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Abstract 

This paper presents a comprehensive review on the development of higher-order continuum models for 

capturing size effects in small-scale structures. The review mainly focus on the size-dependent beam, plate 

and shell models developed based on the nonlocal elasticity theory, modified couple stress theory and strain 

gradient theory due to their common use in predicting the global behaviour of small-scale structures. In each 

higher-order continuum theory, various size-dependent models based on the classical theory, first-order shear 

deformation theory and higher-order shear deformation theory were reviewed and discussed. In addition, the 

development of finite element solutions for size-dependent analysis of beams and plates was also highlighted. 

Finally a summary and recommendations for future research are presented. It is hoped that this review paper 

will provide current knowledge on the development of higher-order continuum models and inspire further 

applications of these models in predicting the behaviour of micro- and nano-structures. 

Keywords: Size effect; nonlocal elasticity theory; modified couple stress theory; strain gradient theory 

1. Introduction 

Small-scale structural elements such as beams, plates and shells are commonly used as components in 

micro- and nano-electromechanical systems (MEMS and NEMS), sensors, actuators and atomic force 

microscopes. In these applications, size effects were experimentally observed in mechanical properties [1-5]. 

These size effects can be captured using either molecular dynamics (MD) simulations or higher-order 

continuum mechanics. Although the MD method can provide accurate predictions, it is too computationally 

expensive. Therefore, higher-order continuum mechanics approach was widely used in the modelling of 

small-scale structures. 
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The development of higher-order continuum theories can be traced back to the earliest work of Piola on 

the 19th century as demonstrated in [6-7] and the work of Cosserat and Cosserat [8] in 1909. However, until 

1960s, the Cosserat brothers’ idea was received considerable attention from researchers, and a large number 

of higher-order continuum theories have been developed. In general, these theories can be categorized into 

three different classes namely the strain gradient family, microcontinuum and nonlocal elasticity theories. 

The strain gradient family is composed of the couple stress theory, the first and second strain gradient theory, 

the modified couple stress theory and the modified strain gradient theory. In the strain gradient family, both 

strains and gradient of strains are considered in the strain energy, and thus the size effect is accounted for 

using material length scale parameters. In the couple stress theory initiated by Toupin [9], Mindlin and 

Tiersten [10] and Koiter [11], only the gradient of rotation vector is considered in the strain energy, and thus 

only two material length scale parameters are required. The modified couple stress theory was proposed by 

Yang et al. [12] based on modifying the couple stress theory. By introducing an equilibrium condition of 

moments of couples to enforce the couple stress tensor to be symmetric, the number of material length scale 

parameters of the modified couple stress theory is reduced from two to one. The first strain gradient theory 

initiated by Mindlin [13] considers only the first gradient of strains. One year later, Mindlin [14] derived the 

second strain gradient theory which is considered as the most general form of strain gradient theory 

accounting for both the first and second gradients of strains. Lam et al. [15] proposed the modified strain 

gradient theory with only three material length scale parameters by modifying Mindlin's theory by using a 

similar approach of Yang et al. [12]. The microcontinuum theory was developed by Eringen [16-18] 

consisting of micropolar, microstretch and micromorphic (3M) theories. Micropolar theory which is actually 

initiated by Cosserat brothers [8] is the simplest one among 3M theories, whilst micromorphic theory is the 

most general one among 3M theories. In 3M theories, each particle can rotate and deform independently 

regardless of the motion of the centroid of the particle. More details about the 3M theories as well as their 

applications can be found in [19-25]. The nonlocal elasticity theory was originally proposed by Kroner [26] 

and improved by Eringen [27-28] and Eringen and Edelen [29]. In this theory, the stress at a reference point 

in a continuum depends on the strains at all points of the body, and thus the size effect is captured by means 

of constitutive equations using a nonlocal parameter. Nonlocal elasticity theory was initially formulated in an 

integral form and later reformulated by Eringen [30] in a differential form by considering a specific kernel 

function. Compared to the integral model, the differential one is widely used for nanostructures due to its 

simplicity. In addition, another class of higher-order theory which is called nonlocal strain gradient theory 

has been recently proposed based on a combination of the nonlocal elasticity theory and the strain gradient 

theory. The interested reader can refer to [31-33] for more details on this theory. 
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Size-dependent models have been widely used for predicting the global behaviour of beam- and plate-like 

nanostructures such as carbon nanotubes (CNTs) and graphene sheets. CNTs were discovered by Iijima [34] 

by rolling graphene sheets. Based on synthesis route and reaction parameters, various types of CNTs such as 

single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs) and multi-walled 

carbon nanotubes (MWCNTs) can be obtained (see Fig. 1) by rolling single-layered graphene sheets 

(SLGSs), double-layered graphene sheets (DLGSs) and multi-layered graphene sheets (MLGSs) (see Fig. 2). 

Nanotube is a key nanostructure and has a wide range of applications in all areas of nanotechnology. Notable 

among them is conveying fluid [35-41] and nanofluidic devices and systems. 

A large number of size-dependent models have been proposed based on various beam and plate theories. 

The simplest models were based on Euler-Bernoulli beam theory (EBT) and classical plate theory (CPT). 

These models are only appropriate for modelling of slender beams and thin plates because they ignore shear 

deformation effect. To overcome the limitation of the EBT and CPT, a number of shear deformation theories 

have been proposed. First-order shear deformation models were based on Timoshenko beam theory (TBT) 

and first-order shear deformation theory (FSDT). Since the in-plane displacements vary linearly through the 

thickness in these models, a shear correction factor is required. In order to eliminate the use of the shear 

correction factor and obtain a better prediction of the responses of thick beams and plates, several higher-

order shear deformation theories (HSDTs) have been proposed, notable among them are Reddy beam theory 

(RBT) and third-order shear deformation theory (TSDT) of Reddy [42]. A comprehensive review on the plate 

theories can be found in the work by Thai and Kim [43]. 

The governing equations derived from the aforementioned size-dependent models can be solved using 

either analytical methods or numerical approaches. However, the application of analytical methods is limited 

to a particular nanostructure with simple geometry, loading and boundary conditions (BCs). For instance, 

Navier method is only applied for rectangular plates with simply supported BCs, whilst Levy method is only 

applied for rectangular plates in which two opposite edges are simply supported and the remaining two edges 

can have any arbitrary BCs. For the practical problems with general geometry, loading and BCs, seeking 

their analytical solutions is impossible because of the mathematical complexity of the size-dependent models 

compared to the classical ones. Therefore, numerical approaches such as finite element method, differential 

quadrature method, mesh-free method, Ritz method, Galerkin method, etc. become the most suitable ones for 

solving such problems. Among different numerical techniques, the finite element method is the most 

powerful tool and commonly used for the analysis of structures, and thus the development of finite element 

solutions for size-dependent models will be discussed in this review. 

Although extensive research on small-scale beams, plates and shells has been made during the past decade, 
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the development of models for capturing the size effect in these structures has not been reviewed. Therefore, 

this paper aims to provide a comprehensive review on the development of size-dependent models for 

predicting the behaviour of small-scale beam- and plate-like structures. The review mainly focuses on the 

beam, plate and shell models which were developed based on the nonlocal elasticity theory of Eringen [30], 

the modified couple stress theory of Yang et al. [12] and the modified strain gradient theory of Lam et 

al. [15]. In addition, the development of finite element models of these theories was also highlighted and 

discussed in details. 

2. Nonlocal elasticity theory 

2.1. Review of the nonlocal elasticity theory 

The nonlocal elasticity theory was initially formulated by Eringen [27-28] and Eringen and Edelen [29] by 

means of integral constitutive equation as 

  , L

ij ij
x
k x x dx     (1) 

where 
ij  and L

ij  are the components of the nonlocal and local stress tensors, respectively and k is the 

kernel function determined in terms of nonlocal parameter   and neighbourhood distance x x  in 

which 0e a   and 0e  and a  are the material constant and the internal characteristic length, respectively, 

i.e. lattice parameter, granular size or molecular diameter. The value of 0e  can be determined either from 

experiments or simulations. The value of 0e  was calibrated by Huang et al. [44] for the static bending 

analysis of SLGSs. Arash and Ansari [45] also evaluated the value of the nonlocal parameter for the free 

vibration of SWCNTs by comparing the predictions from the nonlocal FSDT shell model with MD 

simulations as shown in Fig. 3. Duan et al. [46] proposed a microstructured beam model to calibrate the 

value of 0e  for the free vibration analysis of nonlocal beams. Analytical expressions of 0e  were obtained 

based on geometrical properties and vibration modes. Zhang et al. [47-49] proposed a microstructured beam-

grid model to determine the value of 0e  for the free vibration of nonlocal beams [47] and buckling and free 

vibration of nonlocal plates [48]. It was found that the value of 0e  varies with respect to initial stress, rotary 

inertia, mode shape and aspect ratio of rectangular plates. In general, a conservative estimate of the nonlocal 

parameter for SWCNTs is 0e a  < 2.0 nm [50].  

By considering a specific kernel function k, Eringen [30] reformulated the nonlocal constitutive equation 

in a differential form as 

  21 L

ij ij      (2) 
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where 2   and 2  is the Laplacian operator. The explicit form of Eq. (2) can be written for three 

problems with isotropic materials as follows. 

For one-dimensional (1D) problems: 
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For 3D problems: 
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where 
ij  are the components of the strain tensor; and E  and   are the Young’s modulus and Poisson 

ratio of materials, respectively. 

Compared to the integral model, the differential one is widely used for nanostructures due to its simplicity. 

However, the differential model may give paradoxical results for certain cases, e.g. bending and vibration 

problems of cantilever beams. More information about paradoxical behaviour of the differential model can 

be found in [51-54].  

2.2. Beam models 

2.2.1. Nonlocal models based on the EBT 

The first nonlocal beam models based on the EBT were developed by Peddieson et al. [55] and Sudak [56]. 

Peddieson et al. [55] applied their model to explore the size effect on the bending behaviour of isotropic 

nanobeams, whilst Sudak [56] applied his model to study the buckling of MWCNTs. Since the early works 

by Peddieson et al. [55] and Sudak [56], there have been a large number of articles devoted to the modelling 

of nanobeams and CNTs using the nonlocal EBT model. For example, Zhang et al. [57] investigated the free 

vibration of DWCNTs. Closed-form solutions for natural frequencies of simply supported DWCNTs were 

obtained to study the size effect on vibration characteristics of DWCNTs. Wang et al. [58] derived a general 

form of closed-form solutions for buckling loads of CNTs with various BCs. Aydogdu [59] examined the size 

effect on the axial vibration of nanorods under different BCs and obtained explicit expressions for natural 

frequencies. Murmu and Pradhan [60] included thermal effects in the free vibration analysis of embedded 

SWCNTs using the differential quadrature (DQ) method. This approach was also used by Civalek and Demir 

[61] to derive bending moments and deflections of nanobeams with various BCs. The free vibration of 

axially loaded non-prismatic embedded SWCNTs was investigated by Mustapha and Zhong [62] using the 

Bubnov-Galerkin method. Li et al. [63] derived closed-form solutions for natural frequencies of axially 

loaded simply supported nanobeams. Ghannadpour et al. [64] employed the Ritz method solve the governing 

equations of the nonlocal EBT model for deflections, buckling loads and natural frequencies of nanobeams 

with various BCs. Based on von Karman nonlinearity, Ansari et al. [65] developed a nonlinear nonlocal EBT 

model for nonlinear vibrations of embedded MWCNTs in thermal environmental, whilst Fang et al. [66] 

developed a nonlinear nonlocal EBT model for nonlinear vibrations of embedded DWCNTs. The nonlinear 

free and forced vibrations of nanobeams with various BCs were examined by Simsek [67] and Bagdatli [68]. 

The nonlocal EBT model was also developed for nanobeams made of functionally graded (FG) materials. 

Simsek [69] investigated the nonlocal effect on the axial vibration of FG nanorods with variable cross-

sections. The elastic modulus and mass density of nanorods were assumed to vary in the axial direction 

according to a power law form. Nguyen et al. [70] presented analytical solutions of the nonlocal EBT model 
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for the static bending analysis of FG beams with various BCs. The elastic modulus of FG nanobeams can 

vary in either the axial direction or transverse direction. Based on the Galerkin approach, Niknam and 

Aghdam [71] derived solutions of the nonlocal EBT model for natural frequencies and critical buckling loads 

of FG nanobeams resting on an elastic foundation. Ebrahimi and Salari [72-73] studied thermal effect on the 

free vibration of FG nanobeams under various BCs using a semi analytical approach. Nejad and Hadi [74] 

and Nejad et al. [75] examined the bending [74] and buckling [75] behaviours of FG nanobeams in which the 

elastic modulus can vary in both axial and transverse directions of the beam. The DQ method was used to 

solve the governing equations for critical buckling loads of FG nanobeams with arbitrary BCs. 

Nonlinear free vibration of FG nanobeams was investigated by Nazemnezhad and Hosseini-Hashemi [76] 

using a nonlinear nonlocal EBT model with von Karman nonlinear theory. Analytical solutions for nonlinear 

natural frequencies of simply supported beams were also obtained using a method of multiple scales. El-

Borgi et al. [77] developed a nonlinear nonlocal EBT model for the nonlinear free and forced vibrations of 

FG embedded nanobeams. The method of multiple scales was employed to solve for nonlinear frequencies of 

simply supported beams. Shafiei et al. [78] also developed a nonlinear nonlocal EBT model to study the 

nonlinear free vibration of axially FG nanobeams with variable cross-sections. Nonlinear frequencies of 

nanobeams under various BCs were obtained using the generalized DQ technique. 

2.2.2. Nonlocal models based on the TBT 

The earliest nonlocal TBT model was developed by Wang [79] to study wave propagation in CNTs. The 

model accounts for the shear deformation effect which becomes significant in short and stocky CNTs. Wang 

and Varadan [80] also developed a nonlocal TBT model, but it was applied to investigate the free vibration of 

both SWCNTs and DWCNTs. Closed-form solutions for natural frequencies of simply supported CNTs were 

also obtained. Wang et al. [81-84] derived closed-form solutions for buckling loads [81], natural frequencies 

[82] and deflections [83-84] of the nonlocal TBT model with four different BCs including simply supported, 

clamped, cantilever and propped cantilever. In these models [81-84], the transverse shear stress was based on 

the local theory and thus they are inconsistent. Lu et al. [85] overcame this limitation in their consistent 

nonlocal TBT model in which the nonlocal effect was included in both normal and transverse shear stresses. 

The consistent nonlocal model was also developed by Reddy and Pang [86] by reformulating both EBT and 

TBT using the nonlocal constitutive relations of Eringen. Closed-form solutions for deflections, buckling 

loads and natural frequencies were obtained for nanobeams under four different BCs. It should be noted that 

the closed-form solutions derived by Reddy and Pang [86] are different with those given by Wang et al. [81-

84] since they were based on different TBT models. 

The consistent nonlocal TBT model has been widely used to investigate the nonlocal effect in CNTs. For 
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example, Murmu and Pradhan [87] investigated the influences of nonlocal parameter and transverse shear 

deformation on the buckling of SWCNTs surrounded by an elastic medium. This work was extended by 

Ansari et al. [88] to include the effect of elevated temperature. Pradhan and Murmu [89] examined the 

nonlocal effect on the vibration of embedded SWCNTs using the consistent nonlocal TBT model and the DQ 

approach. Numerical solutions of the consistent TBT model were presented by Roque et al. [90] based on a 

meshless method with both global and local collocation techniques and radial basis functions. The vibration 

of embedded SWCNTs was also examined by Wu and Lai [91] using the consistent nonlocal TBT models 

developed based on both Reissner mixed variation theory and principle of virtual displacement. Amirian et al. 

[92] and Zidour et al. [93] included the thermal effect on the vibration of SWCNTs, whilst Ansari et al. [94] 

included the thermal effect on the dynamic stability of embedded MWCNTs. Ansari et al. [95] developed a 

nonlocal TBT model for the nonlinear forced vibration of magneto-electro-thermo-elastic nanobeams. 

The consistent nonlocal TBT model was also developed for FG nanobeams. Simsek and Yurtcu [96] 

proposed both nonlocal EBT and TBT models for the bending and buckling analyses of FG nanobeams. The 

consistent nonlocal TBT model was extended by Rahmani and Pedram [97] to the free vibration analysis of 

simply supported FG nanobeams. Ebrahimi and Salari [98-99] also developed a consistent nonlocal TBT 

model for the buckling and free vibration analyses FG nanobeams in which thermal effects were considered. 

2.2.3. Nonlocal models based on the RBT 

Based on the nonlocal constitutive relations of Eringen, Reddy [100] reformulated the EBT, TBT, RBT 

and Levinson beam theory to include the nonlocal effect. Variational statements of four models were also 

derived to facilitate the development of nonlocal FE models. Closed-form solutions for deflections, buckling 

loads and natural frequencies were obtained for simply supported beams. Ebrahimi and Salari [101] included 

thermal effects in the nonlocal RBT model to examine the influences of elevated temperature and nonlocal 

parameter on free vibration characteristics of embedded SWCNTs. Emam [102] proposed a unified nonlinear 

nonlocal model for the buckling and post-buckling analyses of isotropic nanobeams. Analytical solutions for 

buckling load and post-buckling response were also obtained for simply supported and clamped nanobeams. 

Rahmani and Jandaghian [103] extended the nonlocal RBT model to FG nanobeams. Analytical solutions 

for critical buckling loads were obtained for FG nanobeams under various BCs using Rayleigh-Ritz method. 

Ebrahimi and Barati [104] also developed a nonlocal RBT model for FG nanobeams, in which thermal 

effects and the interaction between the nanobeam and an elastic medium were considered. 

2.2.4. Nonlocal models based on HSDTs 

One of the earliest nonlocal HSDT models was developed by Aydogdu [105] for isotropic nanobeams 

based on the general exponential shear deformation theory of Aydogdu [106]. This theory is a general form 
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of the exponential shear deformation theory of Karama et al. [107] (see Table 1 for the displacement field). 

Thai [108] also proposed a nonlocal HSDT model for isotropic nanobeams, but it was based on the refined 

plate theory of Shimpi [109]. The displacement field of this theory is derived based on partitioning the 

displacements into shear and bending parts. Tounsi et al. [110] and Zemri et al. [111] extended the nonlocal 

HSDT model of Thai [108] to include thermal effects [110] and non-homogeneous behaviour of FG materials 

[111]. 

Thai and Vo [112] developed a nonlocal HSDT model for isotropic nanobeams based on the sinusoidal 

shear deformation theory of Touratier [113], whilst Tounsi et al. [114] proposed a nonlocal quasi-3D model 

for isotropic nanobeams based on the quasi-3D sinusoidal theory of Thai and Kim [115] (see Table 2). It is 

worth noting that unlike the HSDT model, the quasi-3D model is capable of capturing the thickness 

stretching effect which is significant in very thick or stocky members. The extension of the sinusoidal model 

of Thai and Vo [112] and quasi-3D sinusoidal model of Tounsi et al. [114] to FG nanobeams was respectively 

made by Ahouel et al. [116] and Chaht et al. [117]. The model of Thai and Vo [112] was also employed by 

Pour et al. [118] and Sadatshojaei and Sadatshojaie [119] to predict nonlinear vibration responses of 

SWCNTs embedded in an elastic medium. 

Berrabah et al. [120] compared the accuracy of various nonlocal HSDT models in predicting deflections, 

buckling loads and natural frequencies of isotropic nanobeams. The displacement fields of these nonlocal 

HSDT models were taken from the simple HSDT proposed by Thai and Choi [121] in which the in-plane and 

transverse displacements are divided into the bending and shear components as shown in Table 1. Ebrahimi 

and Barati [122] developed a unified nonlocal HSDT model for FG embedded nanobeams based on the 

simple HSDT of Thai and Choi [121]. The model was used to study the influences of both moisture and 

temperature on free vibration characteristics of FG embedded nanobeams. Mashat et al. [123] investigated 

the vibration and thermal buckling of embedded nanobeams under various BCs using a unified nonlocal 

HSDT model covering EBT, TBT, RBT and sinusoidal theory. Recently, Thai et al. [124] presented a simple 

nonlocal HSDT model for isotropic nanobeams which involves only one unknown. Closed-form solutions for 

deflections and natural frequencies were also obtained for nanobeams under various BCs. Numerical results 

indicated that the accuracy of the present theory is comparable with the nonlocal TBT model although it has 

only one unknown as in the case of the nonlocal EBT model. 

2.3. Plate models 

2.3.1. Nonlocal models based on the CPT 

Zhang et al. [125] developed one of the earliest nonlocal shell model for the buckling analysis of 

MWCNTs under axial compression based on the classical shell theory. Closed-form solutions obtained for 
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buckling loads were used to examine the nonlocal effect on the axial buckling of simply supported DWCNTs. 

Li and Kardomateas [126-127] developed nonlocal classical shell models to examine the thermal buckling 

[126] and free vibration [127] of MWCNTs. The nonlocal classical shell model was also proposed by Wang 

and Varadan [128] and Hu et al. [129] to investigate wave propagation in CNTs. The accuracy of the 

nonlocal classical shell model in predicting buckling strains of axially loaded SWCNTs was also assessed by 

Zhang et al. [130] by comparing with the MD simulation results as shown in Fig. 4. It can be seen that for 

long SWCNTs with large aspect ratios, the local EBT model can give results comparable with those obtained 

by nonlocal EBT model and MD simulations. However, for short SWCNTs with small aspect ratios, only 

nonlocal shell model can give comparable predictions by the MD simulations. Rouhi and Ansari [131] also 

presented a nonlocal classical shell model for axial buckling of DWCNTs under various BCs. Recently, 

Sarvestani [132] proposed a nonlocal classical shell model for the buckling analysis of curved MWCNTs 

under axial compression. 

One of the earliest nonlocal plate models was developed by Lu et al. [133] based on the CPT. The model 

was used to study the size effect on the bending and bucking behaviours of isotropic nanoplates. Duan and 

Wang [134] derived exact solutions of the nonlocal CPT model for the axisymmetric bending analysis of 

circular nanoplates under general loading. The effects of the nonlocal parameter on deflection, radial moment, 

circumferential moment and shear force of graphene circular sheets subjected to uniform loads with either 

clamped or simply supported BCs were examined. Aksencer and Aydogdu [135] derived Levy solutions of 

the nonlocal CPT model for buckling loads and natural frequencies of rectangular nanoplates with two 

opposite edges being simply supported and the remaining two edges having any arbitrary BCs. Shakouri et al. 

[136] employed the Galerkin approach to solve the governing equations of the nonlocal CPT model for 

natural frequencies of isotropic nanoplates under various BCs.  

The nonlocal CPT model was also employed to capture the size-dependent behaviour of SLGSs and 

MLGSs. For example, Pradhan and Murmu [137] and Pradhan and Kumar [138] investigated the nonlocal 

effect on the bucking of SLGSs using the DQ method, while Babaei and Shahidi [139] and Farajpour et al. 

[140] examined the size effect on the buckling of quadrilateral SLGSs [139] and variable-thickness SLGSs 

[140] using Galerkin method. The free vibration behaviour of MLGS embedded in a polymer matrix was 

investigated by Pradhan and Phadikar [141]. It was found that the size effect increases when the number of 

layers increases. Shen et al. [142] extended the application of the nonlocal CPT model to examine the free 

vibration of a simply supported SLGS-based mass sensor. Ansari et al. [143] presented analytical 

expressions for natural frequencies of SLGSs with arbitrary BCs by considering interatomic potential in 

deriving material properties of SLGSs. Recently, Zhang et al. [144-146] employed the element-free kp-Ritz 
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method to solve the governing equations of the nonlocal CPT model for natural frequencies [144], nonlinear 

deflections [145] and bucking loads [146] of SLGSs under various BCs. 

The application of the nonlocal CPT in the above-mentioned studies was limited to graphene sheets made 

of isotropic materials. However, the numerical results from MD simulations carried out by Ni et al. [147] 

indicated that the mechanical properties of graphene sheets are anisotropic because of the hexagonal 

structure of the unit cells of the graphene [147]. Therefore, nonlocal orthotropic CPT models were developed 

to account for the effect of anisotropic mechanical properties of graphene sheets. Pouresmaeeli et al. [148] 

developed a nonlocal CPT model for the vibration of orthotropic DLGSs embedded in an elastic medium. 

Mohammadi et al. [149-150] developed a nonlocal CPT model for the free vibration analysis of orthotropic 

embedded SLGSs in thermal environment. Both Navier and Levy solutions for natural frequencies of 

rectangular SLGSs were derived. Sari and Al-Kouz [151] also presented a nonlocal CPT model for the free 

vibration analysis of orthotropic embedded SLGSs in which the variable thickness of SLGSs was considered. 

Anjomshoa [152] and Anjomshoa et al. [153] proposed nonlocal CPT models to examine the buckling [152] 

and free vibration [153] of orthotropic circular and elliptical SLGSs embedded in an elastic medium. The 

nonlocal CPT model was also developed by Mohammadi et al. [154] to examine the shear buckling of 

orthotropic embedded SLGSs in thermal environment. Ashoori et al. [155] developed a nonlocal CPT model 

for thermal buckling of FG annular embedded nanoplates subjected to various types of thermal loads. Exact 

solutions for critical buckling temperature were also obtained for FG annular nanoplates with clamped BCs. 

2.3.2. Nonlocal models based on the FSDT 

The earliest nonlocal FSDT model was developed by Lu et al. [133] for isotropic nanoplates. The model 

was then applied to study the size effect on deflections and natural frequencies of simply supported isotropic 

nanoplates. Pradhan and Phadikar [156-157] presented both nonlocal CPT and FSDT models for the free 

vibration [156] and buckling analysis [157] of SLGSs and MLGSs. In the MLGS models, the interaction 

between two graphene sheets was modelled by Winkler foundation. The influences of small-scale, shear 

deformation, elastic modulus and stiffness of Winkler foundation on natural frequencies and critical buckling 

loads of simply supported graphene sheets were also investigated. Kananipour [158] also presented both 

nonlocal CPT and FSDT models for graphene sheets, but they were applied to the static bending analysis of 

DLGSs under various BCs using the DQ method. Ansari et al. [159-160] examined the vibration of SLGSs 

[159] and MLGSs [160] with different BCs using the nonlocal FSDT model and DQ method. The nonlocal 

FSDT was also employed by Samaei et al. [161] and Bedroud et al. [162] to examine the buckling of 

embedded SLGSs [161] and circular nanoplates [162]. Arani et al. [163] examined electro-thermal-torsional 

buckling of simply supported embedded double-walled boron nitride nanotubes based on the nonlocal FSDT 



 12 

shell model. Naderi and Saidi [164] modified the nonlocal FSDT model for buckling of nanoplates by 

eliminating the nonlocal effect for the transverse shear stresses. The nonlinear nonlocal CPT and FSDT 

models were developed by Reddy [165] for the nonlinear bending analysis of isotropic nanoplates based on 

von Karman nonlinearity. The variational statement of these models was also presented for the development 

of finite element solutions. 

The nonlocal FSDT models were also proposed for nanoplates made of FG and orthotropic materials. For 

example, Hosseini-Hashemi et al. [166] developed a nonlocal FSDT for FG circular nanoplates. Closed-form 

solutions for natural frequencies of circular nanoplates under various BCs were also obtained. Anjomshoa 

and Tahani [167] developed a nonlocal FSDT model for the free vibration analysis of orthotropic circular and 

elliptical SLGSs embedded in an elastic foundation. Golmakani and Rezatalab [168] presented a nonlinear 

nonlocal FSDT model for the nonlinear bending analysis of orthotropic embedded SLGSs using von Karman 

nonlinear strains. Recently, Dastjerdi et al. [169] and Dastjerdi and Jabbarzadeh [170] presented a nonlinear 

nonlocal FSDT model for the geometric nonlinear analysis of annular/circular orthotropic embedded SLGSs 

[169] and MLGSs [170] in which the effect of elevated temperature was considered. 

2.3.3. Nonlocal models based on the TSDT 

The nonlocal TSDT model was first presented by Aghababaei and Reddy [171] for isotropic nanoplates by 

reformulating the TSDT of Reddy [42] using the nonlocal constitutive relations of Eringen. Closed-form 

solutions for deflections and natural frequencies were also presented for simply supported nanoplates. This 

model was employed by Pradhan [172] and Pradhan and Sahu [173] to study the nonlocal effect on buckling 

loads [172] and natural frequencies [173] of simply supported SLGSs. The buckling of SLGSs was also 

examined by Ansari and Sahmani [174] using a unified nonlocal model representing three different theories 

of the CPT, FSDT and TSDT. Hosseini-Hashemi et al. [175] derived Levy solutions for critical buckling 

loads and natural frequencies of isotropic nanoplates. Daneshmehr et al. [176-177] extended the application 

of the nonlocal TSDT to the buckling [176] and free vibration analysis [177] of FG nanoplates. 

2.3.4. Nonlocal models based on HSDTs 

Narendar [178] proposed a nonlocal HSDT model for the buckling analysis of isotropic nanoplates based 

on the refined plate theory of Shimpi [109]. This model was extended by Malekzadeh and Shojaee [179] and 

Narendar and Gopalakrishnan [180] to the free vibration analysis of nanoplates [179] and buckling analysis 

of orthotropic nanoplates [180]. This model was also employed by Sobhy [181] to examine the free vibration 

of orthotropic DLGSs under hydrothermal conditions. Sobhy [182] presented a general HSDT model for 

MLGSs based on the simple HSDTs of Thai and Choi [121] (see Table 1). Analytical solutions for natural 

frequencies, buckling loads and buckling temperatures were also obtained for MLGSs under various BCs. 
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Levy solutions of the nonlocal HSDT model of Narendar [178] were derived by Sobhy [183-184] for the 

bending analysis of isotropic SLGSs in thermal environment [183] and orthotropic nanoplates in a 

hygrothermal environment [184]. Zenkour and Sobhy [185], Alzahrani et al. [186], Thai et al. [187] and 

Sobhy [188-189] developed nonlocal sinusoidal models for thermal buckling of embedded nanoplates [185], 

hydro-thermal-mechanical bending of nanoplates [186], isotropic nanoplates [187], embedded SLGSs [188] 

and orthotropic embedded nanoplates [189] based on the sinusoidal theory of Touratier [113]. It is noted that 

the nonlocal sinusoidal model developed by Sobhy [190] for FG embedded nanoplates was based on the 

simple sinusoidal theory of Thai and Vo [191], and thus it is simpler than the nonlocal sinusoidal models 

proposed in [185-189]. Belkorissat et al. [192] also developed a simple nonlocal HSDT model for FG 

nanoplates which is similar to the work of Sobhy [190], but it was based on the hyperbolic function of 

Soldatos [193]. Khorshidi and Fallah [194] reformulated the exponential theory of Karama et al. [107] for 

FG nanoplates. Bessaim et al. [195] developed a nonlocal quasi-3D model for the free vibration analysis of 

isotropic nanoplates based on the quasi-3D sinusoidal theory of Thai and Kim [115] which involves five 

unknowns as shown in Table 2. Recently, Sobhy and Radwan [196] also developed a nonlocal quasi-3D 

theory for the free vibration and buckling of FG nanoplates. The theory has five unknowns and is similar 

with the one proposed in [195], but it is based on a new hyperbolic function as shown in Table 2. 

3. Modified couple stress theory 

3.1. Review of the modified couple stress theory 

The modified couple stress theory was proposed by Yang et al. [12] by modifying the classical couple 

stress theory of Toupin [9], Mindlin and Tiersten [10] and Koiter [11]. By introducing an additional 

equilibrium condition of moments of couples to enforce the couple stress tensor to be symmetric, the number 

of additional material length scale parameters in the modified couple stress theory is reduced from two to one. 

This makes the modified couple stress theory more advantageous because the determination of the material 

parameters is a challenging task. The strain energy U is a function of both strain and curvature as [12] 
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where the rotation vector   is defined in terms of the displacement field ( , ,x y zu u u ) as 
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For a linear elastic material, 
ijm  are given as 
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where  is the material length scale parameter. The evaluation and calibration of  can be found in Refs. 

[197-198]. 

3.2. Beam models 

3.2.1. Modified couple stress models based on the EBT 

The earliest modified couple stress EBT model was developed by Park and Gao [199] for isotropic 

microbeams. They utilized their model to investigate the effect of the material length scale parameter on the 

deflection and bending rigidity of a cantilever epoxy beam subjected to a concentrated load at the free end. It 

was found that the inclusion of the material length scale parameter leads to an increase in the bending 

rigidity of the cantilever microbeam. This effect becomes significant when the beam thickness is small, but it 

is negligible with the increase of the beam thickness. This observation agrees well with the experimental data. 

The modified couple stress EBT model was extended by Kong et al. [200-201] to the free vibration [200] and 

buckling [201] problems of isotropic microbeams.  

The nonlinear modified couple stress EBT model was first developed by Xia et al. [202] for the nonlinear 

bending, post-buckling and nonlinear free vibration analyses of isotropic microbeams based on von Karman 
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nonlinearity. The results indicated the importance of considering nonlinearity and size effects in the proper 

design of microscale devices and systems such as biosensors, atomic force microscopes and MEMS [202]. 

Simsek [203] also developed a nonlinear EBT model for the nonlinear bending and vibration analyses of 

isotropic microbeams accounting for the interaction between the beam and an elastic medium. The nonlinear 

EBT model was widely used to study the size effect on the nonlinear bending [204], nonlinear vibration 

[205-209] and post-buckling [208-209] responses of isotropic microbeams. It is worth noting that Farokhi et 

al. [206] considered initial geometric imperfections in the nonlinear forced vibration of beams, whilst Togun 

and Bagdatli [207] included the axial pretension in the nonlinear free vibration of microbeams. Meanwhile, 

Wang et al. [204, 208] accounted for thermal effect in the nonlinear bending [204], post-buckling and free 

vibration [208] of beams. Ansari et al. [209] derived closed-form solutions for the vibration and post-

buckling analyses of microbeams under various BCs. 

The EBT model was also applied to the FG microbeams. For example, it was employed by Asghari et al. 

[210] to predict the bending and free vibration behaviours of FG microbeams. Free vibration of FG tapered 

microbeams with material properties varying in the longitudinal direction was examined by Akgoz and 

Civalek [211] and Shafiei et al. [212]. It should be noted that Akgoz and Civalek [211] only considered 

cantilever beams, whilst Shafiei et al. [212] included the geometric nonlinearity in beams with different BCs. 

Simsek [213] also examined the nonlinear free vibration of axially FG microbeams. However, he used the 

Galerkin and He's variational method to obtain approximate solutions for the beams with simply supported 

and clamped BCs. Dehrouyeh-Semnani et al. [214] included initial geometric imperfections on the free 

vibration analysis of FG microbeams. 

3.2.2. Modified couple stress models based on the TBT 

Ma et al. [215] first developed the modified couple stress TBT model by extending the EBT model of Park 

and Gao [199] to account for the shear deformation effect. The model was employed to investigate the 

effects of the material length scale parameter and shear deformation on deflections and natural frequencies of 

simply supported isotropic microbeams. Closed-form solutions of the TBT model were derived by Asghari et 

al. [216] for bending response of the beams under various BCs, whilst approximate solutions of the TBT 

model were derived by Dos Santos and Reddy [217] for buckling loads and natural frequencies of the beams 

with various BCs using the Ritz method. Dehrouyeh-Semnani and Nikkhah-Bahrami [218] used both EBT 

and TBT models to examine the Poisson effect in isotropic microbeams. By comparing the bending rigidities 

and deflections of epoxy cantilever microbeams under concentrated loads predicted by the modified couple 

stress models and experimental tests, it was found that the inclusion of the Poisson effect in the modified 

couple stress models leads to underestimating the deflection of the epoxy cantilever microbeam as shown in 
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Fig. 5. Liu and Reddy [219] developed a modified couple stress TBT model for isotropic curved microbeams, 

and applied it to bending and free vibration problems of simply supported curved beams. Taati et al. [220] 

also developed a TBT model to investigate thermal effects in isotropic microbeams. Asghari et al. [221] 

presented a nonlinear TBT model for the bending and free vibration analyses of isotropic microbeams. 

Ghayesh et al. [222-223] also presented a nonlinear TBT model for nonlinear resonant problems of isotropic 

microbeams. 

The TBT model was also applied to microbeams made of FG and laminated composite materials. Reddy 

[224] developed both EBT and TBT models for FG microbeams considering geometric nonlinearity. Closed-

form expressions for deflections, buckling loads and natural frequencies of simply supported microbeams 

were also given. Ke et al. [225] developed a nonlinear TBT model to examine the size effect on nonlinear 

vibration characteristics of FG microbeams. Asghari et al. [226] developed a TBT model to investigate the 

size effect on the deflections and rotations of cantilever FG beams as well as on the natural frequencies of 

simply supported FG beams. However, the geometric nonlinearity was ignored in their model. Ke and Wang 

[227] utilized the TBT model to study the free vibration, static buckling and dynamic stability behaviours of 

FG microbeams under different BCs using the DQ method. The buckling and free vibration responses of FG 

microbeams at elevated temperature were investigated by Nateghi and Salamat-talab [228] using the 

modified couple stress TBT model. The DQ method was employed to obtain critical buckling loads and 

natural frequencies of FG microbeams with various BCs. Numerical results indicated that the effect of 

temperature becomes more significant at higher values of the ratio of the beam thickness to material length 

scale parameter. Simsek et al. [229] adopted the TBT model to investigate the size effect on deflections of 

simply supported FG microbeams subjected to uniform and concentrated loads. The application of the TBT 

model was extended by Chen et al. [230], Chen and Li [231], Roque et al. [232] and Mohammad-Abadi and 

Daneshmehr [233] to the static bending [230, 232], free vibration [231] and buckling [233] of laminated 

composite microbeams. Thai et al. [234] also extended the application of the TBT model to static bending, 

buckling and free vibration problems of FG sandwich microbeams. Recently, Krysko et al. [235] developed a 

TBT model for the static bending and free vibration analyses of three layer microbeams based on Grigolyuk-

Chulkov theory. 

3.2.3. Modified couple stress models based on the RBT 

The modified couple stress RBT model was first proposed by Ma et al. [236] for isotropic microbeams. It 

was used to examine the size effect on the static bending and free vibration responses of simply supported 

microbeams. The application of the RBT model was extended by Mohammad-Abadi and Daneshmehr [237] 

to investigate the size effect on buckling behaviour of isotropic microbeams. Both EBT and TBT models 
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were also included in their works. Analytical solutions for simply supported beams were also provided for a 

comparison purpose. 

Salamat-talab et al. [238] extended the application of the RBT model to FG microbeams, and derived 

closed-form solutions for deflections and natural frequencies of simply supported microbeams. Nateghi et al. 

[239] and Aghazadeh et al. [240] presented a unified model for buckling [239], bending and free vibration 

[240] of FG microbeams. The unified model covers three different beam theories of the EBT, FBT and TBT. 

The DQ solution method is used to solve for the buckling loads, deflections and natural frequencies of FG 

microbeams under different BCs. Chen et al. [241] developed a RBT model for laminated composite 

microbeams based on a new constitutive relation for anisotropic materials. The model was used to examine 

the size effect on deflections of cross-ply simply supported microbeams under uniform loads. Mohammad-

Abadi and Daneshmehr [242] and Mohammad-Abadi et al. [243] extended their isotropic model in [237] to 

study the free vibration [242] and thermal buckling [243] of laminated composite microbeams under various 

BCs. 

3.2.4. Modified couple stress models based on HSDTs 

Darijani and Mohammadabadi [244] proposed a modified couple stress HSDT model for isotropic 

microbeams by separating the axial and transverse displacements into the shear and bending parts. The shape 

function of the shear part as shown in Table 1 was determined based on the condition that both transverse 

shear stress and couple stress vanish on the top and bottom surfaces of the cross-section. Recently, Noori et 

al. [245] presented a HSDT model for free vibration of isotropic microbeams based on a fifth-order variation 

of the axial displacement across the thickness. The DQ solution method was employed to solve for natural 

frequencies of microbeams under various BCs. Simsek and Reddy [246] developed a unified HSDT model 

for FG microbeams covering seven different beam theories including EBT, TBT, RBT, sinusoidal theory of 

Touratier [113], hyperbolic theory of Soldatos [193], exponential theory of Karama et al. [107] and general 

exponential theory of Aydogdu [106]. The model was applied to the bending and free vibration problems of 

simply supported FG microbeams. The model was also extended by Simsek and Reddy [247] and 

Akbarzadeh Khorshidi et al. [248] to buckling problems of FG embedded microbeams [247] and post-

buckling problems of FG microbeams with general BCs [248]. Trinh et al. [249] also presented a unified 

modified couple stress model for FG microbeams composed of both HSDT and quasi-3D theories of beams. 

The displacement field of their model was based on that proposed by Thai et al. [250] in which the transverse 

displacements are partitioned into bending, shear and thickness stretching components as shown in Table 2. 

Based on the sinusoidal theory of Touratier [113], Akgoz and Civalek [251] developed a modified couple 

stress sinusoidal model to investigate thermal-mechanical buckling characteristics of simply supported FG 
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embedded microbeams. The results indicated that the effect of elevated temperature on buckling loads of FG 

microbeams becomes significant when the ratio of the thickness to material length scale parameter increases 

[251]. Al-Basyouni et al. [252] also presented a modified couple stress sinusoidal model for FG microbeams. 

However, it was based on the simple sinusoidal theory proposed by Thai and Vo [191], and included the 

physical neutral surface of FG microbeams. 

3.3. Plate models 

3.3.1. Modified couple stress models based on the CPT 

The modified couple stress CPT model was first proposed by Tsiatas [253] for the bending analysis of 

isotropic microplates with arbitrary shape. This model was extended by Yin [254] and Jomehzadeh et al. 

[255] for the free vibration analysis of simply support microplates [254] and Levy-type microplates [255]. 

Akgoz and Civalek [256] proposed a modified couple stress theory CPT model to investigate the size effect 

on the free vibration of simply supported SLGSs embedded in an elastic matrix. It was found that the size 

effect becomes remarkable for higher modes of vibration. Akgoz and Civalek [257] also included the elastic 

medium in CPT model for the static bending, buckling and free vibration analysis of isotropic microplates. 

Askari and Tahani [258] derived closed-form solutions for natural frequencies of clamped CPT microplates 

using extended Kantorovich method. Simsek et al. [259] adopted the CPT model to examine the size effect 

on the forced vibration of isotropic microplates under a moving load. The dynamic responses of microplates 

under various BCs were obtained using the implicit time integration method of Newmark. Zhou et al. [260] 

developed a modified couple stress shell model for the free vibration analysis of isotropic microshells based 

on the classical shell theory. It was found that the size effect becomes remarkable when the characteristic 

radius size is comparable to the material length scale parameter [260]. 

Asghari [261] proposed a nonlinear modified couple stress CPT model for the geometrically nonlinear 

analysis of microplates with arbitrary shapes. Wang et al. [262-263] developed a nonlinear modified couple 

stress CPT model to investigate the size effect on the nonlinear free vibration [262] and nonlinear bending 

responses [263] of circular microplates. Farokhi and Ghayesh [264] also developed a nonlinear modified 

couple stress CPT model for the nonlinear dynamic analysis of isotropic microplates including initial 

geometric imperfections. 

In addition to the application to isotropic microplates, the modified couple stress CPT model was also 

applied to FG microplates. Ke et al. [265] studied the size effect on deflections, critical buckling loads and 

natural frequencies of FG annular microplates under different BCs. Asghari and Taati [266] investigated free 

vibration of FG microplates with arbitrary shapes. Ashoori and Sadough Vanini [267] presented a modified 

couple stress CPT model for the buckling analysis of FG microplates which included thermal effects and the 
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interaction between the plate and an elastic medium. Recently, Ashoori and Sadough Vanini [268] extended 

their work [267] to account for geometric nonlinearity on thermal buckling of circular FG microplates. Taati 

[269] derived analytical solutions of the nonlinear modified couple stress CPT model for buckling and post-

buckling loads of FG microplates with various BCs subjected to in-plane shear, biaxial compression and 

uniformly transverse loads. Based on the classical shell theory, Beni et al. [270] developed a modified couple 

stress shell model to investigate the size effect on natural frequencies of simply supported FG cylindrical 

microshells. Tsiatas and Yiotis [271] developed a modified couple stress CPT model to investigate the size 

effect on the static bending, buckling and free vibration responses of skew microplates. By comparing with 

the nonlocal CPT mode, it was found that the effect of the material length scale parameter on critical 

buckling loads and natural frequencies is in contradiction with that of the nonlocal parameter of the nonlocal 

model. 

3.3.2. Modified couple stress models based on the FSDT 

One of the earliest modified couple stress FSDT models was developed by Ma et al. [272] and Ke et al. 

[273] for isotropic microplates. It is worth noting that the FSDT model of Ma et al. [272] considering both 

stretching and bending deformations, whilst Ke et al. [273] considered only bending deformation in their 

model. In addition, Ma et al. [272] derived closed-form solutions for bending and free vibration problems of 

simply supported plates, whilst Ke et al. [273] derived numerical solutions for natural frequencies of plates 

with simply supported and clamped BCs using the p-version Ritz method. Roque et al. [274] presented 

numerical solutions of the modified couple stress FSDT model for the static bending analysis of isotropic 

microplates using the meshless collocation method with radial basis functions. Zhou and Gao [275] 

developed a modified couple stress FSDT model for the axisymmetric bending analysis of isotropic circular 

microplates. Recently, Alinaghizadeh et al. [276] developed a modified couple stress FSDT model for static 

bending analysis of FG annular sector microplates. The DQ solution method was used to solve for deflection 

of microplates under various BCs. He et al. [277] extended the FSDT model to the static bending analysis of 

laminated composite skew microplates, whilst Simsek and Aydın [278] extended the FSDT model to the 

static bending and forced vibration analysis of FG microplates under a moving load. 

Reddy and Berry [279] extended the axisymmetric FSDT model of Zhou and Gao [275] to account for the 

influences of geometric nonlinearity, elevated temperature and non-homogeneous behaviour of FG materials 

on the axisymmetric nonlinear bending analysis of circular microplates. Ke et al. [280-281] also developed 

an axisymmetric FSDT model for the nonlinear free vibration [280] and post-buckling analysis [281] of FG 

annular microplates. Thai and Choi [282] proposed nonlinear CPT and FSDT models for FG microplates. 

Analytical expressions for linear and nonlinear deflections, buckling loads and natural frequencies of simply 
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supported microplates were derived to explore the size effect on the bending, buckling and vibration 

responses of FG microplates. Jung et al. [283-284] included the interaction between the plate and an elastic 

medium in the FSDT model in investigating the size effect on the bending, vibration [283] and buckling 

responses [284] of simply supported FG microplates. The nonlinear FSDT models were also developed by 

Ansari et al. [285-286] for the nonlinear vibration [285], nonlinear bending and post-buckling analysis [286] 

of FG microplates. It is noted that the nonlinear FSDT model developed in [286] considered the physical 

neutral surface of FG plates and thus the stretching-bending coupling was eliminated. Ansari et al. [287] 

adopted the nonlinear FSDT model to investigate the size effect on the post-buckling path and frequency of 

FG microplates. Lou and He [288] also presented nonlinear CPT and FSDT models for the nonlinear bending 

and free vibration analysis of FG microplates. The interaction between the plate and an elastic medium, and 

the physical neutral surface of FG plates were taken into account in their models.  

Based on the FSDT, Zeighampour and Beni [289] and Hosseini-Hashemi et al. [290] presented shell 

models for the free vibration analysis of isotropic cylindrical microshells [289] and spherical microshells 

[290]. Gholami et al. [291] also developed a FSDT shell model, but it was applied to the axial buckling and 

dynamic stability of FG microshells. Tadi Beni et al. [292] presented a FSDT shell model for FG cylindrical 

microshells, and applied to the free vibration problems. Lou et al. [293] developed a nonlinear FSDT shell 

model to examine the influence of the pre-buckling deformation and material length scale parameter on 

critical buckling loads of FG cylindrical microshells. The physical neutral surface of FG shells was 

considered in their model. It should be noted that the work in [293] is more advanced than that by Gholami et 

al. [291] since the von Karman nonlinearity and the pre-buckling deformation were taken into consideration. 

3.3.3. Modified couple stress models based on the TSDT 

The modified couple stress TSDT model was first developed by Gao et al. [294] for isotropic plates. The 

model was employed to examine the size effect on deflections and natural frequencies of simply supported 

microplates. This model was extended by Thai and Kim [295] and Chen et al. [296] to microplates made of 

FG [295] and laminated composite materials [296]. Jung and Han [297] also presented a TSDT model for FG 

microplates, but they used a different law to compute the equivalent mechanical properties of FG microplates. 

Eshraghi et al. [298] developed a TSDT model for FG microplates with annular and circular shapes. The 

displacement field was expressed in a unified form representing three different plate theories of CPT, FSDT 

and TSDT. The DQ solution method was employed to solve for static bending and free vibration problems. 

Eshraghi et al. [299] recently extended their previous work [298] to include thermal effects. The nonlinear 

TSDT model was developed by Ghayesh and Farokhi [300] to examine nonlinear vibration characteristics of 

isotropic microplates. Based on the TSDT, Sahmani et al. [301] developed a modified couple stress shell 
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model for the dynamic instability analysis of FG cylindrical microshells. Closed-form solutions were also 

obtained for simply supported cylindrical microshells. 

3.3.4. Modified couple stress models based on HSDTs 

Thai and Vo [302] proposed a modified couple stress HSDT model for FG microplates. The displacement 

field of the model was based on the sinusoidal theory of Touratier [113]. Closed-form solutions for 

deflections and natural frequencies were also derived for simply supported microplates. Darijani and 

Shahdadi [303] proposed a simple HSDT model for isotropic microplates by partitioning the displacements 

into the shear and bending components as shown in Table 1. The shape function of the shear component of 

the in-plane displacements was obtained based on the zero traction BCs of both transverse shear and couple 

stresses. He et al. [304] reformulated the refined plate theory of Shimpi [109] to account for size effects in 

FG microplates using the modified couple stress theory. The work carried out by Lou et al. [305] is similar to 

that conducted by He et al. [304]. However, Lou et al. [305] employed various shape functions of Thai and 

Choi [121]. Lou et al. [306] recently extended the work by He et al. [304] to include geometric nonlinearity 

and the interaction between the plate and an elastic medium. Recently, Trinh et al. [307] also presented a 

unified modified couple stress model for the buckling analysis FG microplates under mechanical and thermal 

loads based on a quasi-3D theory. The displacement field of their model was based on that proposed by Thai 

and Kim [115] in which the transverse displacements are partitioned into bending, shear and thickness 

stretching components as shown in Table 2. 

Reddy and Kim [308] developed a nonlinear quasi-3D model for FG microplates accounting for thermal 

effects. It was based on the von Karman nonlinearity and a general quasi-3D theory which accounts for cubic 

and quadratic variations of the in-plane and transverse displacements across the thickness. The displacement 

field of the general quasi-3D theory shown in Table 2 contains 11 unknowns. The CPT, FSDT and TSDT can 

be obtained from this general theory as special cases. Closed-form solutions of this model were derived by 

Kim and Reddy [309] for simply supported plates. Lei et al. [310] proposed a simple quasi-3D theory for the 

static bending and free vibration analysis of FG microplates which involves only five unknowns. The 

displacement field of the model has the same form of the model proposed by Thai and Kim [115] and Thai et 

al. [250]. However, Lei et al. [310] utilized a cubic shape function as shown in Table 2. 

4. Modified strain gradient theory 

4.1. Review of the modified strain gradient theory 

In this theory [15], the strain energy contains two additional gradient parts of the dilatation gradient   

and the deviatoric stretch gradient   in addition to the symmetric curvature 
ij . Therefore, the strain 
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energy is written as [15] 
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where the symmetric curvature tensor 
ij  is defined in Eq. (6). The dilatation gradient vector i  and the 

deviatoric stretch gradient tensor 
ijk  are respectively defined in Eqs. (10) and (11) as 
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For a linear elastic material, the higher-order stresses  , ,i ijk ijp m  are given as 
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where 0 , 1  and 2  are the material length scale parameters associated with dilatation gradient, 

deviatoric stretch gradient and symmetric curvature gradient, respectively. 

4.2. Beam models 

4.2.1. Strain gradient models based on the EBT 

One of the earliest strain gradient EBT models was proposed by Kong et al. [311] to investigate the size 

effect on deflections and natural frequencies of isotropic cantilever microbeams. The accuracy of the strain 

gradient theory was also compared with that of the modified couple stress theory and classical theory as 

shown in Fig. 6. Comparison results indicated that the strain gradient model predicts the size effect better 

than the modified couple stress model since it considers additional dilatation gradient tensor and deviatoric 

stretch gradient tensor in addition to rotation gradient tensor. Akgoz and Civalek [312] extended the strain 

gradient EBT model to the buckling analysis of isotropic microbeams with cantilever and simply supported 

BCs. Akgoz and Civalek [313-316] also employed the strain gradient EBT model to study the size effects on 

the buckling of SWCNTs [313], static bending of SWCNTs [314], buckling of linearly tapered microbeams 

[315] and longitudinal vibration of microbeams [316]. 

Zhao et al. [317] developed a nonlinear strain gradient EBT model for the nonlinear bending, post-

buckling and nonlinear free vibration analysis of isotropic microbeams. They highlighted the importance of 

including geometric nonlinearity and size effects in the proper design of microbeams. Rajabi and Ramezani 

[318] also developed a nonlinear strain gradient EBT model for isotropic microbeams, but applied it to static 

bending and free vibration problems. The nonlinear strain gradient EBT model was extended by Mohammadi 

and Mahzoon [319] to include temperature effects on the post-buckling of isotropic microbeams. Analytical 

solutions were also obtained for microbeams with various BCs. Vatankhah et al. [320] utilized the nonlinear 

strain gradient EBT model to examine the nonlinear forced vibration of isotropic microbeams. 

Kahrobaiyan et al. [321] extended the application of the strain gradient EBT model to the bending and free 

vibration analysis of FG microbeams. The extension of this model to buckling problems FG microbeams was 

carried out by Akgoz and Civalek [322]. Closed-form solutions for critical buckling loads were also obtained 
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for FG microbeams under various BCs. Akgoz and Civalek [323] adopted the strain gradient EBT model to 

examine the longitudinal free vibration of FG microbeams. Rayleigh-Ritz solution technique was used to 

solve for natural frequencies of FG microbeams with clamped-clamped and clamped-free BCs. Rahaeifard et 

al. [324] developed a nonlinear strain gradient EBT model to study the influences of geometric nonlinearity 

and material length scale parameters on deflections and natural frequencies of FG simply supported 

microbeams. 

4.2.2. Strain gradient models based on the TBT 

Wang et al. [325] first presented a strain gradient TBT model for the static bending and free vibration 

analyses of isotropic simply supported microbeams. The nonlinear strain gradient TBT models were 

developed by Ansari et al. [326] and Asghari et al. [327] for isotropic microbeams using von Karman 

nonlinearity. It is worth noting that Ansari et al. [326] applied their model for nonlinear free vibration 

problems, whilst Asghari et al. [327] considered both nonlinear bending and nonlinear free vibration 

problems in their model. 

Ansari et al. [328] extended the strain gradient TBT model to FG microbeams. Closed-form solutions for 

natural frequencies of simply supported microbeams were derived to investigate the effects of material 

gradient index and small-scale on the free vibration response of FG beams. Ansari et al. [329] also extended 

their work [328] to free vibration of curved FG microbeams. Ansari et al. [330] developed a strain gradient 

TBT model for thermal buckling of FG microbeams with various BCs. Recently, Ansari et al. [331] extended 

the strain gradient TBT model to study linear and nonlinear vibrations of fractional viscoelastic beams. It 

should be noted that Gholami et al. [332] did develop a strain gradient TBT model to examine the nonlinear 

pull-in stability and vibration of FG mircoswitches, but it was based on the most general form of the strain 

gradient theory of Mindlin [14] which is not covered in this review. The effect of temperature distributions 

on buckling characteristics of FG microbeams was also investigated. Xie et al. [333] employed the indirect 

radial basis function collocation approach to solve the EBT and TBT models for deflections, buckling loads 

and natural frequencies of FG microbeams under various BCs. It is noted that in the previous works dealing 

with FG microbeams, the material length scale parameters were assumed to be constant across the thickness. 

Therefore, Tajalli et al. [334] improved the previous strain gradient TBT model by accounting for the 

variation of the material length scale parameter across the beam thickness. Case studies on static bending and 

free vibration problems confirmed that the aforementioned assumption of constant material length scale 

parameters seems to be inaccurate [334]. 

The nonlinear strain gradient TBT model was developed by Ansari et al. [335] to investigate the influences 

of material length scale parameters and initial geometric imperfections on the post-buckling response of FG 
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microbeams. Approximate solutions for buckling loads of FG microbeams under various BCs were also 

presented using the DQ method. Ansari et al. [336] extended their previous work [335] to account for 

thermal effects. 

4.2.3. Strain gradient models based on the RBT and HSDTs 

Based on the strain gradient theory of Lam et al. [15], Wang et al. [337] reformulated the RBT model to 

account for the size effect on the static bending and free vibration responses of isotropic microbeams. 

Sahmani and Ansari [338] improved the strain gradient RBT model to include thermal effects and non-

homogeneous behaviour of FG materials on the buckling of FG microbeams. The strain gradient RBT model 

was employed by Ansari et al. [339] to explore the size effect on the free vibration of simply supported FG 

microbeams. Zhang et al. [340] developed a RBT model for FG embedded microbeams based on the 

improved RBT of Shi [341]. Sahmani et al. [342] developed a nonlinear strain gradient RBT model for 

nonlinear free vibration of FG microbeams. 

In addition to the RBT model, the HSDT models were also proposed for strain gradient microbeams based 

on various HSDTs of beams such as sinusoidal theory of Touratier [113], hyperbolic theory of Soldatos [193] 

and n-th order shear deformation theory of Xiang et al. [343] (see Table 1 for the displacement field of these 

theories). For example, Akgoz and Civalek [344] and Lei et al. [345] proposed strain gradient sinusoidal 

models for the bending and free vibration analyses of the microbeams made of isotropic materials [344] and 

FG materials [345] based on the sinusoidal theory of Touratier [113]. Akgoz and Civalek [346] extended 

their previous work [344] to buckling problems of isotropic microbeams. Akgoz and Civalek [347] also 

developed a strain gradient sinusoidal model for FG microbeams as in the work of Lei et al. [345]. They also 

proposed a new equation for calculating the shear correction factor of the TBT model. In their equation, the 

shear correction factor is a function of the material length scale parameters. Akgoz and Civalek [348] 

extended their previous work [347] to account for the interaction between the FG microbeam and an elastic 

medium. Based on the hyperbolic theory of Soldatos [193], Akgoz and Civalek [349] proposed a strain 

gradient hyperbolic model for the bending and buckling analyses of isotropic embedded microbeams. Akgoz 

and Civalek [350] presented a unified HSDT model for the bending analysis of simply supported embedded 

CNTs. The displacement field of the model was based on Simsek and Reddy [246] which covers seven beam 

theories including the EBT, TBT, RBT, sinusoidal theory of Touratier [113], hyperbolic theory of Soldatos 

[193], exponential theory of Karama et al. [107] and general exponential theory of Aydogdu [106]. Zhang et 

al. [351] proposed a HSDT model for the bending and free vibration analyses of FG curved microbeams 

based on the nth-order shear deformation theory of Xiang et al. [343]. 

4.3. Plate models 
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4.3.1. Strain gradient models based on the CPT 

The earliest strain gradient CPT model was developed by Wang et al. [352] for predicting size-dependent 

responses of isotropic microplates. A comparison between the strain gradient model and modified couple 

stress model as shown in Fig. 7 indicated that the first one captures the size effect better than the second one 

does [352]. Bending solutions of the strain gradient CPT model was solved by Ashoori Movassagh and 

Mahmoodi [353] for microplates under various BCs using the extended Kantorovich method, whilst buckling 

solutions were analytically derived by Mohammadi and Fooladi Mahani [354] for Levy-type microplates. 

Mohammadi et al. [355] improved their previous work [354] using exact BCs of microplates. Wang et al. 

[356] derived the strain gradient CPT model for the bending analysis of microplates with various BCs. 

Zeighampour and Tadi Beni [357], Allahbakhshi and Allahbakhshi [358], Li et al. [359], Hosseini et al. [360] 

and Zhang et al. [361] extended the strain gradient CPT model to SWCNTs [357], MLGSs [358], two-

layered isotropic microplates [359], multi-layered orthotropic microplates [360] and isotropic embedded 

microplates [361]. 

4.3.2. Strain gradient models based on the FSDT 

One of the earliest strain gradient FSDT models was proposed by Sahmani and Ansari [362] and Ansari et 

al. [363] for the free vibration and thermal buckling of FG microplates. Sahmani and Ansari [362] only dealt 

with simply supported plates, whilst Ansari et al. [363] dealt with microplates under various BCs using the 

DQ method. Ansari et al. [364] developed a nonlinear strain gradient FSDT model to examine the post-

buckling of FG annular microplates under thermal loading. Ansari et al. [365] extended their previous work 

[363] to study the effect of elevated temperature on the bending, buckling and free vibration responses of FG 

microplates under various BCs. It is noted that Shenas and Malekzadeh [366] also studied the influence of 

elevated temperature on the free vibration of FG microplates under various BCs. However, they employed 

the Chebyshev-Ritz method instead of the DQ approach as in the work of Ansari et al. [365]. Ansari et al. 

[367] developed a FSDT model for FG circular/annular microplates under various BCs using the DQ method. 

Gholami et al. [368] developed a strain gradient FSDT shell model for FG cylindrical microshells. Closed-

form solutions were presented for the critical buckling load of simply supported FG cylindrical microshells 

under axial compression. Zhang et al. [369] also developed a strain gradient FSDT shell model for FG 

cylindrical microshells, but it was based on the four unknown FSDT proposed by Thai and Choi [370-372]. 

Therefore, their model was simpler than the one proposed by Gholami et al. [368] which involves with five 

unknowns. 

4.3.3. Strain gradient models based on the TSDT and HSDTs 

Sahmani and Ansari [362] developed a strain gradient TSDT model for the free vibration analysis of FG 
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microplates. Closed-form solutions for natural frequencies were also presented for simply supported plates. 

Zhang et al. [373] developed a simple TSDT model for circular/annular FG microplates based on the simple 

TSDT proposed by Thai and Kim [374] which involves only four unknowns. The DQ solution method was 

used to solve for deflections, buckling loads and natural frequencies of circular/annular FG microplates with 

various BCs. Zhang et al. [375] developed a simple strain gradient HSDT model for FG microplates based on 

the simple HSDT proposed by Thai and Choi [376-379] which has only four unknowns. However, they 

included the interaction between the plate and elastic medium. Akgoz and Civalek [380] developed a strain 

gradient sinusoidal model for the bending, buckling and free vibration analysis of isotropic microplates based 

on the sinusoidal theory of Touratier [113]. 

5. Finite element models 

5.1. Beam elements 

5.1.1. Nonlocal elasticity elements 

Based on a nonlocal EBT model, Eltaher and his colleagues [381-385] have developed nonlocal elements 

for nanobeams made of FG materials [381-383] and isotropic materials [384-385]. The EBT element has two 

nodes with six degrees of freedom (4-DOF) in which the axial and transverse displacements are respectively 

approximated using Lagrange and Hermite cubic interpolation functions. It is noted that Eltaher et al. [381] 

dealt with free vibration problems of FG nanobeams, whilst Eltaher et al. [382] dealt with bending and 

buckling problems of FG nanobeams. Eltaher et al. [383] also dealt with free vibration characteristics of FG 

nanobeams, but the physical neutral surface of FG beams was taken into account in their model. Eltaher et al. 

[384] examined the free vibration characteristics of isotropic nanobeams, whilst Alshorbagy et al. [385] 

studied the static bending of isotropic nanobeams. Marotti De Sciarra [386] presented a nonlocal element for 

the static bending analysis of isotropic nanobeams based on the nonlocal EBT model. The element has two 

nodes with 6-DOF and is based on higher-order interpolation functions. Therefore, it can accurately predict 

the bending behaviour of nanobeams with a coarse mesh. A case study on a cantilever nanobeam under a 

concentrated load indicated that the nonlocal effect does exist at both left and right sides of the concentrated 

load. This observation is contrary to that observed from existing finite element and analytical models 

indicated that the nonlocal effect only exists from the location of the point load to the free end. Nguyen et al. 

[387] developed a nonlocal mixed element for the static bending analysis of isotropic nanobeams. The 

element with two nodes is C0 continuity and is based on Lagrange interpolation functions for both deflection 

and bending moment. The mixed element is also capable of capturing the nonlocal effect at both sides of the 

concentrated load applied on a cantilever beam. 

In addition to the nonlocal EBT elements reported in the above-mentioned studies, nonlocal TBT elements 
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were also developed to capture the shear deformation effect in thick nanobeams. Reddy and El-Borgi [388] 

presented a complete theoretical development and finite element formulation of both nonlocal EBT and TBT 

models for the nonlinear bending analysis of isotropic nanobeams. Their models were based on the modified 

von Karman nonlinear theory which accounts for the nonlinear terms due to the transverse normal strain. The 

nonlinear EBT element used Lagrange and Hermite cubic interpolation functions to respectively approximate 

the axial and transverse displacements, whilst the nonlinear TBT element employed Lagrange interpolation 

functions for both axial and transverse displacements and rotation. Reddy et al. [389] extended their previous 

work in [388] to FG nanobeams. Eltaher et al. [390] developed a nonlocal TBT element for the static bending 

and buckling analysis of FG nanobeams. The element which accounts for the effect of the physical neutral 

surface has three nodes and is based on quadratic Lagrange interpolation functions. 

5.1.2. Modified couple stress elements 

Based on the modified couple stress theory and the von Karman nonlinear strains, Arbind and Reddy [391] 

and Arbind et al. [392] developed two-node EBT and TBT elements [391] and RBT element [392] for the 

nonlinear bending analysis of FG microbeams. The element has 3-DOF at each node. In the nonlinear EBT 

element, the axial and transverse displacements were approximated using Lagrange and Hermite cubic 

interpolation functions, respectively. Meanwhile, the nonlinear TBT and RBT elements employed Lagrange 

interpolation functions for both axial displacement and rotation, and Hermite cubic interpolation functions 

for the transverse displacement. These models were used to study the effects of material length scale 

parameter and geometric nonlinearity on deflections of FG microbeams. Reddy and Srinivasa [393] also 

developed nonlinear two-node EBT and TBT elements for microbeams which are capable of capturing 

moderate rotations since they were based on the modified von Karman nonlinear theory. Unlike the von 

Karman nonlinear theory, the modified von Karman nonlinear theory did include the nonlinear terms due to 

the transverse normal strain, and thus requiring 2D constitutive relations of beams. The EBT and TBT 

elements developed by Arbind and Reddy [391] were employed by Dehrouyeh-Semnani and Nikkhah-

Bahrami [394] to examine the size effect on the bending, buckling and free vibration responses of isotropic 

microbeams. Kahrobaiyan et al. [395] also developed a two-node modified couple stress TBT element for the 

static bending analysis of isotropic microbeams. However, their element has only 2-DOF at each node and 

was based on the shape functions derived by directly solving the governing equations of the modified couple 

stress TBT model. Numerical results indicated that the load-deflection response of a cantilever microbeams 

predicted by their element agrees well with the experimental result as shown in Fig. 8. The accuracy and 

stability of the TBT elements proposed by Kahrobaiyan et al. [395] and Arbind and Reddy [391] were 

assessed by Dehrouyeh-Semnani and Bahrami [396]. The results indicated that both two elements give a 
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stable solution. However, the 6-DOF element of Arbind and Reddy [391] is more accurate than the 4-DOF 

element of Kahrobaiyan et al. [395] in predicting deflections of isotropic microbeams under various BCs. 

Recently, Karttunen et al. [397] developed an exact modified couple stress TBT element for the static 

analysis of FG microbeams. The element has two nodes with 3-DOF at each node. It was based on the exact 

shape functions derived directly from analytical solutions of the modified couple stress TBT model. 

5.1.3. Strain gradient elements 

Kahrobaiyan et al. [398] developed a strain gradient element for isotropic microbeams based on the EBT. 

The element has two nodes with 3-DOF at each node including the deflection, slope and curvature. The mass 

and stiffness matrices of the element were derived based on the Galerkin method with interpolation functions 

determined by solving directly the governing equations of the strain gradient EBT model. The element was 

applied to the bending analysis of a cantilever microbeam under a concentrated force at its free end. In order 

to account for the shear deformation effect, Zhang et al. [399] developed a two-node strain gradient TBT 

element for isotropic microbeams. The element has 6-DOF at each node when considering both bending and 

stretching deformations, and 4-DOF at each node when considering only bending deformation. The 

displacement field of the element is approximated using exact hyperbolic interpolation functions derived 

from solving directly the governing equations of the strain gradient TBT model. Numerical results indicated 

that the element is capable of accurately predicting the static bending, buckling and free vibration responses 

of isotropic microbeams. Zhang et al. [400] also presented a strain gradient TBT element for isotropic 

microbeams which is similar to the one developed by Zhang et al. [399]. However, it has 4-DOF per node 

and considers only bending deformation. Kahrobaiyan et al. [401] developed a strain gradient TBT element 

for isotropic microbeams. The element has two nodes with 2-DOF at each node including the deflection and 

rotation. The shape functions of their element were derived by directly solving the equilibrium equations of 

the strain gradient TBT model with the proper BCs. By comparing with experimental results, it was 

concluded that the present element is capable of accurately predicting the load-deflection response of a 

cantilever microbeams as shown in Fig. 9. The element was successfully applied to predict the deflection and 

natural frequency of MEMS. It should be noted that Eltaher et al. [402], Ebrahimi et al. [403] and Ansari et 

al. [404-406] also developed strain gradient elements for isotropic microbeams based on EBT [402-404] and 

TBT [405-406] models, but they were based on the nonlocal strain gradient theory and the most general form 

of the strain gradient theory of Mindlin [14] which are not covered in this review. 

5.2. Plate elements 

5.2.1. Nonlocal elasticity elements 

One of the earliest nonlocal finite element models for nanoplates was developed by Phadikar and Pradhan 
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[407] and Ansari et al. [408] using the Galerkin method. Phadikar and Pradhan [407] developed a nonlocal 

CPT element for the bending, buckling and free vibration analyses of isotropic nanoplates, whilst Ansari et al. 

[408] proposed a nonlocal FSDT element for the free vibration analysis of MLGSs. The element developed 

by Phadikar and Pradhan [407] has four nodes with 3-DOF at each node and was based on Hermite cubic 

interpolation functions, whilst the element proposed by Ansari et al. [408] has eight nodes with 5-DOF at 

each node and was based on quadratic serendipity interpolation functions. Natarajan et al. [409] developed a 

nonlocal FSDT element for the free vibration analysis of FG nanoplates using an isogeometric analysis 

(IGA) in which the field variables were approximated by non-uniform rational B-splines (NURBS) basic 

functions as shown in Fig. 10. Nguyen et al. [410] also employed the IGA approach to develop a nonlocal 

element for FG nanoplates. However, their element was based on a simple quasi-3D theory with four 

unknowns as shown in Table 2. Ansari and Norouzzadeh [411] studied the nonlocal and surface effects on 

the buckling behaviour of FG nanoplates based on the FSDT and IGA approach. Sarrami-Foroushani and 

Azhari [412] presented a nonlocal element for the buckling and free vibration analysis of SLGSs based on 

the finite strip method and the refined plate theory of Shimpi [109]. Unlike the finite element method, the 

plate in the finite strip approach is meshed in one direction, and thus the number of DOFs is reduced. 

5.2.2. Modified couple stress elements 

One of the earliest modified couple stress plate elements was developed by Zhang et al. [413] for isotropic 

microplates based on the FSDT. The element is non-conforming and has four nodes with 15-DOF per node. 

Unlike the classical FSDT element, the modified couple stress FSDT element is shear locking free and thus 

the full integration can still be used. The element was successfully used to predict the bending, buckling and 

free vibration responses of isotropic microplates with various BCs. Reddy and Srinivasa [393] presented a 

nonlinear FSDT element for the nonlinear analysis of modified couple stress plates. Since the element was 

based on the modified von Karman nonlinear theory, it is capable of capturing moderate rotations. Mirsalehi 

et al. [414] developed a modified couple stress CPT element for FG microplates based on a spline finite strip 

method. The spline finite strip method is a special form of the finite strip method in which the B3-spline 

functions are used in the longitudinal direction and the Hermite cubic functions are used in the transverse 

direction of the strip [414]. The spline finite strip element was applied to predict the critical buckling loads 

and buckling temperatures of FG microplates under mechanical and thermal loadings. Kim and Reddy [415] 

developed a nonlinear modified couple stress element for FG microplates based on the general quasi-3D 

theory of Reddy and Kim [308] and von Karman nonlinear strains. The element is non-conforming and has 

four nodes with 44-DOF at each node accounting for geometric nonlinearity and requires C1 continuity for 

all variables. Reddy et al. [416] presented nonlinear CPT and FSDT elements for the axisymmetric bending 
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analysis of circular FG microplates. The axisymmetric CPT element has two nodes with 3-DOF at each node 

based on Lagrange interpolation functions for the axial displacement and Hermite interpolation functions for 

the transverse displacement. Meanwhile, the axisymmetric FSDT element which has two nodes with 4-DOF 

at each node employed Lagrange interpolation functions for both axial displacement and rotation, and 

Hermite interpolation functions for the transverse displacement. The models were employed to study the 

influences of geometric nonlinearity and material length scale parameter on bending responses of FG circular 

plates with various BCs. Recently, Nguyen et al. [417] proposed an efficient modified couple stress element 

for the static bending, buckling and free vibration analyses of FG microplates based on the IGA approach. 

The element was based on a simple quasi-3D theory with four unknowns as shown in Table 2. 

5.2.3. Strain gradient elements 

For the strain gradient plate element, only two publications were found in the literature involved in the 

development of the finite element model for microplates based on the strain gradient theory of Lam et 

al. [15]. Mirsalehi et al. [418] presented a strain gradient CPT element for FG microplates using the spline 

finite strip method. The element was used to investigate the influences of material length scale parameters, 

BCs, volume fraction module and geometric dimensions on critical buckling loads and natural frequencies of 

FG microplates. Recently, Thai et al. [419] developed a strain gradient element for the bending, buckling and 

free vibration analyses of FG microplates based on the IGA approach. It should be noted that Ansari et al. 

[420-421] also developed strain gradient elements for isotropic microplates, but it was based on the most 

general form of the strain gradient theory of Mindlin [14] which is not covered in this review. 

6. Concluding remarks and recommendation for future studies 

The development of size-dependent models for predicting size effects on the global responses of small-

scale beam, plate and shell structures was comprehensively reviewed and discussed in this paper. During the 

past decade, great efforts have been devoted to the development of size-dependent models based on higher-

order continuum mechanics approach. This review mainly focuses on the size-dependent beam, plate and 

shell models developed based on the nonlocal elasticity theory, modified couple stress theory and strain 

gradient theory due to their common use in predicting the global behaviour of small-scale structures. Both 

analytical and numerical models are included in this review paper. 

The review indicates that most size-dependent models have been developed in the last five years. The 

number of strain gradient models is small compared to the number of models developed based on the 

nonlocal elasticity theory and modified couple stress theory. The nonlocal beam and plate models are widely 

used for analysing nanostructures such as CNTs and graphene sheets, whilst the modified couple stress and 

strain gradient models are applied to microstructures. The review also shows that the number of relevant 
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papers involving in the development of finite element models is relatively small compared with the total 

number of papers published on analytical models.  

As reviewed in this paper, most of existing size-dependent models focused on analytical solutions which 

are limited to beam and plate structures subjected to certain loading and boundary conditions and geometries, 

whereas the development of finite element solutions for size-dependent beam and plate models has not been 

given enough attention. Therefore, further efforts should be devoted to developing finite element models of 

size-dependent theories, especially the strain gradient-based models. It is noted that only one publication was 

found in the literature involved in the development of the finite element model for strain gradient CPT plates 

using the spline finite strip method. 
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                  (a) SWCNT        (b) DWCNT         (c) MWCNT 

 

Fig. 1 Schematic illustration of different form of CNTs [422] 

 

 

             
                    (a) SLGS            (b) DLGS         (c) MLGS 

 

Fig. 2 Graphene-based nanomaterials [423]   

 

 

 

 
 

Fig. 3 Fundamental frequencies of clamped (CC) and cantilever (CF) beams [45] 
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Fig. 4 Comparison of various continuum mechanics models with MD simulations for (5,5) SWCNTs [130] 
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Experiment [15]

EBT without Poisson’s ratio

EBT with Poisson’s ratio

TBT without Poisson’s ratio

TBT with Poisson’s ratio

 
(a) Bending stiffness versus thickness 

Experiment [15]

EBT without Poisson’s ratio

EBT with Poisson’s ratio

TBT without Poisson’s ratio

TBT with Poisson’s ratio

 

(b) Load-deflection response (h = 38 m)  

Fig. 5 Effect of Poisson’s ratio in a cantilever microbeam [218] 
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Strain gradient model

Classical model

Modified couple stress model

 

(a) Bending analysis 

Strain gradient model

Classical model

Modified couple stress model

 

(b) Free vibration analysis 

Fig. 6 Comparison between strain gradient model and couple stress model for microbeams [311] 
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Strain gradient model

Classical model

Modified couple stress model

 

(a) Bending analysis 

Strain gradient model

Classical model

Modified couple stress model

 
(b) Free vibration analysis 

Fig. 7 Comparison between strain gradient model and couple stress model for microplates [352] 
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Classical TBT

Modified couple stress TBT

Modified couple stress EBT

Experiment [15]

Classical EBT

 

Fig. 8 Comparison of couple stress model with experimental result for cantilever microbeams [395] 

 

 

[15]

Classical TBT

Strain gradient TBT model

Strain gradient EBT model

Experiment [15]

Classical EBT

 

Fig. 9 Comparison of strain gradient model with experimental result for cantilever microbeams [401] 

 

 

 

Fig. 10 NURBS basic functions
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Table 1. Displacement field of HSDTs 

Reference Displacement field Shape function Unknown 

Aydogdu [106] 

Karama et al. [107] 
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Xiang et al. [343] 
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Note: h is the thickness. For the beam model, the displacement uy is equal to zero, and all non-zero generalised displacements are independent of the y coordinate. 
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Table 2. Displacement field of quasi-3D theories 

References Displacement field Shape function Unknown 
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Note: h is the thickness. For the beam model, the displacement uy is equal to zero, and all non-zero generalised displacements are independent of the y coordinate. 

 


