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ABSTRACT

Electronic nose or machine olfaction are systems used for detection and identification of odorous
compounds and gas mixtures. An electronic nose system is mainly made of two parts, the sensing
part which takes the form of a single or a set of sensors and the processing part which takes the
form of some pattern recognition algorithms. As an alternative solution to pure software or hard-
ware implementation of the processing part of a gas identification system, this paper proposes a hard-
ware/software co-design approach using the Zynq platform for the implementation of an electronic
nose system based on principal component analysis as a dimensionality reduction technique and de-
cision tree as a classification algorithm using two different sensors array, a 4 × 4 in-house fabricated
sensor and a commercial one based on 7 Figaro sensors, for comparison purpose. The system was
successfully trained and simulated in MATLAB environment prior to the implementation on the Zynq
platform. Various scenarios were explored and discussed including the investigation of different com-
bination of principal components as well as the utilization of drift compensation technique to improve
the identification accuracy. High level synthesis was carried out on the proposed designs using dif-
ferent optimization directives including loop unrolling, array partitioning and pipelining. Hardware
implementation results on the Zynq system on chip show that real-time performances can be achieved
for proposed EN systems using hardware/software co-design approach with a single ARM processor
running at 667 MHz and the programmable logic running at 142 MHz. In addition, using the designed
IP cores and for the best scenarios, a gas can be identified in 3.46 µs using the 4 × 4 sensor and 0.55
µs using the Figaro sensors. Furthermore, it has been noticed that the choice of the sensor array has
an important impact on performances in terms of accuracy and processing time. Finally, it has been
demonstrated that the programmable logic of the Zynq platform consumes much less power than the
processing system.

1. Introduction

Gas monitoring is one of the critical challenges in the gas in-
dustry. A single leakage of explosive gas is enough to destroy
the whole gas plant. Moreover due to the recent environmental
degradation exposure of hazardous gases is a challenging task
in different parts of the world (Yamazoe and Miura (1994)).
Therefore, the concept of Electronic Nose (EN) is introduced
based on humans olfactory (Pearce et al. (2006)), it becomes
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widely adopted not only in gas industry but in different fields
such as in food industry (Schaller et al. (1998)), storage of gases
(Kharaka et al. (2009)) and the computation of the air pollutant
(Zampolli et al. (2004)). An EN system can be described by
two main blocks for data collection and data processing. The
first block is called the sensing block and it takes the form of a
single or a set of sensors. The second block is called the pro-
cessing block and it takes the form of some pattern recognition
algorithms. Most of the existing implementation of EN sys-
tems are software based. Taking in consideration the fact that
the information provided by the EN is critical in many appli-
cations and must be in real-time, many EN have been imple-
mented on multiple hardware platforms for acceleration. Each
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of the pure software pure hardware solution have advantages
and disadvantages. An implementation of an EN system that
takes advantages of both software and hardware is highly re-
quired. In this paper, a hybrid implementation of an EN based
on PCA for dimensionality reduction and DT for classification
using two different sensor arrays is presented. One of them
is an in-house 4 × 4 fabricated sensor while the other one is
based on 7 Figaro sensors. The main aim is to present an in-
novative Hardware/Software (HW/SW) co-design approach for
an EN implementation on the Zynq platform by implement-
ing computationally intensive algorithms on the FPGA part and
the remaining on the processor using HLS over hardware de-
scription language to reduce the prototyping and development
time. The second aim is the comparative study for the two types
of sensors (in-house one and commercial one) and their im-
pact on the EN System. The main objective of this paper is
to present an innovative way to implement pattern recognition
algorithms on hardware to accelerate the execution time while
minimising power consumption as well as design and develop-
ment time, this is very important for critical applications. A
hardware/software approach is used for the implementation of
various pattern recognition algorithms on the Zynq SoC using
high level synthesis. A case study of EN is taken into consid-
eration as a critical application to evaluate the performances of
the proposed innovative method while PCA and DT are taken
into consideration as the pattern recognition algorithms. It is
worth mentioning that this paper is the continuity of previous
works (Akbar et al. (2015)) and (Ait Si Ali et al. (2015)). The
work presented in (Akbar et al. (2015)) is concerned with RFID
transmission, it deals with how the data is collected and trans-
mitted to the processing unit, the EN which is implemented on
the processing unit is briefly mentioned without much details.
Only one type of sensor is used to collect different datasets at
different temperatures. The work presented in (Ait Si Ali et al.
(2015)) uses also one type of sensor. This paper has a consid-
erable new contribution since two type of sensors are used as
well as some different gases. It shows how the performances of
an EN can be affected by the choice of sensor. Furthermore, the
hardware implementations of pattern recognition algorithms are
evaluated and described in much more details. The remainder
of this paper is organized as follows. Section 2 describes the ex-
iting work along with shortcomings. In Section 3, an overview
of the EN system is presented including experimental setup,
data collection, feature extraction, dimensionality reduction us-
ing PCA and classification using DT. Section 4 is concerned
with the implementation of the EN on the Zynq platform. A
brief description of the Zynq platform is given as well as de-
tails about the implementation and design flow using HLS and
Vivado suite. In section 5, implementation results are presented
and discussed. Section 6 concludes the paper.

2. Related Work

A portable EN with sensor array made of thick-film of oxide
based semiconductor sensing materials is introduced for gas ap-
plications in (Hong et al. (2000)). Further, a gas identification
system using eight tin-oxide gas sensors implemented on Field

Programmable Gate Arrays (FPGA) is presented in (Benrekia
et al. (2013)). Euclidean Normalization is used for the prepro-
cessing of the data prior to the classification which is performed
using Multilayer Perceptron (MLP) algorithm. Whereas in (Far
et al. (2009)) a temperature modulation scheme is used for gas
identification. Self-Organized Map (SOM) technique is used
as a preprocessing technique to transform the data into 2D im-
age then the image moments and Linear Discriminant Analysis
(LDA) are used to extract feature from the images before the
classification. In the solution presented Far et al. (2009) a 16-
array sensor is used. Sensitivity of sensors is one of the major
concerns in EN systems. Therefore, Arshak et al. in (Arshak
et al. (2004)), analyses different sensors used for EN systems.
The main problem with the sensors used in current EN system
is their lack of selectivity. Therefore, in order to overcome the
problem of selectivity the number of sensors in the EN is in-
creased to get more signatures for the same gas such as in (Guo
et al. (2007)) where a 4 × 4 array of tin-oxide based gas sensor
is developed. However increasing the number of sensors will
also increase the data size which improves classification but
also increases the computation complexity. Therefore, a fea-
ture reduction algorithm is required to extract the most relevant
information from the data. Different research approaches have
already been presented for feature reduction like Independent
Component Analysis (ICA) (Li et al. (2005)) and multidimen-
sional scaling (Chandrasiri et al. (1999)). However, Principal
Component Analysis (PCA) is one of the most common tech-
niques used in machine learning for dimensionality reduction
(Honeine (2012)). PCA was used in (Bravo et al. (2010)) for
the detection of moving object where the training and testing
parts are both implemented on a Xilinx Virtex-II based FPGA
platform. Cascaded adders and dividers have been used to com-
pute the mean of the training data while a hardware architec-
ture is presented for the computation of Eigenvectors needed
in Jacobi method. Furthermore, in (Perera and Li (2011)) a
hardware implementation of the PCA based learning algorithm
is presented. The implementation was carried out on a Xilinx
Vertex-6 based FPGA platform in which partial dynamic recon-
figuration is used to implement the mean and covariance steps
of PCA algorithm. Along with the feature reduction in an EN
system, an efficient classifier is required to discriminate the type
of gas. Therefore, in (Shi et al. (2008)) a Committee Machine
(CM) is proposed to identify the gases. The CM is based on
five commonly used classifiers including K Nearest Neighbors
(KNNs), MLP, Radial Basis Function (RBF), Gaussian Mixture
Model (GMM) and Probabilistic Principal Component Anal-
ysis (PPCA). Whereas, in (Brahim Belhouari et al. (2004)) a
gas recognition system is designed and executed on a processor
using the comparative analysis between the classification ob-
tained from the density model and the discriminant function.
The density estimator used KNN, GMM and Generative Topo-
graphic Mapping (GTM) based classifier, while RBF, MLP and
Generalized Linear Discriminant Analysis (GLDA) based clas-
sifier is used for determining the discriminant function. An-
other software implementation of an EN is presented in (Kim
et al. (2012)), eight commercial sensors are combined to cre-
ate a sensor array, Smoothed Moving Average (SMMA) is used
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to preprocess the data along with normalization to make the
data in a range between 0 and 1. In this solution, Genetic Algo-
rithm (GA) and Artificial Neural Network (ANN) are combined
to develop a Neural Genetic Classification Algorithm (NGCA).
A hardware implementation on both FPGA and Application-
Specific Integrated Circuit (ASIC) of an EN system that uses a
16-array sensor and based on PCA and Binary Decision Tree
(DT) is presented in (Li and Bermak (2011)). The conducted
literature review has shown that the EN systems have been im-
plemented either using a uniprocessor-based software approach
or a hardware-based implementation approach to accelerate the
slow software-based approach to meet the real-time require-
ment. Hardware platforms such as FPGAs have been used for
this purpose. With the emergence of novel platforms such as the
Xilinx Zynq which holds in the same chip a processor and an
equivalent of FPGA allows an efficient and quick hybrid based
implementation approach especially when associated with High
Level Synthesis (HLS) Tool. In a hybrid implementation, com-
putationally intensive blocks of the EN system can be executed
on hardware while the remaining non-complex tasks can be ex-
ecuted on a processor in a software manner. This approach will
not only reduce the power consumption of the hardware but
also will free more space in the FPGA part for other hardware
acceleration related tasks.

3. System Design

3.1. System Overview

The proposed EN system consists of three main parts as
shown in figure 1. The first part is for sensing where two types
of S nO2 based sensor array are evaluated. The first sensor array
is based on seven commercial Figaro sensors (Sensors (2015))
while the second is a 4 × 4 in-house fabricated sensor array
(Guo et al. (2007)). The second part of the EN system is for
dimensionality reduction where PCA is used to reduce the size
of the input vector without affecting the overall performance of
the system. The last part is the classification where a decision
is made to identify a given gas. For the proposed EN system,
a DT classifier is used in this part. It is worth mentioning that
the system has to be trained offline and tested online. The train-
ing is performed in MATLAB while the testing is done in both
MATLAB and on the Zynq platform where the EN is to be im-
plemented on.

3.2. Data Collection

Data collection is an important step which consists of the
gathering of the data required for training, testing and valida-
tion. The experimental setup used in the laboratory to collect
the data is shown in figure 2. It consists of a gas chamber where
the sensor array is placed. The gas chamber has two orifices,
one to serve as an input for the in-flow of gases and the other
one as an exhaust to evacuate the gases. Multiple gases are
stored in various cylinders and connected to the gas chamber
individually through several Mass Flow Controllers (MFCs). A
control unit is connected to the MFCs to control the in-flow of
gases and to the sensor array via a Data Acquisition (DAQ) sys-
tem to collect and sample the response of the sensor array. Two
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Fig. 1. Building blocks of the proposed EN system

Table 1. Sensors specifications
Sensors Target Gases Concentration Power

(ppm) (mW)
TGS826 NH3 30-300 833

TGS2442 CO 30-1000 14
TGS2600 H2 1-30 210
TGS2602 C2H6O 1-30 280
TGS2610 C4H10 & C3H8 500-10000 280
TGS2611 CH4 500-10000 280

TGS2620 Alcohol & 50-5000 210Solvent vapors

In-house 4x4

CO 25-260

352H2 25-800
C2H6O 50-200

CH4 500-5000

data sets are collected, one using the 4×4 in-house sensor array
and the other one using the seven Figaro sensors. Specifications
of the used sensors in terms of target gases, typical concentra-
tion detection range and power consumption are listed in table
1. It is worth mentioning that the target gases in the case of
the Figaro sensors illustrate the main gas that the sensor can de-
tect. However, the same sensor can detect multiple other gases.
As an example, carbon dioxide can be detected by many of the
mentioned Figaro sensors.

It is worth mentioning that the sensors starting by TGS are
the commercial Figaro sensors used to form a sensor array. The
layout of the 4 × 4 sensor is made of 16 sections organized in
four rows and four columns where each section represents one
sensor. To modify the response of the S nO2 sensing film for
each part, a post treatment is performed to improve the selec-
tivity by depositing various noble metal additives on the sens-
ing film. The post treatment is realized by metal doping and
ion implantation. Three noble metals (Platinum (Pt), Palladium
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Table 2. 4 × 4 sensor array post treatment scheme
Row Column 1 Column 2 Column 3 Column 4

1 N/A Pt Pd Au
2 B Pt/B Pd/B Au/B
3 P Pt/P Pd/P Au/P
4 H Pt/H Pd/H Au/H

(Pd) and Gold (Au)) are combined with three ions (Boron (B),
Phosphorus (P) and Hydrogen (H)). A summary of the post
treatment is shown in table 2.

Six different gases are targeted in total, two using the 4 × 4
sensor array (Carbon monoxide (CO) and Ethanol (C2H6O)),
three using the Figaro sensors (Carbon dioxide (CO2), Propane
(C3H8) and Ammonia (NH3)) and one common to both (Hy-
drogen (H2)). The choice of gases is for evaluation purpose,
specific gases can be targeted for specific applications where
the EN system can be easily adapted to handle new types of
gases. For the first data set, 60 patterns are collected using the
4 × 4 sensor array representing two cycles of 10 concentrations
(20, 40, 60, 80, 100, 120, 140, 180 and 200 parts per million
(ppm)) for the three gases (CO, C2H6O and H2). Before each
gas concentration injected for 250 seconds, air is injected for
750 seconds. For the second data set, 200 patterns are collected
using the seven Figaro sensors. 30, 40, 50 and 80 patterns are
collected for C3H8, CO2, NH3 and H2 respectively. Those pat-
terns are representing five cycles of eight concentrations (25,
50, 75, 100, 125, 150, 175 and 200 ppm) for CO2, while it
is representing three cycles, five cycles and eight cycles of 10
concentrations (25, 50, 75, 100, 125, 150, 175, 200, 225 and
250 ppm) for C3H8, NH3 and H2 respectively. Each injection
of C3H8 which lasts for 250 seconds was preceded by air injec-
tion for 500 seconds while each injection of CO2, NH3 and H2
which lasts for 500 seconds was preceded by an air injection for
750 seconds. The injection time is chosen to give enough time

to sensors to reach the baseline in the case of air and the Steady
State (SS) in the case of gas mixture. When sensors are exposed
to a given gas, the voltage measurement will settle at a specific
value, this value is called the SS. It is worth mentioning that the
sampling time for the 4x4 sensor array is one second while it
is 10 seconds for the Figaro based sensor. Part of the raw re-
sponses for one cycle of various concentration of H2 for both
sensors are shown in figure 3. H2 is chosen for comparison pur-
pose since it is the only common gas between the two sensors.
The voltage measurement of the 4 × 4 sensor array decreases
when exposed to the target gas while it increases for the Figaro
sensors.

3.3. Feature Extraction

There are various techniques to generate descriptive param-
eters from the raw responses of the sensors (Bermak et al.
(2006)). The most common used feature is the SS. SSs cor-
responding to all gases and concentrations are extracted manu-
ally form the data set by taking the values corresponding to the
end of each gas injection period. Figure 4 represents the SSs
generated in one cycle for both 4 × 4 and Figaro based sensors.
The SSs are organized in vectors of size 16 and 7 for the 4 × 4
sensor array and the 7 Figaro sensors respectively. The SSs are
then given to the system as an input. The other important val-
ues extracted from the raw signals are the baselines which are
used for drift compensation. When the gas chamber is flushed
with air, the voltage measurement of the sensor will settle at a
specific value, this value is called the baseline. Baselines are
also extracted manually form the data set by taking the values
corresponding to the end of each air injection period. It is worth
mentioning that 50% of the collected data is used for training
and the remaining 50% is used for testing.

3.4. Dimensionality Reduction Using PCA

The first step in the EN is the dimensionality reduction. The
aim is to reduce the number of features taken in consideration
which is the SSs in this case. The objectives are to reduce the
size of the input vector from 16 in the case of the 4 × 4 sen-
sor array and from 7 in the case of the Figaro sensors to two
or three without affecting the performance of the EN system.
The classification accuracy when dimensionality reduction is
applied should be higher or at least equal to the initial accuracy
when dimensionality reduction is not applied. This preprocess-
ing technique is very important since it reduces the computation
complexity considerably in most cases and it is also considered
as a feature selection technique which helps to increase the clas-
sification accuracy. PCA is one the most used techniques in EN
systems (Marco and Gutiérrez-Gálvez (2012)). PCA reduces
the dimensionality of the data by projecting it into a new space
where the axes are classified in a decreasing order of impor-
tance. The first principal components PCA1 which are corre-
sponding to the first axe are the ones that keep the most dissim-
ilarity between the samples of the data then followed by PCA2,
PCA3 . . . etc. As it can be seen in figure 1, there are two parts
when PCA is used as a dimensionality reduction technique. The
training part is performed offline while the testing one is exe-
cuted in both offline and online for verification purpose. The
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Fig. 3. Sensors responses for one cycle of H2

Fig. 4. Steady states for one cycle of H2

first step for the training part is to organize the collected train-
ing data set in an M × N matrix A as shown in equation (1).

A =


a11 · · · a1n
...

. . .
...

am1 · · · amn

 (1)

Where (amn ∈ R) such as the number of rows m represents
the dimension which is the number of sensors (16 for the 4 × 4
sensor array and 7 for the Figaro based sensor) and the num-
ber of columns n is the number of training samples (30 for the
4 × 4 sensor array and 100 for the Figaro based sensor). The
output of the sensor i at a given concentration for a given gas j
is represented by ai j. The mean µ̄i for each dimension is then
computed as shown in equation (2).

µ̄i =

∑n
j=1 ai j

n
(2)

The result is saved in a vector U of size m as shown in equa-
tion (3).

U =


µ̄1
...
µ̄m

 (3)

The following step is the normalization which consists of the
subtraction of the mean from each element and saving the result
in an M × N matrix B as shown in equation (4).

B =


a11 − µ̄1 · · · a1n − µ̄1

...
. . .

...
am1 − µ̄m · · · amn − µ̄m

 (4)

The third step in the PCA training is the computation of the
covariance M × N matrix COV according to equation (5).

COV =
B × BT

n − 1
(5)

Where BT is the transpose of B. The next and most com-
putationally intensive part of the PCA training algorithm is the
computation of eigenvalues and eigenvectors. It has been well
described in (Ait Si Ali et al. (2013)), the resulting M × M ma-
trix V (6) corresponds to the m eigenvectors of size m organized
in columns and in decreasing order of importance (vi1 are val-
ues of the most important eigenvector while vim are the values
of the last and least important eigenvector).

V =


v11 · · · v1m
...

. . .
...

vm1 · · · vmm

 (6)
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Finally, the m principal components are computed in the pro-
jection step using equation (7) and saved in M × N where VT is
the transpose of V .

PCA = VT × B (7)

Figure 5 shows the visualization of the training data set when
it is reduced from 16 dimensions in the case of 4×4 sensor array
and from 7 dimensions in the case of the Figaro based sensors
to two dimensions (PCA1 and PCA2) in both cases. The testing
part of PCA requires only two steps which are the normalization
and the projection, the computations are based on parameters
calculated and saved in the training phase, these parameters are
the vector of means and matrix of eigenvectors. Figure 6 shows
the visualization of the testing data set when it is reduced to two
dimensions.

3.5. Classification Using DT

The second block in the EN system is the classification us-
ing DT. The binary DT classifier is chosen for its simplicity,
yet with good performance. The input of the learning algo-
rithm is a set of labeled data and the output is a binary tree, it
is a supervised learning technique. The generated tree is used
for the classification of a new input. The classification process
starts at the root decision node of the tree and ends at one of
the leaf nodes which represents a specific class passing by in-
termediate decision nodes. The DT training is performed in
MATLAB using various scenarios. In other words, the training
is achieved and a tree is generated when the input of the classi-
fier is the SSs without preprocessing and dimensionality reduc-
tion and when dimensionality reduction is applied using various
combinations of PCAs. It is worth mentioning that the Delta
which is the difference between the SS and the baseline is also
considered as a feature for identification to overcome the sen-
sor drift problem which is considered as a drift compensation
technique (Gutierrez-Osuna (2002)). Sensor drift is one of the
major concerns in current gas sensors. Sensor drift is defined
as slow temporal variations of the sensor response when ex-
posed to the same mixture. The DT training algorithm requires
two inputs, one is the matrix of predictor values containing the
training dataset in terms of SSs, deltas or PCAs where rows rep-
resent observations and columns represent features. The second
input is a vector with the same number of rows as the matrix of
predictor. Each row of the vector represents the class of the
corresponding row of the matrix of predictor. It is worth men-
tioning that the classification problem deals with three classes
corresponding to three gases when the 4×4 sensor is used while
in the case of 7 Figaro sensors, four gases are used. A summary
of all scenarios and class labels are presented in table 3. Re-
sults of the training as well as details about the different DTs
are shown in tables 4, 5, 6 and 7. Those tables have been ob-
tained after performing the training and testing in MATLAB,
the tables show the classification accuracy for each tree which
is obtained using formula (8), the number of selected predic-
tors which correspond to the dimension that the generated tree
is using after training is performed and tree characteristics in
terms of nodes, leaves and depth. As an example for dimen-
sions, in table 4 it can be seen that the initial dimension for SS

Table 3. Classification dimensions and class labels
Type of sensor Dimension of inputs Class ID classification labels

4 × 4 16
1 Hydrogen (H2)
2 Carbon monoxide (CO)
3 Ethanol (C2H6O)

7 Figaro 7

1 Hydrogen (H2)
2 Carbon dioxide (CO2)
3 Propane (C3H8)
4 Ammonia (NH3)

Table 4. DTs for 4 × 4 sensor array using steady states with and without
PCA

DT characteristics Classification features
SS 2 PCAs 3 PCAs 4 PCAs 5 PCAs

Classification accuracy 73.33% 80% 90% 80% 80%
No. of predictors 16 2 3 4 5

No. of selected predictors 4 2 3 3 3
No. of trees nodes 9 11 9 7 7
No. of trees leaves 5 6 5 4 4

Tree depth 3 4 3 2 2

Table 5. DTs for 4×4 sensor array using delta between baselines and steady
states with and without PCA

DT characteristics Classification features
Delta 2 PCAs 3 PCAs 4 PCAs 5 PCAs

Classification accuracy 63.30% 83% 86% 96.66% 96.66%
No. of predictors 16 2 3 4 5

No. of selected predictors 4 2 3 3 3
No. of trees nodes 9 11 11 7 7
No. of trees leaves 5 6 6 4 4

Tree depth 3 4 4 2 2

is 16 while for two PCAs it is two. It is worth mentioning that
various combinations of PCAs are used to evaluate the perfor-
mance. However, it can be seen from tables 4, 5, 6 and 7 that
the training is performed for up to 5 PCAs for the 4 × 4 sensor
array and up to 4 PCAs for the Figaro sensors when the starting
point is the SS while the training is performed for up to 5 PCAs
for the 4 × 4 sensor array and up to 3 PCAs for the Figaro sen-
sors when the starting point is the Delta between the SS and the
baseline because it starts generating the exact same tree. The
accuracy is computed according to formula (8). The DT learn-
ing algorithm does not take in consideration all predictors for
the generated tree model in all cases. The algorithm will select
the best predictors to successfully classify all observations as it
can be seen in the tables. Furthermore, it can be noted that the
100% accuracy has been reached many times in the case of 7
Figaro sensors as mentioned in tables 6 and 7. When the SS are
used, the 100% accuracy is reached only when two PCAs are
being used as predictors. However, when the deltas are being
used, the 100% accuracy is reached in all cases with and with-
out PCA which results in the fact that in this particular scenario
PCA is not required as it does not improve the accuracy.

Accuracy =
Number of correct predictions
Number of testing observations

× 100 (8)

4. System Implementation

The Zynq System-on-Chip (SoC) platform is chosen for
the hardware acceleration of the gas identification system due
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Fig. 5. Dimensionality reduction using PCA1 and PCA2 for the training data

Fig. 6. Dimensionality reduction using PCA1 and PCA2 for the testing data

Table 6. DTs for 7 Figaro sensors using the steady states with and without
PCA

DT characteristics Classification features
SS 2 PCAs 3 PCAs 4 PCAs

Classification accuracy 99% 100% 99% 99%
No. of predictors 7 2 3 4

No. of selected predictors 3 2 3 3
No. of trees nodes 9 7 9 9
No. of trees leaves 5 4 5 5

Tree depth 4 3 3 3

Table 7. DTs for 7 Figaro sensors using Delta between steady states and
baselines with and without PCA

DT characteristics Classification features
Delta 2 PCAs 3 PCAs

Classification accuracy 100% 100% 100%
No. of predictors 7 2 3

No. of selected predictors 1 2 2
No. of trees nodes 7 7 7
No. of trees leaves 4 4 4

Tree depth 3 3 3

to its flexibility and suitability for a HW/SW co-design ap-
proach. The Xilinx Zynq-7000 all programmable SoC com-
bines a traditional FPGA based on Xilinx 7-series forming the
Programmable Logic (PL) with a dual core ARM Cortex-A9
processor forming the Processing System (PS). The PL is based
on Artix-7 or Kintex-7 with different variants. Details about
the Zynq-7000 all programmable SoC can be found in (Xilix
(2014d)). The combination of the PS and the PL inside the
same chip makes platforms based on the Zynq SoC suitable for
HW/SW co-design approach. Especially when associated with
Xilinx Vivado HLS tool, Vivado IP Integrator and Software
Development Kit (SDK) which will allow a high level of ab-
straction with benefits in terms of performance, cost and power
compared to a conventional FPGA or processor implementa-
tions. The starting point for a HW/SW co-design on the Zynq
SoC is the system design where all the desired requirements
and specifications of the top-level system and various subsys-
tems are set. The following stage is the software profiling where
a software code is executed in a processor and with the help of
a profiling tool such as GProf, computationally intensive parts
of the program can be identified. The designer can then decide
which parts are to be executed on hardware (i.e. PL ) and which
ones are to be executed on the ARM processor (i.e. PS). The
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third step consists of the design of the IP Cores for hardware
acceleration of the computationally intensive parts. IPs can be
designed using various approaches. One approach is the use of
Vivado HLS where the IPs are created and simulated using C,
C++ or SystemC and then exported. Another approach is the
use of Xilinx System Generator. The IPs can also be designed
using a hardware description language (HDL) such as VHDL
or Verilog directly. In all cases the IPs are exported and added
to Vivado IP Catalog. A hardware system is then created in
Vivado using IP Integrator where all blocks are interconnected
including Zynq SoC and the previously created IPs. The fol-
lowing stage is to export the hardware design to SDK, here a
software code is to be written and executed on PS. The soft-
ware corresponds to the parts of the design not implemented on
PL and also to manage the IPs implemented on the PL. The PL
is programed from SDK.

4.1. System Architecture

A simplified architecture of the EN on the Zynq SoC for a
HW/SW co-design implementation when used in the context of
a multisensing platform for gas application is shown in figure
7. This platform consists of a Radio Frequency Identification
(RFID) tag that contains a gas sensor and temperature sensor
the second part is the processing unit which is implemented on
the Zynq SOC. The third component is the RFID reader which
is connected to the processing unit to read and transmit data
from the RFID tag to the processing unit. PCA and DT are exe-
cuted on the PL while data acquisition and results visualization
blocks are executed in the PS. At this stage, while the RFID
tag is still under fabrication, data acquisition block is not im-
plemented and instead, data is stored in the processing system
and directly read from memory to be able to evaluate the sys-
tem within the Zynq board. The choice of RFID is due to the
fact that this paper is part of a larger ongoing research project
which aims at the development of a low power reconfigurable
self–calibrated multi-sensing platform for gas application. Part
of this project is the integration of a temperature and gas sensor
into an RFID tag. Sensors that can be integrated with RFID to
monitor physical and chemical parameters such as temperature,
pressure and gas are extremely critical for a very wide range
of applications in environmental monitoring, security, military
and more importantly in the gas industry. The integration of
sensors with RFID will allow the deployment of a new genera-
tion of smart devices leading to a massive wave of new emerg-
ing applications. Recently, a significantly increasing interest in
integrating sensors with RFID is being witnessed, leading to the
concept of sensor tag. A sensor tag is an RFID tag, which con-
tains a sensor to monitor physical parameters while supporting
the same identification function of a normal RFID tag.

4.2. System Implementation on the Zynq SoC using Vivado

The implementation of the EN based on PCA as a dimension-
ality reduction technique, and DT as a classifier on the Zynq
SoC using HLS requires many steps. First the system is de-
signed, simulated, evaluated and validated in MATLAB. Then
Vivado HLS is used to create the corresponding Register Trans-
fer Level (RTL) design for the system’s algorithm described in

Zynq SoC
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Fig. 7. EN system architecture

C. The next step is the hardware development performed in Vi-
vado using IP Integrator. The final stage is the software devel-
opment and FPGA programing realized in SDK. All versions of
HLS, Vivado and SDK used for the design and implementation
are the latest at the time of writing which is the 2015.1 one. The
prototyping board being used is the Zynq ZC702.

IP Design Using Vivado HLS. First of all, the C source code
corresponding to the gas identification system is written. The
code consists of a function called “Predict”. The input of the
function is a vector of 16 floating-point elements in the case of
the 4 × 4 sensor array and 7 floating-point elements in the case
of the Figaro sensors. The output of the function is an integer:
“1” for CO, “2” for C2H6O and “3” for H2 in the case of 4 × 4
sensor array. On the other hand, it is “1” for C3H8, “2” for
CO2, “3” for H2 and “4” for NH3 in the case of Figaro sensors.
Within the function the vector of means and required eigenvec-
tors are declared and initialized, only needed eigenvectors are
stored. The vector of means is used for normalization. The
normalization consists in the subtraction of each mean from the
corresponding value of the input vector. The projection consists
of the multiplication of the normalized vectors by the eigenvec-
tors of same size, the resulting floating-point values are used by
the DT to classify the input. The DT takes the form of a succes-
sion of If and Else statements resulting in the output being “1”,
“2” or “3” for the 4×4 sensor array and “1”, “2”, “3” or “4” for
Figaro sensors. Algorithm 1 shows the pseudo code written for
one of the four solutions implemented in HLS.

A second C file is needed for testing since in Vivado HLS the
testbench is also written in C. The C testbench takes the form
of the main C function that will execute the “Predict” function
and self-check the results. It is worth mentioning that Vivado
HLS allows the user to export the IP to IP Catalog (For Vivado),
Pcore (For Embedded Development Kit (EDK)) or system gen-
erator. Drivers related to the designed piece of hardware are
included in the IP package. They will be used by the software
managing the core from the processor. Different optimization
directives are applied including loop unrolling, array partition-
ing and pipelining. The first “Unroll” directive applied to the
loop where the mean and projection are computed is very pow-
erful. It allows loops to be executed in parallel having dedi-
cated hardware resources for each loop. Each array in the func-
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Algorithm 1 E-Nose (PCA+DT) Prediction Algorithm
Input: Sensor Array responses X[16]
Output: Gas ID: ”1” for CO, ”2” for C2H6O and ”3” for H2

1: function Predict(X)
2: Mean[16] ← The means of each dimension computed

in the training phase of PCA
3: Eigen1[16] ← The Eigenvector corresponding to the

1st dimension of PCA
4: Eigen2[16] ← The Eigenvector corresponding to the

2nd dimension of PCA
5: Eigen3[16] ← The Eigenvector corresponding to the

3rd dimension of PCA
6: PCA1← 0
7: PCA2← 0
8: PCA3← 0
9: for i = 0 to 16 do . Next is computation of PCA1,

PCA2 and PCA3
10: X[i]← X[i] − Mean[i] . PCA normalization
11: PCA1← PCA1 × Eigen1[i] . PCA projection
12: PCA2← PCA2 × Eigen2[i]
13: PCA3← PCA3 × Eigen3[i]
14: end for
15: if PCA3 < 0.134946 then . next is Decision Tree

Model
16: if PCA2 < 0.177746 then
17: if PCA1 < 3.63144 then
18: Gas ID← 2
19: else
20: Gas ID← 1
21: end if
22: else
23: Gas ID← 1
24: end if
25: else
26: if PCA1 < 4.31419 then
27: Gas ID← 3
28: else
29: Gas ID← 1
30: end if
31: end if
32: end function

tion can be considered as one entity having limited data ports
for data transfer or multiple entities using the “Array Partition”
where each entity is having its own data ports. “Array Partition”
is applied to the input array which results in the breakdown of
the array into various sub arrays. The “Pipeline” directive is ap-
plied to the top level function “Predict” to allow pipelining of all
instructions and sub function existing inside. The last directive
which is “AXI Lite” is very important since it will help inter-
connecting the IP core designed in Vivado HLS for an imple-
mentation in the PL with the Zynq PS. The “AXI Lite” directive
is applied to the top function “predict” under “Resource” and to
the input array along with the output variable under (Interface).
Details about Vivado HLS can be found in (Xilix (2014c)).

Hardware Design Using IP Integrator in Vivado. The hard-
ware block design when using Vivado IP Integrator is shown in
figure 8. It is worth mentioning that when creating the block de-
sign in IP Integrator, the Zynq PS IP and the HLS IP are added
manually while two extra IPs are automatically added to the
design (Processor System Reset and AXI Interconnect) when
running the block and connection automation. All interconnec-
tion between different blocks are also made. In total, four IPs
are used. The first one is the “ZYNQ7 Processing System”, it is
for configuration purpose only and will not be implemented on
the PL, it is actually corresponding to the fixed PS on the Zynq
chip, anything related to the PS is to be specified in this IP. The
second IP called “Predict” is the one designed, simulated and
exported in HLS, it is corresponding to main blocks of the EN
which are PCA and DT. The third IP named “AXI Interconnect”
is used to interconnect an AXI memory mapped master device
which the PS in our case with a memory mapped slave device
which is the AXI-Lite compatible HLS core called “Predict” in
this solution. The last IP which is the “Processor System reset”
provides a customized resets for the entire system including the
PS, the AXI interconnect core and the Predict core from HLS.
The block design can be seen in figure 8. Details about Vivado
IP Integrator can be found in (Xilix (2014a)).

Software Design Using SDK. SDK is used for software de-
velopment, an application to get the basic setting and initial-
ization of the platform including the Universal Asynchronous
Receiver/Transmitter (UART) to print results in the terminal is
created. The C source code is then modified to read/write data
from/to the HLS core implemented on the PL. The communica-
tion with the hardware present in the PL is performed by call-
ing some read and write data functions that exist in driver files
which were automatically created and exported for various Op-
erating Systems (OS) including Linux and the lightweight Stan-
dalone OS. Details about SDK can be found in (Xilix (2014b)).

5. Implementation Results and Analysis

5.1. HLS Results and Analysis

The implementation of the EN on the Zynq SoC is performed
and evaluated for the best four scenarios corresponding to the
simulation done in MATLAB. The first one is done when the
EN is based on the 4x4 sensor array and the input is the SSs, in
this case the best solution with the highest accuracy of 90% is
when the dimensionality reduction is applied and PCA 1, 2 and
3 are used as predictors. Results of the implementation in terms
of resources used, clock cycle and latency are shown in table 8.
The second scenario is when the EN is also based on the same
4×4 sensor array. However, the input of the system is the Delta
between the SSs and the baseline. In this case the best solution
with an accuracy of 96.6% is when the dimensionality reduc-
tion is applied and PCA 1, 2 and 4 are used as predictors. The
results of this implementation are shown in table 9. The third
scenario is when the EN is based on the 7 Figaro sensors and
the input is the SSs. The best 100% accuracy is obtained when
dimensionality reduction is applied and PCA 1 and 2 are used
as predictors. The results of this implementation are shown in
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table 10. The fourth and last scenario is when the EN is based
on the 7 Figaro sensors and the input is the Delta between the
SSs and the baseline. The best solution with an accuracy of
100% is obtained in all cases, with and without dimensional-
ity reduction. The solution without dimensionality reduction is
chosen because the generated decision tree uses the output of
one sensor only as a predictor and ignores the others which re-
duce the computation. The results of this implementation are
shown in table 11.

Table 8. Hardware usage and performance results for EN based on 4 × 4
sensor array using steady states (without drift compensation) and PCA 1,
2 and 3

Hardware resources
and performance

Optimization directives
Without Unroll Array Partitioning AXI Lite

Directives Loops and Pipelining Interface
BRAM 18K 0 0 0 8

DSP48E 15 15 136 68
FF 2089 1989 14730 9803

LUT 3925 4830 27208 14676
Max frequency (MHz) 142 142 142 142
Latency (clock cycles) 261 95 94 96

As it can bee seen from tables 8, 9, 10 and 11 a step-by-
step optimization strategy has been used. Each table contains
four columns where the first one is to show the implementa-
tion results when the defaults HLS settings are used and none
of the optimization directives is applied. The second one shows
the obtained results when the loops are unrolled for a better la-
tency. It is worth mentioning that in the scenario presented in
table 11 the corresponding C code does not have any loop, this
is why the unroll directive is not applicable. The third column
shows the obtained results when the input array corresponding

Table 9. Hardware usage and performance results for EN based on 4 × 4
sensor array using the Delta for drift compensation and PCA 1, 2 and 4

Hardware resources
and performance

Optimization directives
Without Unroll Array Partitioning AXI Lite

Directives Loops and Pipelining Interface
BRAM 18K 0 0 0 8

DSP48E 15 5 136 68
FF 1793 1433 14729 9804

LUT 3314 2980 27075 14670
Max frequency (MHz) 142 142 142 142
Latency (clock cycles) 261 179 94 95

to the sensors data is partitioned and the entire code is pipelined
when possible. The last column is to show the final results
when the AXI lite encapsulation is used which will make the
interconnection of the HLS designed IP with the PS possible
via AXI-Interconnect. The gradual improvement in terms of la-
tency and interval can be easily seen. It is worth mentioning
as well that most of LUTs, flip-flops and DSP48E are used to
create the instances of the proposed architecture corresponding
to the C code including adders, multipliers and AXI interfaces.
The other few LUTs and flip-flops are used for multiplexers,
expressions or registers. Most of the resources are used for the
implementation of PCA and the remaining few for DT. HLS
converts the C Code to a successions of control and operation
steps where each of them take a given number of clock cycles.

5.2. Hardware Implementation Analysis

Figure 9 shows the chip layouts of the implemented designs
on the Zynq SoC for the four best EN solutions using HW/SW
co-design approach with a single ARM processor running at
667 MHz and the programmable logic running at 142 MHz.
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Table 10. Hardware usage and performance results for EN based on Figaro
sensors using steady states (without drift compensation) and PCA 1 and 2

Hardware resources
and performance

Optimization directives
Without Unroll Array Partitioning AXI Lite

Directives Loops and Pipelining Interface
BRAM 18K 0 0 0 0

DSP48E 10 10 84 84
FF 1640 1533 8387 8721

LUT 3042 3327 14764 15316
Max frequency (MHz) 142 142 142 142
Latency (clock cycles) 117 50 46 46

Table 11. Hardware usage and performance results for EN based on Figaro
sensors using the Delta for drift compensation without PCA

Hardware resources
and performance

Optimization directives
Without Unroll Array Partitioning AXI Lite

Directives Loops and Pipelining Interface
BRAM 18K 0 N/A 0 0

DSP48E 0 N/A 0 0
FF 303 N/A 560 666

LUT 764 N/A 1637 1805
Max frequency (MHz) 142 N/A 142 142
Latency (clock cycles) 4 N/A 2 2

The presented solutions are summarized in table 12 where the
mentioned execution time exclude the time spent by the IP core
to access the memory to read and write data. It is worth men-
tioning that figure 9 illustrates the full implemented designs that
include the IP core designed in HLS which takes the biggest
part of the resources used as shown in white as well as the other
two small IPs (Processor system reset and AXI interconnect)
shown in blue. It can be seen that in the case of the 4 × 4 sen-
sor similar amount of resources are used in both solutions (with
and without drift compensation), using drift compensation im-
proved the identification accuracy from 90% to 96.66%. How-
ever, this will involve periodic calibration to be able to update
the baselines for each sensor used for the computation of the
deltas which might be required in critical applications where ac-
curacy specification is higher. In the case of the Figaro sensors
the big difference in the amount of resources used between both
solutions (with and without drift compensation) is explained by
the fact that PCA is not applied when drift compensation tech-
nique is used. This is due to the DT alone being able to provide
the similar 100% accuracy. However, this is at the cost of pe-
riodic calibration as well. It can also be seen in table 12 that
the set of Figaro sensors outperform the in-house ones in terms
of accuracy and execution time. Better accuracy is explained
by the good response to target gases for Figaro keeping in mind
that the in-house one consumes less power, is smaller in size
and is made to be integrated into an RFID tag. Better execution
time is explained with the fact that in the case of Figaro only 7
sensors are used while it is 16 in the case of the in-house one. In
addition, in the last scenario PCA is not used at all. Therefore,
the projection is not performed which saves time.

5.3. Power Consumption and Analysis

There are two types of on-chip power consumption which
are the device static and the dynamic. The device static power
consumption is related to transistor leakage dissipated on-chip
from sources of voltage when the device is switched off with a

(a) (b)

(c) (d)

Fig. 9. Chip layouts. (a) 4 × 4 In-house sensor (Steady states). (b) 4 × 4
In-house Sensor (Delta). (c) 7 Figaro sensor (Steady states). (d) 7 Figaro
sensor (Delta)

Table 12. Summary of best EN solutions implemented on the Zynq SoC
using a single ARM processor running at 667 MHz and the PL running at
142MhZ

EN Characteristics Type of sensor array
In-house 4x4 7 Figaro

System input Steady states Delta Steady States Delta
PCA Yes Yes Yes No

Feature for- PCA 1,- PCA 1,- PCA 1- 7 steady-
-classification -2 and 3 -2 and 4 -and 2 -states

Accuracy 90% 96.66% 100% 100%
Latency (clock cycles) 96 95 46 2

Execution time (µs) 3.46 3.85 1.81 0.55

power supply connected to it or when the device is switched on
and not being used, it is device dependent and not related to the
implemented design, it varies with process, voltage and junc-
tion temperature. The dynamic on-chip power consumption is
related to the implemented design and it is consumed by fluc-
tuating power as the implemented design runs, which includes
PS power, clocks power, signals power, logic power, BRAM
power and DSP power. Details about dynamic on-chip power
consumption for the implemented EN systems are shown in fig-
ure 10. It can be seen in figure 10 that the PS consumes much
more power than the PL, this is due to the fact that the ARM
dual core Cortex-A9 based PS has much higher running fre-
quency than the PL and it runs drivers and control programs. It
can also be seen in figure 10 that within the PL, the HLS design
is the portion that consumes most of the power in all scenarios
except in the case of Figaro sensors where PCA is not used and
where the design corresponds only to the decision tree model.
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(b)

(a)

Fig. 10. Dynamic power consumption for the EN based on both 4×4 sensor
array and 7 Figaro sensors. (a) Zynq PS/PL power consumption. (b) Power
consumption within the Zynq PL

6. Conclusion

In this paper, an EN system based on PCA as a dimension-
ality reduction and DT as a classifier is presented. A compara-
tive study is performed for the deployment of an In-house fab-
ricated 4 × 4 sensor array over 7 commercial Figaro sensors.
Results from the comparison have shown how modifying the
type of sensor can have a positive impact on the performances
of the EN in terms of accuracy and execution time. Simu-
lations and training are performed in MATLAB environment
while the hardware implementation is realized on the hetero-
geneous Zynq SoC platform. A HW/SW co-design approach
using high level synthesis is chosen over a conventional imple-
mentation on FPGA using HDL or on a processor. Different
scenarios are evaluated in MATLAB. However, only the best
solutions that provide the highest accuracy in term of classifi-
cation are implemented on the Zynq SoC. The interconnection
between the two parts of the Zynq platform are realized via an
AXI4-Lite interface. Results from the hardware implementa-
tion on the Zynq SoC show that real-time performances can be
achieved for proposed EN systems using hardware/software co-
design approach with a single ARM processor running at 667
MHz and the programmable logic running at 142 MHz. In Ad-
dition, the PL is consuming much less power compared to the
PS. Ongoing research is focusing on the design and implemen-
tation of new classifier using different PS-PL interfaces.
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