same 368

hashcodes after that sign function. In this way, the similarity 369

between data can be preserved. On the contrary, in bad cases, 370

2We use circles for the convenience of illustration. The real-world situation
is surely more complicated but intrinsically it has the same problem.

IEE
E P

ro
of

GUO et al.: LEARNING TO HASH WITH OPTIMIZED ANCHOR EMBEDDING FOR SCALABLE RETRIEVAL 5

Fig. 2. The influence of anchor embedding. (a) Original embedding.
(b) Optimized embedding.

points in a circle may fall into different quadrants resulting in371

different hashcodes after applying the sign function. In such372

situations, the similarity is no longer preserved in hashcodes.373

To avoid the bad cases, we need to adjust the embedding of374

the anchor set such that it can better preserve the similarity375

after the sign function while the initial properties in the376

embedding are retained, as illustrated in Figure 2(b). Previous377

SH methods [6], [16]–[18], [20] mostly ignored the influence378

of the anchor set but focused on the sparse representation379

only. From the above discussion, the conclusion is clear: the380

anchor set embedding plays an important role in SH methods.381

Next, we continue to introduce how to optimize the anchor382

embedding.383

From Figure 2, we can observe that the bad cases usually384

happen when the embeddings of anchors lie close to the385

coordinate axis because such a point by nature is likely to386

fall into the other side of axis and thereby obtain different387

hashcodes after the sign function. To prevent it, our intuitive388

idea is to push the close-to-axis anchors far from axis while389

preserving the geometric structure. We carry out a two-step390

scheme here to implement our idea, in which an anchor-391

embedding initialization step is followed by an anchor rotation392

step. In our scheme, the initial embedding of anchors Y is393

obtained by means of Laplacian Eigenmap [47] which solves394

the optimization problem below,395

min
Y

tr(YLYT), s.t. YMYT = Ik, YM1m = 0, (10)396

where SD ∈ R
m×m is a pD-NN graph constructed from D,397

M is a diagonal matrix with elements Mii = ∑
j Si j , and398

L =M − SD is the Laplacian of the graph. This problem can399

be transferred to a generalized eigenvalue problem Lv = λMv,400

and can be solved by selecting the eigenvectors corresponding401

to the smallest k positive eigenvalues. After the above initial-402

ization step, it is very likely that many anchor embeddings403

are close to axis, which is harmful for hashing as we have404

explained before. In the second step of our scheme, we apply405

a rotation to Y subject to a condition that the optimized anchor406

embedding Ỹ after rotation is also the solution to Eq. (10). To407

do so, one good choice is the exploitation of an orthogonal408

rotation matrix R ∈ R
k×k (RRT = Ik and RT R = Ik), and409

set Ỹ = RY. Because we have tr(RYLYT RT) = tr(YLYT),410

RYMYT RT = RIkRT = Ik , and RYM1m = R0 = 0, Ỹ turns411

out to be also a solution of Eq. (10), meaning that the original 412

geometric structure in Y is perfectly preserved after a rotation 413

operation. 414

At this point, our goal becomes finding an orthogonal 415

rotation matrix R for Y such that fewer points after the rotation 416

operation (i.e., in RY) lie close to the axis, which can be 417

formulated as maximizing the total distance between RY and 418

axis below 419

max
R

O =
∑

i j

|(RY)i j |r , s.t. RRT = RT R = Ik . (11) 420

In fact, there is still an argument: a rotation can push a close- 421

to-axis anchor far from the axis, and meanwhile, it can also 422

make a far-from-axis anchor closer to the axis. This is true, 423

but the problem is not that vital. Seen from Figure 2, pushing 424

a close-to-axis anchor far is more important, because a subtle 425

change in a close-to-axis anchor can significantly reduce the 426

number of points falling into different quadrants which results 427

in different hashcodes. However, even a huge change in a far- 428

from-axis anchor may not make any difference as long as it 429

is not very close to the axis. In view of this observation, we 430

set the power parameter r ∈ (0, 1) such that the change in the 431

smaller entries has more effect on O than the larger entries. 432

Next, we need to solve this orthogonality constrained 433

optimization problem (11). The basic idea is to construct a 434

gradient flow in the feasible set which keeps increasing O 435

until it reaches a stationary point [49]. Specifically, we adopt 436

an iterative algorithm, in which the rotation R is randomly 437

initialized. At the t-th iteration, the upgradient of O at Rt is: 438

Ut = −DO(Rt) = −r · sign(Rt Y) ◦ |Rt Y|r−1YT , (12) 439

where ◦ denotes element-wise multiplication between two 440

matrices, |·|r−1 refers to the element-wise power operation for 441

a matrix.3 A traditional gradient method will move the current 442

point along this direction with a proper step size to obtain 443

the next point. However, the new point will fail to satisfy 444

the constraint, i.e., it is not in the feasible set. Instead, the 445

upgradient is first transformed to a skew-symmetric matrix 446

Wt = Ut RT
t − Rt UT

t . (13) 447

We use a Crank-Nicolson-like scheme [50] for the next point: 448

Rt+1 = Rt − τWt (
Rt + Rt+1

2
), (14) 449

where τ is a step size satisfying Armijo-Wolfe conditions [51]. 450

Solving the above equation offers us the updating rule below: 451

Rt+1 = (Ik + τ

2
Wt)

−1(Ik − τ

2
Wt)Rt . (15) 452

The above rule is called Cayley transformation. Considering 453

Wt is a skew-symmetric matrix, i.e., WT
t = −Wt , the matrix 454

Ik+ τ
2 Wt is definitely invertible and Rt+1 is orthogonal. Such 455

an updating rule will increase the value of O until conver- 456

gence. Please refer to [49, Lemma 3] for the detailed proof. 457

The overall learning algorithm for SHODE is summarized 458

3Because r ∈ (0, 1), a numeric problem may happen if (RY)i j = 0. So in
the implementation, we add a small number ε (say, 10−6) to |(RY)i j |.

IEE
E P

ro
of

6 IEEE TRANSACTIONS ON IMAGE PROCESSING

Algorithm 1 Learning SHODE

in Algorithm 1, which at last outputs two key parts for the459

hashing function φ: the anchor set D and the projection P.460

For a new data point x, we first find p-NN from D and461

obtain D̃. Afterwards, we generate sparse representation a by462

solving Eq. (8). Next, we obtain a low-dimensional embedding463

y = Pa. Finally, the binary hashcode is given by h = sign(y).464

C. Complexity Analysis465

The training time of Algorithm 1 basically consists of466

3 parts. The first part is the K-means in line 1. Suppose467

Kmeans stops at the t1-th iteration, the time complexity is468

O(nmdt1). The second part is to seek the initial embedding469

described in lines 2 to 4. Precisely, constructing a pD-NN470

graph needs O(m2d + mpD), and solving Eq. (10) requires471

O(mkpDt2) if the Lanczos algorithm [52] is adopted, where t2472

means the iteration number which is usually rather small [53].473

The third part is learning R, which can be further decom-474

posed into computing Ut by Eq. (12) (O(mk2)), computing475

Wt by Eq. (13) (O(k3)), and computing Rt+1 by Eq. (15)476

(O(k3)). Suppose the iteration depicted from lines 6 to 10477

converges at t3, the total time complexity for learning R is478

O((mk2+k3)t3). Adding them up, the overall complexity will479

be O(nmdt1 + m2d + mpD + mkpDt2 + (mk2 + k3)t3).480

Given a new data point x, the complexity to generate hash-481

codes is as follows. Searching p-NN from D needs O(pmd).482

Solving Eq. (8) via Eq. (15) requires O((pd + p2d + p2)t),483

where t is the number of iterations. And generating the low-484

dimensional representation by Eq. (6) has the complexity485

of O(pk). Therefore, the overall complexity is O(pm+(pd+486

p2d+p2)t+pk). Because t and p are usually small in practice,487

this complexity is comparable to the method in [16] and [17].488

IV. EXPERIMENTS489

A. Datasets, Metrics, Baselines and Details490

To demonstrate the effectiveness of SHODE, we adopt five491

widely used benchmark datasets for evaluation. The first one492

is CIFAR-10 [54] consisting of 60, 000 images which are493

manually divided into 10 classes each with 6, 000 images.494

Each image is represented by a 512-dimensional GIST [55]495

feature. The second one is MNIST which has 70, 000 images496

TABLE II

THE STATISTICS OF DATASETS

of handwritten digits from ‘0’ to ‘9’. The 784-dimensional 497

gray scale feature is utilized to represent each image. The third 498

dataset is NUS-WIDE [56] with 186, 577 images and each 499

image is annotated by at least one of ten classes. Each image is 500

represented by a 500-dimensional bag-of-visual-words feature 501

based on SIFT [57]. The forth dataset is SIFT1M [12] which 502

contains more than 1 million SIFT points. The fifth dataset is 503

CIFAR-100 which is similar to CIFAR-10. It has 100 classes 504

and each class has 600 images. For CIFAR-100, we adopt 505

the deep features for images which are extracted by the 506

ILSVRC2014 challenge winner GoogLeNet [58] pre-trained 507

on ImageNet. Specifically, we adopt the outputs of the last 508

fully-connected layer as the feature for each image which 509

is a 1, 024-dimensional vector. For CIFAR-10, MNIST, and 510

CIFAR-100, 10, 000 samples are randomly selected as the 511

query set and the remaining samples form the database. For 512

NUS-WIDE, 1% (1, 866) images are randomly sampled as the 513

query set, while the remaining images make up the database. 514

We refer to TableII for more detailed statistics of them. 515

We adopt two retrieval procedures, i.e., Hamming rank- 516

ing and hash lookup. Hamming ranking first computes the 517

Hamming distance between the query and all points in the 518

database and then sorts points by the distance. Points with 519

smaller distances are first returned. Hamming ranking needs a 520

linear scanning of the database. But since only bit operations 521

are required, it is usually very fast in practice. Hash lookup 522

emphasizes more on retrieval speed because it has constant 523

query time [17] with a single hash table. Following [13], [17], 524

we search within Hamming radius 2 to retrieve neighbors for 525

each query. For a Hamming ranking, we employ Precision- 526

recall curve, Precision curve and Recall curve as evaluation 527

metrics, in which the former shows the precision at different 528

recall levels, the middle reflects the precision level w.r.t. the 529

number of retrieved samples, and the latter reflects the recall 530

level w.r.t. the number of retrieved samples. On top of them, 531

mean Average Precision (mAP) defined as the area under 532

Precision-recall curve is also used. For hash lookup, we use 533

F-measure and Recall within Hamming radius 2 as metrics, 534

in which the former is the harmonic average of precision and 535

recall. For CIFAR-10, MNIST, NUS-WIDE and CIFAR-100, 536

images sharing class labels with the query are considered as 537

true positives. For SIFT1M, following [6], [59], the closest 2 538

percent of database points to the query measured by the 539

Euclidean distance are defined as the true positives of a query. 540

We employ the following unsupervised hashing methods as 541

baselines, Anchor Graph Hashing (AGH) [17], Compressed 542

Hashing (CH) [16], Compact Structure Hashing (CSH) [34], 543

IEE
E P

ro
of

GUO et al.: LEARNING TO HASH WITH OPTIMIZED ANCHOR EMBEDDING FOR SCALABLE RETRIEVAL 7

Fig. 3. Results on CIFAR-10 dataset. (a) F-measure in Hamming 2. (b) Recall in Hamming 2. (c) mean Average Precision. (d) Precision-recall curve,
64 bits. (e) Precision curve, 64 bits. (f) Recall curve, 64 bits.

Harmonious Hashing (HamH) [59], Inductive Manifold Hash-544

ing (IMH) [6] with LE and ITQ, Isotropic Hashing (IsoH) [60],545

Iterative Quantization (ITQ) [14], Sparse Embedding and546

Least Variance Encoding (SELVE) [37], and Spectral Hash-547

ing (SpH) [13]. For Ch, CSH, and HamH, we implemented548

them ourselves. And we used the author-provided codes for the549

other methods. IMH, AGH, and CH, as well as Sparse Hashing550

methods like SHODE, rely on two parameters. The first is the551

size of the anchor set, i.e., m, and the second is p for searching552

p-NN from anchor set to construct sparse representation a for553

a new data point. For a meaningful comparison, we perform554

grid search (m ∈ [100 : 100 : 2000] and p ∈ [1 : 10]) and555

report the best results of them. For the other baselines like556

ITQ, we use the default settings provided by their authors557

since most of them do not have important model parameters.558

Moreover, because this paper focuses on the unsupervised559

setting where no supervision is provided, thereby not560

comparing it to the supervised hashing methods, like561

Kernelized Supervised Hashing [61] and deep hashing562

methods shown in Section II.563

When compared to baselines, we consistently use the564

following settings. To generate the anchor set, we run565

K-means and stop at the 100th iteration, and the anchor set566

size is m = 1, 000. To generate initial embedding Y by567

Laplacian Eigenmap, we set pD = 5 with the Heat kernel.568

In Algorithm 1, the power parameter r is set to 0.5, p is set to569

3 for constructing sparse representation a, and when solving ã570

iteratively by Eq. (8), we terminate at the 20th iteration. The571

effect of two key parameters, m and p, will be shown later.572

Experiments are conducted on a computer with Intel Core573

i7-2600 CPU and 16GB RAM. All numeric results reported574

in this paper are the average values of 25 repeated runs.575

B. Results and Discussions 576

The results on five datasets are shown in Figures 3 to 7 577

respectively. It can be observed that SHODE significantly 578

outperforms the baselines. Besides, the results also reveal the 579

following important points. 1) SHODE and IMH achieve the 580

best performance, especially when measured by F-measure 581

with long hashcodes. This is because they adopt non-linear 582

projection which can better preserve the manifold structure. 583

In addition, their non-linear function can avoid over- 584

segmentation of space as in linear methods like ITQ, which 585

increases the collision probability in the hashtable. Thus, they 586

can retrieve more points (high recall) with high precision, 587

which highlights the advantage of SH. 2) SHODE takes the 588

influence of anchors on hashcodes into consideration and 589

finds the optimal embedding of anchors, thereby improving 590

the quality of hashcodes. In comparison with other Sparse 591

Hashing methods that completely neglect the effect of anchor 592

embedding, e.g., IMH and AGH, our performance is much 593

better than theirs. 594

In addition, to evaluate the significance of the improvements 595

by SHODE over the other baseline methods, we perform 596

paired-sample t-test on all datasets with different hashcode 597

length. In our experiment, we perform 25 repeated runs for 598

each hashcode length with random data split and all methods 599

follow the same data split. For each method, we take the 600

corresponding mAP values of 25 runs as samples from its 601

mAP distribution, and compare them between algorithms for 602

the significant tests. The significance level is set to 0.01 603

as a typical value. The results show that the p-value in 604

almost all significance tests between SHODE and the other 605

baseline methods is smaller than 10−7, which is far less 606

than the significance level 0.01, indicating that the improve- 607

IEE
E P

ro
of

8 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 4. Results on MNIST dataset. (a) F-measure in Hamming 2. (b) Recall in Hamming 2. (c) mean Average Precision. (d) Precision-recall curve, 64 bits.
(e) Precision curve, 64 bits. (f) Recall curve, 64 bits.

Fig. 5. Results on NUS-WIDE dataset. (a) F-measure in Hamming 2. (b) Recall in Hamming 2. (c) mean Average Precision. (d) Precision-recall curve,
64 bits. (e) Precision curve, 64 bits. (f) Recall curve, 64 bits.

ments gained by SHODE over the baselines are statistically608

significant.609

The effects of m and p on system performance are shown610

in Figures 8(a) and 8(b) respectively. Seen from the results,611

on the one hand, if m is too small, the non-linear manifold612

cannot be well preserved. On the other hand, increasing m can613

help to improve the performance in the beginning but it will 614

be saturated at a certain point, which means further increase 615

of m after this point does not improve the performance that 616

much. Differently, varying value p within a certain range 617

(e.g., p < 20) does not seem to influence the performance 618

dramatically in the sense that the p-mAP curve looks like a 619

IEE
E P

ro
of

GUO et al.: LEARNING TO HASH WITH OPTIMIZED ANCHOR EMBEDDING FOR SCALABLE RETRIEVAL 9

Fig. 6. Results on SIFT1M dataset. (a) F-measure in Hamming 2. (b) Recall in Hamming 2. (c) mean Average Precision. (d) Precision-recall curve, 64 bits.
(e) Precision curve, 64 bits. (f) Recall curve, 64 bits.

Fig. 7. Results on CIFAR-100 dataset. (a) F-measure in Hamming 2. (b) Recall in Hamming 2. (c) mean Average Precision. (d) Precision-recall curve,
64 bits. (e) Precision curve, 64 bits. (f) Recall curve, 64 bits.

flat line. However, if p is too large (say, 50), anchors not620

close to data will be selected to compute a, which will break621

the locality and decrease the performance. Figure 8(c) shows622

the objective function value in Eq. (11) w.r.t. the number of623

iterations. We can observe the objective function can increase624

steadily with more iterations and will converge within 100 iter-625

ations, which validates the effectiveness of Algorithm 1.626

Figure 8(d) plots the mAP w.r.t. the number of iterations 627

in Algorithm 1. It can be observed that mAP value keeps 628

increasing with more iterations until the algorithm converges. 629

In addition, there is an important result we need to mention 630

that the mAP of SHODE at iteration 0 is much worse than 631

the optimal mAP. In fact, at iteration 0, the anchor embedding 632

is not optimized at all. This phenomenon demonstrates that 633

IEE
E P

ro
of

10 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 8. Effects on parameters (all under 32 bits). (a) Effect of m (p = 3). (b) Effect of p (m = 1, 000). (c) Convergence study. (d) mAP w.r.t. #iteration.

1) the anchor embedding is indeed important for sparse634

hashing and optimizing the embedding of anchors does lead to635

higher hashing quality, and 2) with better anchor embedding,636

SHODE performs better, which is also the motivation of this637

paper.638

V. CONCLUSION639

In this paper, we proposed a novel Sparse Hashing method,640

namely SHODE, for scalable retrieval. Based on the sparse641

representation, a non-linear locality-preserving dimension642

reduction method was presented. Moreover, we discovered643

the importance of the anchor embedding for Sparse Hashing644

and proposed a novel method to find the optimized anchor645

embedding. An efficient learning algorithm was given for opti-646

mization. Extensive experiments on five benchmark datasets647

have verified our motivation and the superiority of SHODE.648

REFERENCES649

[1] X. Yang, X. Qian, and T. Mei, “Learning salient visual word for650

scalable mobile image retrieval,” Pattern Recognit., vol. 48, no. 10,651

pp. 3093–3101, 2015.652

[2] X. Yang, X. Qian, and Y. Xue, “Scalable mobile image retrieval by653

exploring contextual saliency,” IEEE Trans. Image Process., vol. 24,654

no. 6, pp. 1709–1721, Jun. 2015.655

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding656

best matches in logarithmic expected time,” ACM Trans. Math. Softw.,657

vol. 3, no. 3, pp. 209–226, 1997.658

[4] G. Ding, Y. Guo, J. Zhou, and Y. Gao, “Large-scale cross-modality659

search via collective matrix factorization hashing,” IEEE Trans. Image660

Process., vol. 25, no. 11, pp. 5427–5440, Sep. 2016.661

[5] Z. Lin, G. Ding, J. Han, and J. Wang, “Cross-view retrieval via662

probability-based semantics-preserving hashing,” IEEE Trans. Cybern.,663

to be published. doi: 10.1109/TCYB.2016.2608906.664

[6] F. Shen, C. Shen, Q. Shi, A. V. D. Hengel, Z. Tang, and H. T. Shen,665

“Hashing on nonlinear manifolds,” IEEE Trans. Image Process., vol. 24,666

no. 6, pp. 1839–1851, Jun. 2015.667

[7] L. Liu, Z. Lin, L. Shao, F. Shen, G. Ding, and J. Han, “Sequential668

discrete hashing for scalable cross-modality similarity retrieval,” IEEE669

Trans. Image Process., vol. 26, no. 1, pp. 107–118, Oct. 2017.670

[8] X. Lu, X. Zheng, and X. Li, “Latent semantic minimal hashing671

for image retrieval,” IEEE Trans. Image Process., vol. 26, no. 1,672

pp. 355–368, Jan. 2017.673

[9] X. Li, Q. Guo, and X. Lu, “Spatiotemporal statistics for video quality674

assessment,” IEEE Trans. Image Process., vol. 25, no. 7, pp. 3329–3342,675

Jul. 2016.676

[10] Y. Guo, G. Ding, X. Jin, and J. Wang, “Learning predictable and677

discriminative attributes for visual recognition,” in Proc. 29th AAAI678

Conf. Artif. Intell., 2015, pp. 3783–3789.679

[11] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-680

mate nearest neighbor in high dimensions,” in Proc. Annu. IEEE Symp.681

Found. Comput. Sci., Oct. 2006, pp. 459–468.682

[12] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid,683

“Aggregating local image descriptors into compact codes,” IEEE684

Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1704–1716,685

Sep. 2012.686

[13] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. Adv. 687

Neural Inf. Process. Syst., 2008, pp. 1753–1760. 688

[14] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quanti- 689

zation: A procrustean approach to learning binary codes for large-scale 690

image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, 691

pp. 2916–2929, Dec. 2013. 692

[15] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,” 693

in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 3419–3427. 694

[16] Y. Lin, R. Jin, D. Cai, S. Yan, and X. Li, “Compressed hashing,” in Proc. 695

IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 446–451. 696

[17] W. Liu, J. Wang, S. Kumar, and S. F. Chang, “Hashing with graphs,” in 697

Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 1–8. 698

[18] T. Ge, Q. Ke, and J. Sun, “Sparse-coded features for image retrieval,” 699

in Proc. Brit. Mach. Vis. Conf., 2013, pp. 1–11. 700

[19] F. Wu, Z. Yu, Y. Yang, S. Tang, Y. Zhang, and Y. Zhuang, “Sparse multi- 701

modal hashing,” IEEE Trans. Multimedia, vol. 16, no. 2, pp. 427–439, 702

Feb. 2014. 703

[20] X. Zhu, Z. Huang, H. Cheng, J. Cui, and H. T. Shen, “Sparse hashing for 704

fast multimedia search,” ACM Trans. Inf. Syst., vol. 31, no. 2, May 2013, 705

Art. no. 9. 706

[21] D. Zhang, J. Han, C. Li, J. Wang, and X. Li, “Detection of co-salient 707

objects by looking deep and wide,” Int. J. Comput. Vis., vol. 120, no. 2, 708

pp. 215–232, 2016. 709

[22] J. Han, D. Zhang, X. Hu, L. Guo, J. Ren, and F. Wu, “Background 710

prior-based salient object detection via deep reconstruction residual,” 711

IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 8, pp. 1309–1321, 712

Aug. 2015. 713

[23] J. Mairal, F. R. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised 714

dictionary learning,” in Proc. Adv. Neural Inf. Process. Syst., 2008, 715

pp. 1033–1040. 716

[24] Y. Guo, G. Ding, J. Zhou, and Q. Liu, “Robust and discrimina- 717

tive concept factorization for image representation,” in Proc. 5th 718

ACM Int. Conf. Multimedia Retr., Shanghai, China, Jun. 2015, 719

pp. 115–122. 720

[25] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by 721

locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 722

2000. 723

[26] L. Chen, D. Xu, I. W. Tsang, and X. Li, “Spectral embedded hashing 724

for scalable image retrieval,” IEEE Trans. Cybern., vol. 44, no. 7, 725

pp. 1180–1190, Jul. 2014. 726

[27] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for 727

scalable image retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern 728

Recognit., Jun. 2010, pp. 3424–3431. 729

[28] D. Zhang, F. Wang, and L. Si, “Composite hashing with multiple 730

information sources,” in Proc. 34th Int. ACM SIGIR Conf. Res. Develop. 731

Inf. Retr., 2011, pp. 225–234. 732

[29] X. Zhu, Z. Huang, H. T. Shen, and X. Zhao, “Linear cross-modal hashing 733

for efficient multimedia search,” in Proc. ACM Multimedia Conf., 2013, 734

pp. 143–152. 735

[30] X. He and P. Niyogi, “Locality preserving projections,” in Proc. Adv. 736

Neural Inf. Process. Syst., 2003, pp. 153–160. 737

[31] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse cod- 738

ing algorithms,” in Proc. Adv. Neural Inf. Process. Syst., 2006, 739

pp. 801–808. 740

[32] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative 741

matrix factorization for data representation,” IEEE Trans. Pattern Anal. 742

Mach. Intell., vol. 33, no. 8, pp. 1548–1560, Aug. 2011. 743

[33] A. Cherian, “Nearest neighbors using compact sparse codes,” in Proc. 744

31th Int. Conf. Mach. Learn., 2014, pp. 1053–1061. 745

IEE
E P

ro
of

GUO et al.: LEARNING TO HASH WITH OPTIMIZED ANCHOR EMBEDDING FOR SCALABLE RETRIEVAL 11

[34] R. Ye and X. Li, “Compact structure hashing via sparse and sim-746

ilarity preserving embedding,” IEEE Trans. Cybern., vol. 46, no. 3,747

pp. 718–729, Mar. 2016.748

[35] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE749

Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.750

[36] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,751

no. 4, pp. 1289–1306, Apr. 2006.752

[37] X. Zhu, L. Zhang, and Z. Huang, “A sparse embedding and least variance753

encoding approach to hashing,” IEEE Trans. Image Process., vol. 23,754

no. 9, pp. 3737–3750, Sep. 2014.755

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification756

with deep convolutional neural networks,” in Proc. Adv. Neural Inf.757

Process. Syst., 2012, pp. 1106–1114.758

[39] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing759

for compact binary codes learning,” in Proc. IEEE Conf. Comput. Vis.760

Pattern Recognit., Jun. 2015, pp. 2475–2483.761

[40] H. Lai, Y. Pan, Y. Liu, and S. Yan, “Simultaneous feature learning and762

hash coding with deep neural networks,” in Proc. IEEE Conf. Comput.763

Vis. Pattern Recognit., Jun. 2015, pp. 3270–3278.764

[41] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable765

deep hashing with regularized similarity learning for image retrieval and766

person re-identification,” IEEE Trans. Image Process., vol. 24, no. 12,767

pp. 4766–4779, Dec. 2015.768

[42] H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing for769

fast image retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,770

Jun. 2016, pp. 2064–2072.771

[43] W. Li, S. Wang, and W. Kang, “Feature learning based deep supervised772

hashing with pairwise labels,” in Proc. 25th Int. Joint Conf. Artif. Intell.,773

Dec. 2016, pp. 1711–1717.774

[44] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie,775

“The caltech-UCSD birds-200-2011 dataset,” California Inst. Technol.,776

California, CA, USA, Tech. Rep. CNS-TR-2011-001, 2011.777

[45] M. Belkin and P. Niyogi, “Using manifold stucture for partially778

labeled classification,” in Proc. Adv. Neural Inf. Process. Syst., 2002,779

pp. 929–936.780

[46] B. Shen, B. Liu, Q. Wang, Y. Fang, and J. P. Allebach, “SP-SVM: Large781

margin classifier for data on multiple manifolds,” in Proc. 29th AAAI782

Conf. Artif. Intell., 2015, pp. 2965–2971.783

[47] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality784

reduction and data representation,” Neural Comput., vol. 15, no. 6,785

pp. 1373–1396, 2003.786

[48] C. Ding, T. Li, and M. I. Jordan, “Convex and semi-nonnegative matrix787

factorizations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1,788

pp. 45–55, Jan. 2010.789

[49] Z. Wen and W. Yin, “A feasible method for optimization with orthog-790

onality constraints,” Math. Program., vol. 142, no. 1, pp. 397–434,791

2013.792

[50] D. Goldfarb, Z. Wen, and W. Yin, “A curvilinear search method for793

p-harmonic flows on spheres,” SIAM J. Imag. Sci., vol. 2, no. 1,794

pp. 84–109, 2009.795

[51] J. Nocedal and S. Wright, Numerical Optimization. 1999.AQ:6 796

[52] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed.797

Baltimore, MD, USA: Johns Hopkins Univ. Press, 1996.798

[53] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast799

similarity search,” in Proc. 33rd Int. ACM SIGIR Conf. Res. Develop.800

Inf. Retr., 2010, pp. 18–25.801

[54] A. Krizhevsky, “Learning multiple layers of features from tiny images,”802

Univ. Toronto, Toronto, ON, Canada, Tech Rep., 2009.AQ:7 803

[55] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic804

representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42,805

no. 3, pp. 145–175, 2001.806

[56] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “NUS-WIDE: A807

real-world Web image database from national University of Singapore,”808

in Proc. 8th ACM Int. Conf. Image Video Retr., 2009, Art. no. 48.809

[57] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”810

Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.811

[58] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE812

Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.813

[59] B. Xu, J. Bu, Y. Lin, C. Chen, X. He, and D. Cai, “Harmonious hashing,”814

in Proc. 23rd Int. Joint Conf. Artif. Intell., 2013, pp. 1820–1826.815

[60] W. Kong and W. Li, “Isotropic hashing,” in Proc. Adv. Neural Inf.816

Process. Syst., 2012, pp. 1655–1663.817

[61] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hash-818

ing with kernels,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,819

2012, pp. 2074–2081.820

Yuchen Guo received the B.Sc. degree from the 821

School of Software, and the B.Ec. degree from the 822

School of Economics and Management, Tsinghua 823

University, Beijing, China, in 2013, where he is cur- 824

rently pursuing the Ph.D. degree with the School of 825

Software. His research interests include multimedia 826

information retrieval, computer vision, and machine 827

learning. 828

AQ:8

Guiguang Ding received the Ph.D. degree in elec- 829

tronic engineering from Xidian University, China, 830

in 2014. In 2006, he has been a Post-Doctoral 831

Research Fellow with the Department of Automa- 832

tion, Tsinghua University. He is currently an 833

Associate Professor with the School of Software, 834

Tsinghua University. He has authored 80 papers 835

in major journals and conferences, including the 836

IEEE TIP, TMM, TKDE, SIG IR, AAAI, ICML, 837

IJCAI, CVPR, and ICCV. His current research cen- 838

ters on the area of multimedia information retrieval, 839

computer vision and machine learning. 840

AQ:9

Li Liu received the Ph.D. degree from the Depart- 841

ment of Electronic and Electrical Engineering, The 842

University of Shefeld, Shefeld, U.K., in 2014. He is 843

currently a Research Fellow with the Department 844

of Computer and Information Sciences, Northumbria 845

University, Newcastle upon Tyne, U.K. 846

Jungong Han was a Senior Scientist with Civolution 847

Technology (a combining synergy of Philips CI and 848

Thomson STS) from 2012 to 2015, a Research Staff 849

with the Centre for Mathematics and Computer 850

Science from 2010 to 2012, and a Researcher 851

with the Technical University of Eindhoven, 852

The Netherlands from 2005 to 2010. He is currently 853

a Senior Lecturer with the Department of Computer 854

Science, Northumbria University, U.K. 855

Ling Shao (M’09–SM’10) was a Professor with 856

Northumbria University from 2014 to 2016, a Senior 857

Lecturer with the University of Sheffield from 858

2009 to 2014, and a Senior Scientist with Philips 859

Research, The Netherlands, from 2005 to 2009. He is 860

currently a Professor with the School of Comput- 861

ing Sciences, University of East Anglia, Norwich, 862

U.K. His research interests include computer vision, 863

image/video processing, and machine learning. He is 864

a fellow of the British Computer Society and the 865

Institution of Engineering and Technology. He is an 866

Associate Editor of the IEEE TRANSACTIONS ON IMAGE PROCESSING, the 867

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 868

and several other journals. 869

IEE
E P

ro
of

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF
proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us
your corrections in list format. You may also upload revised graphics via the Author Gateway.

AQ:1 = Please note that there were discrepancies between the accepted pdf [SHODE_R1.pdf] and the
[bare_jrnl_final.tex] in Reference citations. We have followed [bare_jrnl_final.tex].

AQ:2 = Please confirm/give details of funding source.
AQ:3 = Please confirm whether the corresponding authors information is correct as set.
AQ:4 = Please note that there were discrepancies between the accepted pdf [SHODE_R1.pdf] and the

[bare_jrnl_final.tex] in First Footnote. We have followed [bare_jrnl_final.tex].
AQ:5 = Table I is not cited in body text. Please indicate where it should be cited.
AQ:6 = Please provide the publisher name and location for ref. [51].
AQ:7 = Please provide the report no. for ref. [54].
AQ:8 = Please note that there were discrepancies between the accepted pdf [SHODE_R1.pdf] and the

[bare_jrnl_final.tex] in biographies. We have followed [bare_jrnl_final.tex].
AQ:9 = Please confirm whether the edits made in the sentence “He has authored …” are OK.

