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Abstract: 

In this paper, mechanisms behind enhancement of catalytic activity of MoS2 mono-layer for 

hydrogen evolution reaction (HER) by mechanically applying mechanically bending strain was 

were investigated using density functional theory. Results showed that with the increase of 

bending strains, the Gibbs free energy for hydrogen adsorption on the MoS2 mono-layer was 

decreased from 0.18 to -0.04 eV and to 0.13 eV for the bend strains applied along the zigzag 

and armchair directions, respectively. The mechanism for improvement of the enhanced 

catalytic activity comes from the changes of density of electronic states near the Fermi energy 

level, which are induced by the changes of the Mo-S and Mo-Mo bonds upon bending. This 

report provides a new design methodology to improve the catalytic activity of catalysts based 

on two-dimensional transition metal dichalcogenides based catalysts through a simple 

mechanical bending. 
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1. Introduction 

The current world-wide energy crisis world-wide is complicated by the limited supply of fossil 

fuel and environmental concerns associated with emission of carbon dioxide from burning 

fossil fuels. Therefore, it is urgent to explore large-scale non-fossil alternatives of  clean 

energy sources. Hydrogen, one of the most abundant elements in the universe, is considered to 

be one of the most promising alternatives to carbon-based fuels (Dunn, 2002). However, 

hydrogen does not naturally exist in large quantities or high concentrations, and must be 

produced from the other compounds, including fossil fuels (Xia, Zhao, Ye, & Wang, 2014). 

Water splitting is one of the most promising methods for mass production of hydrogen (Deng 

et al., 2014; Jaramillo, Jørgensen, et al., 2007; Laursen, Kegnæs, Dahl, & Chorkendorff, 2012; 

Y. Li et al., 2011), and the key component in the electrochemical reduction splitting of water is 

the efficient catalyst for hydrogen evolution reaction (HER) (H. Pan, 2014).  Platinum group 

noble Noble metals such as platinum are well-known superb catalysts for electrolysis of water, 

however, their scarcity and high cost limit their wide-spread usages to produce hydrogen (Fang 

& Liu, 2009; Jiang, Myer, Tellefsen, & Pau, 2009; Kye et al., 2013; Skúlason et al., 2010; J. 

Zhang, Sasaki, Sutter, & Adzic, 2007; T. Zhang & Anderson, 2007). Therefore, many 

researchers have tried to search and design synthesize new catalysts composed of cheaper 

materials, or using to use micro- or nano-structured compounds and multi-elements-alloys (An, 
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Fan, Luo, & Lau, 2017; Chen et al., 2016; C. Tsai, Abild-Pedersen, & Norskov, 2014) for 

electrochemical HER.  

 Monolayer transition metal disulfides (such as MoS2) are considered to be a promising 

electro-catalyst for HER. The transition metal disulfides show several types of crystal structures, 

including 2H (hexagonal structure), 1T (octahedral structure) and 1T' (distorted octahedral 

structure) structures (Qian, Liu, Fu, & Li, 2014; Song, Park, & Choi, 2015; Wypych & 

Schollhorn, 1992), strongly depending strongly on the arrangement of S and transition metal 

atoms. 2H-MoS2 is semiconducting in nature, whereas the 1T-MoS2 is metallic-like (Damien 

Voiry, Maryam Salehi, et al., 2013). 2H-MoS2 shows a poor catalytic activity and the active 

sites are only located at Mo-terminated edge sites (Jaramillo, Jorgensen, et al., 2007). The basal 

planes of the 2H-MoS2 are inert for HER. Although 1T-MoS2 shows a better catalytic 

performance for the HER, it is metastable at room temperature (Capitani et al., 2013; Enyashin 

et al., 2011; T. Hu, R. Li, & J. Dong, 2013; Lin, Dumcenco, Huang, & Suenaga, 2014; Damien 

Voiry, Maryam Salehi, et al., 2013). 1T-MoS2 phase will transfer into 1T'-MoS2 phase during 

HER process (G. Gao et al., 2015), and this phase transformation can be used to enhance the 

catalytic activity of the MoS2 (G. Gao et al., 2015). Doping is a commonly used method to 

improve the catalytic performance of MoS2 (Deng et al., 2015; B. B. Li et al., 2015; Charlie 

Tsai, Chan, Nørskov, & Abild-Pedersen, 2015a; Wang et al., 2015), however, doping elements 

are often noble metals which need expensive synthesis equipment such as plasma device 

synthesis or a well-controlled chemical vapor deposition process (Deng et al., 2015; B. B. Li et 

al., 2015; Charlie Tsai et al., 2015a; Wang et al., 2015).  
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Mechanical bending strain has frequently been used to modulate the bandgap of MoS2 

(Lloyd et al., 2016) and gas adsorption on MoS2 (Sahoo, Wang, Zhang, Shimada, & Kitamura, 

2016). It can cause changes of the bond lengths and will significantly affect the density of 

electronic states near the Fermi energy level, thus can could enhance the catalytic performance 

of MoS2. Therefore, in this work, we investigated the catalytic activity of basal plane of the 1T'-

MoS2 tuned by applied mechanical strain using density functional theory (DFT) calculations. 

Calculated results show that the mechanical strain can dramatically affect the HER. The 

catalytic activity of 1T'-MoS2 for HER can be enhanced by applying the mechanical strain. This 

study provides a rational design methodology to improve catalytic activity of catalysts based 

on two-dimensional transition metal disulfides based catalysts. 

 

2. Computational details 

The catalytic behaviors of 1T'-MoS2 were studied using spin-polarized DFT as 

implemented in the Vienna ab initio simulation package (VASP) code (Kresse & Furthmüller, 

1996; Tong, Zhang, Zhang, Liu, & Liu, 2014). The projector-augmented wave (PAW) method 

and the generalized gradient approximation (GGA) with the Perdew-Burk-Ernzerhof (PBE) 

functional (Perdew, Burke, & Ernzerhof, 1996) were used to describe electron-ion interactions 

and exchange-correlation, respectively. Plane-wave basis sets with an energy cutoff of 520 eV 

were used.  

A 6×6 supercell was used to model the monolayer 1T'-MoS2, which includesd 36 Mo and 

72 S atoms, respectively. k-point mesh (2×2×1) of Monkhorst-Pack was used for the integration 
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of Brillouin zone (Pack & Monkhorst, 1977). Two mechanical bending conditions were 

considered, i.e. along zigzag and armchair directions. In order to use the periodic boundary 

conditions, we used the rippled supercells as shown in Figs. 1a and 1b to represent mechanical 

bending applied along zigzag and armchair directions, respectively. The supercells contain 162 

and 192 atoms for the zigzag and armchair mechanical bending, respectively. The mechanical 

strain was realized by bending the MoS2 monolayer as shown in Fig. 21. The mechanical strain 

was quantified by using a simple kinetic equation: RT  / , where T indicates the peak (or 

valley) thickness and the R indicates the mechanical bending radius of the monolayer MoS2 (Lee, 

Jang, Han, & Baik, 2014). Different mechanical strains can be applied with different values of 

bending radius. 

Since the 1T'-MoS2 is composed of three atomistic layers, the outside layer is subjected to 

tensile strain, whereas the inside layer is subjected to compressive strain. The previous study 

showsed that the tensile strain is was beneficial for improvement of the catalytic activity [40]. 

We only considered the adsorption of H at the outside layer when the mechanical bending was 

applied on the 1T'-MoS2, as shown in Fig. 1. During the simulation, all atoms were allowed to 

relax freely using the conjugate gradient approximation (CG) until the force on each atom was 

less than 0.02 eV/Å. In order to avoid the periodic image interactions between the bending 

structure of 1T'-MoS2 monolayers, the distance between layers was separated by 30 Å vacuum 

space. 

The Gibbs free energy HΔG  was calculated using equation (1), which can was used to 

compare characterize the HER activity of materials. 
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H H ZPE HΔ Δ Δ ΔG E E T S                            (1) 

where HΔS  and ZPEΔE  are the entropy difference and zero-point energy difference  

between the adsorbed state and the gas phase of hydrogen, respectively. HΔS  is usually 

approximated as 
2H H

1
Δ

2
S S , where the 

2HS  is entropy of gas phase hydrogen at 300 K with 

an atmospheric pressure of 1 bar. HΔE  is the hydrogen chemisorption energy, which can be 

calculated using equation (2). 

 H 2 2 2

1
Δ (MS H) (MS ) (H )

2
E E E E                       (2) 

where 2(MS H)E   and 2(MS )E  are the total energy of MoS2 with and without hydrogen 

adsorption, respectively. 2(H )E  is the total energy of a molecule hydrogen under the gas 

phase. The value of ZPE HΔ ΔE T S  is was reported to be about 0.24 eV (Nørskov et al., 2005; 

H. Pan, 2016; Hui Pan, Feng, & Lin, 2010; Damien Voiry, Hisato Yamaguchi, et al., 2013). 

Therefore, the Gibbs free energy of hydrogen adsorption can bewas calculated using

H HΔ Δ 0.24G E  . 

 

3. Results and discussion 

The calculated lattice constants are a=3.192 Å, b=6.542 Å for 1T'-MoS2, which are close 

to previously reported calculated values of a=3.175 Å, b=6.543 Å for the 1T'-MoS2 (Ting Hu, 

Rui Li, & Jinming Dong, 2013). Side-view and top-view of the two dominant adsorption sites 

for the H atoms are shown in Fig. 2, and they are the preferable adsorption sites for hydrogen 

reported in many references (Chou et al., 2015; G. Gao et al., 2015; H. Pan, 2014; Putungan, 

Lin, & Kuo, 2015).  
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The HER generally proceeds via two key steps. The first step is Volmer step in which the 

H atoms are bound to the catalyst site (*) ( + - *H +e +*=H ). Jiao et al. (M.-R. Gao et al., 2015) 

have proven that the Volmer step is the rate-determining of HER on the MoS2. The second step 

is the Heyrovsky (Skulason et al., 2007) or Tafel step (Skúlason et al., 2010), in which 

molecular hydrogen is released and leaves the catalyst site ( * + -

2H +H +e =H +*
 

or 

*

22H =H +2*). Tang et aland Jiang. (Tang & Jiang, 2016) have reported that the Heyrovsky 

reaction (activation energy ∼0.62 eV) has a relatively much lower barrier than the Tafel 

reaction (activation energy ∼1.07 eV) for the hydrogen desorption process, hence, the HER 

occurs mainly via the Volmer-Heyrovsky mechanism on 1T-MoS2 monolayer. The Gibbs free 

energy ( HΔG ) of H atom adsorbed on the materials is often used to characterize the HER 

activity of materials. According to thermodynamics, the materials will show their best catalytic 

activity with H 0G   (Greeley, Jaramillo, Bonde, Chorkendorff, & Nørskov, 2006; Jiao, 

Zheng, Jaroniec, & Qiao, 2015; Schmickler & Trasatti, 2006). If H 0G  , the hydrogen will 

be difficult to bind with the catalyst, whereas if H 0G  , the hydrogen is strongly adsorbed 

on the catalyst which can hinder release of the molecular hydrogen.  

There are two types of S atoms in 1T'-MoS2 monolayer, i.e. Sc and St atoms, which have 

shorter and longer Mo-S bonds, respectively. Sc and St atoms can be assumed equivalent to S 

atoms subjected to compressive and tensile stresses, respectively (Chou et al., 2015; G. Gao et 

al., 2015; H. Pan, 2014; Putungan et al., 2015; Charlie Tsai, Chan, Nørskov, & Abild-Pedersen, 

2015b). The Gibbs free energies are 0.82 and 0.18 eV for H adsorption at the Sc and St sites on 

1T'-MoS2, respectively, which agree with previously reported calculation results of 0.82 eV and 
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0.19 eV (Putungan et al., 2015; D. Voiry et al., 2013). Based on the above results, the St site is 

more catalytic active than the Sc site for H adsorption on the basal plane. However, the Gibbs 

free energy for the Sc site is still higher than 0.19 eV. Whereas the Gibbs free energy for H 

adsorption on the 1T'-MoS2 monolayer is much smaller than that on 2H-MoS2 monolayer with 

ΔGH=2.16 eV [14], indicating the 1T'-MoS2 monolayer is more catalytic activate which agrees 

with the experimental observations (Damien Voiry, Maryam Salehi, et al., 2013).  

To get an insight intoinvestigate the mechanism of improved catalytic activity, we 

analyzed the changes of bond evolution during bending of MoS2. There are two types of Mo-S 

bonds for each S atom as shown in Fig. 2. Symbols of bt1 and bt2 denote the Mo-S bonds for 

the S atom located at the St sites, and symbols of bc1 and bc2 denote those for S atoms at the 

Sc sites. Results show that bt1=2.48 and bt2=2.52 Å for S at St sites, and bc1=2.39 and 

bc2=2.43 Å for S at Sc sites. The bonds are longer for S at St sites than those at the Sc sites. 

Comparing the different catalytic activities of Sc and St atoms, the S atoms subjected to tensile 

strain could generate an improved catalytic activity. 

The adsorption of H on 1T'-MoS2 with different bending strains was investigated. Fig. 3a 

shows the Gibbs free energy of hydrogen adsorbed at the Sc and St sites as a function of bending 

strain. The Gibbs free energy decreases from 0.82 to 0.43 eV as the bending strain is increased 

from 0 to 9.89% when the hydrogen atom is adsorbed at Sc site and the 1T'-MoS2 is subjected 

to a bending along the armchair direction. At the same bending strain, the Gibbs free energy 

decreases from 0.18 to 0.12 eV when the hydrogen atom is adsorbed at St site on the 1T'-MoS2. 

Clearly the bending strain has an obvious influence when the H atom is adsorbed at the Sc site 
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on 1T'-MoS2 when the bending is along the zigzag direction. The obtained Gibbs free energy 

is decreased from 0.18 to -0.04 eV, which is very close to the best value of H 0G  .  

Figs. 3b and 3c show the lengths of Mo-S bonds as a function of bending strain as the 

bending is applied along the zigzag and armchair directions, respectively. The bond lengths 

increase with the increase of bending strain. For example, as when the bending strain is 

increased from 0.0% to 9.55%, the values of b1t and bt2 are increased from 2.48 and 2.52 Å to 

2.52 and 2.54 Å, respectively, when the bending is applied along the zigzag direction. 

With the change of Mo-S bond, the distance between adjacent metal atoms also changes. 

There are two types of Mo-Mo bonds in 1T'-MoS2 as shown in Fig. 2, which denoted as b1 and 

b2, respectively. The calculated Mo-Mo distances are 2.78 and 3.19 Å for the 1T'-MoS2 for b1 

and b2 which agree well with previously reported values of 2.77 and 3.18 Å (Chou et al., 2015). 

As shown in Fig. 3d, the two different Mo-Mo bond lengths all increase with the increase of 

bending strain. As the bending strain is increased to 9.55%, the value of b1 is increased from 

2.78 to 2.82 and that of b2 from 3.19 to 3.22 Å when the bending is applied along the zigzag 

direction.  

From the above results, clearly the improvement of the catalytic activity shows a strong 

dependence on of the Mo-S and Mo-Mo bonds on the bending strain on the Mo-S and Mo-Mo 

bonds. The changes of the Mo-S and Mo-Mo bond lengths can significantly affect the density 

of electronic states near the Fermi energy level of the MoS2, thus affect its electrochemical 

activities. 
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Fig. 4 shows partial density of states (PDOS) for pristine 1T'-MoS2 (Fig. 4a) and those 

1T'-MoS2 bent along zigzag direction with a bending strain of 9.55% (Fig. 4b) and those of 1T'-

MoS2 bent along armchair direction with a bending strain of 9.89% (Fig. 4c). The pristine 1T'-

MoS2 shows a non-metallic behavior with a bandgap of 0.3 eV, which is close to the previously 

reported value of 0.375 eV (Ting Hu et al., 2013). The valence bands and conduction bands 

near the Fermi energy level mainly come from the 3p orbitals of S atoms and 4d orbitals of Mo 

atoms. Upon bending, the hybridization between Mo d-orbitals and S p-orbitals increases, and 

accordingly the valence band and conduction band of 1T'-MoS2 move upward and downward 

in energy values, respectively. The increased density of states near the Fermi energy level will 

facilitate the supply of electrons to the adsorption sites of 1T'-MoS2, thus resulting in the 

improvement of its catalytic activity. 

The Gibbs free energy of hydrogen adsorption on the mechanically bent MoS2 is close to 

that of hydrogen adsorbed on the Mo-edge of the MoS2 (C. Tsai et al., 2014; Wang et al., 2015), 

noble metals (Skúlason et al., 2010) and composite nano-materials (C. Tsai et al., 2014). The 

HER activity of MoS2 monolayer can be enhanced by the mechanical bending. Therefore, we 

can conclude that mechanical bending can be used as an efficient way for the improvement of 

HER activity of two-dimensional transition metal dichalcogenides. The bending strain can be 

realized by deposition of 1T'-MoS2 on flexible substrates, such as polymethyl methacrylate to 

apply controllable and reproducible strains on the 1T'-MoS2 (He, Poole, Mak, & Shan, 2013).  

 

4. Conclusion 
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    In summary, we have studied the catalytic behavior of 1T'-MoS2 under mechanical 

bending using DFT. Gibbs free energy, a key parameter to describe the HER activity of the 

materials, was calculated for hydrogen adsorbed on pristine and bent 1T'-MoS2, with different 

bending strains. Gibbs free energy is was decreased from 0.18 to -0.04 eV with the increase of 

bending strain from 0 to 9.55% as the bending applied along the zigzag direction. We concluded 

that the improvement of the catalytic activity comes from the density of electronic states near 

the Fermi energy level, which is induced by the change of the Mo-S and Mo-Mo bonds. This 

report provides a new methodology to improve the catalytic activity of catalysts based on two-

dimensional transition metal dichalcogenides based catalysts through simple mechanical 

bending. 
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Lists of figures captions: 

Figure 1 Top- and side-views of atomistic configurations of 1T'-MoS2 bended along (a) zigzag 

and (b) armchair directions. 

 

Figure 2 Top and side views atomistic configurations of 1T'-MoS2. 

 

Figure 3 (a) Gibbs free energy of hydrogen adsorbed at the Sc and St sites on 1T'-MoS2 as a 

function of bending curvatures. Bond lengths of Mo-S as a function of bending strain when the 

bending loaded along the (b) zigzag and (c) armchair directions. And (d) Mo-Mo bond lengths 

as a function of bending strain. 

 

Figure 4 Partial density of states (PDOS) for (a) pristine 1T'-MoS2 and those for bended 1T'-

MoS2 along (b) zigzag direction with bending strain of 9.55% and (c) armchair direction with 

bending strain of 9.89%. 
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