
Northumbria Research Link

Citation: Djelouat, Hamza, Ait Si Ali, Amine, Amira, Abbes and Bensaali, Faycal (2017)
Compressive sensing based electronic nose platform. Digital Signal Processing, 60. pp.
350-359. ISSN 1051-2004 

Published by: Elsevier

URL:  https://doi.org/10.1016/j.dsp.2016.10.006
<https://doi.org/10.1016/j.dsp.2016.10.006>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/31465/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


Compressive Sensing based Electronic Nose Platform

Hamza Djelouat∗, Amine Ait Si Ali, Abbes Amira, Faycal Bensaali

College of Engineering
Qatar University

Doha, Qatar, P. O. Box: 2713

Abstract

Electronic nose (EN) systems play a significant role for gas monitoring and iden-

tification in gas plants. Using an EN system which consists of an array of sensors

provides a high performance. Nevertheless, this performance is bottlenecked by

the high system complexity incorporated with the high number of sensors. In

this paper a new EN system is proposed using data sets collected from an in-

house fabricated 4×4 tin-oxide gas array sensor. The system exploits the theory

of compressive sensing (CS) and distributed compressive sensing (DCS) to re-

duce the storage capacity and power consumption. The obtained results have

shown that compressing the transmitted data to 20 % of its original size will

preserve the information by achieving a high reconstruction quality. Moreover,

exploiting DCS will maintain the same reconstruction quality for just 15 % of

the original size. This high quality of reconstruction is explored for classification

using several classifiers such as decision tree (DT), K-nearest neighbour (KNN)

and extended nearest neighbour (ENN) along with linear discrimination anal-

ysis (LDA) as feature reduction technique. CS-based reconstructed data has

achieved a 95% classification accuracy. Furthermore, DCS-based reconstructed

data achieved a 98.33% classification accuracy which is the same as using orig-

inal data without compression.
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1. Introduction

The main breakthrough in compressive sensing (CS) paradigm was intro-

duced by Donoho in [1] and Candès, Romberg and Tao in [2], in which they

show that any signal that has a sparse representation in some basis can be

recovered exactly from a small set of linear, non-adaptive measurements. This

result suggests that it may be possible to sense sparse signals by taking far fewer

measurements than what the famous Shannon-Nyquist theorem states [3], hence

the name compressed sensing. This fewer number of measurements contain the

pertinent information from the original data, after this measurements are col-

lected, processed and transmitted, The original data can be recovered efficiently

at the receiver under certain conditions.

Since its first introduction, several emerging fields have witnessed the ex-

ploitation of CS theory such as computer science, applied mathematics and

medicine. Furthermore, in [4] Baron et al. introduce the theory of distributed

compressive sensing (DCS) to enable new distributed coding algorithms that

exploit both intra- and inter-signal correlation structures. In a typical DCS

scenario, a number of sensors measure signals that are each individually sparse

in some basis and also correlated from sensor to sensor. Following these results,

CS and DCS has gained a lot of attention in wireless sensors network systems[5].

One of the typical wireless sensor systems are electronic nose (EN) sys-

tems. A typical EN system consists of a multi-sensor array, an information-

processing unit such as an artificial neural network (ANN) and software with

digital pattern-recognition algorithms. EN systems have been used in diverse

applications such as spoilage detection of foodstuffs [6], disease diagnosis [7]

and in the current gas industry to detect any gas/odor mixtures leakage. EN

systems were firstly introduced in [8]. In [9], Victor et al. proposed an EN with

tin-oxide based microarray, which can discriminate between various gases in air.

Using EN for gas identification based on fingerprints obtained from gas sensors

responses has been presented in [10, 11]. The problem with such EN systems is
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that the exposure to reactive gases for long period of time can result in a change

of the gas sensor properties, which is known as the drift problem [12] and non

selectivity of the sensors [13] which relates with the reactivity of a chemical

sensor to so called interference gases which are different from the nominal gas

towards which the sensor is targeted. The problem of the non selectivity can be

overcame by using more than one sensor at a time such that each sensor shows

different sensitivity or response to each gas. Guo et al. in [14], proposed a 4× 4

array gas sensor in which each sensor provides a different response for the same

gas. This approach can help to provide a time efficient data acquisition system

as all sensors are acquiring data at the same time.

The collected data is exploited to improve the gas identification process,

however, dealing with big data will increase the computational complexity [14].

Therefore an appropriate feature reduction technique is required to extract the

most useful information from the data and rearrange the data for improved

classification. Different feature reduction techniques have already been pro-

posed such as multidimensional scaling [15], independent component analysis

[16], principal component analysis (PCA) [17] and linear discriminant analysis

(LDA) [18]. A performance evaluation and hardware implementation for PCA

and LDA for gas identification using data from two different type of gas sensors

was presented in [19]. The data was collected from seven commercial Figaro

sensors and in-house fabricated 4× 4 tin-oxide gas sensor.

In addition to feature reduction techniques, several classifiers used for pat-

tern recognition application have been adopted for gas identification [20]. The

most simplified classifiers for pattern recognition applications which can also

be easily adopted on hardware are based on binary decision tree (BDT) and

K-nearest neighbours (KNN), extended nearest neighbour (ENN) and commit-

tee machine (CM) which combines more than one classifier in order to improve

the classification. In [13], a gas identification ensemble machine (GIEM) is

presented, where five different classifiers have been used to implement the CM.

Exploiting CS theory for gas identification application has not been widely

considered in the literature. However, there have been some research that are
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quite relevant to gas identification problems. In[21], Razzaque et al. provided

a quantitative analysis of the main operational energy costs of popular sensors.

where they clearly show that temperature, seismic and CO2 signals are sparsely

representable and, so, compressible, allowing CS to be effectively applied. A

comparative study between CS and transform coding for wireless sensor net-

works based gas emission monitoring system is presented in [22], the obtained

results show that CS outperform transform coding in terms of overall energy

costs. Moreover, in order to optimize the power consumption in EN systems,

De Vito et al. proposed in [23] an on-board processing method that allows the

transmission of only the informative data packet in order to send data with

the significant concentrations. This proposed system is expected to reduce the

power consumption and to have a one year lifespan.

In this paper we propose a new framework for developing a CS-based EN sys-

tem for gas monitoring and identification exploiting the sparsity of the different

gases responses. The paper quantifies the quality of the gas data reconstruction

using CS recovery algorithm as well as the usefulness of the these reconstructed

data for gas identification. Distributed compressive sensing will also be investi-

gated in order to exploit the collaboration between the sensors as all of them are

measuring the same data in order to maintain the same reconstruction quality

while transmitting a much fewer samples than conventional CS.

The remainder of this paper is organized as follows. Section 2 presents the

EN system with detailed description of the experimental setup, data collection

and the proposed CS-based EN system. Section 3 provides a mathematical back-

ground of CS, DCS and their associated reconstruction as well as a description of

feature extraction, dimensionality reduction using LDA and classification using

DT, KNN and ENN. In section 4, simulation results for the software implemen-

tation are presented and discussed. Section 5 concludes the paper.

4



2. Data Acquisition System

The experiment is conducted in a controlled lab environment containing gas

chamber, cylinders of the target gases, mass flow controllers (MFCs). The 4×4

gas sensor array is installed in a gas chamber as shown in Figure 1. The gas

sensors are exposed to different gases each with different concentrations. The

data acquisition process is performed as follow, first, the chamber is flushed with

air for 750 sec, then, the new concentration of gas is established in the chamber

for the next 750 sec, resulting in measurement cycle of 1500 sec to provide a

single pattern.

Gas2

Gas3

MFC

Air

Data Acquisition 
MFC Control 

Gas Chamber

Sensor Array

Gas1

Mixer

Figure 1: Data Acquisition System

Furthermore, in order to examine the behaviour of the gas sensor for differ-

ent operating temperatures, the data acquisition for five most hazardous gases

(C6H6, CH2O, CO, NO2 and SO2) is performed at three different temperatures

( 200◦C , 300◦C and 400◦C) where the optimal operating temperature (OT) for

gas sensor is analysed in [24].

In this experiment four different concentrations for each gas have been used,

Table 1 lists the ranges of different gas concentrations used:
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Table 1: Gases And Their Concentration Ranges

Gas Concentration Range (ppm)

C6H6 0.25-5

CH2O 0.25-5

CO 5-200

NO2 1-10

SO2 1-25

The proposed CS based-EN system is shown in Figure2. At the data ac-

quisition stage, a selected data is used for training and transmitted directly to

the processing unit. After that, the remaining collected data will be used for

testing. This latter will be processed through two main stages, compression

stage and identification stages.

At the compression stage, the testing data are compressed following the

theory of CS and DCS. Next, the compressed gas data are transmitted from the

sensors to the processing unit.

At the processing unit, the received data are reconstructed using several

recovery algorithms associated with CS and DCS. After reconstruction, sev-

eral combination of feature reduction techniques and classification algorithms

are used to quantify the performance of the proposed EN system in terms of

classification accuracy.

3. Mathematical Overview

3.1. Compressive sensing (CS)

The data extracted by the sensors can be modelled by a matrix X ∈ RN×J

Matrix such that X = [x1,x2, · · · ,xj , · · · ,xJ ] , where N denotes the number

of samples extracted from each sensor, J is the total number of sensors used to

acquire the gas data and xj represents the data acquired by the jth sensor.

CS allows the data to be acquired and effectively reconstructed with sig-

nificantly fewer samples than its original dimension. CS relies on the sparsity
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Figure 2: The proposed CS-based gas monitoring platform

and/or compressibility of the data in an appropriate transform domain. CS is

generally performed by multiplying the input signal by a measurement matrix.

The reconstruction of original signal from compressively sampled signal consists

of finding the best solution to an underdetermined system of linear equations

given by y = Φx. No a priori information about the original signal x is required

for reconstruction except that it is sparse or compressible in a specific domain.

Now, Given a basis {Ψi}Ni=1 for RN , we can represent every signal xj ∈ RN

in terms of N coefficient {si}Ni=1 as xj =
∑N
i=1 Ψisi. The measurement signal

xj is said to be K-sparse in the basis or frame {Ψi} if there exists a vector

S ∈ RN with only K � N nonzero entries such that xj = ΨS. The set of

the indices corresponding to of the nonzero entries of S is called the support

of S. In general Wavelet basis provide a good sparse representation for several

natural signals.

CS model for the proposed system can be written as follow:

yj = Φjxj j = 1, · · · , J (1)

yj represents the compressed gas data to be transmitted for the jth sensor

such that yj ∈ RM with M < N and Φj ∈ RM×N is the sensing matrix that

compresses the acquired N-length gas data xj to the M-length compressed gas

data yj .
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Furthermore, to ensure that the data can be reconstructed efficiently with a

minimum number of samples, the sensing matrix should satisfy the conditions

on the restricted isometry property (RIP) and the coherence [25, 26]. In order

to satisfy the RIP and the coherence conditions, several type of matrices have

been well considered. The most used ones are the matrices whose entries follow

a sub-Gaussian distribution[27, 28].

At the receiver, the data has to be reconstructed where the data of each

sensor is processed and recovered individually. Several CS reconstruction algo-

rithms have been proposed in the literature such as convex relaxation approach,

Bayesian approach [29] and greedy algorithms. Convex relaxation approaches

are based on `1 -minimization known as basis pursuit [30] and considers the

solution

x̂j = argmin ‖xj‖1 subject to yj = Φjxj , j = 1, · · · , J (2)

In the case when some prior knowledge about the distribution of the sparse

vector is available, it would make sense to incorporate that prior knowledge

into the recovery process. Bayesian methods provide a systematic framework

for doing that. By making use of Bayes rule, these methods update the prior

knowledge about the sparse vector in accordance with the new evidence or obser-

vations. At the same time, they suffer higher degradation in performance when

prior assumptions about the signal distribution do not hold. In [31], Zayyani

et al. proposed a new recovery algorithm for sparse data whose elements follow

a Bernoulli-Gaussian distribution using an iterative method for to estimate the

maximum a posteriori (MAP) of the sparse vector.

Greedy algorithms solve the reconstruction problem by greedily optimizing a

metric that minimize the norm of the difference of the measurement vector and

a residual. Matching pursuit [32], one class of CS greedy algorithms, attempts

to find the columns of the measurement matrix Φj that contribute the most

in the measurement yj . The column(s) with the strongest correlation with the

residual is (are) added to the support vector. Afterwards, their contribution is

subtracted from the current residual. Several well considered greedy algorithm
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are of orthogonal matching pursuit OMP [33],[34], compressed sampling match-

ing pursuit (CoSaMP) [35] and subspace pursuit algorithm (SP) [36]. The OMP

pseudo code to recover the data of each sensor individually is given in Algorithm

1.

Algorithm 1: OMP

Input:

y ∈ RM : measurement vector

Φ ∈ RM×N : sensing matrix

ε: stopping criterion

Output:

x̂ ∈ RN : reconstructed signal

Initialization:

Ω = {∅}

r[0] = y

current iteration i= 0

Procedure: While ‖r[i]-r[i−1]‖2 ≥ ε

1. i=i+1

2. G[i] = Φ∗r[i]

3. Ω[i]= { index corresponding to the largest absolute

value of G[i] }

4. Ω = Ω ∪ Ω[i]

5. x̂
[i]
T = Φ†Ωy

6. r[i] = y −ΦΩx[i]

Where Φ†Ω denotes the pseudo-inverse of ΦΩ which is calculated as follow:

Φ†Ω = (Φ∗ΩΦΩ)−1Φ∗Ω

3.2. Distributed Compressive Sensing

CS theory as presented previously is designed mainly to exploit intra-signal

structures (sparsity and compressibility) at a single sensor. However, if the sys-
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tem consists of a multi-sensor platform where several sensors acquire information

about a physical or environmental phenomena and all the sensors measure the

same data, than the different signals acquired by the different sensors are likely

to share certain structures, like sparsity (in case the signal of interest is sparse).

In a multi-sensor setting, an intuitive approach is to acquire each signal

and recover it separately. However, exploiting the collaboration between the

sensors in the recovery process i.e., combining all of the sensors measurements to

reconstruct all of their data simultaneously can result in a better reconstruction

quality. This process is called joint measurement setting.

Distributed compressive sensing (DCS) presents a new distributed coding

algorithm that exploits both intra- and inter-signal correlation structures of

the signals. In addition, DCS requires no collaboration between the sensors

during signal acquisition. Nevertheless, DCS permits to exploit the inter-signal

correlation by using all of the obtained measurements to recover all the signals

simultaneously, under the right conditions.

However, since multi-sensor measurement architecture described by 1 are

different in real-world scenarios, different forms of correlation within an ensem-

ble of sparse signals can occur. Thus, different setting, namely, joint sparsity

models (JSMs) were introduced in [4]. Three different JSMs have been assigned

to three different scenarios. In the first and the second model each of the mea-

sured signal is itself sparse whereas the third model, no signal is itself sparse,

yet there still exists a joint sparsity among the signals.

In JSM-1, all signals share a common sparse component while each individual

signal contains a sparse innovations component:

xj = zC + zj j = j, · · · , J (3)

Thus, the signal zC is common to all of the xj and the signals zj are the unique

portions of the xj . A practical situation well-modelled by JSM-1 is a group of

the same sensors measuring temperatures at a number of locations throughout

the day. The temperature readings xj have both temporal (intra-signal) and

spatial (inter-signal) correlations.
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JSM-2 presents a model where all signals are constructed from the same sparse

index set of basis vectors, but with different coefficients. A practical situation

well-modelled by JSM-2 is where multiple sensors acquire the same signal but

with different attenuation coefficients due to the unique characteristics of each

sensor.

The proposed system is well modelled by JSM-2 where each of the sensors

in the 4× 4 gas array sensor measure the response of each of the different gases

used through the experiment.

Recovery algorithms associated with DCS are variants of their CS counter-

parts, such as Multichannel-BPDN [37], simultaneous OMP (SOMP) and dis-

tributed compressive sensing OMP (DCS-SOMP)[4] which is the general form

of SOMP. The DCS-SOMP pseudo code is provided in Algorithm 2.

3.3. Dimensionality Reduction

After data collection, the most significant features of the data have to be

extracted. The most common used features are the steady states (SSs) values.

SSs corresponding to all gasses and concentrations are extracted manually form

the data set by taking the values corresponding to the end of each gas injection

period. The extracted features can be used directly to train and test the system

or can be injected to various feature reduction algorithms such as LDA.

3.3.1. Linear Discrimination Analysis

LDA is most commonly used as dimensionality reduction technique in the

pre-processing step for pattern recognition and machine learning applications.

The goal is to project a dataset onto a lower-dimensional space with good class-

separability in order to avoid overfitting and also reduce computational costs.

In addition to finding the component axes that maximize the variance between

inter classes of the data and simultaneously reducing inner classes variances.

LDA is interested in the axes that maximize the separation between multiple

classes.
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Algorithm 2: DCS-SOMP

Input:

yj ∈ RM : measurement vectors, j = 1, · · · , J

Φj ∈ RM×N : Measurement matrices, j = 1, · · · , J

ε: stopping criterion

Output:

x̂j ∈ RN : reconstructed signals foe the jth sensor.

Initialization:

Ω = {∅}, i= 0

r
[0]
j = yj

Procedure While ‖r[i] − r[i−1]‖2 ≥ ε

1. i← i+ 1

2. Gj = ΦTj rj , j = 1, · · · , J

3. Gj =
∑J
j=1 |Gj |

4. Ω[i]= { index corresponding to the largest absolute

value of Gj}

5. Ω = Ω ∪ Ω[i]

6. for j = 1, · · · , J

x̂
[i]
j|Ω = Φ†j|Ωyj

r
[i]
j = yj −Φjx̂

[i]
j

end for

The extracted training data set can be modelled by a matrix T ∈ RL×J

where L is the number of samples in the training data. Moreover, each row

vector of T is assigned with a class label Cx forming a class label matrix C ∈ RL.

To perform LDA-based feature reduction on the training data, each training gas

sample is assigned to a specific class. The training samples belonging to the same

class form a sub-matrix TCi
with i = [1, · · · , S] and S denotes the total number

of classes.

In addition, LDA technique is also applied to the reconstructed testing data
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X̂ in order to evaluate the classification performance. The pseudo code for LDA

for both training and testing data is provided in Algorithm 3.

Algorithm 3: LDA Training and Testing

Input:

T: Training data set

TCi
; training data for the ith class, i = 1, · · · , S

ji :number of samples of ith gas

Procedure

1. µTi
= [µT1

µT2
· · · µTS

] → µTi
: the mean for the ith class

2. µ =
∑S
i=1

µTi

S
→ overall average mean

3. COVi = cov(TCi
) → The within-class-variance

4. COV =
∑S
i=1

COVi

S
→ average Covariance

5. µBi = µTCi − µ

6. COVµBi = ji(µBi)
T (µBi)

7. µB =
∑S
i=1

COVµBi

S

8. [Ev,Eval]= Eig(µB, COV ) → Ev: Eigen vector

Output

LDAtraining=Ev ×T

LDAtesting=Ev × X̂

3.4. Classification algorithm overview

After feature extraction and dimensionality reduction phase, the data are

set to classification. The training data and the label class matrix are used as an

input for several identification algorithm in order to classify the reconstructed

data X̂.

3.4.1. Binary Decision Tree

BDT-based classifier is selected because of its simplicity in terms of software

and hardware implementation [38]. BDT is a supervised learning technique with

a set of class labelled data as the input of the learning algorithm and a binary
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tree as its output. The generated tree is used for the classification of a the

testing data X̂. BDT training algorithm requires two inputs, the training data

matrix T and the class label matrix C.

3.4.2. K-Nearest Neighbour (KNN)

KNN is a non-parametric technique widely used in pattern recognition and

statistical estimation to classify the unobserved data on the basis of similarity

measures. KNN classifiers are based on learning from the corresponding neigh-

bours by comparing a given test case with training samples that are similar to

it [39]. KNN algorithm depends on the parameter K, this coefficient determines

how many neighbours influence the classification. A sample is classified by a

majority vote of its neighbours, with the sample being assigned to the class most

common amongst its K nearest neighbours measured by a distance function.

Algorithm 4: KNN

Input:

T ∈ RL×J : Training data

x̂ ∈ R1×J : Testing data sample

C ∈ RL: Class label for T

K: selected number of neighbours

for i = 1 to L do → L: number of samples in the training data.

Compute distance d([T ]i, x̂)

end for

Compute set of I containing indices for the K smallest distance d(T, x̂i)

Output: Majority label for {Ci where i ∈ I}

d([T ]i, x̂) = ‖[T ]i − x̂i‖2 (4)

Where [T]i is the ith row vector of T.
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3.4.3. Extended Nearest Neighbour(ENN)

ENN is a novel classification technique [40]. ENN is considered as an im-

proved version of KNN, the key point of ENN is that it makes a prediction

for a new test sample based on a ’two-way communication’ style, unlike KNN

where only the K-neighbours of the test sample are taken into consideration

for the prediction. ENN considers the entire training data to find not only the

K-nearest neighbours for the test sample, but also who are the samples from

the training data set that consider the test sample as one of their K-nearest

neighbours. Generalized class-wise statistics is used to achieve this.

4. Software implementation

In this section, the performance of the proposed CS-based gas monitoring

presented in Figure. 2 is investigated in terms of both data reconstruction qual-

ity and classification accuracy using the reconstructed data. All the simulation

presented herein are carried out using MATLAB software. The performance

metrics used for the evaluation of the proposed algorithms are:

Compression Ratio

In the following the term compression ratio (CR) is used which is defined

as the percentage of the number of samples in the compressed data M over the

number of samples in the original data N before compression. i.e,

CR (%) =
M

N
× 100

Peak Signal-to-Noise Ratio (PSNR)

The term peak Signal-to-Noise Ratio (PSNR) is an expression for the ratio

between the maximum possible value (power) of a signal and the power of

distorting noise that affects the quality of its representation [41]. The relation

of PSNR can be calculated as follow:

PSNR =
1

J

J∑
i=1

20 log
max‖xi‖2
‖xi − x̂i‖2

(5)
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where J denotes the total number of sensors, xi and x̂i represent the original

data and reconstructed data at the ith sensor, respectively.

4.1. Data Reconstruction

In this section, the performance of the CS-based gas monitoring is quantified

in terms of the quality of the reconstructed data compared to the original data

collected directly from the gas sensor array. Two different approaches have

been adopted, the first one uses conventional CS, with OMP algorithm to be

the recovery algorithm. The second approach exploits DCS theory, where DCS-

SOMP is adopted to be the recovery algorithm.

The Simulations are conducted on a data set that consists of 16 sensors, each

with 1800 samples, The sensing matrix is random matrix such that Φ ∼ (0, 1
M ).

The experiments results are averaged on 100 trials.

Figure 3 shows the results for data reconstruction accuracy in terms of PSNR

versus the CR using OMP algorithm. Intuitively, increasing the number of sam-

ples in the compressed data improves the reconstruction quality as indicated by

the increase of PSNR values ( up to 60 dB using 25 % of the total samples).

However, we notice a difference in reconstruction performance from gas to an-

other, which can be explained by the fact that the responses of the sensors to

each gas r exhibit a different level of sparsity. Figure 4 shows a comparison

between the original CO data acquired from sensor 1 to sensor 8 with its re-

constructed ones using different CR values. The data is reconstructed almost

perfectly using a compression ratio of 20%.
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Figure 4: Comparison between the: (a) original CO data and the reconstructed ones using

OMP with (b) CR=10%, (c) CR=15%, (d) CR=20%.

Now, since the signals are measurement of the responses of the same gas

and as they smoothly varying in time, this causes the sensor readings to be

close in value to each other, a situation well captured by the JSM-2 models.
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Therefore using the same analogy as before, Figure 5 shows the attainable PSNR

values versus CR exploiting DCS. The obtained results using DCS-SOMP as

reconstruction algorithm consolidate the previous results regarding the quality

of the reconstruction (up to 60 dB using 15% of the total samples). Comparison

between original C6H6 data with the its reconstructed one with different CR

values is shown in Figure 6. The obtained results reveals that the JSM2 models

provide a good approximation for the joint sparsity structure for the proposed

system and that DCS offers a promising approach for such sensing environments.
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Figure 5: Reconstruction accuracy in terms of different compression ratio using DCS-SOMP

Furthermore, comparing the different obtained results, we note that ex-

ploiting the intra-signal correlation between the different sensors represented

by DCS-SOMP results brings a notable enhancement on the reconstruction ac-

curacy compared to the one using OMP to recover each sensor data individually.

To clearly illustrate that, we refer to Figure 7 which presents the average PSNR

values over all the used gases. The DCS-SOMP reconstruction approach outper-

forms the OMP whatever the CR used. Figure 8 shows a comparison between

CH2O data acquired from sensor 10 to sensor 12 with its reconstructed ones

using both OMP and DCS-SOMP for CR value of 15%. The DCS recovery algo-

rithm identifies the common structure emphasized by JSM-2, recovering salient

common features for all signals. present

Moreover, the performance of standard compression techniques is quantified
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Figure 6: Comparison between the: (a) original C6H6 data and the reconstructed ones using

DCS-SOMP with (b) CR=10, (c) CR=15, (d) CR=20

for all the gas data used in experiment. The investigated data compression

techniques are based on the discrete cosine transform (DCT) and the discrete

wavelet transform (DWT), it is worth mentioning that for DWT compression

technique, the Daubechies wavelet family has been adopted. To compare the

performance of these standard compression technique to the CS-based EN sys-

tem, the same set of coefficients number to be transmitted have been selected.

Figure 7 shows the performance of the different techniques in terms of the av-

erage PSNR attained for all the gases responses. The result reveals that DCT

and DWT outperform OMP for a CR values in the interval [0, 15]. Neverthe-

less, increasing the number of transmitted data represented by increasing the CR

values, OMP tends to achieve a remarkable performance over DCT and DWT.

Moreover, introducing DCS approach for EN system presented herein, provides

with no doubt the best performance in term of high quality reconstruction for

the lowest number of transmitted data.
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Figure 8: Comparison between the original CH2O data and the reconstructed ones with 15%

using OMP and DCS-SOMP

4.2. Data identification

The performance of the reconstructed data for classification is quantified in

this section. The training data are taken directly from the output of the sensor

array without performing any compression on them. However, for the testing
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data, they are first compressed, transmitted and then reconstructed using CS

and DCS recovery algorithms.

Table 2 and Table 3 present the classification accuracy of both data recon-

structed by OMP and DCS-SOMP, using KNN, ENN and BDT as classification

algorithms. The data is tested after performing feature reduction technique

using LDA(Table 3) and without feature reduction technique using SSs values

(Table 2). the results shown in column labelled original data represents the clas-

sification accuracy obtained by using original testing data without compression.

It is worth mentioning that for KNN and ENN the algorithm parameter is set

to be K = 1 and the number of LDAs components is set to 4 (4-LDA).

The results reveal that KNN and ENN provide almost the same performance

that outperforms always BDT performance regardless of the algorithm used for

data reconstruction and feature selection. Moreover, the obtained results show

an unacceptable classification performance when the number of samples in the

compressed data is less than 10% of the original one whatever the reconstruction

algorithm used which can be explained by the fact the values the recovered sig-

nal at the points where the features have to be extracted are completely different

than the original values and that they hold no significant for the classification

process. Using OMP and increasing the number of sample will improve the clas-

sification, attaining a maximum accuracy of 95%, yet with small error compared

to the classification obtained by the original data, this improvement is due to

the enhancement in the quality of the reconstructed signals as the number of

transmitted samples increases. Moreover, exploring DCS theory by adopting

DCS-SOMP, a much higher classification accuracy up to 98.33 % for a CR of

20% is achieved and it is equal to the one achieved by original data. Moreover,

The classification accuracy obtained by applying LDA preprocessing approach

to the extracted data is better than the one using the SSs values whatever the

used”recovery algorithm- classifier” combination.
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Table 2: Classification accuracy (%) results using the SSs values in terms of different com-

pression ratio values

Classifiers Recovery approach Compression Ratio % original

technique 5 10 15 20 data

BDT

OMP 75 75 76.33 76.66 76.66

DCS-OMP 75 75 76.33 76.66

KNN

OMP 71.33 86.66 91.66 91.66 95

DCS-OMP 83.33 91.66 95 95

ENN

OMP 85 90 91.66 91.66 95

DCS-OMP 86.66 91.66 95 95

Table 3: Classification accuracy (%) results using the 4-LDA values in terms of different

compression ratio values

Classifiers Recovery approach Compression Ratio % original

technique 5 10 15 20 data

BDT

OMP 61.66 83.33 91.66 91.66 93.33

DCS-OMP 61.66 83.33 88.33 90

KNN

OMP 71.33 86.66 91.66 95 98.33

DCS-OMP 71.66 96.66 96.66 98.33

ENN

OMP 71.33 86.66 91.66 95 98.33

DCS-OMP 76.66 96.66 96.66 98.33

Figure 9 (a) and Figure 9 (b) present the comparison between the perfor-

mance of CS-based EN system and the two compression technique used before

using KNN and ENN as classification method and 4-LDA as feature reduction

technique for two different values of CR = 10% and CR = 20%, respectively.

The results show that the identification performance exhibits a similar pattern

as the reconstruction quality i.e., Using DCS-SOMP provides the best perfor-

mance whatever the value of CR. In addition , using conventional compression,

the classification accuracy attained outperform the one of the OMP algorithm
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for CR = 10%. However, increasing the CR up to 20% a remarkable enhance-

ment of the classification accuracy is achieved using OMP compared to conven-

tional compression techniques.
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Figure 9: comparison of identification performance of different approaches using:(a) CR =

10%, (b) CR = 20%.

5. Conclusion

This paper proposes a novel CS-based EN system for gas monitoring and

identification. The performance of the proposed system has been investigated

in terms of data reconstruction quality and classification accuracy. The pro-

posed EN system exploits the theory of compressed sensing in order to provide

an efficient compression scheme while maintaining good quality for the data af-
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ter reconstruction. Moreover, using the multi-sensor architecture of our system,

sensors collaboration has been exploited using DCS for simultaneous recon-

struction. The algorithms adopted for CS and DCS are OMP and DCS-SOMP,

respectively. The results show a remarkable reconstruction quality for a CR

of 15% and higher. Furthermore, using DCS-SOMP shows to render a much

higher reconstruction quality compared to OMP.

Furthermore, regarding classification accuracy, using the reconstructed data

using DCS-SOMP outperforms the one using OMP up to 3.33% of classification

accuracy which consolidates the results of data reconstruction. Moreover, trans-

mitting just 20% of the samples while using DCS-SOMP provides a classification

accuracy of 98.33% which is the the same using the original acquired data with-

out compression. In addition the performances of the different CS approaches

has been compared to the performance of standard compression techniques, the

obtained results clearly shows the superiority and the performance improvement

achieved using a CS-based EN system.
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