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Abstract.
29 A ribbon is a surface swept out b li t turni it 1
y a line‘Segment turning as it moves along
30 a central curve. For narrow magnetic ribbons, for which the length of the line
31 segment is much less than the length of the curve, the anisotropy induced by the
tostatic interaction is biaxial, with hard axis normal to the ribbon and easy
32 magne ? . :
axis along the central curve. The micromagnetic energy of a narrow ribbon reduces
33 to that of a one-dimensional ferromagnetic wire, but with curvature, torsion and
34 local anisotropy modified by the rate of turning. These general results are applied
35 to two examplés, namely a helicoid ribbon, for which the central curve is a straight
36 line, and a Mobius ribbon, for which the central curve is a circle about which the
line segment executes a 180° twist. In both examples, for large positive tangential
37 anisotropy, the ground state magnetization lies tangent to the central curve. As
38 the tangential anisotropy is decreased, the ground state magnetization undergoes
39 a transition, acquiring an in-surface component perpendicular to the central curve.
40 For the helicoid ribbon, the transition occurs at vanishing anisotropy, below which
11 the ground state isuniformly perpendicular to the central curve. The transition
for the Mobius ribbon is more subtle; it occurs at a positive critical value of the
42 anisotropy, below which the ground state is nonuniform. For the helicoid ribbon,
413 the dispersion-law for spin wave excitations about the tangential state is found to
14 exhibit an asymmetry determined by the geometric and magnetic chiralities.
45
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Introduction

The emerging area of magnetism in curved geometries encompasses a range of
fascinating geometry-induced effects in the magnetic properties of materials [1]:
Theoretical investigations in this area are providing new insights into the behaviour
of curved magnetic nanostructures and the control of their magnetic excitations; with
applications to shapeable magnetoelectronics [2] and prospective energy-efficient data
storage, among others.

In continuum models, the magnetization is represented by a three-dimensional
unit-vector field m(r). The study of curvature-induced effects in vector-field. models
in one- and two-dimensional geometries has a rather long history [3-6] In spite of
numerous results [3-6], the problem is far from being fully solved. "In.the majority
of these studies, the vector field is taken to be tangent to the domain. In particular,
a general expression for the surface energy of a tangential diréctor field describing
a nematic liquid crystal in a curvilinear shell was recently/obtained [7—10], with
possible applications using different geometries and orientational ordering [11-13].
The assumption of a strictly tangential field was also used inra study of the role of
curvature in the interaction between defects in 2D XY-like modelsywith applications
to superfluids, superconductors, and liquid crystals depositeéd.on curved surfaces [14].

Very recently a fully 3D approach was developed for thin magnetic shells and
wires of arbitrary shape [15, 16]. This approach yields an enérgy for arbitrary curves
and surfaces and for arbitrary magnetization fields  under the assumption that the
anisotropy greatly exceeds the dipolar interaction, so that

E= [dr (& + Em). (1)

Here &y is the exchange energy density and &,y 18 the density of effective anisotropy
interaction. We consider the model of isotrepic exchange, &ox = (Vm;)-(Vm;), where
m; with ¢ = 1,2, 3 describes the cartesian components of magnetization. Therefore
in cartesian coordinates, the sample geometry appears only through the anisotropy
term via the spatial variation of the anisotropy axis; for example, in the case of a
uniaxial curved magnet, &,, is given by K.(m - e A)z, where the unit vector e4 = e4(r)
determines the direction of the easy axis.

In curvilinear coordinatesadapted to the sample geometry, the spatial variation of
the anisotropy axes is automatically accounted for, and the anisotropy energy density
assumes its usual translation-invariant form. Instead, the exchange energy acquires
two additional terms; which ‘describe contributions to (Vm;) - (Vm,;) due to the
spatial variation of the coordinate frame [16], namely curvilinear-geometry-induced
effective anisotropy and curvilinear-geometry-induced effective Dzyaloshinskii-Moriya
interaction. For magnetic shells, these contributions may be expressed in terms of local
curvatures [15]; for. magnetic wires, in terms of curvature and torsion [16]. Below we
review briefly some manifestations of these contributions, which have been reported
elsewhere!

(i) Curvilinear-geometry-induced effective anisotropy. Geometry-induced
anisotropy can have a significant effect on the ground-state magnetization profile,
rendering it) not strictly tangential, even in the case of strong easy-tangential
anisotropy. < For example, for a helical nanowire with strong anisotropy directed
along the wire, the ground-state magnetization is always tilted within the local
rectifying surface, with tilting angle dependent on the product of the curvature and
the torsion [17, 18]. For two-dimensional geometries with nontrivial topology, a
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striking manifestation of geometry-induced anisotropy is shape-induced patterning,
for a review see [1].

The interplay between curvilinear geometry and nontrivial topology of the
magnetization structure in such systems can be crucial. For example, in spherical
shells, a strictly in-surface magnetization is forbidden due to the hairy—ball thegrem
[19]. Instead, the ground-state magnetization profile has two oppositely disposed
vortices [20]. Another nontrivial example is the Mébius ring. Since a Mébius ring isa
nonorientable surface, its topology forces a discontinuity in any nonvanishing normal
vector field. Recently we proposed that magnetic nanostructures shaped’as Mo6bius
strips possess non-volatility in their magneto-electric response due to the presence
of topologically protected magnetic domain walls in materials with/an out-of-plane
orientation of the easy axis of magnetization [21]. Typical examples of ‘a:shape-induced
patterning are well-described in [1, see Fig. 1].

(ii) Curvilinear-geometry-induced effective Dzyaloshinskii—Moriya_interaction.
The curvature-induced effective Dzyaloshinskii—-Moriya interaction is the source of
a possible chiral symmetry breaking, i.e. magnetochiral effects [22]; for a review
see [1]. Recently, the role of curvature in domain wall pinning was elucidated
[23]; a local bend in a nanowire is the source of a pinning potential for transverse
domain walls. Chiral symmetry-breaking due to a geometry-induced Dzyaloshinskii—
Moriya interaction strongly impacts the domain wall dynamics and allows domain
wall motion under the action of different spin—torques, e.g. field-like torques [18] and
anti-damping torques [24]. In the particular.case of a helical nanowire, torsion can
produce negative domain wall mobility [18,°24], while curvature can produce a shift
in the Walker breakdown [24]. Recently we have shown that a skyrmion solution on a
spherical shell can be stabilized by curvature effects only, namely by the Curvilinear-
geometry-induced effective Dzyaloshinskii-Moriya interaction [25]. Different examples
of magnetochiral effects are presented in[1, see Fig. 2].

We have briefly described a theoretical’ framework for studying different
curvilinear systems, including 1D nanowires /and 2D nanoshells. In this approach
we suppose that the effects of nonloeal dipole-dipole interactions can be reduced to an
effective easy-surface anisotropy. In the 1D case, this reduction has been rigorously
justified in the limit where the ‘diameter of the wire h is much smaller than its length
L [26]. Similar arguments have beenprovided in the 2D case for planar thin films [27]
and thin shells [28] where the surface thickness A is much less than the lateral size L.

In the current study we consider a ribbon, which represents a curve with an
infinitesimal neighbourhood of a surface along it [29]. For a narrow ribbon whose
thickness h is muchless thaniits width w, which in turn is much less than its length
L, namely h < w <L, another micromagnetic limit is realized. We show that the
micromagnetic eniergy can be reduced to the energy of a wire with modified curvature,
torsion and anisotropy. | We illustrate this approach with two examples, namely a
narrow helicoid ribbonand a Md&bius ribbon. The existence of a new nonhomogeneous
ground state is predicted for the Mobius ribbon over a range of anisotropy parameter
K. The prediction is confirmed by full scale spin—lattice simulations. We also analyse
the magnon spectrum for a narrow helicoid ribbon: unlike the magnon spectrum for
a straight wire, there appears an asymmetry in the dispersion law caused by the
geometric and magnetic chiralities.

The paper is organized as follows. In Section 1 we derive the micromagnetic
energy for a narrow ribbon, which may be interpreted as a modification of the 1D
micromagnetic energy of its central curve. We illustrate the model by two examples, a
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helicoid ribbon (Section 2) and a Mobius ribbon (Section 3). Concluding remarks are
given in Section 4. The justification of the magnetostatic energy for ribbons and strips
is presented in Appendix A. The spin-lattice simulations are detailed in Appendix B.

1. Model of narrow ribbon vs thin wire

1.1. Thin ferromagnetic wire

Here we consider a ferromagnetic wire described by a curve ~y(s) with fixed cross-
section of area S, parameterized by arc length s € [0, L], where L is the length of
the wire. It has been shown [26] that the properties of sufficiently thin ferromagnetic
wires of circular (or square) cross section are described by a reduced ‘one-dimensional
energy given by a sum of exchange and local anisotropy terms,

L
Ewire _ 47TM82S/dS(£>e\§/(ire + éaav;/lire)’

0 (2)
éae\;v(ire _ EQ‘m/‘Z g;;ire _ _% (m < GT)Q.

Here, m(s) denotes the unit magnetization vector, prime " denotes derivative with
respect to s, M, is the saturation magnetization, and £ = y/A/4wM?2 is the exchange
length with A being the exchange constant. /The local anisotropy is uniaxial, with easy
axis along the tangent e, = «’. The normalized anisotropy constant (or quality factor)
(@1 incorporates the intrinsic crystalline anisotropy K; as well as a geometry-induced
magnetostatic contribution,

K 1
Q1 = 27TM3 + 3 (3)

Note that the shape-induced. biaxial anisotropy is caused by the asymmetry of the
cross-section. In particular, for a rectangular cross-section, the anisotropy coefficients
are determined by Eq. (A.5); for-elliptical cross-sections, see [26].

It is convenient to express/the magnetization in terms of the Frenet-Serret frame
comprised of the tangent e, themnormal ey = e/./|e/|, and the binormal e; = e; X ey.
These satisfy the Frenet-Serret equations,

0 k 0
eNE Fopep, |Fasll=| -« 0 7 ], (4)
0 -7 0

where £(s) and(7(s) are the eurvature and torsion of ~(s), respectively. Letting
m = sin® cosP e; + sin @sin P ey + cos O e,
where © andi® are functions of s (and time ¢, if dynamics is considered), one can show
[16] that the exchange and anisotropy energy densities are given by
EYre = 1210 — 7sin®|” + (2 [sin O(® + k) — 7 cos O cos P|”
Q1 .

EVIC = — = 4in? O cos® P.
2
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Ribbon ¢(s,v)

Figure 1. Schematic of a ibbon: A curve «(s), where s is arc
length, defines a local basis in ter: gent e, normal ey and binormal
ep vectors. A ribbon ini is determined by relation (5). Coordinates
s and v are used on t nit vectors e; with i = z,y, z represent
ngle a(s) determines the orientation of
the ribbon segment with respeet to vectors exy and ep.

sional curve parametrized by arc length.
two-dimensional surface swept out by a line
segment centred at and to =y, moving (and possibly turning) along v
The ribbon may parame- i
wow

cosa(s)ex(s) +vsina(s)es(s), ve [—5, 5} ,(5)

- . u=1,2, es—e; xey. 6
Bl * €= e e ©)

at follows, we use Greek letters p,v,etc = 1,2 to denote indices
itute an orthonormal frame, with e; and e, tangent to the ribbon and

e3 hormal to it. It follows that the first fundamental form (or metric), g, = 0,5 0,6,
is diagonal. The second fundamental form, b,,, is given by b,, = es - 82’,,9 The
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Gaufl and mean curvatures are given respectively by the determinant and trace of

HH;WH = ||bxw/\/g;mgl/u”-

We consider a thin ferromagnetic shell about the ribbon of thickness h, where
h < w,L. (7)

The shell is comprised of points ¢(s,v) + ues, where u € [—h/2, h/2]. We express the
unit magnetization inside the shell in terms of the frame e, as

m = sinf cos ¢ e + sinfsin ¢ es + cos b e3,

where 6 and ¢ are functions of the surface coordinates s,v (and time ¢, for'dynamical
problems), but are independent of the transverse coordinate u. The/micromagnetic
energy of a thin shell reads

L w/2
Eshell _ 47TM52h/dS /\/gdv ((g:es)?ell + éoasr}llell) + Ersrtxsell’ (8(1)
0 —w/2

where g = det (g,,). The exchange energy density in (84)/s given by [15, 16]
T 2
&N — 21V — T (¢))° + 12 [sinO (Vo — ) — cos eaa—ff)} ,  (8b)

where V = e,V, denotes a surface dels operator /in its curvilinear form with
components V, = (gw)_l/ 2 Ou, the vector §2:is a spii connection with components

2, = e1 - Ve, and the vector I'(¢) is given'by |[Hy|| ( cos ¢ ) The next term in

sin ¢
the energy functional, &33! is the amisotropy energy density of the shell:
: K > Ky 2
gshell 1 X e . 8
an 47TMS2 (m 61) 47TMS2 (m 63) ’ ( C)

where K7 and K3 are the tangential and normal anisotropy coefficients of the intrinsic
crystalline anisotropy. The magnetostatic energy, ES2°!! has, in the general case, a
nonlocal form. The local form/is restored in the limit of thin films [30-32] and thin
shells [28, 33].

We proceed to consider.the narrow-ribbon limit,

’LU2
- Shig < B L. 9)

Keeping leading-order terms in w/L we obtain that the geometrical properties of
ribbon are determined by

||gribb0n|| — dlag(]_’ 1), ||H;Lil}j)b0n|| — <

—ksina o +71
nz )

o +1 0

In the same'way, we obtain from (8) the following:

EFOPON = 4 M2 how / ds (68 + &28) |

an

T 2
geef = EQ (9/ — F1)2 +€2 {sin@ (¢/ _ Ql)—COSHaa(bl:| , (10a)
2
5:1? = €2F22 + 62 cOs2 0 (%{;) + ébribbon,

an
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where the effective spin connection 2, and vector I' are given by

2 =—kcosa, I1=—rsinacosg+ (o' +7)sing, Iy=(a'+7)cosd. (100)

The last term in the energy density, &7iPP°" is the effective anisotropy energy density

of the narrow ribbon. Using arguments similar to those in [28, 30, 32], it can be shown
that
ribbon __ Ql 2 2
éi'}n - 77 (m : 61) Ty (m ' 63) . (100)
Here Q1 and )3 incorporate the intrinsic crystalline anisotropies K; and K3 as well
as geometry-induced magnetostatic contributions:

K, Ky h fw =3k
B 5= -1 2N. Ny = —In=F2L (104
@Q=onp TN @ o T 2= o g oy (109

see the justification in Appendix A. Here, Ny plays the role of a demagnetizing factor
along es. In the particular case of soft magnetic materials, where K; = K3 = 0, the
anisotropy &7'iPbon is due entirely to the magnetostatic interaction. From (10d), we
get Q1 = Ny < 1and Q3 = —1+2Ns.

The induced anisotropy is biaxial, with easy axis along the central curve as for a
thin wire (cf (3)) and hard axis normal to the surface as for.a thin shell. Indeed, one
can recast the narrow-ribbon energy (10) in the form.of the thin=wire energy (2) with
biaxial anisotropy, as follows:

&S =02 (0 — 7% sin \11)2 + 02 [sin 0 (V' + kT 7T cos fcos ‘I/] 27
Q5" Q

eff
& — —— sin? @ cos® ¢ — T?’ cos? 6.

In (11), the effective curvature and torsion are given by

kT = kcosa — g, e \//12 sin? B + (o + 7)2, (12)
the angle W is defined by
K sin o
W:¢+B7 tanle_,_7
o+ T
and the effective anisotropies are given by
QST = Q1 202 (' +7)°, Q5 =Qs—202(a/ + 7). (13)

2. Helicoid ribbon

As a first application of the preceding results, we consider a narrow ferromagnetic
ribbon in the shape of a helicoid. Interest in helicoidal geometry is motivated by
recent experiments.on rolled-up ferromagnetic microhelix coils [34-36]. These rolled-
up architectures have found application in flexible and stretchable magnetoelectronic
devices, for a/review see [2]. Modern experimental techniques allow for the possibility
of realising extremely small magnetic helix-like structures (helices, spirals, helicoids),
with dimensions down to 50 nm [37, 38], for a review see [1].

Micromagnetic helix-like structures are probably the simplest structures to
exhibit. torsion-induced effects, i.e. coupling between the helix chirality and the
magnetochirality, and breaking of mirror symmetry in the spin-wave spectrum — these
effects may in turn support unconventional methods for controlling the dynamics of
domain walls by spin-currents [17, 39, 40].
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(a) Thin magnetic ribbon (b) Dispersion curve

—— Ribbon
- - - Straight ‘wire

Local basis 10 T
(]
>
<
5]
€3 g"
&
o
€1 g
5 ~
Magnetic moment es < )
: = -
Q : o
/ . 1F-7
) }). 0 | |
Ribbon ENN) 0 1 2 3
\ Redueed wavenumber ¢

Figure 2. Magnetic helicoid ribbon: (a)»A sketch of the ribbon.
(b) Dispersion curve according to Eq. (20)7(solid blue line) in comparison with
the dispersion of the straight wire Qgty = 1 + g2

The helicoid ribbon has a straight line, which has vanishing curvature and torsion,
as its central curve. We take «(s) = s 2. The rate of turning about ~ is constant, and
we take a(s) = Cs/sg, where the chirality € is +1 for)a right-handed helicoid and —1
for a left-handed helicoid. From (5), the parameétrized surface is given by

. s , . s . wow
s(s,v) = & wvcos (—) + g Cusin (—) +z2s, we€E {——, —} )
S0 So 272
The boundary curves, given by ¢(8;+w/2), are helices, see Fig. 2 (a). It is well known
that the curvature and torsion €ssentially,influence the spin-wave dynamics in a helix
wire, acting as an effective magnetic field [17]. One can expect similar behaviour in a
helicoid ribbon.
From (12) and (13), the effective curvature, torsion and anisotropies are given by

e \? . AN
=0, = QT“—Q1—2<—> : gﬁng—z() : (14)
S0 S0 50

From (11), the energy density is given by

62
oot — ) [(s08' — €sin ) + (s9sinfg’ — € cos b cos ¢)?]
0
Qeff Qeff (15)
& = _Tl sin? @ cos® ¢ — T‘O’ cos? 6.

Let usconsider the particular case of soft magnetic materials (K; = K3 = 0).
Under the reasonable assumption ¢ < sg, we see that Q3 ~ —1, so that the easy-
surface anisotropy dominates the energy density and acts as an in-surface constraint.
Takingnf. = 7/2 to accommodate this constraint, we obtain the (further) reduced

e 2 Q 1
g it — 62(25/ - C()82 (ZS,

Page 8 of 19
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which depends only on the in-surface orientation ¢. The ground states have ¢ constant,
with orientation depending on the sign of the tangential-axis anisotropy ;. For
@1 > 0, the ground states are

0

0" = 5 cosp’ = €, (16)
where the magnetochirality € = 41 determines whether the magnetisation m is
parallel (€ = 1) or antiparallel (¢ = —1) to the helicoid axis. For @; < 0, the
ground states are given by

™ T

HN — N — ci

2 ) ¢ 2 b
where the magnetochirality € = 41 determines whether the magnetisation m is
parallel (€ = 1) or antiparallel (€ = —1) to the normal ey. This behaviour isisimilar

to that of a ferromagnetic helical wire, which was recently studied in Ref:<[17].

2.1. Spin-wave spectrum in a helicoid ribbon

Let us consider spin waves in a helicoid ribbon on the tangential ground state (16).
We write

0=0"+9(x.t), ¢=0"+0(x1), 191 lel < 1,

where x = s/so and £ = Qot with Qy = (2v0/M,)(¢/s0)%< Expanding the energy
density (15) to quadratic order in the ¥ and w, we obtain

) 2
& = (f) [(axﬁ)2 + (8x<p)2} +926e (f) (90 — 0 0)
0 50
2 2 2
+ Q1—Q3+2<£> %+Q1%'

The linearised Landau-Lifshits equations have the form of a generalized Schrédinger
equation for the complex-valued function ¢ = ¢ + iy [17, 41, 42],

—idpp = Hep £ Wop* 0l = (—idy, — A)? + U, (17)
where the “potentials” have the following form:
B 1 1 /50\2 _ B 1 1 /s50\2
ot (ol e w-i-i(Ee o
We look for plané wave solutions of (17) of the form
P(x, ) =ne® +ve ", ® =gy — Qi+, (19)

where ¢ = ksg isla dimensionless wave number, Q@ = w/ is a dimensionless frequency,
7 is an arbitrary phase, and u,v € R are constant amplitudes. By substituting (19)
into the generalized Schrodinger equation (17), we obtain

Q(q) = —2€Cq + \/[qQ B2 ) (?)1 {qQ + @ (5;)2] : (20)

2 2

see Fig. 2 (b), in which the parameters have the following values: sqg/¢ =5, Q1 = 0.2,
Q3 = -0.6,/and € = € = 1. The dispersion relation (20) for the helicoid ribbon is
similar to that of a helical wire [17], but different from that of a straight wire, in that
it is not reflection-symmetric in ¢. The sign of the asymmetry is determined by the
product of the helicoid chirality €, which depends on the topology of the ribbon, and
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the magnetochirality €, which depends on the topology of the magnetic structure.
This asymmetry stems from the curvature-induced effective Dzyaloshinskii-Moriya
interaction, which is the source of the vector potential A = Ae;, where A = —€€. In
this context, it is instructive to mention a relation between the Dzyaloshinskii-Moriya
interaction and the Berry phase [43].

3. Mobius ribbon

In this section we consider a narrow Mobius ribbon. The Mobius ring was studied
previously in Ref. [21]. The ground state is determined by the relationship between
geometrical and magnetic parameters. The vortex configuration is favourable in the
small anisotropy case, while a topologically protected domain wall is the ground state
for large easy-normal anisotropy. Such domain walls can be used to realize non-
volatile magnetic storage media [21]. In straight magnetic strips the twisted segments
can potentially be used to control domain wall chirality, and to. filter domain walls
of given chirality. This feature enables one to regard domain wall-chirality as an
additional bit of information in racetrack memory devices [44].

Although the problem was studied for a wide range of parameters, the limit of a
narrow ribbon was not considered previously. Below we show that the narrow Mobius
ribbon exhibits a new inhomogeneous ground state,see Fig. 3 (a), (b).

The Mobius ribbon has a circle as its central curve and turns at a constant rate,
making a half-twist once around the circle; it can be formed by joining the ends of a
helicoid ribbon. Letting R denote the radius, we use the angle x = s/R instead of arc
length s as parameter, and set

v¥(x) = Rcos x& + R sinxg, a(x) =7 — Cx/2. (21)

The chirality € = £1 determines whether the Mo6bius ribbon is right- or left-handed.

From (5), the parametrized surface is given by
s(x,v) = (R—l— U COS g) cos XY &+ (R—I— v COS %) siny g + Gvsmgé (22)

Here x € [0,27m) is the azimuthal angle and v € [—w/2,w/2] is the position
along the ring width. From (10) the energy of the narrow Mobius ribbon reads
2

E =47 M2?hwR | &dx, where'the energy density is given by
0

\? MY
£:(R> {68 0+ = sm¢+cos¢sm2} +(R) {Sine(x¢ COS§)

2 eff
+€cos€<—cos¢—sm¢s1n§)} Ql sin? 6 cos? ¢ — Q cos? 6.

with effective anisotropies (cf (10d))

1[0\ 1[0\
Q?H:Q12<R)a gﬂ_Q32(R>-

The effective curvature and torsion are given by (cf (12))

2cos X 14 2sin? X e
KO = — 2 —2, o = 1+ 4sin? X,
R 1+4sin” 5 2R 2
Let us consider the case of uniaxial magnetic materials, for which K3 = 0. Under
the reasonable assumption ¢ < R, we have that Qeff —1, so that the easy-surface

Page 10 of 19
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32 for the ribbon state in the . (c) The energy difference between the
33 vortex and ribbon states; whe e reduced anisotropy coefficient k exceeds the
critical value see Eq. (26), th rtex state is favourable, while for k < ke,
the inhomoge ribbon state is'realized. (d) In-surface magnetization angle
35 ¢ in the ribbon s Lines correspond to Eq. (25) and markers correspond
36 to SLaSi simulations, Appendix B for details. Red triangles represent
37 the simulations fith dip interaction without magnetocrystalline anisotropy
(k = 0); it corre ds very well to our theoretical result (solid red curve) for
effective anisotropy 4 induced by magnetostatics, see Eq. (3).

o
11 anisotropy domina e ensity and acts as an in-surface constraint (as for
42 the helicoid ribbon ing § = 7/2, we obtain the simplified energy density
¢ 21 2 eff
0 (E) (5 sin ¢ + cos ¢ sin %) — Q21

onsthe in-surface orientation ¢. The equilibrium magnetization
escribe the following Euler-Lagrange equation

cos? ¢,

46 which depends o
47 distribution I

49 o+ ﬁng sin?¢ 4 (sin2 % — k) sin ¢ cos ¢ = 0, (23)

50

51 ¢(0) = —¢(27) mod 27, 0y #(0) = —0,0(2m),

52 wher tiperiodic boundary conditions compensate for the half-twist in the
ius r

on and ensure that the magnetisation m is smooth at y = 0. The reduced
56
57
58
59
60
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anisotropy coefficient & in (23) reads

eff 2 2 2 2
@i <R) _ K r R w ShET L (24)

2 \ ¢ A M2 02 2rwl?  h o 4drwl? 4
It is easily seen that if ¢() is a solution of (23), then ¢(x) + nr is also a solution
with the same energy. Since solutions differing by multiples of 27 describe the same
magnetisation, only ¢(x) -+ 7 corresponds to a configuration distinct from ¢. We also
note that if ¢(x) is a solution of (23), then —¢(—x) is also a solution with the same
energy.

By inspection, ¢¥°" = 0 and ¢Y°" = 7, are solutions of (23); the ground states‘are

k:

vor __ ™ vor __

0Vt = 5’ cos V" = €,
where the magnetochirality ¢ determines whether the magnetisation 77 is parallel
or antiparallel to the circular axis. We refer to these as vortex states: Unlike the
case of the helicoid ribbon, ¢ = +7/2 is not a solutionof (23). | Numerically,
we find two further solutions of the Euler-Lagrange equation, denéted ¢7°(y) and
¢o"P(x) = ¢P(x) + m, which we call ribbon states. While we, have not obtained
analytical expressions for #"P (), good approximations ¢an be found by assuming
¢“b to be antiperiodic and odd, so that it has a Fourier-sine expansion of the form

by Z cnsin((2n —A)x/2). (25)

The series is rapidly converging, with the first four coefficients ¢; = 2.245, co = 0.0520,
c3 = —0.0360, and ¢4 = —0.0142 for k£ = 0.25, providing an approximation accurate to
within 0.03% (specifically, the L?-norm difference between the numerically determined
¢, as described in Appendix B, and thisiexpansion'is 0.003).

Numerical calculations indicate that the ground state of the Mobius ribbon,
like the helicoid ribbon, undergoes a bifurcation as the tangential-axis anisotropy
decreases. Unlike the helicoid ribbon, the bifurcation occurs for positive anisotropy
k. given by

k. ~ 1.6934. (26)

For k > k., the vortex state has the lowest energy, whereas for k < k., the ribbon state
has the lowest energy. The energy difference between the vortex and ribbon states,

El‘lb Evor
AL = SR /8dx_*

is plotted in Fig: 3(c). In some respects the ribbon state resembles an onion state
in magnetic rings [16, 45-47]; in the laboratory reference frame the magnetization
distribution is ¢lose to a spatially homogeneous state, see Fig. 3(a).

The fin-surface magnetization angle ¢(x) for the ribbon state is plotted in
Fig. 3(d). The plot shows good agreement between the analytic expression (25) and
spin-lattice SLaSi simulations (see Appendix B for details). The blue dashed line with
solid circles represents the case k = k. (the critical anisotropy value). The red solid
line corresponds to the solution of Eq. (23) for k = 1/4, an effective anisotropy induced
by magnetostatics. It is in a good agreement with simulations shown by red triangles
where the dipole-dipole interaction is taken into account instead of easy-tangential

Page 12 of 19
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anisotropy. The magnetization distribution for the ribbon state is shown in Fig. 3(a)
(3-dimensional view) and Fig. 3(b) (an untwisted schematic of the Mobius ribbon).
Let us estimate the values of the parameters for which the ribbon state is
energetically preferable. Taking into account (24), we find that the ribbon stateis
energetically preferable provided
Kl 1 EQ N2
<N\ke+- ) == ——. 27
4 M2 ( et 4) R? 2 @R
This condition is a fortiori satisfied for the hard axial case, ie when K; < 0. For soft
magnetic materials (K; = 0) the only source of anisotropy is the shape anisotropy.
The ribbon state is the ground state when

hR2 w 1
Amwl? (3 t+1n ﬁ) < et 4’

which imposes constraints on the geometry and material parameters.

(28)

4. Conclusion

We have studied ferromagnetic ribbons, that is magnetic/materialsin the shape of thin
shells whose median surface is swept out by a line segment turning as it moves along
a central curve. Ferromagnetic ribbons combine properties of both 1D systems, ie
nanowires, and 2D systems, ie curved filmg and nanoshells: While the geometrical
properties of a narrow ribbon are described.by its central curve and the rate of
turning of its transverse line segment, its magnetic properties are determined by
the geometrical and magnetic properties of the ribbon/surface. The micromagnetic
energy of the ribbon can be reduced to.the energy of a/1D system (magnetic nanowire)
with effective curvature, torsion and biaxial anisotropy. While the source of effective
curvature and torsion is the exchange interaction only, the biaxiality results from both
exchange and magnetostatics,

We have studied two examples: (i) a narrow helicoid ribbon and ii) a narrow
Mbobius ribbon. The helicoid ribbon has zero effective curvature but finite torsion,
which provides a paradigmatic model for studying purely torsion-induced effects.
Similar to a microhelix structure [17], 'a geometry-induced effective Dzyaloshinskii—
Moriya interaction is a .source of coupling between the helicoid chirality and
the magnetochirality, which’ essentially influences both magnetization statics and
dynamics. The emergent’ magnetic field generated by the torsion breaks mirror
symmetry, so that the properties of magnetic excitations in different spatial directions
is not identical. The marrow MGobius ribbon is characterized by spatially varying
effective curvature and torsion. We have predicted a new inhomogeneous ribbon
state for the Mdobius ribbon, which is characterized by an inhomogeneous in-surface
magnetization distribution. The existence of this state has been confirmed by spin—
lattice simulations.
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Appendix A. Magnetostatic energy of ribbons and strips

Here we justify formulae (10¢), (10d) for the magnetostatic energy of a narrow ribbon.
To this end, we calculate the magnetostatic energy of the shell of reduced width
w = w/¢ and reduced thickness h = h/¢ in the regime

PP <h<h<1

and then identify the leading contributions to the energy of a ribbon in thelimit of
small aspect ratio

0= Q = h < 1.
woow
For the sake of clarity, before turning our attention to the general case, we first consider
a flat strip V, = [0, L] x [—%, %] x [~ 2, £]. The magnetostatic enetgy may be'written
in the form
M2
Estip — Ms /dr/dr' (m(r) - V) (m(r') V') ﬁ
v v

It is well known that the leading order contribution to the magnetostatic energy
is coming from the interaction between the surface charges.of the largest surfaces.
We denote by T and B the pair of top and bottom surfaces of the strip (of surface
area Lw) and by F, R the front and rear surfaces of the strip (of surface area Lh),
respectively. Tt is straightforward to show (see e.g. 126, 32]) that

TUB TuUB
((r) - o) (TP, [ -
+ ds [ ds - 20 (w?h
FU/R T S
P ma(s")  ia(s)ima(s)
— /ds/ds/du/dv[ — e

0 —w/2 —w/2
L L h/2.h/2 I:

—|—2/ds ds'/du/dv

0 40 =n/25h/2

ma(s)ma(s’)  ma(s)ma(s’)

. N +o(w2h),

where m(s) = L= ['m(s,u,v) dudv is the average of magnetization m over the cross-

section of areaswh, miis the surface normal, and p = \/(s — )%+ (u—v)2.
We note that for an arbitrary smooth function f and a constant a

[ 745

= HL)n (L= s+ VL =97+ ) + fO0) n (s + V57 +a?)

L
72f(s)1n|a|—/f’(s')ln (|ss'|+ (ss’)2+a2) ds’

+/f'(s/)ln <|ss/|+ (ss’)2+a2> ds’.
0
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Applying this formula and following the approach developed in [26], we can show
that the main contribution to the magnetostatic energy will be coming from the term
—2f(s)In|al in the last integral. Therefore, we obtain

Ftip L 1/2 1/2
2]“\2% = w? /ds/du/dvmg(s) {ln (u—v)2+6%2—In|u— v|}
0 —1/2-1/2 (A
L 1/2 1/2
+ h? /ds/du dvm3(s) [ln (u—v)2+1/6%2 —In|u— v|} + O (whA|Inh|) ;
0 —1/2-1/2

By integrating over the cross-section variables, the expression (A.1) further simplifies
to

L

strip

g‘}\r‘;g = wh <2 arctan% +dInd + (1 - 6) In(1+ 52)) /mg(s) ds
0

L
+ wh (—51n(5 + 2arctand + (g - 215) In(1+ 52)> /mg(s) ds.
0

Hence, the magnetostatic energy of the flat strip is

L
T / (11— N (9)] M2 ()05 (6) m2(s)} ds + O(62). (A.2)
0
Here the quantity
2% 8
Ny(8) = oo~ g < 1 (A.3)

plays the role of a demagnetizing factor in a’rectangular strip along the transverse
direction. It corresponds to an expression for the magnetometric demagnetizing factor
in a general rectangular prism, calculated previously by Aharoni [48].
Returning to the general ecase, -we recall from (5) that a ribbon may be
parametrized as
wow

C(S,U):’Y(S)+U62(S), v e [_575} y S € [OvL]
and consider a shelllof thickness h around ¢ parametrized as

Q(sa v, ’LL) = ’)’(S) + 1}62(5) + u63(8, 1)) )

where eq, eg‘are defined in (6) and h is small enough so that g does not intersect
itself. Then, introducing ms = m - ez and m3 = m - e3, the energy of the shell up to
terms of order O (wh?{ln h|) is given by

Eribbon AR ( )2+52
ms 2 d/d /d 7 T A
2N w /s u [ dv /gms(s, wu)ms(s,wv)ln T
0 —1/2-1/2 (A4)
L 1/2 1/2 '
+ h? /ds/du/dvmg(s) [ln Vi(u—v)2+1/82 —ln\u—v|] .
0 —1/2-1/2
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We remark that the formula (A.4) yields the correct result both for a wire with a
rectangular cross-section (h/w = const) and in the thin film limit (h/w — 0), cf. [26]
and [28], respectively, however in the latter case it resolves terms beyond the leading
order.

Expanding the first integral in (A.4) in w and integrating over cross-section
variables, we obtain that the magnetostatic energy of the ribbon

B [{-n o @ 5 C o
0

is insensitive to curvature effects, cf (A.2). Finally, using the constrain m? =1 we
get the magnetostatic energy in the form (10¢), (10d).

Appendix B. Simulations

We use the in-house developed spin-lattice simulator SLaSi+[49]. A chain of classical
magnetic moments m;, |m;| =1, i =1, N is considered. They are situated on a circle
(21), which defines a central axis of the narrow Mobius ribbon (22), hence the periodic
condition m 1 = m; is used. The following classical Hamiltonian is used:

N 3 N
H = —al? Z(mi “Mig1) — % Z [Q1 (- e1;)% Qs (my - esi)Z]
i—1 i=1

(B.1)

)

L 3 (m; 'ij) _glmi- Tij)émj “Tij)
iz L T i

where a is the lattice constant, e;; and es; are unit basis vectors (6) in é-th site and
the coefficient d = 0,1 is used as a switch for dipolar interactions.

To study the static magnetization distribution, we minimize the energy by solving
a set of NV vector Landau-Lifshitz=Gilbert ordinary differential equations for N = 100
sites situated on a ring of radius R = aN/(27) and ¢ = R using the Runge-Kutta—
Fehlberg scheme (RKF45), see [50] for general description of the simulator. The
equilibrium magnetization state is.found starting the simulations from different initial
distributions (four different random ones, uniformly magnetized states along +&, +g,
+2 and along unit vectors e;.

The simulations are performed using the high-performance computer clusters
of the Taras Shevchenko National University of Kyiv [51] and the Bayreuth
University [52].
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