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Abstract.
A ribbon is a surface swept out by a line segment turning as it moves along

a central curve. For narrow magnetic ribbons, for which the length of the line
segment is much less than the length of the curve, the anisotropy induced by the
magnetostatic interaction is biaxial, with hard axis normal to the ribbon and easy
axis along the central curve. The micromagnetic energy of a narrow ribbon reduces
to that of a one-dimensional ferromagnetic wire, but with curvature, torsion and
local anisotropy modified by the rate of turning. These general results are applied
to two examples, namely a helicoid ribbon, for which the central curve is a straight
line, and a Möbius ribbon, for which the central curve is a circle about which the
line segment executes a 180◦ twist. In both examples, for large positive tangential
anisotropy, the ground state magnetization lies tangent to the central curve. As
the tangential anisotropy is decreased, the ground state magnetization undergoes
a transition, acquiring an in-surface component perpendicular to the central curve.
For the helicoid ribbon, the transition occurs at vanishing anisotropy, below which
the ground state is uniformly perpendicular to the central curve. The transition
for the Möbius ribbon is more subtle; it occurs at a positive critical value of the
anisotropy, below which the ground state is nonuniform. For the helicoid ribbon,
the dispersion law for spin wave excitations about the tangential state is found to
exhibit an asymmetry determined by the geometric and magnetic chiralities.
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Magnetization in narrow ribbons: curvature effects 2

Introduction

The emerging area of magnetism in curved geometries encompasses a range of
fascinating geometry-induced effects in the magnetic properties of materials [1].
Theoretical investigations in this area are providing new insights into the behaviour
of curved magnetic nanostructures and the control of their magnetic excitations, with
applications to shapeable magnetoelectronics [2] and prospective energy-efficient data
storage, among others.

In continuum models, the magnetization is represented by a three-dimensional
unit-vector field m(r). The study of curvature–induced effects in vector-field models
in one- and two-dimensional geometries has a rather long history [3–6]. In spite of
numerous results [3–6], the problem is far from being fully solved. In the majority
of these studies, the vector field is taken to be tangent to the domain. In particular,
a general expression for the surface energy of a tangential director field describing
a nematic liquid crystal in a curvilinear shell was recently obtained [7–10], with
possible applications using different geometries and orientational ordering [11–13].
The assumption of a strictly tangential field was also used in a study of the role of
curvature in the interaction between defects in 2D XY -like models, with applications
to superfluids, superconductors, and liquid crystals deposited on curved surfaces [14].

Very recently a fully 3D approach was developed for thin magnetic shells and
wires of arbitrary shape [15, 16]. This approach yields an energy for arbitrary curves
and surfaces and for arbitrary magnetization fields under the assumption that the
anisotropy greatly exceeds the dipolar interaction, so that

E =

∫
dr (Eex + Ean) . (1)

Here Eex is the exchange energy density and Ean is the density of effective anisotropy
interaction. We consider the model of isotropic exchange, Eex = (∇mi) ·(∇mi), where
mi with i = 1, 2, 3 describes the cartesian components of magnetization. Therefore
in cartesian coordinates, the sample geometry appears only through the anisotropy
term via the spatial variation of the anisotropy axis; for example, in the case of a
uniaxial curved magnet, Ean is given byK (m · eA)2, where the unit vector eA = eA(r)
determines the direction of the easy axis.

In curvilinear coordinates adapted to the sample geometry, the spatial variation of
the anisotropy axes is automatically accounted for, and the anisotropy energy density
assumes its usual translation-invariant form. Instead, the exchange energy acquires
two additional terms, which describe contributions to (∇mi) · (∇mi) due to the
spatial variation of the coordinate frame [16], namely curvilinear-geometry-induced
effective anisotropy and curvilinear-geometry-induced effective Dzyaloshinskii–Moriya
interaction. For magnetic shells, these contributions may be expressed in terms of local
curvatures [15]; for magnetic wires, in terms of curvature and torsion [16]. Below we
review briefly some manifestations of these contributions, which have been reported
elsewhere.

(i) Curvilinear-geometry-induced effective anisotropy. Geometry-induced
anisotropy can have a significant effect on the ground-state magnetization profile,
rendering it not strictly tangential, even in the case of strong easy-tangential
anisotropy. For example, for a helical nanowire with strong anisotropy directed
along the wire, the ground-state magnetization is always tilted within the local
rectifying surface, with tilting angle dependent on the product of the curvature and
the torsion [17, 18]. For two-dimensional geometries with nontrivial topology, a

Page 2 of 19AUTHOR SUBMITTED MANUSCRIPT - JPhysA-107389.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Acc

ep
ted

 M
an

us
cri

ptange ofnge
erials [11].].

e behaviourviou
itations, withs, w

gy-efficient datant data

a three-dimensionaldimensiona
in vector-field modelsor-field mode

story [33––66]. In spite of]. In spite
solved. In the majorityIn the m

the domain. In particularmain. In part
ntial director field describiector field de

recently obtained [y obtained [77–10],
d orientational ordering [tational orde

also used in a study of thed in a study
D XY -like models, with aplike models, w

stals deposited on curved sosited on cu
developed for thin magneoped for thin

roach yields an energy foroach yields an energ
ation fields under the asstion fields under th

interaction, so thatraction, so that

n) .

density andensity and EEananEEE is the denis
odel of isotropic exchange,otrop
the cartesian componentthe cartesian comp

he sample geometry appee sample geometry
iation of the anisotropy aof the

, EanE is given bygiven byKK ((m · eA
ion of the easy axis.e easy axis.

coordinates adapted to thenates adapted t
es is automatically accountomaticall

ual translation-invariant fotranslation-invar
al terms, which describems, which desc

ation of the coordinate frthe coord
anisotropy and curvilinear-opy and curvil
ion. For magnetic shells, thor magnetic

tures [155]; for magnetic wi]; for magne
ew briefly some manifestaefly some man

sewhere..
(i) Curvilinear-geomCurvilinear-geom

anisotropy can have aotropy can hav
rendering it not stridering it
anisotropy. For exotropy. F
along the wire, talong the w
rectifying surfacrectifyin
the torsion [the tors 1
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striking manifestation of geometry-induced anisotropy is shape–induced patterning,
for a review see [1].

The interplay between curvilinear geometry and nontrivial topology of the
magnetization structure in such systems can be crucial. For example, in spherical
shells, a strictly in-surface magnetization is forbidden due to the hairy–ball theorem
[19]. Instead, the ground-state magnetization profile has two oppositely disposed
vortices [20]. Another nontrivial example is the Möbius ring. Since a Möbius ring is a
nonorientable surface, its topology forces a discontinuity in any nonvanishing normal
vector field. Recently we proposed that magnetic nanostructures shaped as Möbius
strips possess non-volatility in their magneto-electric response due to the presence
of topologically protected magnetic domain walls in materials with an out-of-plane
orientation of the easy axis of magnetization [21]. Typical examples of a shape-induced
patterning are well-described in [1, see Fig. 1].

(ii) Curvilinear-geometry-induced effective Dzyaloshinskii–Moriya interaction.
The curvature-induced effective Dzyaloshinskii–Moriya interaction is the source of
a possible chiral symmetry breaking, i.e. magnetochiral effects [22], for a review
see [1]. Recently, the role of curvature in domain wall pinning was elucidated
[23]; a local bend in a nanowire is the source of a pinning potential for transverse
domain walls. Chiral symmetry-breaking due to a geometry-induced Dzyaloshinskii–
Moriya interaction strongly impacts the domain wall dynamics and allows domain
wall motion under the action of different spin–torques, e.g. field–like torques [18] and
anti–damping torques [24]. In the particular case of a helical nanowire, torsion can
produce negative domain wall mobility [18, 24], while curvature can produce a shift
in the Walker breakdown [24]. Recently we have shown that a skyrmion solution on a
spherical shell can be stabilized by curvature effects only, namely by the Curvilinear-
geometry-induced effective Dzyaloshinskii–Moriya interaction [25]. Different examples
of magnetochiral effects are presented in [1, see Fig. 2].

We have briefly described a theoretical framework for studying different
curvilinear systems, including 1D nanowires and 2D nanoshells. In this approach
we suppose that the effects of nonlocal dipole-dipole interactions can be reduced to an
effective easy-surface anisotropy. In the 1D case, this reduction has been rigorously
justified in the limit where the diameter of the wire h is much smaller than its length
L [26]. Similar arguments have been provided in the 2D case for planar thin films [27]
and thin shells [28] where the surface thickness h is much less than the lateral size L.

In the current study we consider a ribbon, which represents a curve with an
infinitesimal neighbourhood of a surface along it [29]. For a narrow ribbon whose
thickness h is much less than its width w, which in turn is much less than its length
L, namely h � w � L, another micromagnetic limit is realized. We show that the
micromagnetic energy can be reduced to the energy of a wire with modified curvature,
torsion and anisotropy. We illustrate this approach with two examples, namely a
narrow helicoid ribbon and a Möbius ribbon. The existence of a new nonhomogeneous
ground state is predicted for the Möbius ribbon over a range of anisotropy parameter
K. The prediction is confirmed by full scale spin–lattice simulations. We also analyse
the magnon spectrum for a narrow helicoid ribbon: unlike the magnon spectrum for
a straight wire, there appears an asymmetry in the dispersion law caused by the
geometric and magnetic chiralities.

The paper is organized as follows. In Section 1 we derive the micromagnetic
energy for a narrow ribbon, which may be interpreted as a modification of the 1D
micromagnetic energy of its central curve. We illustrate the model by two examples, a
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Magnetization in narrow ribbons: curvature effects 4

helicoid ribbon (Section 2) and a Möbius ribbon (Section 3). Concluding remarks are
given in Section 4. The justification of the magnetostatic energy for ribbons and strips
is presented in Appendix A. The spin-lattice simulations are detailed in Appendix B.

1. Model of narrow ribbon vs thin wire

1.1. Thin ferromagnetic wire

Here we consider a ferromagnetic wire described by a curve γ(s) with fixed cross-
section of area S, parameterized by arc length s ∈ [0, L], where L is the length of
the wire. It has been shown [26] that the properties of sufficiently thin ferromagnetic
wires of circular (or square) cross section are described by a reduced one-dimensional
energy given by a sum of exchange and local anisotropy terms,

Ewire = 4πM2
sS

L∫
0

ds
(
E wire
ex + E wire

an

)
,

E wire
ex = �2|m′|2 E wire

an = −Q1

2
(m · et)2 .

(2)

Here, m(s) denotes the unit magnetization vector, prime ′ denotes derivative with
respect to s, Ms is the saturation magnetization, and � =

√
A/4πM2

s is the exchange
length with A being the exchange constant. The local anisotropy is uniaxial, with easy
axis along the tangent et = γ′. The normalized anisotropy constant (or quality factor)
Q1 incorporates the intrinsic crystalline anisotropy K1 as well as a geometry-induced
magnetostatic contribution,

Q1 =
K1

2πM2
s

+
1

2
. (3)

Note that the shape-induced biaxial anisotropy is caused by the asymmetry of the
cross-section. In particular, for a rectangular cross-section, the anisotropy coefficients
are determined by Eq. (A.5); for elliptical cross-sections, see [26].

It is convenient to express the magnetization in terms of the Frenet-Serret frame
comprised of the tangent et, the normal en = e′t/|e′t|, and the binormal eb = et×en.
These satisfy the Frenet-Serret equations,

e′α = Fαβeβ , ‖Fαβ‖ =

⎛⎝ 0 κ 0
−κ 0 τ
0 −τ 0

⎞⎠ , (4)

where κ(s) and τ(s) are the curvature and torsion of γ(s), respectively. Letting

m = sinΘ cosΦ et + sinΘ sinΦ en + cosΘ eb,

where Θ and Φ are functions of s (and time t, if dynamics is considered), one can show
[16] that the exchange and anisotropy energy densities are given by

E wire
ex = �2 [Θ′ − τ sinΦ]

2
+ �2 [sinΘ(Φ′ + κ)− τ cosΘ cosΦ]

2
,

E wire
an = −Q1

2
sin2 Θ cos2 Φ.
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eteb

en

α(s)

ex ey

ez

γ(s)

Ribbon ς(s, v)

s

v

Figure 1. Schematic of a narrow ribbon: A curve γ(s), where s is arc
length, defines a local basis in terms of the tangent et, normal en and binormal
eb vectors. A ribbon ς containing γ is determined by relation (5). Coordinates
s and v are used on the ribbon surface. Unit vectors ei with i = x, y, z represent
the laboratory reference frame and the angle α(s) determines the orientation of
the ribbon segment with respect to vectors en and eb.

1.2. Narrow ferromagnetic ribbon

As above, let γ(s) denote a three-dimensional curve parametrized by arc length.
Following [29], we take a ribbon to be a two-dimensional surface swept out by a line
segment centred at and perpendicular to γ, moving (and possibly turning) along γ
The ribbon may parametrized as

ς(s, v) = γ(s) + v cosα(s)en(s) + v sinα(s)eb(s), v ∈
[
−w

2
,
w

2

]
, (5)

where w is the width of the segment (assumed to be small enough so that ς has no
self-intersections) and α(s) determines the orientation of the segment with respect to
the normal and binormal, see Fig. 1. We construct a three-frame {e1, e2, e3} on the
ribbon given by

eμ =
∂μς

|∂μς| , μ = 1, 2, e3 = e1 × e2. (6)

Here and in what follows, we use Greek letters μ, ν, etc = 1, 2 to denote indices
restricted to the ribbon surface. Using the Frenet–Serret equations (4), one can show
that (6) constitute an orthonormal frame, with e1 and e2 tangent to the ribbon and
e3 normal to it. It follows that the first fundamental form (or metric), gμν = ∂μς ·∂νς,
is diagonal. The second fundamental form, bμν , is given by bμν = e3 · ∂2

μ,νς. The
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Gauß and mean curvatures are given respectively by the determinant and trace of
||Hμν || = ||bμν/√gμμgνν ||.

We consider a thin ferromagnetic shell about the ribbon of thickness h, where

h � w,L. (7)

The shell is comprised of points ς(s, v) + ue3, where u ∈ [−h/2, h/2]. We express the
unit magnetization inside the shell in terms of the frame eα as

m = sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3,

where θ and φ are functions of the surface coordinates s, v (and time t, for dynamical
problems), but are independent of the transverse coordinate u. The micromagnetic
energy of a thin shell reads

Eshell = 4πM2
s h

L∫
0

ds

w/2∫
−w/2

√
gdv

(
E shell
ex + E shell

an

)
+ Eshell

ms , (8a)

where g = det (gμν). The exchange energy density in (8a) is given by [15, 16]

E shell
ex = �2 [∇θ − Γ (φ)]

2
+ �2

[
sin θ (∇φ−Ω)− cos θ

∂Γ (φ)

∂φ

]2
, (8b)

where ∇ ≡ eμ∇μ denotes a surface del operator in its curvilinear form with

components ∇μ ≡ (gμμ)
−1/2

∂μ, the vector Ω is a spin connection with components

Ωμ = e1 · ∇μe2, and the vector Γ (φ) is given by ||Hμν ||
(

cosφ
sinφ

)
. The next term in

the energy functional, E shell
an , is the anisotropy energy density of the shell:

E shell
an = − K1

4πM2
s

(m · e1)2 − K3

4πM2
s

(m · e3)2 , (8c)

where K1 and K3 are the tangential and normal anisotropy coefficients of the intrinsic
crystalline anisotropy. The magnetostatic energy, Eshell

ms , has, in the general case, a
nonlocal form. The local form is restored in the limit of thin films [30–32] and thin
shells [28, 33].

We proceed to consider the narrow-ribbon limit,

w2

�
≤ h � w � � � L. (9)

Keeping leading-order terms in w/L we obtain that the geometrical properties of
ribbon are determined by∥∥gribbonμν

∥∥ = diag(1, 1),
∥∥Hribbon

μν

∥∥ =

( −κ sinα α′ + τ
α′ + τ 0

)
,

In the same way, we obtain from (8) the following:

Eribbon = 4πM2
s hw

∫
ds
(
E eff
ex + E eff

an

)
,

E eff
ex = �2 (θ′ − Γ1)

2
+ �2

[
sin θ (φ′ −Ω1)−cos θ

∂Γ1

∂φ

]2
,

E eff
an = �2Γ 2

2 + �2 cos2 θ

(
∂Γ2

∂φ

)2

+ E ribbon
an ,

(10a)
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where the effective spin connection Ω1 and vector Γ are given by

Ω1 = −κ cosα, Γ1 = −κ sinα cosφ+ (α′ + τ) sinφ, Γ2 = (α′ + τ) cosφ. (10b)

The last term in the energy density, E ribbon
an , is the effective anisotropy energy density

of the narrow ribbon. Using arguments similar to those in [28, 30, 32], it can be shown
that

E ribbon
an = −Q1

2
(m · e1)2 − Q3

2
(m · e3)2 . (10c)

Here Q1 and Q3 incorporate the intrinsic crystalline anisotropies K1 and K3 as well
as geometry-induced magnetostatic contributions:

Q1 =
K1

2πM2
s

+N2, Q3 = −1 +
K3

2πM2
s

+ 2N2, N2 =
h

πw
ln

w

h
+

3h

2πw
, (10d)

see the justification in Appendix A. Here, N2 plays the role of a demagnetizing factor
along e2. In the particular case of soft magnetic materials, where K1 = K3 = 0, the
anisotropy E ribbon

an is due entirely to the magnetostatic interaction. From (10d), we
get Q1 = N2 � 1 and Q3 = −1 + 2N2.

The induced anisotropy is biaxial, with easy axis along the central curve as for a
thin wire (cf (3)) and hard axis normal to the surface as for a thin shell. Indeed, one
can recast the narrow-ribbon energy (10) in the form of the thin-wire energy (2) with
biaxial anisotropy, as follows:

E eff
ex = �2

(
θ′ − τ eff sinΨ

)2
+ �2

[
sin θ

(
Ψ′ + κeff

)− τ eff cos θ cosΨ
]2
,

E eff
an = −Qeff

1

2
sin2 θ cos2 φ− Qeff

3

2
cos2 θ.

(11)

In (11), the effective curvature and torsion are given by

κeff = κ cosα− β′, τ eff =

√
κ2 sin2 β + (α′ + τ)2, (12)

the angle Ψ is defined by

Ψ = φ+ β, tanβ = −κ sinα

α′ + τ
,

and the effective anisotropies are given by

Qeff
1 = Q1 − 2�2 (α′ + τ)

2
, Qeff

3 = Q3 − 2�2 (α′ + τ)
2
. (13)

2. Helicoid ribbon

As a first application of the preceding results, we consider a narrow ferromagnetic
ribbon in the shape of a helicoid. Interest in helicoidal geometry is motivated by
recent experiments on rolled-up ferromagnetic microhelix coils [34–36]. These rolled-
up architectures have found application in flexible and stretchable magnetoelectronic
devices, for a review see [2]. Modern experimental techniques allow for the possibility
of realising extremely small magnetic helix-like structures (helices, spirals, helicoids),
with dimensions down to 50 nm [37, 38], for a review see [1].

Micromagnetic helix-like structures are probably the simplest structures to
exhibit torsion-induced effects, i.e. coupling between the helix chirality and the
magnetochirality, and breaking of mirror symmetry in the spin-wave spectrum – these
effects may in turn support unconventional methods for controlling the dynamics of
domain walls by spin-currents [17, 39, 40].
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Figure 2. Magnetic helicoid ribbon: (a) A sketch of the ribbon.
(b) Dispersion curve according to Eq. (20) (solid blue line) in comparison with
the dispersion of the straight wire Ωstr = 1 + q2.

The helicoid ribbon has a straight line, which has vanishing curvature and torsion,
as its central curve. We take γ(s) = s ẑ. The rate of turning about γ is constant, and
we take α(s) = Cs/s0, where the chirality C is +1 for a right-handed helicoid and −1
for a left-handed helicoid. From (5), the parametrized surface is given by

ς(s, v) = x̂ v cos

(
s

s0

)
+ ŷ Cv sin

(
s

s0

)
+ ẑ s, v ∈

[
−w

2
,
w

2

]
.

The boundary curves, given by ς(s,±w/2), are helices, see Fig. 2 (a). It is well known
that the curvature and torsion essentially influence the spin-wave dynamics in a helix
wire, acting as an effective magnetic field [17]. One can expect similar behaviour in a
helicoid ribbon.

From (12) and (13), the effective curvature, torsion and anisotropies are given by

κeff = 0, τ eff =
C

s0
, Qeff

1 = Q1 − 2

(
�

s0

)2

, Qeff
3 = Q3 − 2

(
�

s0

)2

. (14)

From (11), the energy density is given by

E eff
ex =

�2

s20

[
(s0θ

′ − C sinφ)2 + (s0 sin θφ
′ − C cos θ cosφ)2

]
,

E eff
an = −Qeff

1

2
sin2 θ cos2 φ− Qeff

3

2
cos2 θ.

(15)

Let us consider the particular case of soft magnetic materials (K1 = K3 = 0).
Under the reasonable assumption � � s0, we see that Q3 ≈ −1, so that the easy-
surface anisotropy dominates the energy density and acts as an in-surface constraint.
Taking θ = π/2 to accommodate this constraint, we obtain the (further) reduced
energy density

E eff = �2φ′2 − Q1

2
cos2 φ,
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which depends only on the in-surface orientation φ. The ground states have φ constant,
with orientation depending on the sign of the tangential-axis anisotropy Q1. For
Q1 > 0, the ground states are

θt =
π

2
, cosφt = C, (16)

where the magnetochirality C = ±1 determines whether the magnetisation m is
parallel (C = 1) or antiparallel (C = −1) to the helicoid axis. For Q1 < 0, the
ground states are given by

θn =
π

2
, φn = C

π

2
,

where the magnetochirality C = ±1 determines whether the magnetisation m is
parallel (C = 1) or antiparallel (C = −1) to the normal en. This behaviour is similar
to that of a ferromagnetic helical wire, which was recently studied in Ref. [17].

2.1. Spin-wave spectrum in a helicoid ribbon

Let us consider spin waves in a helicoid ribbon on the tangential ground state (16).
We write

θ = θt + ϑ(χ, t̃), φ = φt + ϕ(χ, t̃), |ϑ|, |ϕ| � 1,

where χ = s/s0 and t̃ = Ω0t with Ω0 = (2γ0/Ms)(�/s0)
2. Expanding the energy

density (15) to quadratic order in the ϑ and ϕ, we obtain

E =

(
�

s0

)2 [
(∂χϑ)

2
+ (∂χϕ)

2
]
+ 2CC

(
�

s0

)2

(ϑ∂χϕ− ϕ∂χϑ)

+

[
Q1 −Q3 + 2

(
�

s0

)2
]
ϑ2

2
+Q1

ϕ2

2
.

The linearised Landau–Lifshits equations have the form of a generalized Schrödinger
equation for the complex-valued function ψ = ϑ+ iϕ [17, 41, 42],

−i∂t̃ψ = Hψ +Wψ∗, H = (−i∂χ −A)
2
+ U, (17)

where the “potentials” have the following form:

U = −1

2
+

1

4

(s0
�

)2
(2Q1 −Q3) , A = −CC, W =

1

2
− 1

4

(s0
�

)2
Q3. (18)

We look for plane wave solutions of (17) of the form

ψ(χ, t̃) = ueiΦ + ve−iΦ, Φ = qχ− Ωt̃+ η, (19)

where q = ks0 is a dimensionless wave number, Ω = ω/Ω0 is a dimensionless frequency,
η is an arbitrary phase, and u, v ∈ R are constant amplitudes. By substituting (19)
into the generalized Schrödinger equation (17), we obtain

Ω(q) = −2CCq +

√[
q2 + 1 +

Q1 −Q3

2

(s0
�

)2] [
q2 +

Q1

2

(s0
�

)2]
, (20)

see Fig. 2 (b), in which the parameters have the following values: s0/� = 5, Q1 = 0.2,
Q3 = −0.6, and C = C = 1. The dispersion relation (20) for the helicoid ribbon is
similar to that of a helical wire [17], but different from that of a straight wire, in that
it is not reflection-symmetric in q. The sign of the asymmetry is determined by the
product of the helicoid chirality C, which depends on the topology of the ribbon, and
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the magnetochirality C, which depends on the topology of the magnetic structure.
This asymmetry stems from the curvature-induced effective Dzyaloshinskii–Moriya
interaction, which is the source of the vector potential A = Aet, where A = −CC. In
this context, it is instructive to mention a relation between the Dzyaloshinskii–Moriya
interaction and the Berry phase [43].

3. Möbius ribbon

In this section we consider a narrow Möbius ribbon. The Möbius ring was studied
previously in Ref. [21]. The ground state is determined by the relationship between
geometrical and magnetic parameters. The vortex configuration is favourable in the
small anisotropy case, while a topologically protected domain wall is the ground state
for large easy-normal anisotropy. Such domain walls can be used to realize non-
volatile magnetic storage media [21]. In straight magnetic strips the twisted segments
can potentially be used to control domain wall chirality, and to filter domain walls
of given chirality. This feature enables one to regard domain wall chirality as an
additional bit of information in racetrack memory devices [44].

Although the problem was studied for a wide range of parameters, the limit of a
narrow ribbon was not considered previously. Below we show that the narrow Möbius
ribbon exhibits a new inhomogeneous ground state, see Fig. 3 (a), (b).

The Möbius ribbon has a circle as its central curve and turns at a constant rate,
making a half-twist once around the circle; it can be formed by joining the ends of a
helicoid ribbon. Letting R denote the radius, we use the angle χ = s/R instead of arc
length s as parameter, and set

γ(χ) = R cosχx̂+R sinχŷ, α(χ) = π − Cχ/2. (21)

The chirality C = ±1 determines whether the Möbius ribbon is right- or left-handed.
From (5), the parametrized surface is given by

ς(χ, v) =
(
R+ v cos

χ

2

)
cosχ x̂+

(
R+ v cos

χ

2

)
sinχ ŷ + Cv sin

χ

2
ẑ. (22)

Here χ ∈ [0, 2π) is the azimuthal angle and v ∈ [−w/2, w/2] is the position
along the ring width. From (10) the energy of the narrow Möbius ribbon reads

E = 4πM2
s hwR

2π∫
0

E dχ, where the energy density is given by

E =

(
�

R

)2 [
C∂χθ +

1

2
sinφ+ cosφ sin

χ

2

]2
+

(
�

R

)2 [
sin θ

(
∂χφ− cos

χ

2

)
+C cos θ

(
1

2
cosφ− sinφ sin

χ

2

)]2
− Qeff

1

2
sin2 θ cos2 φ− Qeff

3

2
cos2 θ.

with effective anisotropies (cf (10d))

Qeff
1 = Q1 − 1

2

(
�

R

)2

, Qeff
3 = Q3 − 1

2

(
�

R

)2

.

The effective curvature and torsion are given by (cf (12))

κeff = −2 cos χ
2

R

1 + 2 sin2 χ
2

1 + 4 sin2 χ
2

, τ eff = − C

2R

√
1 + 4 sin2

χ

2
.

Let us consider the case of uniaxial magnetic materials, for which K3 = 0. Under
the reasonable assumption � � R, we have that Qeff

3 ≈ −1, so that the easy-surface
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Figure 3. Magnetic Möbius ribbon: (a) Magnetization distribution for the
ribbon state in the laboratory frame, see Eq. (25). (b) Magnetization distribution
for the ribbon state in the ribbon frame. (c) The energy difference between the
vortex and ribbon states; when the reduced anisotropy coefficient k exceeds the
critical value kc, see Eq. (26), the vortex state is favourable, while for k < kc,
the inhomogeneous ribbon state is realized. (d) In-surface magnetization angle
φ in the ribbon state. Lines correspond to Eq. (25) and markers correspond
to SLaSi simulations, see Appendix B for details. Red triangles represent
the simulations with dipolar interaction without magnetocrystalline anisotropy
(k = 0); it corresponds very well to our theoretical result (solid red curve) for
effective anisotropy k = 1/4 induced by magnetostatics, see Eq. (3).

anisotropy dominates the energy density and acts as an in-surface constraint (as for
the helicoid ribbon). Taking θ = π/2, we obtain the simplified energy density

E =

(
�

R

)2 (
∂χφ− cos

χ

2

)2
+

(
�

R

)2(
1

2
sinφ+ cosφ sin

χ

2

)2

− Qeff
1

2
cos2 φ,

which depends only on the in-surface orientation φ. The equilibrium magnetization
distribution is described by the following Euler–Lagrange equation

∂χχφ+ sin
χ

2
sin2φ+

(
sin2

χ

2
− k

)
sinφ cosφ = 0,

φ(0) = −φ(2π) mod 2π, ∂χφ(0) = −∂χφ(2π),
(23)

where the antiperiodic boundary conditions compensate for the half-twist in the
Möbius ribbon and ensure that the magnetisation m is smooth at χ = 0. The reduced

Page 11 of 19 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-107389.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Acc

ep
ted

 M
an

us
cri

pte1

nt k an
us

M
an

us
00 π/π/22 π

0

1
an

us
an

us
M

a
M

aanannn
uuuuuuusususus

M
a

M
annnn

uuuuuuuusuu
AzimutAz

M
a
g
n

magnetostaticsetostatics
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anisotropy coefficient k in (23) reads

k =
Qeff

1

2

(
R

�

)2

=
K1

4πM2
s

R2

�2
+

hR2

2πw�2
ln

w

h
+

3hR2

4πw�2
− 1

4
. (24)

It is easily seen that if φ(χ) is a solution of (23), then φ(χ) + nπ is also a solution
with the same energy. Since solutions differing by multiples of 2π describe the same
magnetisation, only φ(χ) + π corresponds to a configuration distinct from φ. We also
note that if φ(χ) is a solution of (23), then −φ(−χ) is also a solution with the same
energy.

By inspection, φvor
+ ≡ 0 and φvor

− ≡ π, are solutions of (23); the ground states are

θvor =
π

2
, cosφvor = C,

where the magnetochirality C determines whether the magnetisation m is parallel
or antiparallel to the circular axis. We refer to these as vortex states. Unlike the
case of the helicoid ribbon, φ ≡ ±π/2 is not a solution of (23). Numerically,
we find two further solutions of the Euler-Lagrange equation, denoted φrib

+ (χ) and
φrib
− (χ) ≡ φrib

+ (χ) + π, which we call ribbon states. While we have not obtained
analytical expressions for φrib(χ), good approximations can be found by assuming
φrib
+ to be antiperiodic and odd, so that it has a Fourier-sine expansion of the form

φrib
+ (χ) =

∞∑
n=1

cn sin((2n− 1)χ/2). (25)

The series is rapidly converging, with the first four coefficients c1 = 2.245, c2 = 0.0520,
c3 = −0.0360, and c4 = −0.0142 for k = 0.25, providing an approximation accurate to
within 0.03% (specifically, the L2-norm difference between the numerically determined
φ, as described in Appendix B, and this expansion is 0.003).

Numerical calculations indicate that the ground state of the Möbius ribbon,
like the helicoid ribbon, undergoes a bifurcation as the tangential-axis anisotropy
decreases. Unlike the helicoid ribbon, the bifurcation occurs for positive anisotropy
kc given by

kc ≈ 1.6934. (26)

For k > kc, the vortex state has the lowest energy, whereas for k < kc, the ribbon state
has the lowest energy. The energy difference between the vortex and ribbon states,

ΔE =
Erib − Evor

2M2
s hwR

=
1

2π

2π∫
0

Edχ− 5

4
,

is plotted in Fig. 3(c). In some respects the ribbon state resembles an onion state
in magnetic rings [16, 45–47]; in the laboratory reference frame the magnetization
distribution is close to a spatially homogeneous state, see Fig. 3(a).

The in-surface magnetization angle φ(χ) for the ribbon state is plotted in
Fig. 3(d). The plot shows good agreement between the analytic expression (25) and
spin–lattice SLaSi simulations (see Appendix B for details). The blue dashed line with
solid circles represents the case k = kc (the critical anisotropy value). The red solid
line corresponds to the solution of Eq. (23) for k = 1/4, an effective anisotropy induced
by magnetostatics. It is in a good agreement with simulations shown by red triangles
where the dipole–dipole interaction is taken into account instead of easy-tangential
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anisotropy. The magnetization distribution for the ribbon state is shown in Fig. 3(a)
(3-dimensional view) and Fig. 3(b) (an untwisted schematic of the Möbius ribbon).

Let us estimate the values of the parameters for which the ribbon state is
energetically preferable. Taking into account (24), we find that the ribbon state is
energetically preferable provided

K1

4πM2
S

<

(
kc +

1

4

)
�2

R2
− N2

2
. (27)

This condition is a fortiori satisfied for the hard axial case, ie when K1 < 0. For soft
magnetic materials (K1 = 0) the only source of anisotropy is the shape anisotropy.
The ribbon state is the ground state when

hR2

4πw�2

(
3 + ln

w

h

)
< kc +

1

4
, (28)

which imposes constraints on the geometry and material parameters.

4. Conclusion

We have studied ferromagnetic ribbons, that is magnetic materials in the shape of thin
shells whose median surface is swept out by a line segment turning as it moves along
a central curve. Ferromagnetic ribbons combine properties of both 1D systems, ie
nanowires, and 2D systems, ie curved films and nanoshells. While the geometrical
properties of a narrow ribbon are described by its central curve and the rate of
turning of its transverse line segment, its magnetic properties are determined by
the geometrical and magnetic properties of the ribbon surface. The micromagnetic
energy of the ribbon can be reduced to the energy of a 1D system (magnetic nanowire)
with effective curvature, torsion and biaxial anisotropy. While the source of effective
curvature and torsion is the exchange interaction only, the biaxiality results from both
exchange and magnetostatics.

We have studied two examples: (i) a narrow helicoid ribbon and ii) a narrow
Möbius ribbon. The helicoid ribbon has zero effective curvature but finite torsion,
which provides a paradigmatic model for studying purely torsion-induced effects.
Similar to a microhelix structure [17], a geometry-induced effective Dzyaloshinskii–
Moriya interaction is a source of coupling between the helicoid chirality and
the magnetochirality, which essentially influences both magnetization statics and
dynamics. The emergent magnetic field generated by the torsion breaks mirror
symmetry, so that the properties of magnetic excitations in different spatial directions
is not identical. The narrow Möbius ribbon is characterized by spatially varying
effective curvature and torsion. We have predicted a new inhomogeneous ribbon
state for the Möbius ribbon, which is characterized by an inhomogeneous in-surface
magnetization distribution. The existence of this state has been confirmed by spin–
lattice simulations.
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Appendix A. Magnetostatic energy of ribbons and strips

Here we justify formulae (10c), (10d) for the magnetostatic energy of a narrow ribbon.
To this end, we calculate the magnetostatic energy of the shell of reduced width
w̃ = w/� and reduced thickness h̃ = h/� in the regime

w̃2 ≤ h̃ ≤ w̃ � 1

and then identify the leading contributions to the energy of a ribbon in the limit of
small aspect ratio

δ ≡ h̃

w̃
=

h

w
� 1 .

For the sake of clarity, before turning our attention to the general case, we first consider
a flat strip Vs = [0, L]× [−w

2 ,
w
2 ]× [−h

2 ,
h
2 ]. The magnetostatic energy may be written

in the form

Estrip
ms = −M2

S

2

∫
V

dr

∫
V

dr′ (m(r) ·∇) (m(r′) ·∇′)
1

|r − r′| .

It is well known that the leading order contribution to the magnetostatic energy
is coming from the interaction between the surface charges of the largest surfaces.
We denote by T and B the pair of top and bottom surfaces of the strip (of surface
area Lw) and by F , R the front and rear surfaces of the strip (of surface area Lh),
respectively. It is straightforward to show (see e.g. [26, 32]) that

2

M2
S

Estrip
ms =

∫
T∪B

dS

∫
T∪B

dS′ (m̄(r) · n) (m̄(r′) · n′)
|r − r′|

+

∫
F∪R

dS

∫
F∪R

dS′ (m̄(r) · n) (m̄(r′) · n′)
|r − r′| + O

(
w̃2h̃

)

= 2

L∫
0

ds

L∫
0

ds′
w/2∫

−w/2

du

w/2∫
−w/2

dv

[
m̄3(s)m̄3(s

′)
ρ

− m̄3(s)m̄3(s
′)√

ρ2 + h2

]

+ 2

L∫
0

ds

L∫
0

ds′
h/2∫

−h/2

du

h/2∫
−h/2

dv

[
m̄2(s)m̄2(s

′)
ρ

− m̄2(s)m̄2(s
′)√

ρ2 + h2

]
+ O

(
w̃2h̃

)
,

where m̄(s) = 1
wh

∫
m(s, u, v) du dv is the average of magnetization m over the cross-

section of area wh, n is the surface normal, and ρ =

√
(s− s′)2 + (u− v)2.

We note that for an arbitrary smooth function f and a constant a

L∫
0

f(s′)ds′√
a2 + (s− s′)2

= f(L) ln
(
L− s+

√
(L− s)2 + a2

)
+ f(0) ln

(
s+

√
s2 + a2

)

− 2f(s) ln |a| −
L∫

s

f ′(s′) ln
(
|s− s′|+

√
(s− s′)2 + a2

)
ds′

+

s∫
0

f ′(s′) ln
(
|s− s′|+

√
(s− s′)2 + a2

)
ds′.
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(
w̃2
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w/2

du

w/w/22∫∫
−w//22

ddvv

[[
m̄3(s)m̄3(s

′)dρρ
−

s

∫
00

d

∫
s′

h/2∫∫
−−h/h 22

ddu

h//2∫∫
−−h/h/2

dvv

[[
¯̄mm22((s)m̄2(edρ

= 1 twh

∫
mm((s, u, vs, u ) d) du dv is

area whwh,, nn is the surfaceis the su
note that for an arbitraryhat for an a

f(s′)d)dss′ep√ epa2 + (+ (ss−− s′)22
== ff((LL) lnln

(

− 2
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Applying this formula and following the approach developed in [26], we can show
that the main contribution to the magnetostatic energy will be coming from the term
−2f(s) ln |a| in the last integral. Therefore, we obtain

Estrip
ms

2M2
S

= w2

L∫
0

ds

1/2∫
−1/2

du

1/2∫
−1/2

dv m̄2
3(s)

[
ln
√
(u− v)2 + δ2 − ln |u− v|

]

+ h2

L∫
0

ds

1/2∫
−1/2

du

1/2∫
−1/2

dv m̄2
2(s)

[
ln
√
(u− v)2 + 1/δ2 − ln |u− v|

]
+ O

(
w̃h̄2

∣∣ln h̄∣∣) .
(A.1)

By integrating over the cross-section variables, the expression (A.1) further simplifies
to

Estrip
ms

2M2
S

= wh

(
2 arctan

1

δ
+ δ ln δ +

(
1

2δ
− δ

2

)
ln(1 + δ2)

) L∫
0

m̄2
3(s) ds

+ wh

(
−δ ln δ + 2arctan δ +

(
δ

2
− 1

2δ

)
ln(1 + δ2)

) L∫
0

m̄2
2(s) ds.

Hence, the magnetostatic energy of the flat strip is

Estrip
ms

2πM2
Shw

=

L∫
0

{
[1−N2 (δ)] m̄

2
3(s) +N2 (δ) m̄

2
2(s)

}
ds+ O(δ2). (A.2)

Here the quantity

N2(δ) =
2δ

2π
− δ

π
ln δ � 1 (A.3)

plays the role of a demagnetizing factor in a rectangular strip along the transverse
direction. It corresponds to an expression for the magnetometric demagnetizing factor
in a general rectangular prism, calculated previously by Aharoni [48].

Returning to the general case, we recall from (5) that a ribbon may be
parametrized as

ς(s, v) = γ(s) + ve2(s) , v ∈
[
−w

2
,
w

2

]
, s ∈ [0, L]

and consider a shell of thickness h around ς parametrized as

�(s, v, u) = γ(s) + ve2(s) + ue3(s, v) ,

where e2, e3 are defined in (6) and h is small enough so that � does not intersect
itself. Then, introducing m̄2 = m̄ · e2 and m̄3 = m̄ · e3, the energy of the shell up to
terms of order O

(
w̃h̄2

∣∣ln h̄∣∣) is given by

Eribbon
ms

2M2
S

= w2

L∫
0

ds

1/2∫
−1/2

du

1/2∫
−1/2

dv
√
gm̄3(s, wu)m̄3(s, wv) ln

√
(u− v)2 + δ2

|u− v|

+ h2

L∫
0

ds

1/2∫
−1/2

du

1/2∫
−1/2

dv m̄2
2(s)

[
ln
√
(u− v)2 + 1/δ2 − ln |u− v|

]
.

(A.4)
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) L∫∫
00
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0
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3((ss) +) +N22N (δ) m̄2
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e2, e3 are defined in (are defined 6) a
. Then, introducing ¯introducing m2 =

ms of orderorder OO
((
w̃w¯̄hh22

∣∣∣∣∣∣∣lnln h̄∣∣∣∣))
Eribbon

ms c2MM22
SSM

== w22

L∫∫
0

dd

∫∫∫
ss

11//2∫∫
−1/2

du

1/22∫

+ h2

L∫
0

d

∫ 1/∫
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We remark that the formula (A.4) yields the correct result both for a wire with a
rectangular cross-section (h/w = const) and in the thin film limit (h/w → 0), cf. [26]
and [28], respectively, however in the latter case it resolves terms beyond the leading
order.

Expanding the first integral in (A.4) in w and integrating over cross-section
variables, we obtain that the magnetostatic energy of the ribbon

Eribbon
ms

2πM2
Shw

=

L∫
0

{[
1−N2

(
h

w

)]
m̄2

3(s) +N2

(
h

w

)
m̄2

2(s)

}
ds+ O

(
h2

w2

)
(A.5)

is insensitive to curvature effects, cf (A.2). Finally, using the constrain m̄2 = 1 we
get the magnetostatic energy in the form (10c), (10d).

Appendix B. Simulations

We use the in-house developed spin-lattice simulator SLaSi [49]. A chain of classical
magnetic moments mi, |mi| = 1, i = 1, N is considered. They are situated on a circle
(21), which defines a central axis of the narrow Möbius ribbon (22), hence the periodic
condition mN+1 = m1 is used. The following classical Hamiltonian is used:

H = −a�2
N∑
i=1

(mi ·mi+1)− a3

2

N∑
i=1

[
Q1(mi · e1i)2 +Q3(mi · e3i)2

]
+ d

a3

8π

∑
i �=j

[
(mi ·mj)

r3ij
− 3

(mi · rij)(mj · rij)
r5ij

]
,

(B.1)

where a is the lattice constant, e1i and e3i are unit basis vectors (6) in i-th site and
the coefficient d = 0, 1 is used as a switch for dipolar interactions.

To study the static magnetization distribution, we minimize the energy by solving
a set of N vector Landau–Lifshitz–Gilbert ordinary differential equations for N = 100
sites situated on a ring of radius R = aN/(2π) and � = R using the Runge–Kutta–
Fehlberg scheme (RKF45), see [50] for general description of the simulator. The
equilibrium magnetization state is found starting the simulations from different initial
distributions (four different random ones, uniformly magnetized states along ±x̂, ±ŷ,
±ẑ and along unit vectors ei.

The simulations are performed using the high-performance computer clusters
of the Taras Shevchenko National University of Kyiv [51] and the Bayreuth
University [52].
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