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Abstract— Connected health is a technology that associates medical devices, security devices and communication 

technologies. It enables patients to be monitored and treated remotely from their home. Patients’ data and medical 

records within a connected health system should be securely stored and transmitted for further analysis and diagnosis. 

This paper presents a set of security solutions that can be deployed in a connected health environment, which 

includes the advanced encryption standard (AES) algorithm and electrocardiogram (ECG) identification system. 

Efficient System-on-Chip (SoC) implementations for the proposed algorithms have been carried out on the Xilinx 

ZC702 prototyping board. The Achieved hardware implementation results have shown that the proposed AES and 

ECG identification based system met the real-time requirements and outperformed existing field programmable gate 

array (FPGA)-based systems in different key performance metrics such as processing time, hardware resources and 

power consumption. The proposed systems can process an ECG sample in 10.71 ms and uses only 30% of the 

available hardware resources with a power consumption of 107 mW.  

 
Keywords— Advanced encryption standard (AES), electrocardiogram (ECG) encryption and identification, field 

programmable gate array (FPGA), Zynq7 system on chip (SoC). 



 3 

 

I. INTRODUCTION 

Population of middle aged and old people is the most dominated in the highest developed countries and regions, 

which requires governments to deal with the problems in the health-care sector [1]. This results on limited number of 

working adults to take care of the growing dependent elderly population, which may cause potential financial 

problems, but also increasing the time for a patient to receive treatment [2]. Therefore, new solutions are necessary to 

increase the level of automation from the existing systems and be able to safely and efficiently handle the enormous 

amounts of data generated, stored and transmitted between them [3]. One of the most promising technologies to 

achieve this is to apply the Internet of Things (IoT) paradigm, in which information and communication systems are 

embedded in a health care environment [4]. In this paper, the field of wireless monitoring of vital signs using IoT is 

proposed, in which it embraces the measuring and digitisation of vital signs such as the blood pressure or 

electrocardiograms (ECGs), transmitting packets over a wireless network and delivering this medical information to 

health-care professionals. It allows the use of what is defined as pervasive health-care: “health-care to anyone, 

anytime and anywhere” [5]. It can be used in clinics and hospitals to ease the monitoring of patients, but also outside 

of medical facilities, giving elderly or sick people the opportunity to be part of their social communities by being 

simultaneously monitored and/or even in contact with their health-care provider. Such systems can, if they are 

designed appropriately, deal with a high amount of patients, by consuming fewer resources in terms of care 

attendants and capacities of medical facilities and help to make health-care more efficient and economical.  

Since the health-care data contains highly sensitive and personal data, strong security issues should be addressed to 

avoid serious consequences, causing damage, disruption to operations or, in some scenarios, even loss of life, one of 

the solution to that is to apply protection and encryption on the healthcare data [6]. There is a high interest in using 

the health-care monitored biometric signals to identify the individual patients. The main benefits of this approach are 

that there is no need for supplying extra biometric sensors and the biometric signals are continuously monitored 

together with other medical signals. An ECG signal is less prone to fraud and it has been widely used in the field of 

health monitoring where it can provide an automatic living identification system. This system helps monitoring the 

life of the patient since the ECG signals are a sign that the person is still alive and provide vital information about the 

health conditions. The drawback of using ECG signals for human identification is that there is a large number of 

signals coming from the sensor that need to be processed in real-time.  
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In addition to patient identification, privacy and security of transmitting and storing patient’s medical data is also a 

major issue in connected health. Data and various information are shared between different organizations, platforms 

and people in the health industry. Therefore, data encryption is vital to protect and secure information. Advanced 

encryption standard (AES) algorithm is considered as the state of the art encryption system that is widely used in 

many applications including connected health systems [7]. 

Programmable system-on-Chip (SoC) based implementations are being used by researchers to accelerate digital 

signal processing (DSP) algorithms to meet the real-time requirements by exploiting the parallelism, pipelining and 

the hardware/software co-design offered by such platforms. For the encryption and ECG identification systems, the 

SoC-based solution can be used to collect data from ECG sensors and process it in real-time. Compactness and cost 

effectiveness are some of the advantages when using such solutions. Furthermore, reconfigurability of programmable 

devices provides the user with a possibility to easily upgrade and calibrate their systems depending on the needs.  

Heterogeneous platforms, such as the Zynq SoC, based hardware, provide not only similar advantages but they also 

provide the user with higher flexibility where various interfaces, processing system (PS) and programmable logic 

(PL) can be used. 

This paper presents a set of security solutions that can be deployed in a connected health environment with 

application to ECG. This includes ECG encryption using the AES algorithm and ECG identification using 

multiresolution and principle component analysis (PCA). Efficient SoC implementations for the proposed algorithms 

have been carried out on the Xilinx ZC702 prototyping board equipped with the Zynq SoC device. The 

implementation is verified using the data obtained from two personal data sets measured from the VS100 ECG 

sensor  [8] and the Shimmer3 ECG sensor [9] as well as the public ECG MIT-BIH database [10]. Achieved results 

have shown that the proposed system only requires 30% of the available hardware resources and 107 mW to process 

an ECG sample in 10.71 ms, which outperforms the existing field programmable gate array (FPGA)-based 

implementations in different key performance metrics. This paper starts by reviewing the state of the art AES 

algorithms and ECG identification systems in section II. The simulation of the proposed approach for AES 

algorithms and ECG identification are presented subsequently in section III. This is followed by the description of 

the proposed system architecture and its hardware implementation in Section IV. Experimental setup and results 

analysis are then given in section V. Finally conclusions are drawn. 
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II. RELATED WORK 

Connected health systems have been increasingly attracting many researchers. In this section, the most recent and 

related work to connected health is summarised. In [11], a system is proposed to monitor the heart of cardiac patients 

using ECG measurements. The heart electrical impulses are collected using an ECG sensor and a personal digital 

assistant (PDA) is used to process the ECG signals and perform the diagnosis. The PDA is capable of calling the 

medical staff in the case of an emergency or critical situation. The user can also visualize his/her own medical data 

using a graphical interface on the PDA. Another connected health system is presented in [12] where a sensorized 

glove for measuring hand finger flexion for rehabilitation purposes is developed. The system consists of a glove and 

a set of configured sensors placed in specific places and connected to the acquisition unit. The aim is to give 

feedback to the rehabilitation system using fingers’ positions. In both [11]  and [12] the security and privacy is to be 

improved.  

AES/Rijndael is a block cipher that can encrypts blocks with a fixed length of 128 bits and a corresponding 

decipher that is basically a simple inversion of the cipher [13]. A high throughput pipelined approach was presented 

in [14], however, this was achieved with the sacrifice of high design effort and resource consumption. A similar low 

area and memory free solution for the implementation of the AES algorithm on FPGA was presented in [15], the 

proposed design that uses an 8-bit data path, supports 128-bit keys and requires 160 clock cycles for one encryption 

was implemented on both Spartan 3 (XC3S50) and Spartan 6 (XC6SLX4) FPGAs requiring 184 and 80 slices 

respectively. The claimed throughput is 36.5 Mbps for the Spartan 3 while it reaches 58.13 Mbps for the Spartan 6. 

The implemented design consists of five blocks: ShiftRow, Sbox, MixColumn, KeySchedule and Delay, the key 

point of this solution is that it uses the Xilinx SRL 16/32 to implement keySchedule block to reduce the number of 

slices. Another high throughput and pipelined implementation of AES algorithm on FPGA was presented in [16], the 

implementation was performed on both Virtex-5 and Virtex-6 and the best claimed throughput of 260 Gbit/s was 

achieved for the implementation using the counter mode on the Virtex-6. The key point is that the Sbox 

implementation here combines between both memory and non-memory based approaches. A high throughput 

solution was also presented in [17] for an implementation on Virtex 5 using VHDL, the claimed throughput is 222 

Gbit/s. Other solution was presented in [18] for the implementation of the AES encryption algorithm on an ASIC 65-

nm CMOS, 22-nm CMOS and NVidia GeForce 8800 GTX. A hardware implementation on FPGA of an improved 

version of the unsecure data encryption standard (DES) is presented in [19]. It has been presented in the context of 
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threats to cryptographic chips. The literature review has also shown that the use of high level synthesis (HLS) tools 

such as Vivado for the implementation of the AES algorithm in contrast with the use of HDL codes can help 

resolving various issues such as complexity and the time required for design verification and evaluation, this has 

been discussed in [20] and [21]. It has been shown that HDL based design offers more flexibility and control while 

using HLS based design save a considerable amount of time while having the same frequency, throughput and area. 

Various techniques have been used in the past along with different implementations for the use of ECG signals for 

human identification. Two main approaches are being used to extract the most useful features from signals generated 

by an ECG sensor [22]. The first one is the fiducial approach that consists in the search for specific points of interest 

to extrapolate timing and magnitude measurements. In this approach the typical features are linked to peaks and 

timing duration of the P, QRS and T waves which are the representation of the heart activity in terms of 

depolarization and repolarization of the atria and ventricles. Features related to the physical functionality of the heart 

are not considered in the fiducial approach, only statistical and analytical features from the morphology of the signal 

waveforms are considered. In [23], a fiducial approach based on the multi resolution Daubechies D4 and D6 wavelet 

transforms is proposed to detect the QRS complex and the onsets and offsets of the P and T waves on the MIT-BIH 

database [10]. A positive recognition rate of 98% was achieved. In [24], researchers have developed a quadratic 

Spline wavelet based framework that aims at the automatic analysis of single lead ECGs for human identification, the 

maxima, minima and zero crossing values in the wavelet coefficient reconstruction of the ECG signals at various 

scales are found prior to the detection of the QRS, P and T fiducial points. The fiducial approach in this contribution 

has shown a positive recognition of 99.61% when applied to the MIT-BIH database. The second main approach to 

extract features from ECG signals for human identification is called the fiducial independent approach. The fiducial 

independent approach was used by [25] achieving a positive recognition rate of 99.6%. The wavelet coefficients have 

been extracted by using the Daubechies wavelet of order eight, the independent component analysis (ICA) is used to 

find the independent components from the statistical independent random variables; finally the PCA is used to reduce 

the dimensionality of the extracted feature. Various SoC based human identification systems using ECG signals have 

been found in the literature [26-29]. An ECG-QRS complex detection has been implemented on the Xilinx Virtex-II 

pro FPGA in [26], an identification rate of 99.681 % was achieved testing on the MIT-BIH database. Another SoC 

implementation using FPGA was presented in [27], it consists in the detection of arrhythmia patterns using ECG 
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signals. In [28] and [29], two other embedded system based implementations were presented for the ECG signals 

denoising, filtering and compression.  

The work presented in this paper aims at providing an efficient architecture and implementation of the AES-128 

encryption and ECG-based identification system for protecting personal medical data privacy. The achieved results 

show that the speed, resources and power consumption of the proposed implementation are sufficient for the use of 

the proposed architectures in the connected health system. The main contributions of this paper can be summarised as 

follows: 

A novel SoC solution is introduced. It unifies wireless health-care monitoring system with the identification of 

individuals using ECG. 

The proposed approach introduces a way to integrate the acquisition and processing unit into reconfigurable 

hardware. This allows the implementation of a high-performance state-of-the-art data processing system which is 

also highly adaptive. The communication, visualization, security and identification can be realized on one piece of 

hardware without making the compromise of resource sharing and time-consuming sequential execution of tasks. 

III. PROPOSED SYSTEM  

A. System Overview 

An overview of the proposed system can be seen in Fig. 1. The aim is to collect ECG signals in a safe and secure 

environment such as a hospital, home or ambulance.  The collected data can then be sent wirelessly to the local 

processing unit based on the Zynq SoC where all information will be processed in real-time. Identification of the 

patient is performed based on the ECG signals collected locally, other ECG based examinations can be performed in 

the hospital or in the ambulance In the case where the data need to be sent to a different location for further 

examination or for exchange of information, the data will be encrypted first using the AES algorithm and then 

decrypted when received in the final destination. Three types of ECG signals data sets have been used to evaluate and 

validate the system. Two are private data sets collected in the lab and one is a public data set. The two personal data 

sets are obtained using the VS100 ECG sensor [8] and the Shimmer3 ECG sensor [9] while the public one is the  

MIT-BIH database [10]. 

B. Software Simulation 

Simulation of the proposed algorithms is carried out using both MATLAB and C/C++ environment, where 

MATLAB is used to generate an ECG database that contains the required files for testing the AES cipher-decipher 
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block and ECG identification block. Fig. 2 shows an overall system block diagram. 

1) ECG Database 

In Fig. 2, the ECG database block consists of four different data, including original ECG signal, Eigen ECG vector, 

projected training vector and mean vector. The original ECG signal is divided into two sub-sets, one set is used for 

training, and the other set is used for testing. The testing set is stored into text files, to be used in cipher block. 

However, the training file is used for enrolment and generating the relevant feature data sets. The Eigen ECG matrix 

E, projected training p and mean vectors m are the corresponding ECG features. It first establishes one single mean 

signal and then it calculates the variation of each ECG from the mean ECG signal and stores them again in a matrix 

A. This matrix is used to calculate the covariance matrix to reduce the computation time and resources. A surrogate L 

of the covariance matrix C is used to calculate the eigenvectors V and eigenvalues D. The advantage of doing this is 

that L has much lower dimension than C, which could significantly reduce the computation time. The eigenvectors 

are sorted and eliminated by the size of the eigenvalues. If the eigenvalue is lower than one, the corresponding 

eigenvector is eliminated. However, these eigenvalues do not represent the eigenvectors of the covariance matrix C, 

which are recovered by multiplying the sorted eigenvectors of L with the deviation matrix A. 

 

Fig. 1.  System Overview. 
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Fig. 2.  Overall block diagram [30]. 
 

The deviated ECG signals are projected from matrix A onto the ECG space, which represents the unique features 

of the training ECG signals. In order to calculate the features of the ECG signals used for testing, the mean of the 

training database must first be subtracted from the test signal. Subsequently, the projected vector is then calculated 

via a multiplication of the Eigen ECG matrix by the mean subtracted signal. This process is represented by the 

following equation: 

Tp E I                                (1) 

where E is the Eigen ECG matrix, I is the mean subtracted signal, and p is projected test vector. 

2) AES Cipher-decipher 

The text files that contain the original ECG signals are firstly used in the cipher block. The encrypted text files are 

then used in decipher block. Finally, the decrypted text files are used in the identification block.  

The algorithms of the cipher-decipher block is revised and implemented in C++ based on the work presented in 

[31]. The algorithm supports AES-128 standard,  

3) ECG Identification 

In the ECG identification block, the same process of generating the database is repeated, where the testing ECG 

signal is projected to the ECG space using equation (1).  

The next step is to calculate the Euclidian distance between each projected training vector and the projected test 

vector using equation 2. The index of the minimum error between the feature vectors represents the ID of the 
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identified ECG.  
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where di is the Euclidian distance between the ith training vector and the projected test vector. p and p’ are the 

projected test vector and the ith projected training vector respectively. 

This process could be called just once for a single identification or for all test samples for evaluating the algorithm. 

The single identification process is justified as it allows greater scrutiny of a test signal that was falsely recognized, 

because a plot shows three signals: the test ECG; the expected training ECG; and the identified ECG for further 

analysis, such as the difference between the signals. Furthermore, the single identification process can be used for 

security identification, as the displayed ID can be used for verification. 

IV. HARDWARE ARCHITECTURE AND IMPLEMENTATION 

In order to accelerate the computational intensive part of the proposed algorithms a hardware architecture has been 

designed. The proposed architecture consists of three parts: cipher, decipher and ECG identification blocks. Vivado 

HLS [32] is used to design the three blocks, where C/C++ codes of the blocks are synthesised and translated to a 

hardware description language (HDL). In order to transfer data and control between each block, the interface of each 

block is designed to use AXI-lite Slave Peripheral interface, which means that each block can be accessed by a 

microprocessor through its peripheral bus. The main idea of this work is to design an architecture that could select 

different hardware acceleration blocks and perform computationally intensive algorithmic calculation, e.g. cipher-

decipher and ECG identification block. A block diagram of the proposed system is shown in Fig. 3. 

Microprocessor

AXI-lite Interconnect

AXI-lite Master

AXI-lite Slave AXI-lite Slave AXI-lite Slave

Cipher ECG Identification Decipher
 

Fig. 3.  A block diagram of the proposed system on the Zynq SoC. 
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A. Cipher and Decipher Blocks 

There are two data interfaces in the cipher block, which include an input and output data array. Both input and 

output data arrays are designed as 16×8-bit arrays, thus the block size for each calculation is 128 bits. The decipher 

block is an inverse calculation of the cipher block, which has the same input and output arrays as the cipher block. 

The algorithm of the cipher and decipher blocks have been implemented using C++. Directives in Vivado HLS to 

optimise the codes for hardware implementation have been used. The used directives are summarised in the 

following Table I. 

TABLE I 

USED DIRECTIVES IN CIPHER BLOCK 

Instance Directives Function 

Interface s_axilite Create AXI-Lite slave interface 

Array Array_Reshape Reshape the targeted array to a specific dimension 

Loop unroll Transforms loop by creating multiple copies of the loop body 

 

Basically, by applying different directives from Table I, the architecture is synthesised under the user control. For 

example, the “set_directive_loop_unroll” command allows the loop to be fully unrolled or partially unrolled by a 

factor, creating as many copies of the loop-body in the register transfer level (RTL) as there are loop iterations. As a 

result of this, different iterations of the original loop can be run at the same time, thus the processing time of the 

block is significantly reduced. 

B. ECG Identification Block 

Fig. 4 shows an overall diagram of the proposed ECG identification architecture. The proposed ECG identification 

architecture consists of two parts: the enrolment and hardware acceleration part. The enrolment part is completed on 

software; however, the hardware acceleration part is performed on the Zynq PL, which mainly consists of PCA values 

and Euclidian Distance calculators. The PCA values calculator is mainly used to perform the PCA projection (i.e. 

equation 1). The Euclidean Distance calculator is used to calculate Euclidean distance (i.e. equation 2). 

1) PCA Projection Block 

In the PCA projection block, the test input signal is first subtracted from the mean signal of the complete training 

matrix T. Subsequently, the projected vector is then calculated via a multiplication of the Eigen ECG matrix by the 
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mean subtracted signal. This process is shown in Fig. 5.  

In Fig. 5, the size of test and mean signal vectors is n, which is the length of the training vector. In this work, the 

length of the training vector is set to 300. The size of Eigen ECG matrix is m×n, where m is the number of PCA 

features, and n is the size of test vector. The test signal is subtracted from the mean signal, and then the resulting 

vector is multiplied by each row of the Eigen ECG matrix one by one. After that, the results are accumulated and 

formed a project PCA vector with size of m. 

2) Euclidean Distance Calculator Block 

In the Euclidian distance calculator block, Euclidian distance of the projected training vector and the projected test 

vector is calculated as stated in equation 2. Since the calculation of the square root would not affect the search of the 

minimum value of the Euclidian distance, this calculation has been eliminated to reduce the hardware usage. Fig. 6 

demonstrates the architecture of the Euclidian distance calculator block. 

In Fig. 6, the projected test vector is the output of the PCA projection block, which has a size of m. The size of the 

projected training matrix is m×i, where i is the number of the training vectors in the training database. Each row of the 

projected training matrix is subtracted from the projected test vector, and then the resulting difference is multiplied by 

itself. Subsequently, an accumulator is used to sum all elements and form a Euclidian distance vector with size of i. 

Once the calculated Euclidean distance vector is available, the next step is to search for the minimal Euclidian 

distance that represents the ID of the identified ECG. 

3) Directives Used in ECG Identification Block 

Similar to other two blocks, the interface directives used in the ECG identification block is still “AXI-lite slave 

bus”. There are four input arrays, which are corresponding to the four parameters in the database block, shown in Fig. 

2, respectively. However, the output of this block is only a variable that contains the identified ID. Unlike the used 

optimization in most loops used in the other two blocks, the directives “pipelined” is used in the ECG identification 

block, which could increase the throughput of the PCA projection and Euclidian distance calculator blocks. 
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Fig. 4.  An overall diagram of the proposed ECG identification system. 
 

...

Test Signal Vector

 

Size of vector = n

...

Mean Signal Vector

 

Size of vector = n

...

Eigen ECG Matrix

 Size of vector = n

...

...

...

...

...

 

S
iz

e
 o

f 
v
e

c
to

r 
=

 m

...

-

× 

...

...

 Size of vector = m

+ C1

Project PCA Vector

 

Fig. 5.  Block diagram of the PCA projection block. 
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Fig. 6. Block diagram of Euclidean Distance Calculator. 

C. Implementation of the Proposed Architectures 

Xilinx Zynq programmable SoC is used for the implementation of the proposed architectures. Since this type of 

platform tightly integrates dual-core ARM Cortex-A9 processors with Xilinx 7-series FPGA logic [33], which makes 

it a perfect implementation platform of the proposed architecture. The proposed architectures were firstly generated 

as a set of individual IP catalogs using Vivado HLS, they were then integrated together using Vivado Design Suite 

[32]. Fig. 7 shows a block diagram of the proposed system with all building blocks and their interconnections 
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generated by Vivado Design Suite as well as the chip layout highlighting the amount of resources used by each 

block. 

 

Fig. 7. Block diagram of the proposed implementation in Vivado Design Suite. 

 

In Fig. 7, in addition to the three user IP Catalogs, there are four other Xilinx build-in IP Catalogs. They are 

“Xilinx Zynq7 Processing System”, “Processor System Reset”, “AXI Interconnect” and “Concat”. The Xilinx 

processing system has direct physical connections to DDR memory, which is used for the running of the software in 

the Zynq7 processing system. A set of blocks of custom logic in the PL can be controlled and monitored by using 

memory mapped registers which can be accessed by processors via the AXI4 interconnect. The “Processor System 

Reset” is used to support asynchronous external reset input which is synchronized with the clock. The “Concat” IP is 

used to concatenate the interrupt signals generated from the different blocks of custom logic. 

The software runs on the Zynq7 processing system that controls and drives the custom logic through AXI4 bus 

interface. The control process is summarized in the “Controlling the custom logic” pseudo code. 

Controlling the custom logic: 

1. Input: Din is the input data array of the the custom logic block. 

2. Output: Dout is the output data array of the custom logic block.  

3. Initial processor and the custom logic; 

4. if Initialization is successful then 

5.    setup the interrupt; 

6.    if setup the interrupt is successful then 

7.      for all data in Din do 

8.         write data into the custom logic; 
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9.         if the custom logic is ready then 

10.          start the custom logic; 

11.          while result of the custom is not ready then None; end 

12.          read data from the custom logic to Dout. 

13.              end 

14.          end 

15.      end  

16. end 

V. EXPERIMENTAL SETUP AND RESULT ANALYSIS 

In order to achieve real-time performance, the signal processing algorithms are implemented on PL as an ad-hoc 

digital circuit, which could be one of the valuable solutions for accelerating computationally intensive algorithms. In 

addition, the PL could also balance the gap between software and hardware design to allow maximum performance 

and flexibility to be delivered during development. 

Xilinx Vivado HLS tool [32] has been used for the design and development of the proposed hardware architecture. 

The design was first implemented using C++, and then a C++ level simulation was performed. The purpose of this is 

to evaluate the results of the algorithm which should be the same results obtained from MATLAB implementation. 

After that, a C/C++ synthesis was performed to translate the codes to a HDL. VHDL was selected as the target HDL. 

Thereafter, a RTL simulation was employed where the same C++ testbench used in C++ level simulation has been 

used again to evaluate the final RTL implementation, which simplifies the design process for evaluating the signal 

processing algorithm. 

A. Vivado HLS Simulation 

1) C/C++ Simulation 

Prior to the hardware implementation, the proposed cipher-decipher and ECG identification system was validated 

using Vivado HLS C simulator. ECG signals obtained from VS100 ECG sensor  [8], Shimmer3 ECG sensor [9] and 

MIT-BIH database [10] were used for the evaluation. A total of 60, 2261 and 20 ECG signal samples from the VS, 

Shimmer3 and MIT-BIH databases have been used for testing respectively. The archieved recognition rate for each 

database is 99.5%, 95% and 100% respectively. Fig. 8 shows some samples from the used ECG databases. Once the 

codes passed Vivado C simulation, the C++ codes were translated to HDL, and then RTL level simulation is 

performed in order to validate the generated HDL architecture.  
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Fig 8. Samples from used ECG database. (a) Sample data collected from VS100 ECG sensor; (b) Sample collected from 

Shimmer ECG sensor. (c) Sample collected from MIT-BIH database. 
 

2) C/RTL Co-simulation 

The same C++ testbench used in the C/C++ simulation was used for the C/RTL co-simulation; however, instead of 

using the C++ function, the synthesized RTL architectures are used to perform the calculation. The simulator used in 

the C/RTL co-simulation was XSIM where VHDL was selected as the generated HDL. The clock period for the 

simulation was set to 10 ns. The achieved results from the C/RTL co-simulation are the same as the C/C++ 

simulation. Table II summaries the processing time and hardware utilization estimate of each block. 

TABLE II 

PROCESSING TIME AND HARDWARE UTILISATION ESTIMATE OF EACH BLOCK (C/RTL CO-SIMULATION) 

Block Processing time (ms) LUT (%) FF (%) DSP48E (%) BRAM_18K (%) 

Cipher 0.022 5 0.8 0 3 

Decipher 0.050 6 0.8 0 3 

ECG Identification 0.404 63 9 5 5 

 

The processing time for the Cipher and Decipher blocks is obtained for processing 128-bit input data. However, 

the input data size of the ECG identification block is 300×32 bits. Based on the estimated utilization of each block, it 

is possible to implement all three blocks in the same Zynq7 SoC, to be a complete security solution for connected 

health systems. 
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B. Hardware Implementation 

The proposed system has been successfully implemented on the PL of the Xilinx ZC702 evaluation board. In 

addition, the corresponding software (i.e. Drivers and control codes) is also implemented using the Xilinx Software 

Development Kit running on the ARM cortex-A9 core of Zynq7 SoC. 

1) Programmable Logic Utilization 

The proposed architecture consumes about 30% of the available LUTs and 11% flip-flops. Most of LUTs, flip-

flops and DSP48E are used for creating the instances of the proposed architecture, for example, AXI interfaces, 

multipliers, etc. Other LUTs and flip-flops are used as multiplexers or registers and for creating a memory to store 

the resulting matrix. It is worth noting that the target Zynq SoC has the smallest chip capacity in its family, which 

means that the proposed architecture has very efficient size, and can be easily deployed on a low-cost FPGA or 

integrated with other biometric identification systems on a large chip. Table III shows the PL hardware usage of the 

proposed architecture. Table IV summarizes the hardware resources usage of individual blocks. 

2) Power Consumption 

The on-chip power consumption consists mainly of two parts, which are static and dynamic power consumption. 

The static power is consumed due to transistor leakage. The dynamic power is consumed by fluctuating power as the 

design runs, i.e. Zynq7 Processing System (PS7), clock, power, logic power, signal power, BRAMs power, etc., 

which are directly affected by the chip clock frequency and the usage of chip area. The details of estimated power 

consumption of the implementation are summarised in Table V. The PS7 consumes much more power than the PL; 

this is due to the fact that the ARM dual core Cortex-A9 based processing system has much higher running frequency 

than the PL and it runs drivers and control programmes. Compare to the PS7, the custom logic blocks consumes only 

a small portion of the total on-chip power consumption. 

TABLE III 
OVERALL HARDWARE RESOURCES USAGE 

Name Usage 
Total Available 

Resources on Chip 

Utilisation 

(%) 

LUT 16,133 53,200 30.3 

FF 11,797 106,400 11.1 

BRAM_18K 17 140 12.1 

DSP48E 12 220 5.5 
 
 

 

 
 

 



 18 

TABLE IV 
HARDWARE RESOURCES USAGE FOR INDIVIDUAL CUSTOM LOGIC 

Name LUT FF BRAM_18K DSP 

Cipher 1,126 841 4.5 0 

Decipher 1,212 829 5 0 

ECG 

Identification 
13,189 9,368 7.5 12 

  

TABLE V 
ESTIMATION OF POWER CONSUMPTION 

 Utilization Details Power (W) 
Utilization 

(%) 

Dynamic Power Consumption 

Clock 0.024 1 

Signals 0.028 2 

Logic 0.022 1 

DSP 0.004 < 1 

BRAM 0.028 2 

PS7 1.564 93 

Static Power Consumption Device Static 0.158 9 

 

3) Timing Analysis 

The ARM processor runs at 650 MHz and the PL clocked at 50 MHz. The processing time of the proposed system 

is measured by counting the number of ARM processor’s clock cycles spent for obtaining the calculated results of 

one ECG signal (i.e. 300×32 bits) from individual custom logic. Table VI shows the comparison between the 

software and hardware implementations of each block in terms of the processing time. As it can be seen in Table VI, 

the overall processing time using the hardware implementation has improved by a factor of 44 compared to the 

software implementation. In addition, the proposed implementation has also outperformed the existing ECG 

identification implementations [31] on a HS/SW hybrid platform by a factor of 305. As a result of this improvement, 

the processing speed meets the minimum time constraint of a real-time data processing system. 

 

TABLE VI 

PROCESSING TIME OF EACH INDIVIDUAL BLOCK 

 Cipher Decipher 
ECG 

Identification 
Total 

Hardware 

Implementation 

(ms) 

3.21 7.41 0.09 10.71 

Software 

Implementation 

(ms) 

108.31 361.09 0.32 469.72 

C. Comparison with Existing Work 

This section compares the data processing throughput of the proposed cipher and decipher with the work  

presented in [31] and [34], as well as other existing AES-128 encryption FPGA implementation. The comparison is 
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made based on the following three metrics: processing speed, area analysis, power consumption and overall 

evaluation.  

1) Comparison of the AES processing speed  

The throughput of the AES cipher and decipher is calculated using the running frequency and the execution time. 

The execution time is measured by the clock counter in the Zynq7 PS. The running frequency f and the throughput T 

are then calculated according to equations 3 and 4 respectively.  

t
f

1
                                       (3) 

fBT                                   (4) 

where t is the execution time and B is block size which is equal to 128 bits for our case. Table VII presents the results 

of the proposed and exiting work.  

As it can be seen from Table VII, the throughputs of the proposed AES cipher and decipher implementations have 

outperformed the existing work in [31] and [34] by a factor of 1.6 and 3.7 respectively. This is due to the fact that the 

proposed implementation has used appropriate directives in Vivado HLS in order to reduce the latency of the 

proposed architectures.  

TABLE VII 

COMPARISON OF AES PROCESSING SPEED 

 

Cipher Decipher 

[31] [34] Proposed work [31] [34] 
Proposed 

work 

Execution  

time (µs) 
41.0 40.8 25.1 213 211 57.9 

Execution frequency  

(kHz) 
24.4 24.5 39.9 4.7 4.7  17.3 

Throughput (Gbit/s) 3.1 3.1 5.1 0.6 0.6 2.2 

 

2) Comparison of Hardware Resources Usage for AES implementation 

The occupied area after placement and routing in terms of slices, LUTs and BRAMs is shown in Table VIII. The 

proposed work has significantly less hardware resource requirement to implement AES cipher and decipher block. 
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TABLE VIII 

COMPARISON OF HARDWARE RESOURCES FOR AES IMPLEMENTATION 

 

Cipher Decipher 

[31] [34] 

Proposed 

work 

[31] [34] 

Proposed 

work 

Slice 3443 3430 372 5723 5536 431 

LUTs 5513 8589 1126 5514 8262 1212 

BRAM 2 2 4.5 2 1 5 

3) Comparison of Power Consumption for AES implementation 

Table IX shows the comparison of power consumption for AES implementation. According to the results shown in 

Table IX, the proposed implementation consumes less power than the existing work. This improvement has not only 

benefited from the new technologies introduced in the latest SoC, but also is optimized using Vivado HLS.  

 

TABLE IX 

COMPARISON OF POWER CONSUMPTION FOR AES IMPLEMENTATION 

 

Cipher Decipher 

[31] [34] 
Proposed 

work 
[31] [34] 

Proposed 

work 

Clock 

(mW) 
45 45 2 95 92 2 

Logic 

(mW) 
10 10 2 48 35 3 

Signals 

(mW) 
25 25 2 252 192 2 

Total 

(mW) 
132 132 6 447 371 7 

 

4) Comparison of Overall AES-128 encryption implementation 

Table X shows the comparison of overall AES-128 encryption implementations of the proposed work with other 

existing works. As it can be seen from Table X, the proposed work outperforms other existing work in terms of 

Throughput/Slice, which achieves 13.73 Mbps/Slice. Although the proposed work does not have the highest 

throughput in the comparison, but it uses the lowest number of slices of the available chip area. In addition, the 

proposed implementation has significantly lower the clock speed compared to other work, which means that it would 
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have better power efficiency.  

 

TABLE X 

COMPARISON OF AES-128 ENCRYPTION FPGA IMPLEMENTATION 

Work Device Clock (MHz) 
Throughput  

(Mbps) 
Area (Slices) 

Throughput 

/Area 

(Mbps/Slice) 

Proposed work Zynq XC7Z020 50 5107 372 13.73 

[14] Virtex-V XC5LVX85 576.07 73737 22994 3.21 

[35] 
Spartan-III 

XC3S4000 
206.28 2640 405 6.520 

[36] 
Virtex-IV 

XC4VLX100 
645.70 82650 12256 6.744 

[37] Virtex-IV XC4VLX25 166.7 2134 626 4.41 

[38] APEX20KC N/A 1188 895 1.33 

 

5) Comparison of Overall ECG Identification implementation 

Table XI shows the comparison of the proposed FPGA-based ECG identification implementation with other 

existing work. The proposed implementation processes a sample in 0.09 ms which outperforms other existing work. 

Although the proposed work uses more LUTs for the implementation as maximized pipeline and parallelism were set 

to achieve a high processing speed that meet the real-time requirements.  

TABLE XI 

COMPARISON OF FPGA BASED ECG IDENTIFICATION IMPLEMENTATION 

Work Device Clock (MHz) 

Processing 

Speed 

(ms) 

LUTs 

Proposed work Zynq XC7Z020 50 0.09 13,189 

[39] Virtex-II  20 1.87 2170 

[40] Spartan 3 36 N/A 9,136 

VI. CONCLUSION 

In this paper a set of security solutions have been presented that ensure patients’ data and medical records within a 

connected health system can be securely transmitted and saved for further analysis and diagnosis. The proposed ECG 

identification system consists of a SoC implementation of the AES and ECG identification algorithms, which can be 

used to collect data from ECG sensors, process it and meet the real-time response constraint. The proposed Zynq SoC 

implementation provides not only high data processing performance but they also provide the user with higher 

flexibility in terms of various interfaces, hard processors and PL. Results presented have shown that the proposed 
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implementation only needs 30% of hardware resources and 107 mW to process an ECG sample in 10.71 ms, which 

outperforms the existing FPGA-based system in different key performance metrics. 
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