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Abstract 

Biometric based security systems are becoming an integral part of many security 

agencies and organisations. These systems have a number of applications ranging 

from national security, law enforcement, the identification of people, particularly for 

building access control, the identification of suspects by the police, driver’s licences 

and many other spheres. However, the main challenge is to ensure the integrity of 

digital content under different intentional and non-intentional distortions; along with 

the robustness and security of the digital content.  

 

This thesis focuses on improving the security of fingerprint templates to allow 

accurate comparison of the fingerprint content.  The current methods to generate 

fingerprint templates for comparison purposes mostly rely on using a single feature 

extraction technique such as Scale Invariant Feature Transform (SIFT) or Fingerprint 

Minutiae. However, the combination of two feature extraction techniques (e.g., 

SIFT-Minutiae) has not been studied in the literature.  

 

This research, therefore, combines the existing feature extraction techniques, SIFT-

Harris: Feature point detection is critical in image hashing in term of robust feature 

extraction, SIFT to incorporate the Harris criterion to select most robust feature 

points and  SIFT-Wavelet: Wavelet based technique is basically used to provide 

more security and reliability of image, SIFT feature with efficient wavelet-based 

salient points to  generate  robust  SIFT - wavelet feature that provides sufficient 

invariance to common image manipulations. The above said feature detector are 

known work well on the natural images (e.g., faces, buildings or shapes) and tests 

them in the new context of fingerprint images. The results in this thesis demonstrate 

that new approach contributes towards the improvement of fingerprint template 

security and accurate fingerprint comparisons.  

   

The fingerprint minutiae extraction method is combined individually with the SIFT-

Harris method, SIFT-Wavelet method and the SIFT method, to generate the most 

prominent fingerprint features. These features are post-processed into perceptual 

hashes using Radial Shape Context Hashing (RSCH) and Angular Shape Context 
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Hashing (ASCH) methods. The accuracy of fingerprint comparison in each case is 

evaluated using the Receiver Operating Characteristic (ROC) curves. 

 

The experimental results demonstrate that for the JPEG lossy compression and 

geometric attacks, including  rotation and translation, the fingerprint template and 

accuracy of fingerprint matching improved when combinations of two different 

Feature extraction techniques are used, in contrast to using only a single feature 

extraction technique.  

 

The ROC plots illustrates the SIFT-Harris-Minutiae, SIFT-Wavelet-Minutiae, SIFT-

Minutiae perform better than the SIFT method. The ROC plots further demonstrate 

that SIFT-Harris-Minutiae outperform all the other techniques. Therefore, SIFT-

Harris-Minutiae technique is more suitable for generating a template to compare the 

fingerprint content.  

 

Furthermore, this research focuses on perceptual hashing to improve the minutiae 

extraction of fingerprint images, even if the fingerprint image has been distorted. The 

extraction of hash is performed after wavelet transform and singular value 

decomposition (SVD). The performance evaluation of this approach includes 

important metrics, such as the Structural Similarity Index Measure (SSIM) and the 

Peak Signal-to-Noise Ratio (PSNR). Experimentally, it has confirmed its robustness 

against image processing operations and geometric attacks. 
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Chapter 1         
  

Introduction          

  

1.1 Biometric Recognition System  

 

Identification of a personal identity in a digital environment can be established in 

three basic ways i.e. by “something you know” (e.g. password, PIN number etc), by 

“something you carry” (e.g. ID cards, keys etc) or “something you are” (e.g. 

fingerprints, face, iris etc). The security and recognition systems based on surrogate 

representations, for instance passwords and ID cards have been established to have a 

fundamental flaw, for example a password can be forgotten or guessed, an ID card 

can easily be lost or misplaced and they can all be very easily spoofed.  

 

Biometric based recognition systems are being extensively used in a number of 

current and potential applications ranging from national security, law enforcement, 

the identification of people, particularly for building access control, the identification 

of suspects by the police, driver‘s licences and many other spheres. Therefore, 

current trends in the development of innovative security systems, particularly 

pertaining to the identification and verification of an individual, places considerable 

emphasis on biometric based solutions for the reason that with biometric 

identification systems the key is the user and in most cases very difficult to forget. 

Biometric technologies can be defined as “automated methods for verifying or 

recognizing the identity of a person based on a physiological and /or behavioural 

characteristic” [1]. Figure 1.1 signifies commonly used biometric traits including 

fingerprints, face, iris, palm print, signature and voice [2],[3]. 
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                             (a) Fingerprint                  (b) Face                             (c)  Iris

        (d) Palmprint          (e) Signature                              (f) Voice 

 

Figure1.1: Example of some commonly used biometric traits 

 

1.1.1 System Operation 

 

A biometric system, regardless of the algorithms, consists of four major modules: 

Sensor Module, Feature Extraction, Matching Module and Decision Module [4].  

 The Sensor Module captures the biometric data of a user. For example, a 

fingerprint sensor that captures the fingerprint impression of a user.  

 

 The Feature Extraction Module, where the captured data is processed to 

extract feature sets. For example, the position and orientation of minutiae in a 

fingerprint image would be computed in the feature extraction module of a 

fingerprint system. 

 

 The Matching Module compares the feature sets against those in the system 

database by generating a matching score. For instance, the number of 

matching minutiae between the query and the template can be computed as a 

matching score. 
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 The Decision Module, where the user‘s claimed identity is either a 

match or non-match, if the match score is greater than the system 

threshold and if not declares a non-match.  

 

A biometric authentication system is essentially a pattern recognition system that 

recognizes a person by determining the authenticity of biometric traits. A biometric 

system operates in three main stages: (i) Enrollment: the system collects biometric 

data from a user and features extracted from the data is stored as a biometric 

template, (ii)  Verification: the system authenticates a person‘s identity by comparing 

the captured biometric data with previously enrolled biometric reference template 

pre-stored in the system. It conducts one-to-one comparison to confirm whether the 

claim of identity by the individual is true. (iii) Identification: the system recognizes 

an individual by searching the entire enrollment template database for a match. It 

conducts one-to-many comparisons to establish if the individual is present in the 

database and if so, returns the identifier of the of the enrollment reference that 

matched [5][6].  Figure 1.2 illustrates the enrollment, verification, and identification 

stage of a biometric recognition system 

Biometric 

Sensor

Quality
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Feature 

Extraction

System 

Database

User Identity

a) Enrollment

User

 

Biometric 

Sensor

Quality
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Extraction

System 
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b) Verification
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Decision 
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Match/Non 
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User
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Biometric 

Sensor

Quality

Checker

Feature 

Extraction

System 

Database

c) Identification

Matcher

Decision 

Module

Match/Non 

Match

User

 

Figure 1.2:  (a) Enrollment, (b) verification, and (c) Identification stage of a 

biometric recognition system. 

 

 

1.2 System Vulnerabilities   

 
A biometric system is vulnerable to different types of attacks that can compromise 

the system‘s security. The various factors that affect the security of the system 

typically belong to one of four categories: intrinsic failures, administrative attacks, 

non-secure infrastructure and access to biometric data [7], [8].  

 

 Intrinsic failures: It is a security lapse due to an incorrect decision made by the 

biometric system. The sensor may fail to acquire the biometric data of the user 

due to limits in sensing technology or environmental conditions. The variation in 

the imaging condition captured biometric data and thus, the features extracted 

usually exhibit considerable inter-user similarity and intra-user variations. e.g., the 

face images of two identical twins are very similar to each other and this may lead 

to an incorrect decision when verifying the identity of one of the twins. The error 

rate at which the biometric verification system incorrectly matches two unrelated 

biometric templates is called the „false accept rate‟. Conversely, it may also fail to 

match two biometric templates extracted from the same biometric due to 

significant intra-user variations. These kinds of errors are measured using the 

„false reject rate‟ system.  

 

 Administration attacks: This refers to all vulnerabilities due to improper 

administration of the biometric system. The function of the system can be 
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abused by an attacker by colluding with or coercing a system administrator to 

allow the individual to enrol or be accepted as a genuine user. 

 

 Non–secure infrastructure: where an adversary can manipulate the biometric 

infrastructure in the hardware, software and the communication channels 

between the various modules. 

 Access to biometric traits:  An adversary covertly captures the biometric data of 

the legitimate user and uses the data to create physical artefacts. Hence, if the 

system is not capable of distinguishing between a live biometric and an artificial 

spoof, an adversary can circumvent the system by presenting spoofed traits.   

  
As such biometric systems are prone to vulnerability at different points in the system 

[9] (Figure 1.3). These attacks are intended to either circumvent the security 

provided by the system or to change the normal functioning of the system: 

 

(i) A fake biometric trait such as an artificial finger may be presented at the 

sensor 

 

(ii) Illegally intercepted data may be resubmitted to the system. 

 

(iii) The feature extractor may be replaced by a Trojan horse program that 

produces predetermined feature sets. 

 

(iv) Legitimate feature sets may be replaced with synthetic feature sets. 

 

(v) The matcher may be replaced by a Trojan horse program that always 

outputs high scores, thereby defying the system security 

 

(vi) The template stored in the database may be modified or removed. 

Alternately, a new template may be introduced in the database. 

 

(vii) The data in the communication channel between various modules in the 

system may be altered. 

 

(viii) The final decision output by the biometric system may be overridden. 
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Figure1.3: Vulnerabilities in a biometric recognition system [8]. 

 

 

1.3  Fingerprint Representation 

Amongst all biometric traits, fingerprints are the oldest serving, most successful and 

popular modality to identify a person. Fingerprints consist of a regular texture pattern 

composed of ridges and valleys. In a fingerprint the focussed feature points are the 

minutiae. i.e., ridge endings and ridge bifurcation [1] (Figure 1.4). The spatial 

distribution of these minutiae points is said to be unique for each finger and thus, the 

collection of minutiae points in a fingerprint is primarily employed for matching two 

fingerprints. A good quality fingerprint consists of between 20 to 70 minutiae [10], 

all of which are not genuine and prominent. The minutiae of the fingerprint image 

are usually represented as a 3 –tuple (𝑥, 𝑦, 𝜃),  where 𝑥 and 𝑦 are  the coordinate of 

the minutiae and 𝜃 is the angle (Figure 1.5). 
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Figure 1.4: A fingerprint image with core and minutiae points marked on it.  The 

global structure is the ridge pattern along with the core and delta points. Local 

structures are characterized by minutiae points [4].  

 

 

 

 

                                  Figure 1.5: Minutiae of fingerprint template  
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(a)           (b)      (c) 

                        

       

                   (d)          (e)

 

                   (f)           (g)  

Figure 1.6:  Example of fingerprint system application: (a) Border passage 

system using the fingerprint system. (b) Fingerprint identification system in an 

ATM machine. (c)Walt Disney World use the fingerprint recognition system for 

annual and seasonal pass holders to access the park. (d) Fingerprint – based point 

of sale. (e) Fingerprint - based door lock. (f) The fingerprint system is used in 

time and attendance applications (g) Fingerprint verification on a mobile phone 

[4].  
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1.3.1 Fingerprint Minutiae Extraction 

Most Automatic Fingerprint Identification Systems (AFIS) (Figure1.6) are based on 

minutiae matching. A minutiae based fingerprint recognition system undergoes three 

main stages, namely pre-processing, minutiae extraction and post-processing [1], [2]. 

The pre-processing stage consists of image enhancement, image binarization and 

image segmentation. Thinning and minutiae marking is completed at the minutiae 

extraction stage, and finally, the removal of false minutiae in the post-processing 

stage. Figure 1.7 illustrates minutiae extraction of the fingerprint image. 

 

(a) (b) (c)

(d) (e)
(f)

 

Figure 1.7:  Minutiae extraction of the fingerprint image: (a) Fingerprint image.  (b) 

Thinned image. (c) Minutiae extraction. (d) Minutiae and its spurious.  (e) Removal 

of false minutiae. (f) Final minutiae of fingerprint image. 

 

1.4 Perceptual fingerprint image hashing  

Biometric template security is an important and emerging research, given that unlike 

passwords and tokens, compromised biometric templates cannot be revoked and 

reissued. The main challenge is to ensure the integrity of digital content under 

different intentional and non-intentional distortions environment together with the 

robustness and security of the data content [7], [8], [11], [12]. Recently, a few 

methods have been proposed for biometric template security. These methods can be 

categorized into two classes: Transformed based systems and biometric 
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cryptosystems [7]. These approaches offer a positive solution to the problem of user 

authentication, although they are limited. In addition, existing approaches are also 

not robust enough for geometric operations and slight variations in the template can 

significantly decrease the performance. 

Alternatively, image hashing, a scheme that generates a unique, compact, resilient 

and secure signature for each image, has been widely applied in image content 

verification and content authentication.  

 

 

 

 

Pre-

Processing 

Feature 

Extraction

Post -

Processing

Image 
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sets

 

      Figure 1.8:  Perceptual hashing for fingerprint image authentication 

 

A perceptual hashing system for fingerprint image authentication, as illustrated in 

Figure 1.8, generally consists of three main stages: pre-processing, feature extraction 

and post-processing. An image hash can be constructed by extraction and post 

processing appropriate image features to form a compact representation that can be 

used for the authentication and integrity of the data [13]. Interestingly another 

advantage of a hash based image authentication scheme is that it can also be used to 

handle key issues like tamper detection, security and robustness. The robustness of 

an image hashing arises from robust feature extraction and the compression, which 

mainly contributes to the compactness of the final hash. To increase the security of a 

traditional hash function and prevent unauthorized access, a secret key is 

incorporated in the feature extraction, the compression or both to make the hashes 

unpredictable.  
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Most of hashing algorithms incorporate a pseudorandomization relying on a secret 

key into the compression step [14][15][16] to further enhance the security, as 

indicated by the dashed line in Figure 1.8. The key is owned by the owner, and the 

hash generation is a pseudorandom process rather than a completely random one for 

fingerprint identification. The incoming query hash corresponding to the query image 

is compared with the hashes in the database. 

The approach to perceptual hashing is extended to apply and demonstrate the three 

way check [17] to protect the biometric template as shown in Figure 1.9. 

 

Smart Card Hi(hs)==Hb(hs)

Secured Database

Hs(h1)

Hs(h2)

Hs(h2)

‘’

‘’

‘’

Hs(hn)

Kiosk

FP, Hi(hs)  Claim  Hb(hs)? 

yes

Biometric 

Measurement

FP

Hb(hs)

Feature Extraction

Genarate Hash

Input image
 

Figure1.9:  Architecture for the three way check for the template Protection through 

Perceptual hashing. 

 

The architecture for the three way check for the template protection through 

perceptual hashing explains the biometric template in the form of a selected feature 

point (FP). Furthermore, the hash template  FP, Hi  hs   is stored in the smartcard/e-

passport and the reference hash template𝐻(𝑕𝑠) is stored in a secured database. The 
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three way check is performed by matching the hashed template form, the smartcard 

database and biometric measurements i.e.  Hi  hs = 𝐻(𝑕𝑠) = 𝐻𝑏(𝑕𝑠)  

The three way check proceeds as follows: 

 The Kiosk, which is the border control authority that reads the information 

feature points (only selected/limited points) and the hashed template from the 

smart card/e-passport sends the feature points to the biometric measurements. 

This results in the output of the feature point combining with the FP to 

generate the 𝐻𝑏 (𝑕𝑠) hash template, which is given to the Kiosk. 

 

  The Kiosk then validates the received hash template of Hi  hs  and the 

biometric measurement hashed template 𝐻𝑏(𝑕𝑠) with the database hash 

template 𝐻(𝑕𝑠), to check the authenticity of the owner i.e. 

Authenticity: Hi  hs = 𝐻(𝑕𝑠) = 𝐻𝑏 (𝑕𝑠)  otherwise it is not authentic. 

1.4.1 Properties of perceptual image hashing. 

Given an image I and its perceptually similar copy with minor distortion 𝐼𝑑 . Let 𝜖, 𝜏  

be two positive values that satisfy 𝜖 > 0, 𝜏 < 1. The image hashing function 𝐻𝑘 (.) 

depends on the secret key k. The desirable properties of a perceptual fingerprint 

image hashing function 𝐻𝑘 (.) are as follows: 

 One-way function: Preferably, the hash generation should be noninvertible 

I  →   𝐻𝑘 (.)            (1.1) 

 Compactness: The size of the hash signature 𝐻𝑘 (𝐼) should be much smaller 

than that of the original image I. 

 𝑆𝑖𝑧𝑒 𝐻𝑘 (𝐼) ≪ 𝑆𝑖𝑧𝑒 (𝐼)           (1.2) 

 Perceptual Robustness: The robustness property requires for any pair of 

perceptually similar images have similar hashes even if they undergo content-

preserving operations. This is for image identification proposes.  An example 

is illustrated in Figure 1.10 (a) to (i), which includes the original image and 

its distorted copies under distortions such as rotation, median filter, Gaussian 

blur, Gaussian noise, JPEG compression, motion blur, translation and average 
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filter. The perceptual robustness of image hashing guarantees that these 

images will have very similar hashes.   

 

 𝐻𝑘 (𝐼) ≈  𝐻𝑘 𝐼𝑑  ≥  1 − 𝜖, 0 ≤ 𝜖 < 1.                   (1.3) 

 

 Visual Fragility: Perceptually distinct images (Figure 1.11) should have 

different hashes. 

 𝐻𝑘 (𝐼) ≠  𝐻𝑘 𝐼′  ≥  1 − 𝜏, 0 ≤ 𝜏 < 1.                    (1.4) 

 

 Unpredictability:  

 𝐻𝑘 (𝐼) ; 𝑓𝑕 (1) ≈ 𝑓𝑕(0) ≈ 0.5                     (1.5) 

Where   𝑓𝑕(𝑥)  is the probability mass function for 𝑕. With this property the hash 

values should be approximately equally distributed. Security is an important concern 

for image hashing. Pseudo-randomisation techniques are incorporated into the image 

hash generation process to enhance the security of image hashes by using secrete 

keys.  
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(a) Original fingerprint Image          (b) Rotation                            (c) Median filter 

 

                                    

(d) Gaussians blur                  (e) Gaussian Noise              f) JPEG Lossy compression 

 

                          

  (g) Motion Blur                   (h) Translation                         (i) Average Filter 

 

Figure 1.10:  Examples of fingerprint images under different content preserving 

operations (perceptually insignificant modifications). 
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     Figure 1.11: Examples of perceptually different images 

 

1.5  Aim and Objectives      

The aim of this research is to investigate and develop novel perceptual hashing 

techniques to secure biometric templates whilst maintaining the fingerprint 

recognition rate. In addition, a technique to improve minutiae extraction using 

perceptual hashing in fingerprint identification systems is also studied. The main 

objectives are as follows: 

 

 To analyse the performance of state of the art techniques, SIFT, SIFT-Harris 

and to improve the feature extraction of fingerprint images. 

 

 To develop a technique for fingerprint image hashing to improve the security 

of biometric templates, as well as to enhance or maintain the performance of 

the recognition system. Furthermore, the trade-off between robustness and the 

security of the hash will be addressed.  

 

 To develop a method for minutiae extraction of fingerprint images using 

perceptual hashing that tolerates content-preserving manipulation. 

Furthermore, evaluate the imperceptibility against the content preserving 

operations using standard metrics such as SSIM and PSNR. 
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1.6 Thesis Contribution  

The fingerprint image hashing and the related security issues are improved in this 

thesis by focusing on robust feature extraction techniques. The following are the 

three important contributions of this thesis: 

 A new, robust, SIFT-Harris-Minutiae feature extraction technique that 

includes orientation and descriptor in the minutiae of fingerprint images using 

SIFT-Harris feature points for improving robustness against image processing 

operations including JPEG lossy compression and geometric attacks such as 

rotation and translation. 

 A new, robust, SIFT-Wavelet-Minutiae feature extraction technique for 

improving robustness to the median filter, Gaussian blurs and rotation 

attacks. The ROC plots demonstrate that this new technique is suitable for 

generating a secured fingerprint template. 

 A new  robust perceptual hashing solution, based on wavelet transform and 

singular value decomposition (SVD)  to enhance the fingerprint image and to 

provide good balance of robustness and imperceptibility. Additionally, this 

approach retains the maximum minutiae of the fingerprint image, even if the 

image is distorted. 

  

1.7 Organisation of the thesis       

This thesis comprises seven chapters, which are outlined below:  

Chapter 1 presents a brief introduction on perceptual fingerprint image hashing, 

including the original contribution of the research.  

Chapter 2 discusses the literature review in relation to biometric systems, which 

includes the minutiae based fingerprint system, the feature extraction and image 

hashing scheme, and template protection techniques. 

Chapter 3 discusses the basic characteristics of transform domain: Discrete Fourier 

Transform, Discrete Cosine Transform and Fourier-Mellin Transform and Discrete 

Wavelet Transform. The transform domain technique are the most challenging part 
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of the image hashing in the feature extraction stage, the extracted feature are 

invariant to image processing operation and geometric attacks.   

Chapter 4 highlights the state of the art feature extraction processes, which include 

the end-stopped wavelet, and the SIFT, SURF and SIFT-Harris methods.  

 

Chapter 5 presents the proposed framework for minutiae based fingerprint image 

hashing. The method is combined individually with the SIFT-Harris, SIFT-Wavelet, 

SIFT. The accuracy of fingerprint comparison in each case is evaluated using the 

ROC curves.  Further, the ROC plots demonstrate accuracy of fingerprint matching 

improved when combinations of two different feature extraction techniques are used, 

in contrast to using only a single feature extraction technique.  

Chapter 6 presents the proposed technique to improve minutiae extraction of 

fingerprint images using perceptual hashing. The imperceptibly and performance of 

the minutiae extracted are discussed in detail. 

 

Chapter 7 discusses the conclusion and suggests areas for future research in 

biometric recognition systems. 
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Chapter 2 
 

Review of Secure Biometric Systems 

Biometric recognition is often considered to enhance identity verification. The use of 

biometric recognition also introduces new challenges in protecting the privacy of the 

subject and increases the security of the verification system. The literature review 

discusses three major categories: the minutiae based fingerprint system, the feature 

extraction and image hashing scheme, and template protection techniques. 

 

2.1 Minutiae Based Fingerprint System 

Fingerprint is a popular biometric modality, which is used extensively in several 

applications for person recognition, providing uniqueness and an acceptable 

performance.  A minutiae based fingerprint system involves three basic steps: pre-

processing, feature extraction and matching. This system requires storing minutiae 

sets in the database. However, several projects have established that the fingerprint 

impression can be reconstructed from minutiae information.  

More recently, several researchers have addressed the concept of fingerprint template 

solution. Moujahdietat [19] proposed a new approach to fingerprint template by 

constructing a new representation of minutiae based on spiral curves. Liang et al [20] 

demonstrated a robust fingerprint indexing scheme using a minutiae neighborhood 

structure and low order Delaunay triangles. This algorithm was able to search a 

fingerprint database more efficiently and methodically for various fingerprints. 

Jin et al [21] proposed a fingerprint template protection method that transforms a set 

of minutiae points into bit-string using the polar grid based 3 -tuple quantization 

technique that offers a reasonable recognition rate. Moreover, Liu et al [22] utilised a 

random local region descriptor (RLRD) to generate a fixed-length feature vector. In 

this case, the RLRD features are extracted from a set of randomly and uniformly 

generated directional points from the image of a fingerprint. Additionally, Feng et al 

[23] suggested two descriptors: a texture based descriptor, which captures the 

orientation and frequency information of minutiae and a minutiae-based descriptor 

matching algorithm. The combined descriptors provide high discriminating ability.  
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Cappelli et al [24] described a template privacy protection technique for minutiae 

cylinder code (MCC), which provides diversity, revocability and irreversibility for 

the MCC descriptors with respect to the original minutiae, with the aim of improving 

recognition accuracy while reducing the size of the template. Tulyakov et al [25] [26] 

presented a method of symmetric hashing of the fingerprint minutiae, aimed at 

protecting the original fingerprint and minutiae location from the attacker; whereas 

Sutcu et al [27] proposed a scheme which employs a robust one–way transformation 

that maps the geometrical configuration of the minutiae points into a fixed-length 

code vector. Moreover, Shuai et al [28] recommended locality-sensitive hashing 

(LSH) based fingerprint indexing using reduced SIFT points.  

Xu et al [29] [30] approached the spectral minutiae representation as a fixed-length 

feature vector to represent the minutiae set. In addition, Feng et al [31] presented a 

novel fingerprint-matching algorithm that matches both the minutiae and the ridges. 

This approach is used to find promising initial minutiae pairs. For each initial 

minutiae pair, a ridge matching process was performed, which incrementally 

matched the remaining minutiae and ridges. 

Additionally, Jain et al [32] described a hierarchical matching system that utilized 

features at all three levels, namely, level 1 (pattern), level 2 (minutiae points) and 

level 3 (pores and ridge contours). A relative reduction of 20% is observed in the 

Equal Error Rate (EER: The rate at which both acceptance and rejection errors are 

equal. In general, the device with the lowest EER is the most accurate) of the 

matching system, when level 3 features are employed in combination with level 1 

and level 2 features. Using a different method, Ahn et al [33] proposed an interesting 

alignment-free feature transformation approach. The purpose of this technique is to 

extract some special geometrical information from minutiae triplets to construct the 

secure template. 

Lee et al [34] suggested a method for generating cancellable fingerprint templates 

without alignment, in addition to a method for producing changing functions. To 

generate the templates for each minutiae, a rotational and translation invariant value 

is computed from the orientation information of the neighbouring local region 

surrounding the minutiae. The invariant value is used as the input for two changing 
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functions that output two values for the translational and rotational movements of the 

original minutiae, respectively, in the cancellable template. 

Chang et al [35] proposed a point pattern matching to solve the problem of optimal 

matches between a two-point pattern under geometrical transformation and spurious 

points pattern.  To increase the reliability and robustness of minutiae matching, Jiang 

et al [36] recommended a fingerprint minutiae matching by using both the local and 

global structures of the minutiae. However, the system determines the identity of a 

user by comparing the match score to a threshold value set by the administrator. 

Luo et al [37] introduced ridge information into the process of fingerprint matching 

and used a changeable sized box in the matching process; whilst Bhowmick et al [38] 

presented a method to assign a score value to each of the extracted minutiae, based 

on several topographical properties. The score associated to the minutiae signifies its 

genuineness and prominence. Furthermore, Jain et al [39] advocate the design and 

implementation of an on-line fingerprint verification system, which operates in two 

stages, such as minutiae extraction and minutiae matching. To find the 

correspondence between minutiae in the input image and the stored template, an 

alignment based elastic matching algorithm is employed. 

 

2.2 Feature Extraction and Image hashing Techniques   

In the design requirements for fingerprint image hashing, the robustness of the image 

hashing arises from robust feature extraction and compression, which mainly 

contributes to the compactness of the final hash. The hash should be capable of 

dealing with various image processing and geometric attacks, as long as two similar 

images   possibly generate near similar hash value, otherwise the hash value differs 

with a perceptually different image. The following literature discusses the various 

feature extractions and image hashing schemes. 

 

Monga et al [40] established a ‗nonnegative matrix factorization‟, which is robust 

against a significant class of attacks; including blurring, minor additive noise and 

compression, although it suffers from changes in brightness and large geometric 

transforms. Furthermore, Han et al [21] and Wu et al [41] presented an in-depth 
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review and analysis on content based image authentication; whereas Kim et al [42] 

proposed a novel scheme to detect unauthorized copies of an image using DCT 

coefficients. 

 

Venkatesan et al [43] explained a novel image indexing technique called „image hash 

function‟. This algorithm uses randomized strategies for a non-reversible 

compression of images into random binary strings and is robust against limited 

attacks. Lefèbvre et al[44] employ random transform for feature extraction and 

principle component analysis to reduce the hash length, nevertheless, its robustness 

for texture image is limited. Additionally, Swaminathan et al [45] advocated an 

algorithm for image hashing based on Fourier transformed controlled randomization, 

though, the algorithm suffers from known attacks, for instance additive noise.  

 

Khelifi et al [46] introduced virtual watermark detection using an optimum 

multiplicative watermark detector. It uses a pseudo-randomly generated pattern to 

extract the hash bits. These researchers [47] also presented an analysis of the security 

of a perceptual image hash based on non-negative matrix factorization and reveal 

that the use of a secret key combined with image dependent keys can enhance 

security. Moreover, Kozat et al [48] explain singular value decomposition for image 

hashing; however, this algorithm, although it is robust is limited. 

 

Recently, Monga et al [14] suggested an image hashing algorithm using visually 

significant feature points and performed a performance evaluation and tradeoffs 

between geometric invariance and robustness against classical attacks.  

 

Also, Lv et al [16] created new image hashing algorithm using a local feature point 

with SIFT to detect robust feature points and incorporate Harris criterion to select the 

most stable points that are less vulnerable to image processing attacks. 

 

More recently, Badrinath et al [49] advocated an efficient indexing scheme for a 

palmprint identification system, which makes use of a fusion of votes obtained 

through strategy-based geometric hashing and a SURF (speeded-up robust feature) 

score. Moreover, Tuytelaars et al [50] presented an overview of feature detector, 

such as corner (via Harris, SUSAN: Smallest Univalue Segment Assimilating 
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Nucleus), Blob (via Hessian) and a salient region (via MSER: Maximally Stable 

Extremal Regions). The overview exposes the property of feature points and their 

invariant under significant geometric transforms. 

 

Lowe D.G [51] illustrated a method for extracting distinctive invariant features from 

images which can be used to perform reliable matching between different views of 

an object. The algorithm used is SIFT, as it transforms image data into scale 

invariant coordinates relative to local features.  

 

Ahmed et al [13] recommended a hash-based image authentication scheme, which 

concentrates on various issues like tamper detection, security and robustness. A 

secret key is used at the feature extraction stage to randomly modulate image pixels, 

in order to create a transformed feature space. The hash based scheme offers good 

robustness against JPEG compression, and low and high-pass filtering. In addition, 

Koval et al [52] proposed two classes of robust-hashing techniques: Random-Based 

Hashing and Content-Based Hashing systems, and perform security analysis for each 

class to demonstrate how security issues arise. 

 

2.3 Template Protection Techniques 

 

Template protection is a collective term for a variety of methods that aim to preserve 

privacy and enhance the secure storage of biometric data. Jain et al [7] presented an 

overview of biometric template protection schemes and categorize them into a 

transformation-based approach and biometric cryptosystems [7] [8] as shown in 

Figure 2.1. The functions used in transformation approaches can distort or randomize 

biometric data so that the original data cannot be reconstructed from transformed 

templates. The biometric cryptosystems can be embedded or generate secrets from 

the biometric data. 

 

The biometric template protection scheme has the following properties: 

 

 Diversity: where the secure template must not allow cross-matching 

across the database, by ensuring the privacy of the user. 
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 Revocability: revokes a compromised template and reissues a new one 

based on the same biometric data. 

 

 Security: prevents an adversary from creating a physical spoof of the 

biometric trait from a stolen template. 

 

 Performance: the biometric template scheme should not degrade the 

recognition performance of the (True Positive Rate and False Positive 

Rate) biometric system. 

 

 

Template Protection 

Feature Transformation Biometric Cryptosystem

Salting

(e.g., Biohashing)

Non- invertible

Transform

(e.g.,  Robust Hashing

Key Generation 

(e.g., Secure Sketch Fuzzy 

Extractor)

Key Binding

(e.g., Fuzzy Vault, Fuzzy 

Commitment)
 

 

             Figure 2.1: Template protection Schemes [5]. 

 

 

Ratha et al [9] outlined the inherent strengths of biometrics-based authentication in 

identifying weak links in systems by pointing to possible attacks in a generic 

biometric system. Furthermore, Nagar et al[11] explained that the matching 

performance and security of a fingerprint fuzzy vault is improved by incorporating a 

minutiae descriptor. However, Tuyls et al [53] proposed template protection for 

fingerprint based authentication, where the algorithm is based on helper data 

consisting of two parts. The first part identifies the reliable components with a high 
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signal to noise ratio in the Gabor-filtered fingerprint, whilst the second part allows 

for noise correction on the quantized representation. 

Breebaart et al [54] and Rane [55] described the requirements for the standardization 

of architecture in biometric data storage and processing, which satisfy the conditions 

of renewability (are properties that allow a system to recover after the auxiliary data 

and/or the pseudonymous data have been compromised by an attacker), 

irreversibility, unlinkability (are the property possessed by two or more biometric 

references between auxiliary data and pseudonymous data pairs by virtue of which 

they cannot be linked to each other or to the individual from whom they were 

derived), confidentiality and integrity. Sun et al [56] presented a key-mixed template, 

which mixes a user‘s template with a secret key to generate another form of template, 

in order to prevent the biometric template stored in the database from experiencing 

backend attacks, snooping and tampering assaults. 

 

In addition, Roberge et al[57] proposed a biometric encryption algorithm for the 

connection and retrieval of digital keys, which can be used as a method in the secure 

management of cryptographic keys. Sutcu et al [58] examine the storage of a face 

biometric template by applying a secure sketch algorithm, and noted the performance 

and the security of the secure sketch method.  In addition, Brindha V.E [59] attempts 

to improve template security by combining a dorsal hand vein biometric with 

cryptography to generate a fuzzy vault. Sutcu et al [60] proposed a geometric 

transformation for securing minutiae based fingerprint templates. This method is a 

robust one-way transformation that maps the geometrical configuration of the 

minutiae points into a fixed-length code vector. 

 

Mirmohamadsadeghi et al [61] established a new technique to protect fingerprint 

minutiae based on a MCC. This is a hybrid technique, combining a transformation 

and a user key, which provides diversity, revocability, and irreversibility for MCC 

descriptors with respect to the original minutiae of the fingerprint image. In addition, 

Prasad et al [62] described an alignment free method for generating the cancellable 

template, which use neighbouring relations around every reference minutiae. 
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Finally, Jain et al[63] provide a theoretical framework, which includes template 

security requirements, protection approaches and various fingerprint template 

protection schemes in detail. Table 2.1 explains the different techniques to transform 

fingerprint features for template protection schemes. 

 

Table 2.1:  Different methods used to transform fingerprint features for template 

protection [63]. 

 

 

 

 

 

Technique Features Transformation Final 

Representation 

Spectral minutiae [29] Minutiae Fourier transform of 2D-

delta functionsat minutiae 

locations 

Vector 

BioPhasor [64] FingerCode Nonlinear Vector 

Biometric encryption [65] Fingerprint image Apply a secure filter Vector 

Minutiae indicator [66] Minutiae Minutiae locations marked 

as ‗1‘ 

Vector 

Histogram of minutiae 

triplets [67] 

Minutiae Hashing the histogram of 

minutiae triplet features 

Vector 

Cuboid based minutiae 

Aggregates [68] 

Minutiae Minutiae aggregate 

selection from random 

local regions 

Vector 

Symmetric hash [26] Minutiae as complex 

numbers 

Set of order invariant 

functions for minutiae 

Minutiae 

Cancelable fingerprints [67] Minutiae Image folding Minutiae 

Alignment free cancellable 

fingerprint [34] 

Minutiae orientation 

field 

Transform minutiae 

according to surrounding 

orientation field 

Minutiae 

Minutiae structures [68] Minutiae Local minutiae structures Minutiae 
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2.4 Summary 

In this chapter, a brief review on securing template protection and its technique are 

discussed in detail. In relation to the proposed research work, the literature was 

carried out on three main categories, which were discussed: minutiae based 

fingerprint templates, feature extraction image hashing and template protection. This 

research focuses on improving the security of fingerprint templates to allow accurate 

comparison of the fingerprint content.  The current methods to generate fingerprint 

templates for comparison purposes mostly rely on using a single feature extraction 

technique such as SIFT or Fingerprint Minutiae. However, the combination of two 

feature extraction techniques (e.g., SIFT-Minutiae) has not been studied in the 

literature. The results in this thesis demonstrate that new approach contributes 

towards the improvement of the fingerprint template and accuracy of fingerprint 

matching improved when combinations of two different feature extraction techniques 

are used, in contrast to using only a single feature extraction technique. 

  

 In the next chapter, the basic characteristics of transform domain techniques are 

presented. These techniques are based on the manipulation of the orthogonal 

transform of image rather than the image itself. Transform domain techniques are 

suited for processing the image according to the frequency content. The principle 

behind this domain methods of image enhancement consists of the computing a 2-D 

discrete unitary transform of the image, for instance the 2-D DFT manipulating the 

transform coefficients by an  mathematical operator and then performing the inverse 

transform. The orthogonal transform of the image has two components magnitude 

and phase. The magnitude consists of the frequency content of the image. The phase 

is used to restore the image back to the spatial domain. The usual transform domain 

enables operation on the frequency content of the image, and therefore high 

frequency content such as edges and other subtle information can easily be enhanced.     
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Chapter 3 

 

Image Representation in the Transform Domain 

With the increasing demand of enhanced security in our daily lives, reliable personal 

identification through biometric is currently active research. An individual can be 

identified effectively using biometric modalities such as fingerprint, palm-print and 

face. Recently many researchers have proposed several promising methods for 

biometric image identification using transform domains: Discrete Fourier Transform 

(DFT), Discrete Cosine Transform (DCT) and Fourier-Mellin Transform (FMT) and 

Discrete Wavelet Transform (DWT).  

Kapil Rathor [71] proposed a method to improve the recognition rates of iris images 

by localizing the image between the inner and the collaretee boundary.  2-D DFT is 

used for finding the collaretee boundary. Imtiaz et al [72] presented a spectral feature 

extraction algorithm for palmprint recognition. In this method, the entire image is 

segmented into several spatial modules and the task of the feature extraction is 

carried out using 2-D Fourier transform within those spatial modules and shown 

good recognition accuracy and computational complexity.   

Amornraksa et al [73] presented a fingerprint recognition method based on the DCT 

features. Applying the DCT transform to a discrete fingerprint image, the DCT 

features used for fingerprint matching resulting in higher recognition rates and a 

lower complexity. Imtiaz et al [74] proposed a DCT-based palm-print recognition 

scheme, where the dominant spectral features are extracted separately from each of 

the narrow-width band resulting from image segmentation operation.  These feature 

extraction scheme offers two advantages: first, it captures local variations that exist 

in the palmprint images, which plays an important role in discriminating different 

persons. Second, it utilizes a very low dimensional feature space for the recognition 

task, which ensures lower computational burden. Badrinath et al [75] extracted the 

feature using 1-D DCT coefficients to design an efficient palm print based 

recognition system. 

Singh et al [76] proposed a novel rotation-invariant and degraded partial palmprint 

recognition method, which combines the features of the FMT and Modified Phase –
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Only correlation. Additionally, Prungsinchai et al [77] presented an efficient secure 

and robust perceptual image hashing technique based on the Fourier-Mellin 

Transform. It has been shown this method is robust against signal processing 

operation and geometric attacks. It has also been shown that FMT based features 

outperform SVD, wavelet and NMF based hashing under geometric distortions.  

Ekinci et al [78] presented a novel Daubechies-based kernel Principal Component 

Analysis (PCA) method by integrating the Daubechies wavelet representation of 

palm images and the kernel PCA method for palmprint recognition. Yang et al [79] 

combine fingerprint, palmprint and hand geometry for person identity verification.  

In this multimodal system, wavelet transform is employed to extract feature from 

fingerprint, palmprint and hand-geometry.  The Feature fusion and match score 

together are used for identification. 

             

In the following section, the most widely used transform domain techniques are 

reviewed.    

3.1 Discrete Fourier Transform (DFT) 

The Fourier Transform is an important image processing tool which is used to 

decompose an image into its sine and cosine components. The Fourier transform 

of 𝑥 𝑡  is defined as  

 𝑋 𝑓 =  𝑥 𝑡 
+∞

−∞

𝑒−𝑖2𝜋𝑓𝑡 𝑑𝑡                          

          (3.1) 

Where the independent variable 𝑡 represents time, the transform variable 𝑓 

represents ordinary frequency.  In the Fourier domain signal, each point represents 

a particular frequency contained in the time domain signal. The signal 𝑥(𝑡) can 

be reconstructed from X(f) by the inverse transform 

 

𝑥 𝑡 =  𝑋 𝑓 
+∞

−∞

𝑒−𝑖2𝜋𝑓𝑡 𝑑𝑓 

(3.2) 
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The interpretation of 𝑋 𝑓  is aided by expressing it in polar coordinate form as 

𝑋 𝑓 =  𝑋 𝑓  𝑒𝑖Φ(𝑓)              (3.3) 

Where  𝑋 𝑓   and Φ(𝑓) represent the amplitude and the phase of 𝑋 𝑓 , 

respectively. 

Let 𝑥(𝑡) ⇔  𝑋 𝑓  are a Fourier transform pair. Some important properties of the 

Fourier transform are 

 Linearity  

𝑎𝑥1 𝑡 + 𝑏𝑥1 𝑡 ⇔  𝑎𝑋1 𝑓 + 𝑏𝑋2 𝑓          (3.4) 

 Convolution 

𝑥1 𝑡 ∗ 𝑥2 𝑡 ⇔  𝑋1 𝑓 𝑋2 𝑓           (3.5) 

 Scaling 

       𝑥 𝑎𝑡 ⇔ 
1

 𝑎 
𝑋  

𝑓

𝑎
            (3.6) 

 Modulation 

    𝑥 𝑡 𝑒−𝑖2𝜋𝑓0𝑡 ⇔  𝑋 𝑓 − 𝑓0            (3.7) 

 Parseval‘s theorem  

∫
ℜ
 𝑥(𝑡) 2 = ∫

ℜ
 𝑋 𝑓  2                (3.8) 

The DFT is the sampled Fourier Transform and therefore, it does not contain all 

frequencies forming an image, but only a set of samples that are large enough to 

perfectly describe the spatial domain image. The number of frequencies 

corresponds to the number of pixels in the spatial domain image, i.e. the image in 

the spatial and Fourier domain are of the same size [80].  

For a square image size N x N, the two-dimensional DFT is given by    

 𝐹 𝑘, 𝑙 =   𝑓 𝑖, 𝑗 𝑒
−𝑖2𝜋 

𝑘𝑖

𝑁
+

𝑙𝑗

𝑀
 
 

𝑀−1

𝑗 =0

𝑁−1

𝑖=0

                                                              (3.9)        

  

where = 0 . . . . .  N − 1 ;  𝑙 = 0 . . . . .  M − 1                                         
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 𝑓(𝑖, 𝑗) is the image in the spatial domain and the exponential term is the basis func-

tion corresponding to each point 𝐹 𝑘, 𝑙  in the Fourier space. Equation (3.9) can be 

interpreted as: the value of each point 𝐹 𝑘, 𝑙  is obtained by multiplying the spatial 

image with the corresponding base function and summing up the result. The basis 

functions are sine and cosine waves with increasing frequencies, i.e. F(0,0) 

represents the DC-component of the image which corresponds to the average 

brightness and F(N-1, M-1) represents the highest frequency. 

Similarly, the inverse Fourier transform is given by 

𝑓 𝑖, 𝑗 =
1

𝑁𝑀
  𝑓 𝑘, 𝑙 𝑒

𝑖2𝜋 
𝑘𝑖

𝑁
+

𝑙𝑗

𝑀
 

𝑀−1

𝑙=0

𝑁−1

𝑘=0

                                                                (3.10) 

  where 𝑖 = 0 . . . . .  N − 1, 𝑗 = 0 . . . . .  M − 1                                        

                                                                                                                   

3.2 Fourier-Mellin Transform (FMT) 

The Fourier-Mellin transform is a important tool for pattern recognition, 

reconstruction and image database retrieval, because its resulting spectrum is 

invariant in rotation, translation and scaling . 

Let 𝑓 denote a function representing a grey level image defined over a set of ℝ2. The 

standard Fourier-Mellin transform of 𝑓 is given by 

∀ 𝑘, 𝑣 ∈ ℞ × ℝ, 𝑀𝑓  𝑘, 𝑣 =
1

2𝜋
  𝑓 𝑟, 𝜃 

2𝜋

0

∞

0

𝑟−𝑖𝑣𝑒−𝑖𝑘𝜃 d𝜃
𝑑𝑟

𝑟
 

                                                                                                                                   (3.11) 

 

where 𝑓 𝑟, 𝜃  is the polar coordinates representation of a 2-D function. 
 

𝑓 is assumed to be summable over ℝ+
∗ × 𝕊1 under the measure d𝜃

𝑑𝑟

𝑟
, i. e. 

   𝑓 𝑟, 𝜃  𝑟−𝑖𝑣𝑒−𝑖𝑘𝜃  d𝜃
𝑑𝑟

𝑟

2𝜋

0

∞

0

=   
1

𝑟
𝑓 𝑟, 𝜃 d𝜃𝑑𝑟 < ∞

2𝜋

0

∞

0

 

   (3.12) 
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Since 𝑓 is positive. For ∀ 𝑘, 𝑣 ∈ ℞ × ℝ.  ℞1 denotes the additive group of integers,  

ℝ denotes the additive group of the real line. ℝ+
∗  the multiplicative group of positive 

and nonzero numbers, 𝕊1  the unit circle of the plane ℝ2 .  All these groups are 

locally compact and commutative.  The direct product ℝ+
∗ × S1 forms a locally 

compact and commutative group under the following law: 𝛼, 𝜃 ο ρ, ψ = (𝛼ρ, 𝜃 +

ψ)[81]. 

The FMT could be divided into main three steps, which result in the invariance to 

rotation, scaling and translation attacks: 

 The Fourier Transform (FT): It converts the original image in spatial domain onto 

spectrum domain. The magnitude of Fourier transform itself is the translation in-

variant. 

 

 The Cartesian to Log-Polar Coordinates: The conversion to log-polar coordinates 

converts the scale and rotation differences to vertical and horizontal offsets that 

can be measured. 

 

 The Mellin Transform: A second FT, called the Mellin Transform (MT) gives a 

transform-space image that is invariant to rotation, scaling and translation. 

 

3.3 Discrete Cosine Transform (DCT) 

The discrete cosine transform attempts to decorrelate the image data. After 

decorrelation each transform coefficient can be encoded independently without 

losing compression efficiency [82]. 

The most common DCT definition of a 1-D sequence of length N is  

𝐶 𝑢 = 𝛼 𝑢  𝑓 𝑥 cos

𝑁−1

𝑥=0

 
𝜋 2𝑥 + 1 𝑢

2𝑁
  

  (3.13) 

For u= 0, 1,…..N-1. Similarly, the inverse transformation is defined as     
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𝑓 x =  𝛼 𝑢 𝐶 𝑢 cos

𝑁−1

𝑢=0

 
𝜋 2𝑥 + 1 𝑢

2𝑁
  

(3.14) 

For 𝑥 = 0, 1,…..N-1. In both equation (3.13) and (3.14) 𝛼 𝑢  is defined as  

𝛼 𝑢 =

 
 
 

 
   

1

𝑁
     𝑓𝑜𝑟  𝑢 = 0  

                             

 
2

𝑁
   𝑓𝑜𝑟 𝑢 ≠ 0    

                                          (3.15) 

The 2-D DCT is a direct extension of the 1-D case and is given by  

𝐶 𝑢, 𝑣 = 𝛼(𝑢)𝛼(𝑣)   𝑓 x, y   

𝑁−1

𝑦=0

𝑁−1

𝑥=0

cos(
𝜋 2𝑖 + 1 𝑢

2𝑁
)cos(

𝜋 2𝑖 + 1 𝑣

2𝑁
)                     

(3.16) 

 

For 𝑢, 𝑣 = 0, 1, 2…..N-1. The inverse transform is defined by 

𝑓 x, y =   𝛼 𝑢 𝛼 𝑣 𝐶 𝑢, 𝑣   

𝑁−1

𝑣=0

𝑁−1

𝑢=0

cos  
𝜋 2𝑖 + 1 𝑢

2𝑁
 cos  

𝜋 2𝑖 + 1 𝑙𝑣

2𝑁
  

(3.17) 

For x, y = 0, 1, 2…..N-1. The main advantages of the DCT are that it gives a real 

output image and that it is a fast transform. A major use of the DCT is in image 

compression. Indeed, after performing a DCT it is possible to discard the coefficients 

representing high frequency components that the human eye is not very sensitive to. Thus, 

the amount of data can be reduced; without seriously affecting the way an image appears to 

the human eye. 

3.4 Discrete Wavelet Transform (DWT) 

The wavelet decomposition is a mathematical tool allowing the study of signals and 

signal generating processes characterised by a non-stationary behaviour. It accounts 

for the evolution in time of the frequency content of a signal [80]. A signal  𝑥 𝑡  can 
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often be better analysed, described, or processed if expressed as a linear 

decomposition by  

𝑥 𝑡 =  𝑎𝑗 ,𝑘

𝑗 ,𝑘

2
𝑗

2𝜓(2𝑗 𝑡 − 𝑘) 

   (3.18) 

Where the two-dimensional set of coefficients 𝑎𝑗 ,𝑘  is called discrete wavelet 

transform (DWT) of 𝑥 𝑡 .  Note that the basis functions 𝜓𝑗 ,𝑘 (𝑡) = 2
𝑗

2𝜓(2𝑗 𝑡 − 𝑘) are 

generated from a single function 𝜓 𝑡  called “mother wavelet” by changing two 

parameters j and k. The location of the wavelet moves in time or space, as the 

index k changes. This allows the expansion to explicitly represent the 

location of events in time or space and enables a representation of detail or 

resolution. A more precise way of indicating how the 𝑎𝑗 ,𝑘 ′s are calculated can 

be written using the inner products as  

𝑥 𝑡 =   𝜓𝑗 ,𝑘 𝑡 , 𝑥 𝑡  𝜓𝑗 ,𝑘 𝑡 𝑗 ,𝑘                                                                        (3.19) 

 

3.4.1 Multiresolution Analysis 

The multiresolution formulation of wavelet systems is designed to represent signals 

where a single event is decomposed into finer and finer details. As described earlier 

for the wavelet, a set of scaling function is defined in terms of integer translated of 

the basic scaling function 𝜑(t) by 

                            𝜑𝑘=𝜑 𝑡 − 𝑘 ;  𝑘 ∈ 𝑍, 𝜑 ∈ 𝐿2         (3.20) 

`The subspace of 𝐿𝑟ℜ spanned by these function is defined as 

𝑉0 = 𝑆𝑝𝑎𝑛𝑘 (𝜑𝑘(𝑡))                                          (3.21) 

A two-dimensional family of functions is generated from the basic scaling function 

by scaling and translation by 

                                               𝜑𝑗 ,𝑘 (t)=2𝑗 /2𝜑(2𝑗 𝑡 − 𝑘)                                        (3.22) 

whose span over 𝑘 is 
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                                                 𝑉𝑗 =𝑆𝑝𝑎𝑛𝑘(𝜑𝑘(𝑡))                                                                   (3.23) 

This means that if 𝑥 𝑡 ∈  𝑉𝑗 , then it can be expressed as  

𝑥 𝑡 =  𝑎𝑘

𝑘

 𝜑(2𝑗 𝑡 − 𝑘) 

(3.24) 

For j>0, the span can be larger since 𝜑𝑗 ,𝑘  is narrower and is translated in smaller 

steps, the basic requirement of multi resolution analysis is 

          𝑉0 ⊂ 𝑉1 ⊂ 𝑉2 … … . . ⊂ 𝐿2                                                             (3.25) 

Hence, the spaces 𝑉𝑗  satisfy a natural scaling condition 

𝑥(𝑡) ∈ 𝑉𝑗 ⇔ 𝑥(2𝑡) ∈ 𝑉𝑗 +1                             (3.26) 

The important features of a signal can be better described by also using a set of 

wavelet functions 𝜓𝑗 ,𝑘 (t) that span the differences between the successive spaces𝑉𝑗 . 

Let us denote the orthogonal complement of 𝑉𝑗  in 𝑉𝑗 +1 as 𝑊𝑗 .  It follows 

                                                             𝑉1=𝑉0 + 𝑊0          (3.27) 

Which extends to  

                       𝑉𝑛= 𝑉0 + 𝑊0 + 𝑊1 + ⋯ + 𝑊𝑛−1                                                   (3.28) 

Therefore, a signal 𝑥(𝑡) ∈ 𝑉𝑛  can be expressed as  

𝑥 𝑡 =  𝑎𝑘

𝑘

 𝜑 𝑡 − 𝑘 +   𝑑(𝑗, 𝑘)

𝑘

𝑛−1

𝑗=0

𝜓𝑗 ,𝑘(t) 

     (3.29) 

Equation (3.29) represents a decomposition of 𝑥 𝑡  with n resolutions (or scales). 

The first summation gives a function that is a low resolution or coarse approximation 

of 𝑥 𝑡 . For each increasing index j in the second summation, a higher or finer 

resolution is added, which adds increasing detail. This is somewhat analogous to a 

Fourier series where the higher frequency terms contain the detail of the signal. From 

Equation (3.25) it can be observed that if a function 𝜑 𝑡   is in 𝑣𝑗−1 , it is also in 𝑉𝑗 , 



35 
 

which is the space spanned by 𝜑(2𝑗 𝑡). This means 𝜑(2𝑗−1𝑡) can be expressed in 

terms of a weighted sum of shifted  𝜑(2𝑗 𝑡) 

𝜑(2𝑗−1𝑡)  =  𝑕(𝑛)

𝑛

 2𝑗 /2𝜑(2𝑗 𝑡 − 𝑛) 

     (3.30) 

Similarly, since 𝑊𝑗 −1 ⊂ 𝑉𝑗 , 𝜑(2𝑗−1𝑡) can be expressed as  

𝜑(2𝑗−1𝑡)  =  𝑔(𝑛)

𝑛

 2𝑗 /2𝜑(2𝑗 𝑡 − 𝑛) 

(3.31) 

Assume a signal 𝑥(𝑡) ∈ 𝑉𝑗  which can therefore be written as 

𝑥 𝑡 =  𝑎𝑗−1,𝑘2
𝑗−1

2 𝜑 2𝑗−1𝑡 − 𝑘 +

𝑘

  𝑑𝑗−1,𝑘 2
𝑗−1

2 𝜑 2𝑗−1𝑡 − 𝑘 

𝑘

 

(3.32) 

where 

𝑎𝑗−1,𝑘 =  𝑥 𝑡 , 2
𝑗−1

2 𝜑 2𝑗−1𝑡 − 𝑘  =  𝑥 𝑡 , 2
𝑗−1

2 𝜑 2𝑗−1𝑡 − 𝑘 
∞

−∞

𝑑𝑡 

(3.33) 

and 

𝑑𝑗−1,𝑘 =  𝑥 𝑡 , 2
𝑗−1

2 𝜑 2𝑗−1𝑡 − 𝑘  =  𝑥 𝑡 , 2
𝑗−1

2 𝜑 2𝑗−1𝑡 − 𝑘 
∞

−∞

𝑑𝑡 

(3.34) 

From equation (3.30) and (3.32) one can deduce 

𝑎𝑗−1,𝑘 =  𝑕(𝑚 − 2𝑘)

𝑚

𝑎𝑗 ,𝑘  

and                      (3.35) 

                      𝑑𝑗−1,𝑘 =  𝑔(𝑚 − 2𝑘)𝑚 𝑎𝑗 ,𝑘  

(3.36) 
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The last two equations represent a digital filtering process followed by a down 

sampling (also called decimating) by a factor of 2. The down sampling takes a signal  

𝑥 𝑛  as an input and produces an output  𝑛 = 𝑥 2𝑛  . These equations shows that 

the scaling and wavelet coefficients at different levels of scale can be obtained by 

convolving the expansion coefficients at scale j by the time reversed recursive 

coefficients 𝑕 −𝑛  and 𝑔 −𝑛  then down sampling to give the expansion 

coefficients at the next level of j-1. In other words, the scale j coefficients are filtered 

by two FIR digital filters with coefficients   𝑕 −𝑛  and 𝑔 −𝑛 . Subsequently, the 

down –sampling gives the next coarser scaling and wavelet coefficients. These 

structures implement Mallat‘s algorithm [83] and have been developed in filter bank, 

quadrature mirror filters, conjugate filters, and perfect reconstruction filter bank in 

the literature [84]. Mallat, Daubechies, and others showed the relation of wavelet 

coefficient calculation and filter banks. The implementation of Equation (3.35) and 

(3.36) is illustrated in Figure 3.1. where the down –pointing arrows denote a down 

sampling by two  and other boxes denote convolution by  𝑕 −𝑛  or𝑔 −𝑛 .  This 

splitting, filtering, and decimation can be repeated on the scaling coefficients to give 

the two-scale structure in Figure 3.2.     

 2h(-n)

g(-n)

aj

aj-1 

 2 dj-1

 

Figure 3.1: One-stage wavelet decomposition 

 2h(-n)

g(-n)

 

 2 

h(-n)

g(-n)

 2 

 2 aj

aj-1

dj-1

aj-2

dj-2

 

             Figure 3.2: Two-stage wavelet decomposition 
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This Splitting, filtering, and decimation can be repeated on the original fine scale 

coefficients and can be made from a combination of the scale function and wavelet 

coefficients at a coarse resolution. This derived by considering a signal in the j 

scaling function space 𝑥(𝑡) ∈ 𝑉𝑗 , which can be expressed as given by Equation (3.32) 

or in terms of the scaling function at the same level j by 

𝑥 𝑡 =  𝑎𝑗 ,𝑘

𝑘

2𝑗 /2  𝜑(2𝑗 𝑡 − 𝑘) 

(3.37) 

Substituting Equation 3.30 and 3.31into 3.32 gives       

𝑥 𝑡 =  𝑎𝑗−1,𝑘

𝑘

 𝑕(𝑛)

𝑛

 2
𝑗

2𝜑 2𝑗 𝑡 − 2𝑘 − 𝑛 

+  𝑑𝑗−1,𝑘

𝑘

 𝑔(𝑛)

𝑛

 2
𝑗

2𝜑 2𝑗 𝑡 − 2𝑘 − 𝑛  

(3.38) 

Because all of these functions are orthogonal, multiplying the equation 3.37 and 3.38  

by   𝜑 2𝑗 𝑡 − 𝑘′  

By integrating the coefficient can be rewritten as: 

𝑎𝑗 ,𝑘 =  𝑎𝑗−1,𝑘

𝑚

 𝑘 𝑘 − 2𝑚 +  𝑑𝑗−1,𝑘

𝑚

 𝑔 𝑘 − 2𝑚  

(3.39) 

The final equation is actually evaluated by up-sampling the (j-1) scale coefficient 

sequence 𝑎𝑗−1,𝑘 , which means double its length by inserting zeros between each 

term, then convolving it with the scaling filter 𝑕 𝑛 . The same procedure is 

performed to the (j-1) level wavelet coefficient sequence 𝑑𝑗−1,𝑘  and the results are 

added to produce the j level scaling function coefficients 𝑎𝑗 ,𝑘 .This structure is 

illustrated in Figure3.3. This process can be continued to any level by combining the 

appropriate scale wavelet coefficients. 
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  2

h(n)

g(n)

+   

  2
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dj-1
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Figure 3.3: One-stage wavelet reconstruction 

The resulting two-scale tree is shown in Figure 3.4 
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+ h(n)
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  2

  

  2

  

  2

  

aj-2

aj-1

aj

dj-2

dj-1

             

 Figure 3.4: Two-stage wavelet reconstruction. 

 

3.4.2 Properties 

In practical application, wave bases can judiciously be chosen to fit the 

behaviour of the data to be analysed. An excellent choice of the wavelet bases 

can optimise signal processing algorithms. Indeed, a wavelet basis that produces 

more coefficients with a magnitude closed to zero is preferred more in data 

compression, since theses coefficients require less bits to encode. The most 

relevant criteria are the number of vanishing moments, the size of the support 

and regularity.    

The number of vanishing moments is related to the smoothness or 

differentiability of 𝜑(𝑡) and (𝑡). The size of the support measure the interval in  
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time in which the wavelet takes non-zero values. Regularity is defined ill terms 

of zeros of the frequency response function of the scaling filter  𝑕(𝑛) thus, 

indicating how fast the Fourier transform magnitude drops off, as the frequency 

progresses to infinity. This is particularly related to the frequency localisation of 

the decomposed signal.  

The size of the wavelet support increases with the number of vanishing 

moments. The wavelet regularity is important to reduce the artefacts. The choice 

of an optimal wavelet in image compression is thus the result, of a trade-off 

between the number of vanishing moments and artefacts. Some useful properties 

of the wavelet transform can be summarised as follows: 

 They can represent smooth functions     

     

 They can represent singularities 

 

 The basis functions are local. This makes most coefficient-based algorithms 

naturally adaptive to inhomogeneities in the function. 

 

 They have the unconditional basis property for a variety of function classes 

implying that if one does not know much about a signal (for instance, a 

signal with a non-stationary behaviour), the wavelet basis is usually a 

reasonable choice. 

 

 They are computationally inexpensive with a complexity O (N) compared to a 

Fourier transform, which is Nlog(N) or an arbitrary linear transform 

which is O(N
2
). 

 

 

3.4.3 2-D wavelet transform 

For 2-D data such as images, the most commonly used algorithm for wavelet 

decomposition uses separable one-dimensional wavelets and scaling functions. 

This kind of two-dimensional DWT leads to a decomposition of approximation 

coefficients at level j in four components: the approximation at level                            
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j—1(𝑎𝑗−1), and the details in three orientations (horizontal𝑑𝑗−1
(𝑕)

, vertical𝑑𝑗−1
(𝑣)

, 

and diagonal𝑑𝑗−1
(𝑑)

), Figure 3.5 describes the basic decomposed steps for images. 

An example of a one stage decomposed image of ―Lena‖ is illustrated by 

Figure3.6. In a similar way, the reverse process can be used to obtain the 

original 2-D signal. 

 

             Figure 3.5: One-stage 2-D wavelet decomposition 

                      

                 (a)  Original Image             (b) Decomposed Image 

Figure 3.6: One-stage 2-D wavelet decomposition of ―Lena‖. 

3.5 Summary 

In this chapter, the basic characteristics of transform domain: Discrete Fourier 

Transform, Discrete Cosine Transform and Fourier-Mellin Transform and Discrete 

Wavelet Transform, are reviewed. These techniques are very promising, within 

biometric and image processing.  The transform domain technique are the most 

challenging part of the image hashing in the feature extraction stage, the extracted 
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feature are invariant to image processing operation and geometric attacks.  In next 

chapter, the recent state-of-the-art feature extraction techniques such as: end-stopped 

wavelets, SURF, SIFT, and SIFT-Harris are presented. 
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Chapter 4     

Image Feature Extraction Techniques           

4.1 Introduction    

Recent research in biometric recognition systems has been performed to secure the 

biometric through hash based techniques. An image hash can be constructed by a set 

of features from images to form a compact representation that can be used for the 

authentication and integrity of the data. The selection of a feature extraction 

technique is a key step in any biometric recognition system and all pattern 

recognition systems. The recognition process analyses the spatial geometry of the 

distinguishing feature of the image. Different methods exist to extract the identifying 

features of an image, although in general they can be classified into three 

approaches: Feature-based approaches, Appearance-based approaches and Hybrid 

approaches 

 Feature-based approaches: This approach is based on the properties of 

individual appendages located on a biometric trait, such as eyes, nose and 

mouth on a face, wrinkles lines for a palm print, eye lashes for an iris, etc, as 

well as their relationships with each other.     

    

 Appearance-based approaches: These are based on information theory 

concepts and seek a computational model that describes a biometric image. 

This works by extracting the most relevant information contained in the 

image without dealing with the individual appendages.   

   

 Hybrid approaches:  This approach uses both holistic feature and local 

features. Modular eigenfaces and component-based feature can be given as 

examples. 

Once a raw image is properly pre-processed (i.e., enhancement, formatting, 

segmentation, etc), the feature extraction algorithm can then be used to extract the 

relevant features. The feature extraction algorithms can be classified into two groups: 

Global Feature Extractors and Local Feature Extractors. 
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 Global Feature Extractors: Aim to locate usable features from the raw data 

at the overall image level. They process the image as a whole and attempt to 

extract the features, e.g. the Gabor wavelet-based approach for iris and 

fingerprint recognition. 

 

 Local Feature Extractors: Focus on the block of image data. These 

algorithms work on small windows within the images and extract the relevant 

features, e.g. minutiae extraction. 

The feature points should be largely invariant under perceptually insignificant 

distortions. The feature extraction techniques discussed in terms of robustness to 

content-preserving operations include rotation, translation and other variations. The 

state of the art feature extraction techniques: End Stopped Wavelets [14], SIFT [51], 

SURF [15] and SIFT-Harris [16] are approached to solve problems in the image 

based biometric, including fingerprint, face, etc. 

 

4.2 End-Stopped Wavelets 

Psychophysical studies have identified the presence of certain cells, called 

hypercomplex or end stopped cells, in the primary visual cortex. Two types of end-

stopped cells have being identified. The single end-stopped cells respond strongly to 

extremely robust image features, for instance corner like stimuli and points of high 

curvature. The second type of end-stopped cells responds strongly to a linear 

segments or curved lines. The term end-stopped comes from the impressive 

sensitivity of these cells to end-points of linear structures, and moreover, 

Bhattacharjee et al [85] construct ‗‗end –stopped‘‘ wavelets to capture this 

behaviour. The construction of the wavelet kernel or basis function combines two 

operations. Firstly, linear structures having a certain orientation are selected. These  

linear structures are then processed to detect line-ends (corners) and or high 

curvature points.  Morlet wavelets can be used to detect linear structures having a 

specific orientation. In the spatial domain, the 2-D Morlet wavelet is given as [85]; 

 

𝜓𝑀(𝑋) = 𝑒 jk0.X − 𝑒−
1

2
  k0 2

  𝑒−
1

2
  X 2

   (4.1) 
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where X = (𝑥, 𝑦) represents 2-D spatial coordinates, and 𝐾0 = (𝐾0, 𝐾1) is the wave-

vector of the mother wavelet, which determines the scale-resolving power and 

angular-resolving power of the wavelet. The frequency domain 

representation 𝜓𝑀(𝐾) of a Morlet wavelet is 

 

𝜓 𝑀(𝐾) = 𝑒−
1

2
  k−k0 2

− 𝑒−
1

2
  k0 2

  𝑒−
1

2
  k 2

    (4.2) 

 

Here, 𝐾  represents the 2-D frequency variable (𝒰, 𝒱). The Morlet function is similar 

to the Gabor function, although with an extra correction term   𝑒−
1

2
   k 2+ X 2 

  to make 

it an admissible wavelet. The orientation of the wave-vector determines the 

orientation tuning of the filter. A Morlet wavelet detects linear structures orientated 

perpendicular to the orientation of the wavelet.     

   

In two dimensions, the end points of the linear structures can be detected by applying 

the first derivative of the Gaussian (FDoG) filter in the direction parallel to the 

orientation of the structures in question. The first filtering stage detects lines having a 

specific orientation and the second filtering stage detects end-points of those 

particular lines. These two stages can be combined into a single filter to form an 

―end-stopped‖ wavelet (Figure 4.1).  For example, the end-stopped wavelet and its 2-

D Fourier transform is as follows: 

 

 𝜓𝐸(𝑥, 𝑦) = 
1

4
𝑦𝑒−(

   𝑥2+𝑦 2

1
+

  𝑘0  

1
 𝑘0−2𝑗𝑥  )             (4.3) 

𝜓 𝐸(𝒰, 𝒱)  = 2π 𝑒−
 𝒰2−𝑘0 +(𝑣2)

2   𝑗𝑣𝑒− 
𝒰2+𝑣2

2                  (4.4) 

   

Equation (4.4) shows 𝜓 𝐸  as a product of two factors. The first factor is a Morlet 

wavelet orientated along the axis. The second factor is a FDoG operator applied 

along the frequency axis 𝒱, i.e., in a perpendicular direction to the Morlet wavelet. 

Hence, this wavelet detects line ends and high curvature points in the vertical 

direction. 



45 
 

                                      

                    (a)                          (b)                                 (c) 

Figure 4.1: Behaviour of the end-stopped wavelet on a synthetic image. (a) Synthetic 

L-shaped image. (b) Response of a Morlet wavelet. (c) Response of the end-stopped 

wavelet[14].  

 

Monga et al [14] recommend a feature extraction technique that computes a wavelet 

transform based on an end-stopped wavelet obtained by applying the FDoG operator 

to the Morlet wavelet  

                        𝜓𝐸 𝑥, 𝑦, 𝜃 =  𝐹𝐷𝑜𝐺 𝑜 𝜓𝑀 𝑥, 𝑦, 𝜃                          (4.5) 

and orientation tuning is given by 𝜃 = tan−1((𝑘1 𝑘0 )). 

The orientation range [0,𝜋] need be divided into M intervals and the scale parameter 

𝛼  be sampled exponentially as 𝛼𝑖 , 𝑖 ∈ 𝑍. This results in a wavelet family 

 (𝜓𝐸  𝛼𝑖 𝑥, 𝑦, 𝜃𝑘  , 𝛼 ∈ ℛ, 𝑖 ∈ 𝑍          (4.6) 

Where   𝜃𝑘 = 𝑘𝜋 𝑀  , 𝑘 = 0, … …𝑀 − 1.    

The wavelet transform is  

𝑊𝑖 𝑥, 𝑦, 𝜃 =  𝑓(𝑥1, 𝑦1)  𝜓𝐸
∗   ×     𝛼𝑖 𝑥 − 𝑥1, 𝑦 − 𝑦1 , 𝜃  𝑑𝑥1𝑑𝑦1                (4.7) 

Monga‘s feature detection method preserves significant image geometry feature 

points of an image as: (1) Computes the wavelet transform for each image location 

(2) Identifies significant features by looking for local maxima of the magnitude of 

the wavelet coefficients in a preselected neighbourhood. (3) Thresholding to 

eliminate spurious local maxima in featureless region of the image. These feature 

detection methods have two free parameters: integer scale  𝑖 and real threshold T. 

The threshold is used to select a fixed number of feature points from the image and 
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an image feature vector is formed by collecting the magnitudes of the wavelet 

coefficients at the selected feature points.   

4.2.1 Experimental Results 

In this novel work, Hausdorff distance is used to characterize the robustness and 

discriminability of the feature points. 

a) Hausdorff Distance [87]  

Given two finite points sets A= 𝑎1, 𝑎2, 𝑎3, 𝑎4 …… . . 𝑎𝑝  and B= 𝑏1, 𝑏2, 𝑏3, 𝑏4 …… . . 𝑏𝑝 , 

the Hausdorff distance is defined as 

                                H (A, B) = max (h (A, B), h (B, A))                     (4.8) 

Where       h (A, B) = max𝑎∈𝐴 min𝑏∈𝐵 𝐴 − 𝐵             (4.9) 

and   .   is the underlying norm on the points of A and B. The function h (A, B) is 

called the directed Hausdorff distance from A to B.  h (A,B) in effect rank each point 

of A based on its distance to the nearest point on B and subsequently uses the largest 

ranked point as the distance. The Hausdorff distance H (A, B) is the maximum of             

h (A, B) and h (B, A). 

b) Result and Analysis 

The algorithm is tested on a fingerprint image (Figure 4.2) database of 100 images 

from FVC2004/DB1_A [88]. The similarity of the feature point hash to the original 

and identical images are evaluated through the Hausdorff distance against distortion 

of the JPEG compression with the quality factor 10%, Additive white Gaussian 

Noise (AWGN) of Signal-Noise Ratio (SNR) 10%, Rotation 1
0
 ~ 15

o
, a median filter 

of window size 3x3, and low pass filter as mentioned in Table 4.1.  Table 4.2 

tabulates the quantitative deviation as the Hausdorff distance between the hash 

values of the original and manipulated images for various attacks.  The deviations are 

less than 0.3 values except for large rotation (greater than 10
o
) and AWGN of SNR 

(more than 10%).  
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Figure 4.2: Fingerprint images from FVC2004/DB1_A database 

 

Table 4.1:  Different Attacks used to assess the End Stopped Feature point  

 

Attack 

 

Parameters 

Image Processing Operations 

JPEG lossy compression 

Additive white Gaussian Noise (AWGN) 

Median filtering 

Low pass filtering 

 

 

Quality Factor =10 

Standard deviation 𝜎 = 10 

Window size 3x3 

/ 

Geometric Distortion 

Rotation 

 

 

Degree 1
0 
~ 15

0 
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Table 4.2:  Hausdorff Distance between features of original and Attacked Image                                                      

(For 32 Feature Points) 

Attack 00_1 01_1 02_1 03_1 

JPEG,QF=10 
0.2524 0.2294 0.1205 0.1669 

AWGN,𝜎 = 10 0.8522 0.3151 0.3546 0.2577 

Rotation 1
0
 0.1587 0.1196 0.1620 0.1371 

Rotation 2
0
 0.2356 0.1856 0.1884 0.1654 

Rotation 3
0
 0.2065 0.1935 0.1729 0.1811 

Rotation 4
0
 0.2743 0.2254 0.2803 0.1742 

Rotation 5
0
 0.2827 0.2221 0.2768 0.2183 

Rotation 10
0
 0.2698 0.3341 0.3204 0.2913 

Rotation 15
0
 0.3490 0.4066 0.3892 0.3926 

Median Filter (3x3) 0.2092 0.0983 0.1116 0.1852 

Low pass Filter 0.0649 0.0372 0.0435 0.0444 

 

4.3 Speeded-Up Robust Features [SURF]   

     

SURF method has have been used in general object recognition and other machine 

vision applications for a number of years.  The feature vectors are formed by means 

of local patterns around key points detected using scaled up filter size. These 

extracted feature vectors are established to be distinct and robust to noise and 

geometric and photometric deformations of image [40]. The major steps for SURF 

feature vectors are determined by key-point detectors and descriptors.  

a) Key-Point Detectors  

SURF detection based on Hessian Matric [89] leads to the use of integral images, 

which drastically reduces the computation time. In addition, integral images fit in the 

more general framework of boxlets [90]. The entry of an integral image 𝐼Σ 𝑝  at a 

location 𝑝 =  𝑥, 𝑦  represents the sum of all pixels in the input image 𝛪 within a 

rectangular region by the origin and 𝑝. 

𝐼Σ 𝑝 =   𝐼 𝑖, 𝑗 
𝑦
𝑗 =0

𝑥
𝑖=0                     (4.10) 
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It can be said that Hessian-based detectors are more stable and repeatable than 

their Harris-based counterparts. Given point 𝑝 =  𝑥, 𝑦  in an image 𝛪, the Hessian 

matrix 𝐻 𝑝, 𝜎  in 𝑝 at scale 𝜎 is defined as follows: 

 

    𝐻 𝑝, 𝜎 =  
𝐿𝑥𝑥  𝑝, 𝜎 𝐿𝑥𝑦  𝑝, 𝜎 

𝐿𝑥𝑦  𝑝, 𝜎 𝐿𝑦𝑦  𝑝, 𝜎 
                        (4.11) 

 

Where 𝐿𝑥𝑥  𝑝, 𝜎  is the convolution of the Gaussian second order derivative    

𝜕2

𝜕𝑥 2 𝑔(𝜎) with the image 𝛪 in the point 𝑝, and similarly for 𝐿𝑥𝑥  𝑝, 𝜎  and 𝐿𝑥𝑦  𝑝, 𝜎 . 

The second order Gaussian derivatives are approximated using box filters as 

shown in Figure 4.3 and image convolutions with box filters are computed 

rapidly using integral images. The determinant of Hessian matrix ΔH can be 

reduced to 

   ΔH = 𝐷𝑥𝑥 𝐷𝑦𝑦 − (𝑤𝐷𝑥𝑦 )2            (4.12) 

The response for each spot can be determined by assigning 𝑤 = 0.9 [15]. 

Furthermore, keypoints are localized in scale and image space by applying non-

maximum suppression in a 3x3x3 neighbourhood. 

 

                        

               𝑥-direction   𝑦-direction   𝑥𝑦 direction               

Figure 4.3:  Approximation of the second order Gaussian partial derivative.  

(The grey regions are equal to zero) 
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b) SURF Descriptor 

This stage consists of two sub steps. In the first sub step, a circular region is 

constructed around the extracted key-points and the dominant orientation of the 

circular region is computed using the Haar wavelets response in both 𝑥 and 𝑦 

directions. The resulting maximum Haar wavelet response is considered to be the 

dominant orientation and is used to generate the key-point feature vector. The feature 

vectors of a key-point are measured relative to the dominant orientation and thus, the 

generated feature vectors are invariant to image rotations.  

 

In the second sub step, a square region is constructed around each extracted key-

point and aligned along the dominant orientation. This square region is 

partitioned into 16 sub-regions of size 4x4 and therefore, Haar wavelet responses 

are computed for each sub-region. The sum of the wavelet responses, dx and dy, 

for each sub-region are used as feature values. Further, absolute values  𝑑𝑥  and 

 𝑑𝑦  are summed up to obtain the polarity of the image intensity changes. Thus, 

the descriptor vector, Des, of the sub-image is given as  

 

 

                             Des−  𝑑𝑥  𝑑𝑦   𝑑𝑥   𝑑𝑦                                   (4.13) 

 

The SURF descriptor vector of the keypoint is formed by concatenating descriptor 

vectors of all sixteen 4x4sub-regions around a keypoint. In addition, it consists of 64 

elements. 

 

4.3.1  Experimental Results       

   

SURF [15] focuses on the spatial distribution of gradient information within the local 

point neighbourhood. SURF is a rapid, scale and rotational invariant detector and 

descriptor. To verify the effectiveness of the SURF algorithm, the experiment 

conducted on fingerprint images and a face image of the same subject for known 

attacks of image processing and geometric operations as mentioned in Table 4.3. The 

result focuses on matching the two images (i.e., fingerprint and face) on various 

distortions with limited feature points. Figures 4.4 and 4.5 illustrate the feature 



51 
 

descriptors and matching of feature points (30 points) of the fingerprint image and 

face for various distortion like rotations (5degree, 20degree and 180degree), 

translation (25x25 window), histogram equalization, Median filter (5x5 window), 

JPEG (10%)  and Additive White Gaussian Noise with a SNR of 0.065%.  It was 

observed that descriptor vectors are matched between original and manipulated 

images for various attacks.  

 

Table 4.3: Different Attacks used to assess the SURF Feature point  

Attack Parameters 

Image Processing Operations 

JPEG lossy compression 

Additive white Gaussian Noise 

 Median Filter 

Histogram equalization 

 

 

Quality Factor =10 

SNR of 0.065 % 

Window size 5x5  

/ 

Geometric Distortion 

Rotation 

Translation 

 

 

Degree 0
0 
~ 180

0 

Window size 25x25  
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          (a)   Feature Descriptor                   (b) Feature Points (379 Points)                     

           

        (c) Feature Points       (d) 5 degree Rotation                ( e) 20 degree Rotation           

                             

            (f)   180 degree Rotation         (g) Translate (25x25)                           (h) Histeq                               

           

            (i) Median Filter (5x5)                 j) JPEG (10%)     (k) AWGN (0.065%) 

Figure 4.4: Feature Descriptors and Matching of Feature Points (30Points) on 

Fingerprint   Images of the same subject for different attacks: (a)  Feature Descriptor  

(b) Feature Points (379 Points)    (c) Feature Points (d) 5 degree Rotation  e) 20 

degree Rotation (f) 180 degree Rotation (g) Translate (25x25) (h) Histeq  (i) Median 

Filter (5x5)  j) JPEG (10%)  (k) AWGN (0.065%). 
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(a)   Feature Descriptor                   (b) Feature Points (379 Points)                     

    

   (c) Feature Points         d) 5 degree Rotation                     e) 20 degree Rotation           

     

    (f)   180 degree Rotation                 (g) Translate (25x25)                          (h) Histeq                

        

     (i) Median Filter (5x5)                         j) JPEG (10%)         (k) AWGN (0.065%) 

Figure 4.5: Feature Descriptors and Matching of Feature Points (30 Points) on Lena 

Images of the same subject for different attacks: (a)  Feature Descriptor  (b) Feature 

Points (379 Points)  (c) Feature Points (d) 5 degree Rotation  e) 20 degree Rotation 

(f) 180 degree Rotation (g) Translate (25x25) (h) Histeq  (i) Median Filter (5x5)  j) 

JPEG (10%)  (k) AWGN (0.065%). 
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4.4     Scale Invariant Feature Transform [SIFT]  

      

Local features, such as corners, blobs and regions, have been widely used for object 

detection, recognition and retrieval purposes in computer vision. The intrinsic 

advantages of these local features are their invariance under geometric operations.  

Among various local feature detectors and descriptors, SIFT was shown to provide a 

relatively optimal trade-off between robustness, unique and efficiency.  

 

SIFT [51] mainly consists of the following steps to generate the set of an image 

feature: Scale-space extrema detection, keypoint localization, orientation assignment 

and keypoint descriptor. 

 

a) Scale-Invariant Points Detection and Localization               

Scale invariant local points are detected by searching for local extrema in the series 

of difference-of-Gaussian (DoG) image. The DoG is constructed by the convolution 

of a variable scale Gaussian function G(x, y, ς), with an image I(x, y) in the scale 

space of an image L(x, y, ς).            

                                         𝐿 𝑥, 𝑦, 𝜎 = 𝐺 𝑥, 𝑦, 𝜎 ∗ 𝐼(𝑥, 𝑦)                           (4.13) 

To efficiently detect stable keypoint locations in the scale space, using scale-space 

extrema in the DoG convolved with the image, 𝐷 𝑥, 𝑦, 𝜎  with a nearby scale 

𝑘ς and ς as   

                  𝐷 𝑥, 𝑦, 𝜎 = 𝐿 𝑥, 𝑦, 𝑘ς − 𝐿 𝑥, 𝑦, ς  

                                         =  𝐺 𝑥, 𝑦, 𝑘ς − 𝐺 𝑥, 𝑦, ς  ∗ 𝐼 𝑥, 𝑦                  (4.15)   

Essentially, the DoG detector could be attributed to the detector for blob structures in 

the image content, as it provides a close approximation of the scale-normalized 

Laplacian of Gaussian.     

 𝐺 𝑥, 𝑦, 𝑘ς − 𝐺 𝑥, 𝑦, ς ≈ (𝑘 − 1)𝜎2∇2𝐺           (4.16) 

Substituting (4.16) into (4.15) and using a property of convolution to obtain 
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𝐷 𝑥, 𝑦, ς ≈  𝑘 − 1 𝜎2∇2𝐺 ∗ 𝐼 𝑥, 𝑦  

                                                     =  𝑘 − 1 𝜎2∇2 ∗ ∇2𝐼 𝑥, 𝑦        (4.17) 

where the Laplacian operator ∇2𝐼 𝑥, 𝑦  is used to detect edges and corners in the 

images. Equation (4.17) is DoG, is approximation of Laplacian of Gaussian and 

provides greater robustness against geometric transform of images compared with 

other gradient based feature points detectors such as Harris and Hessian, etc.   

b) Orientation Assignment and Descriptor Generation: 

The orientation of each key-point is determined by the peak of the orientation 

histogram formed by the gradient orientations within its neighbourhood. Based on 

the position, scale and orientation of each key-point, the corresponding descriptor 

with 128 dimensions based on gradient histogram within its 16x16 local 

neighbourhood is generated.   

 

4.5   SIFT-Harris  

 DoG detector of SIFT provides a satisfying performance under geometric 

transforms; however, its robustness against attacks, like additive noise and blurring, 

is poor [16]. To extract robust local features, it is desirable to select the most stable 

key-points under various distortions and attacks. The Harris corner [91] could 

provide a stable detection performance with high repeatability and localization 

accuracy under various distortion and geometric transformations. Therefore, the 

Harris criterion is incorporated to select the most stable SIFT keypoints. 

The Harris detector / criterion is based on the auto correlation matrix, which 

represents the gradient distribution within a local region of the selected point.  The 

autocorrelation matrix M for image 𝐼 𝑥, 𝑦  is represented as  

  𝑀 =  𝑤(𝑥, 𝑦)𝑥,𝑦  
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2     (4.18) 

Where 𝑤(𝑥, 𝑦) is a window to determine the accumulated region, and 𝐼𝑥  and 𝐼𝑦   are 

the image gradients in 𝑥 and 𝑦 axis, respectively. Furthermore, there is alternative 

criterion to evaluate the corner points as;  
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H=𝜆1𝜆2 − 𝐾(𝜆1 + 𝜆2)2 = det 𝑀 − 𝐾(𝑡𝑟𝑎𝑐𝑒2 𝑀              (4.19) 

where 𝜆1,𝜆2 are eigenvalues of autocorrelation matrix 𝑀 and 𝐾 is a coefficient 

ranging from 0.04 - 0.15 empirically. In this research work, 𝐾 =  0.06 [16]. 

Given a set of SIFT points =  𝑝𝑖 𝑥, 𝑦, 𝜎, 𝜃  𝑖=1
𝑁  , where 𝑥 and 𝑦 are coordinates and 

𝜎, 𝜃 are scale and orientation parameters, respectively.  𝐻𝑖
𝜎  (𝑥, 𝑦) is the Harris 

response where 𝜎 is the standard deviation of the Gaussian kernel window used to 

compute the auto-correlation matrix M and set the threshold 𝑇 to select the robust 

SIFT point as  

                      𝑇 =  
𝛼

𝑁
 𝐻𝑖

𝜎  𝑥, 𝑦 

𝑁

𝑖=1

                                                        4.20 

where α is an adjustable parameter to control the robust points selection and 

empirically α ∈ [0.1, 0.5]. Therefore, to control the robustness 0.5 is chosen as the 

default value.  

4.5.1 Experimental Results 

SIFT feature key points consist of local maxima or minima together with the gradient 

histogram. During matching, all the SIFT key points of the two images are 

compared. Intuitively, the SIFT algorithm is able to localize objects in an image, it 

can also help to determine whether two images contain identical content. Based on 

such consideration, the algorithms for SIFT and SIFT-Harris are tested on a natural 

image of size 256x256, between the original image and known distortion like 

Gaussian Noise ( var =0.005), Gaussian Blurr (var =0.5, 5x5 window), JPEG (QF 

=10%) as illustrated in Table 4.4.  
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Table 4.4 Comparison of keypoints Detectors on original and distorted Image 

 

 

 

Attacks 

 

SIFT 

 

SIFT-Harris 

 

 Original 

Image  

Keypoints 

 Distoted 

Image  

Keypoints 

 

Original 

Image  

Keypoints 

 

Distoted 

Image 

Keypoints  

Gaussian Noise                    

(var =0.005) 

 

306 

370  

87 

117 

Gaussian Blurr 

 (var =0.5, 5x5) 

353 117 

JPEG (QF =10 %) 460 148 

 

Furthermore, an investigation is performed on the benefits of robust keypoints 

against content preserving manipulations for the purpose of content identification. In 

this analysis Hausdorff distance is used to measure the similarity between the 

coordinates of the two sets of features detected in the original and distorted images. 

Alongside this, Hausdorff is used to compare the state of the art feature detector 

SIFT-harris with end stopped wavelet detector in terms of robustness against content 

preserving manipulation, as shown in Table 4.5. The feature vector are coordinates of 

the top 20 detected stable keypoints. It is observed that the average Hausdorff 

distance for a keypoint detected by the SIFT-Harris detector are smaller than an end 

stopped wavelet. 

Table 4.5  Average Hausdorff Distance between the coordinate for the top 20   

keypoints detected in the original and manipulated copies using the SIFT-harris and 

End Stopped Detector. 

Manipulation SIFT Harris End Stopped 

Gaussian Noise (Var =0.005) 0.0039 0.0567 

Salt and pepper Noise (Var =0.01) 0.0008 0.0902 

Speckle Noise (Var =0.01) 0.0013 0.0066 

JPEG, QF =10 0.0021 0.0131 
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4.6 SIFT-Wavelet 

Content Based Image Retrieval (CBIR) plays significant role  in image processing 

and its mainly focus on describing the bottom information of images, such as color, 

texture, etc.,  These methods have some achievements but they have more difficulties 

to describe image scaling, rotation movement, affine and other features in detail.  

One of the appealing methods is to collect the salient points (feature points) using 

low-level characteristics such as Harris detector and SIFT. Salient points can also be 

detected on the wavelet domain.  Wavelet based technique is basically used to 

provide more security and reliability of image. It decomposes an image into various 

resolutions which provide approximate and detail coefficients of image, which is 

then further processed for feature extraction and matching. In this proposed research 

we combined SIFT feature with efficient wavelet-based salient points to  generate  

robust  SIFT - wavelet feature that provides sufficient invariance to common image 

manipulations. The detail literature and the proposed block diagram are explained   

in section 5.4.2 

 

4.7 Overview of Feature Detector 

An invariant feature is an image pattern which differs from its immediate 

neighbourhood and is usually associated with a change in an image property, such as 

intensity, colour and texture.  A good set of features holds the following properties:  

 

      Repeatability: in which the feature extraction process should be repeatable and   

     precise, so that the same features are extracted on two images showing the     

     same object. 

 

 Distinctiveness: is the intensity pattern underlying the feature variations, 

which can be distinguished and matched. 

 

 Locality: allows the features invariant to reduce the probability of occlusion 

and model approximations of the geometric and photometric deformations 

between two images at different viewing conditions. 
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 Quantity: the number of detected features should be sufficiently large, so that 

a reasonable number of features are detected, even on small objects.  

 

 Accuracy: the detected features should be accurately localized, both in image 

location, with respect to scale and possibly shape. 

 

 Efficiency: the detection of features in a new image should allow for time 

critical applications. 

 

Table 4.6 [49]  provides an overview of the feature detector and has been grouped 

according to their invariance: rotation, similarity, affine and perspective. The Harris 

detector has rotational invariant features with the highest repeatability and 

localization accuracy. The Hessian detector locates blobs which are not as well 

localized and requires second-order derivatives to be computed. The SUSAN 

detector avoids computation of derivatives and is known for its efficiency; however, 

the absence of smoothing makes it more susceptible to noise.   

In scale, invariant feature group Harris-Laplace has been shown to have high 

repeatability and localization accuracy inherited from the Harris detector. Hessian-

Laplace is more robust than its single scale nature, which is due to blob-like 

structures that are better localized in scale than corners. In this invariant group, DoG 

and SURF detectors were designed for efficiency. The DoG detector performs 

extremely well in matching and image retrieval due to superior balance between 

spatial localization and scale estimation accuracy.  

The affine invariant Harris and Hessian follows the invariance properties. In 

addition, the salient regions require computing of a histogram and its entropy for 

each regions candidate in the scale or affine space, which results in large 

computational costs. Thus, the edge based regions focus on corners formed by edge 

junctions and provides good localization accuracy and repeatability with a fewer 

number of detected features.                                                                                                                                                                                                                                                                                

Intensity based regions use a heuristic method and find similar regions to the  

Maximally Stable Extremal Regions (MSER). Superpixels are typically based on 

segmentation methods, which are computationally expensive like normalized cuts. In 
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contrast to the superpixels, the MSER selects only the most stable regions, which 

results in high repeatability.  

Binary Robust Independent Elementary Features (BRIEF) descriptors are relies on a 

relatively small number of intensity difference tests to represent an image patch as a 

binary string.  BRIEF construction and matching for this descriptor much fast to 

yield higher recognition rates. The descriptor similarity can be evaluated using the 

Hamming distance, which is very efficient to compute, instead of the L2 norm as is 

usually done. 

Binary Robust Invariant Scalable Keypoints (BRISK) tackles the classic Computer 

Vision problem of detecting, describing and matching image keypoints for cases 

without sufficient a priori knowledge on the scene and camera poses. BRISK relies 

on circular sampling pattern from which it computes brightness comparisons to form 

a binary descriptor string and offers the quality of high-end features in time 

demanding applications. 

 

Fast Retina keypoint (FREAK) is a fast, compact and robust keypoint descriptor. A 

cascade of binary strings is computed by efficiently comparing pairs of image 

intensities over a retinal sampling pattern. FREAKs are general faster to compute 

with lower memory load and also more robust than SIFT, SURF or BRISK.  

 

 

 

 
 
 
 
 

 
 
 



61 
 

Table 4.6:  Overview of Feature Detector [50] 

 

Feature 

Extractor 
Corner Blob Region 

Rotation 

Invariant 

Scale 

Invariant 

Affine 

Invariant 
Repeatability 

Localization  

Accuracy 
Robustness Efficiency 

Harris         +++ +++ +++ + 

Hessian         ++ ++ ++ + 

SUSAN         + ++ ++ +++ 

Harris-Laplace          +++ +++ ++ + 

Hessian-Laplace           +++ +++ +++ + 

DoG           ++ ++ ++ ++ 

SURF           ++ ++ ++ +++ 

Harris-Affine            +++ +++ + + 

Hessian Affine            +++ +++ +++ + 

Salient Regions            + + ++ + 

Edge-Based            +++ +++ + + 

MSER           +++ +++ ++ +++ 

Intensity Based            ++ ++ ++ ++ 

Superpixels           + + + + 

BRIEF           ++ ++ ++ +++ 

BRISK           ++ ++ ++ +++ 

FREAK           ++ ++ +++ +++ 
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4.8 Summary 

In this chapter, the most recent state-of-the-art feature extraction techniques: end-

stopped wavelets, SURF, SIFT, and SIFT-Harris are investigated for their perceptual 

robustness against various content-preserving manipulations. Based on geometric 

invariance of the SIFT keypoints, Harris criterion are incorporated to select the most 

stable feature points under the addition of noise and blurring. The performance of 

this feature detector is evaluated through Hausdorff distance to measure the 

similarity between the feature vector of the original and distorted images. The feature 

vectors are coordinates of the top 20 detected stable keypoints. The average 

Hausdorff distance of the keypoint detected by the SIFT-Harris  detector are smaller 

than end stopped wavelets. Therefore SIFT-Harris is relatively more stable for 

geometric operations, especially for blurring operations and additive noise attacks. 

This chapter also discusses the overview of feature detectors by highlighting their 

respective strengths and weaknesses. In next chapter, we discuss implementation of 

robust minutiae based fingerprint image hashing. The fingerprint minutiae extraction 

method is combined individually with the SIFT-Harris, SIFT-Wavelet and the SIFT 

method, to generate robust features. The idea is to incorporate the orientation and 

descriptor in the minutiae of the fingerprint image. Shape context based hashing is 

used for fingerprint identification.   

 

 
.  
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Chapter 5 

 

Minutiae Based fingerprint Image Hashing 
 

Due to recent developments in technologies, image data in digital format is used 

extensively in the world of the internet and ready to be accessed anytime, anywhere. 

The amount of image data information via digital devices has grown exponentially. 

Conversely, the digital nature of information allows individuals to manipulate and 

duplicate data easily without any change in quality. The power of the image 

manipulation software has made it possible to effortlessly modify digital multimedia 

data. Under this circumstance, integrity verification has become an important issue in 

the digital world. In the area of multimedia security, two types of approaches have 

been proposed to maintain the confidentiality of image data: watermarking and 

perceptual hashing. Watermarking is the ability to detect changes in the host image 

data, which can provide some form of guarantee that the image data has not been 

tampered with and has originated from the right source. Watermarking can be used in 

copyright verification or in content authentication for digital images. Furthermore, 

data embedding inevitability causes a slight distortion in the host image data. 

In conjunction with watermarking, perceptual hashing is conventionally used for 

image content authentication. The main advantage of a perceptual hashing scheme is 

that the image data is not altered and not degraded visually.  Perceptual image 

hashing is different from cryptographic hashing in that cryptographic hashes are 

extremely sensitive to single-bit changes of input data that will change the output 

dramatically. 

Recently, perceptual image hashing has received considerable attention from many 

researchers. Most countermeasures proposed in the literature, generally focus on 

feature extraction to acquire robust feature to authenticate the image. In this research, 

we introduced a robust minutiae based fingerprint image hashing by combining state 

of the art feature points with the minutiae of fingerprint images, which are discussed 

in the following section 5.5. 
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5.1 Design criteria for image hashing 

There are three important design criteria for an image hash function: robustness, 

fragility and unpredictability. Let I denote the reference image (e.g., all natural 

images of a particular size). Likewise, I' denote test image (an image visually 

identical or perceptually distinct). Assuming hash function H (.), the system produces 

two hash values h = H(I) and h' = H(I') by using a key K. 

 

 
𝑕 = 𝐻(𝐼; 𝐾)

𝑕′ = 𝐻(𝐼′;𝐾)
       (5.1) 

 

The following requirements are considered: 

 

(i) Perceptual robustness: 

 

(H(I,K) ≈ H(I',K)),then dist(h, h') <Th     (5.2) 

(ii) Distinct visually: 

 

 (H(I,K) ≠ H(I',K)),then dist(h, h') ≥ Th                                       (5.3) 

 

(iii) Unpredictability of the hash: 

 

                          H(I); fh(1) = fh(0) = 0.5           (5.4) 

 

Where, 

 fh(x) is the probability mass function for h. 

In effect, (i) ensures the capability of the visually similar images distance between 

two hashes h and h' should be less than a threshold Th. Conversely, (ii) has the 

capability to differentiate between two images, which are visually distinct. The first 

requirement suggests that the distance between two hashes h and h' should be larger 

than a threshold Th. (iii) guarantee the unpredictability of the hash values, in addition 

to the key K functions (pseudo-random number generator) used at final stages of the 

hash function. 
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Figure 5.1: Design requirements for fingerprint image hashing 

 

5.2 Perceptual Image Hashing Schemes 

Perceptual image hashing has been introduced to generate a robust, unique, compact 

and secure feature and moreover, its hash values of the image. Based on the 

characteristics of images, the extracted features are unique and distinctive for content 

identification. The image hashes are perceptually similar to the content preserving 

operations as long as two images are similar to the Human Visual System (HVS). 

Similarly, a very different hash value for a perceptually different image is shown in 

Figure 5.1. Hence, feature extraction is a key step in the image hashing technique. 

The image hashing schemes are categorised into four types:  Statistic-based schemes, 

Relation-based schemes, Coarse-representation-based schemes and Low-level 

feature-based schemes. 

 

 



66 
 

 Statistic-based schemes [43], [46], [47], [92]: This group of schemes extracts 

image features by calculating the image statistics in the spatial domain, such 

as the mean, variance, higher moments of image blocks and histogram. 

 Relation-based schemes [90], [94]: This category involves approaches to 

extract image features by making use of some invariant relationships of the 

coefficients of the discrete cosine transform (DCT) or wavelet transform 

(DWT). 

 Coarse-representation-based schemes [41], [48], [95]: In this category, the 

perceptual hash is calculated by making use of coarse information with 

regards to the whole image, for instance the spatial distribution of significant 

wavelet coefficients, the low-frequency coefficients of Fourier transform, and 

so on. 

 Low level feature-based schemes[14], [96]: The image features are extracted 

by detecting the salient image feature points. These methods first perform the 

DCT or DWT transform on the original image, and subsequently, makes use 

of the coefficients to generate a final hash value. However, the perceptual 

hash value is very sensitive to global as well as local distortions that do not 

cause perceptually significant image changes. 

5.2.1 Perceptual Image Hashing Framework 

Transformation QuantizationFeature Extraction

Crypto-

Compression

Input image
Transformed 

image

Continuous 

intermediate

Hash vector

Intermediate

Binary hash 

vector

Final Perceptual 

hash

T( ) FX( ) Q( )

En( )

 

Figure 5.2: Pipeline stages for the perceptual hashing system 
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A perceptual hashing system consists of four pipeline stages: transform stage, feature 

extraction stage, quantization stage, and compression and crypto-compression stage, 

as illustrated in Figure 5.2. In the transformation stage, the input image undergoes 

special and /or frequency transformation to make all the extracted features depend on 

the image pixels or image frequency coefficients. In the feature extraction stage, the 

perceptual image hashing system extracts the image feature from the input image to 

generate the continuous hash vector. They, the continuous perceptual hash vector are 

quantized into the discrete hash vector in the quantization stage. In the third stage the 

discrete hash vector is converted into a binary perceptual hash string. Finally, the 

binary perceptual hash string is compressed and encrypted into a short and final 

perceptual hash in the crypto-compression stage. 

5.3 Content-Based Image Identification 

The concept behind image authentication is to extract the image characteristics 

(features) of the human perception for the authentication process. Typically, some 

applications will be performed by considering intentional (image processing, such as 

filtering, compression, cropping, resizing etc) and non–intentional (noise, channel 

errors) distortion to the images. The context-preserving manipulations only change 

the pixel values, which results in different levels of visual distortion in the image, but 

the contexts of the image, which carries the same visual message to the observer, are 

preserved. In contrast, malicious/content-changing manipulations consist of changing 

the content of the original image to a new one, which transmits a different visual 

message to the observer. One typical example of malicious modification is replacing 

some parts of the image with different contents. Perceptual hashes are expected to be 

able to survive acceptable content-preserving manipulations and 

reject malicious manipulations. Classification of content-preserving and content-

changing manipulations is provided in Table 5.1. 
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Table 5.1: Content-Preserving and Content-Changing Manipulation 

 

Content –Preserving Manipulation Content –Changing Manipulation 

 Transmission errors  

 Noise 

 Compression  and quantization 

 Resolution reduction 

 Scaling 

 Rotation 

 Cropping 

 𝛾 Distortion 

 Colour conversions 

 Contract adjustment, changes of  
brightness, hue and saturation 

 Removal of image objects 

 Moving of image elements or 

changing their positions 

 

 Adding new objects 

 Changes of image characteristics: 

colour, textures.     

 Changes to the image 

background: day time or location 

 Changes of light conditions: 

shadow manipulation etc. 

 

 

5.4 Proposed Feature Extraction Techniques 

The state of the art feature extraction techniques and the properties of feature 

detector are briefly discussed in chapter 4. 

This research focuses on improving the security of fingerprint templates and accurate 

comparison of the fingerprint content. The generation of fingerprint templates, which 

in turn are used to compare fingerprint content (or their perceptual hashes) mostly 

rely on feature extraction techniques, such as SIFT, SIFT-Harris or Fingerprint 

Minutiae. However, a combination of the two (e.g., SIFT-Minutiae) has not been 

previously studied in the literature.  

 

Firstly, the SIFT-Harris method is combined with the Fingerprint Minutiae extraction 

technique to determine the most prominent fingerprint features. These features are 

post-processed into perceptual hashes using shape content based perceptual hashing 

to plot the accuracy of fingerprint comparison using Receiver Operating 

Characteristic (ROC) curves.  
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Secondly, the SIFT-Wavelet is combined with the Fingerprint Minutiae extraction 

technique to determine the most prominent fingerprint features. These features are 

also post-processed using shape content based perceptual hashing techniques to plot 

the accuracy of fingerprint comparison using ROC curves.  

 

Thirdly, the SIFT is combined with the Fingerprint Minutiae extraction method and 

post-processed using shape content based procedures to plot the accuracy. 

 

5.4.1 SIFT-Harris-Minutiae Feature for Fingerprint Image Hashing 

To design robust fingerprint hashing against various distortions, robust feature 

extraction is the most important step. We propose a method for extracting the robust 

minutiae of the fingerprint images, by combining the SIFT-Harris feature points with 

the minutiae of the fingerprint image, as demonstrated in Figure 5.3.  Based on the 

position, scale and orientation of each keypoint in the SIFT-Harris, the corresponding 

descriptor with 128 dimensions based on the gradient histogram within its 16x16 

local neighborhood is generated. Alongside the SIFT-Harris feature points (SHFP), 

minutiae (MP) are extracted with four tuple, such as MP={x,y, 𝜃, t}, where, (x,y) is 

the coordinate, 𝜃 is angle, and t is the type of minutiae (termination or bifurcation) 

respectively. 

 Fingerprint 

Minutiae 

Extraction

SIFT -Harris

Feature 

Extraction

Fingerprint Image 

Sets

Feature Point 

Matching

Feature 

Compression

Feature

Hashes

Secret Key

Query

Hashes

Decision
Verification/

Identification

Robust Feature

 

 

 

 

Figure 5.3: Proposed Robust SIFT-Harris- Minutiae based Fingerprint Image 

Hashing 
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The absolute radial distance between the position of the SIFT-Harris feature and the 

coordinates of the minutiae are computed. Most robust minutiae are detected if the 

relative difference of pixel values is within the threshold of ten pixel value [5]. Along 

with the detected point the corresponding orientation and descriptor are also 

identified. Hence, the proposed robust minutiae are represented by coordinates, 

orientation and descriptor respectively. This robust minutia of the fingerprint image 

is to be hashed, and the fingerprint identification is to be performed using hashed 

robust minutiae. Consequently, the detailed hashing technique is explained in section 

5.5. 

The robustness of the image hashing arises from robust feature extraction and the 

compression, which mainly contributes to the compactness of the final hash. To 

increase the security of a traditional hash function and prevent unauthorized access, a 

secret key is incorporated in either the feature extraction, compression or both to 

make the hashes unpredictable.   

Most of the hashing algorithms incorporate a pseudorandomization relying on a 

secret key. Such a key is incorporated into the compression step [15] to further 

enhance the security, as indicated by the dashed line in Figure 5.3. The key is owned 

by the owner, and the hash generation is a pseudorandom process rather than a 

completely random one for fingerprint identification. The incoming query hash 

corresponding to the query image is compared with the hashes in the database. 

 

5.4.2 SIFT-Wavelet -Minutiae Feature for Fingerprint Image Hashing 

Recently, the wavelet based salient points detector and a combination of wavelet-

SIFT features has been successfully used in several image recognition systems. Lin 

et al [97] presented an efficient salient-region extraction algorithm based on the 

significance of accumulated wavelet coefficients. This algorithm is robust for image 

processing operations like compression, filtering and geometric distortions. Lim [98], 

Sebe et al [99] explained the comparative analysis of scale-invariant feature 

extraction using different wavelet bases and highlight the advantages, whereas 

Loupias et al [100] recommended  a salient point detector based on wavelet 

transform to detect global and local variations. In addition, Omidyeganeh et al [101] 
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introduced a robust face recognition system based on wavelet transform of the Scale 

Invariant Feature Transform (SIFT) features, and moreover, these combinations 

provide important performance efficiency in face recognition systems.  

Recently, Kumar et al [102] suggested a new technique for robust colour image 

matching based on the combination of wavelet-colour SIFT features. Moreover, 

Wang et al [103] presented a parameter adjusted Gaussian Mixture Models using a 

salient feature patched to recognise an object in Caltech image database. These 

methods combine an effective combination of wavelet-based features and SIFT 

features. Thus, the extracted features are suitable for properties that are invariant to 

translation, scaling, rotation and illumination changes. 

Halawani et al [104] evaluated and compared the non-linear kernel function around 

salient points with Monte-Carlo[105] function for the purpose of invariant content 

based image retrieval. Jian et al [106] proposed a wavelet based salient point detector 

to extract the visually meaningful region in an image and an annular segmentation 

algorithm based on salient region distribution is designed. Furthermore, Imamoglu et 

al., [107] introduced a novel saliency detection model by utilizing low-level features 

obtained from the wavelet transform domain.  

Salient point detection in images is very useful for image processing application like 

image compression, object detection and object recognition. Tsai et al [108] 

suggested a hierarchical selection algorithm for selecting the most salient point to 

satisfy the representation of an image and to make an effective image retrieval 

system. 

Though SIFT algorithms locate the salient points in a given image which are scale 

invariant there is a need to improve the robustness of those points. The most 

appropriate method for doing this is to prune the locations obtained by the SIFT to 

retain the most robust points, which remain unchanged for different types of attacks. 

Consequently, it is demonstrated [16] that the corner points in the SIFT locations are 

highly robust and retain the stable points. 
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A) Wavelet Transform  

 

Wavelet [109] plays a significant role in many image processing applications. The 

computation of the wavelet transform of a 2-D image involves recursive filtering and 

sub-sampling. This operation results in four decomposed subband images referred to 

as low-low (LL, produces a approximation of the image), low-high (LH, containing 

horizontal information at a high frequency), high-low (HL, containing vertical 

information at a high frequency), and high-high (HH, containing diagonal 

information at a high frequency). Moreover, the wavelet transform can recursively 

decompose the LL band. The two level wavelet decomposition results, LH1, HL1, 

HH1, LH2, HL2, HH2 and an additional approximation image LL2 are revealed in 

Figure 5.4.  In this particular research, we use the Haar wavelet [110], which is a 

simple orthogonal, compactly supported wavelet, which leads to a complete and non-

redundant representation of the image.  

   

LL2 LH2                       

LH1 
HL2 HH2 

HL1 HH1 

Figure 5.4: Second Level Wavelet Transform 

 

B) Proposed SIFT-Wavelet -Minutiae 

In our work we intend to use a wavelet image analysis tool to determine the robust 

points in the SIFT. This is completed by the motivation that four categories of 

coefficients; approximation coefficients, horizontal, vertical and diagonal 

coefficients can be utilized to localize the salient points. This method can be 

combined with the SIFT to select the robust points from the SIFT coefficients. 

To explain the proposed method of selecting robust points from the SIFT output, let 

us consider that the selected images are decomposed by the L levels and represent 
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the coefficients obtained for every level, as ak, hk, vk, dk. Moreover, the relationship 

between the coefficients at every level can be illustrated as in Figure 5.5. 

 

Figure 5.5: Image Decompose Level 

 

It can be perceived that if the input image is of dimension N x N then at level 0 each 

of the coefficients will be of dimension N/2 x N/2. Furthermore, the computation 2 x 

2 pixel group of the image contributes for a pixel in the set {ak, hk, vk, dk} k=0. Based 

on image decomposition  (Figure 5.5) it can be observed that when we compute the 

next level coefficients the results are contributed by a 4x4 pixel group of the image. 

When the decomposition is done progressively it can be shown that at kth level the 

contribution for a pixel of coefficients would be from a b x b pixel group from the 

input image, whereas b=2(k+1).       

We propose to use the coefficient value obtained at a location at the kth level to 

determine the characteristics of the b x b pixel group of the original input image. If 

all the three coefficients hk, vk, dk are high at kth level in a given location then we 

assume that the corresponding b x b pixel group of original image is salient. The 

simple logic we applied is that a SIFT point in a salient bxb matrix of the original 

image will be considered salient and retained. The high energy in horizontal, vertical 

and diagonal directions imply that the point is a corner point and will be robust to 

attacks. 

The SIFT-Wavelet is combined with the Fingerprint Minutiae extraction technique to 

determine the most prominent fingerprint features, as shown in Figure 5.6. The 

algorithm is similar to the SIFT-Harris-Minutiae as discussed in section 5.4.1.  
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The proposed robust minutiae are represented by coordinates, orientation and 

descriptor, respectively. The robust minutiae of the fingerprint image are also post-

processed using shape content based perceptual hashing techniques to plot the 

accuracy of fingerprint comparison using ROC curves, as explained in section 5.6.  
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Figure 5.6: Proposed Robust SIFT-Wavelet- Minutiae Fingerprint Image Hashing 

 

5.4.3  SIFT-Minutiae Feature for Fingerprint Image Hashing 

Together with the SIFT-Harris-Minutiae and the SIFT-Wavelet-Minutiae, the 

performance of the SIFT-Minutiae combination was demonstrated. Without any 

thresholding to the SIFT keypoints the minutiae of the fingerprint image was 

combined to extract the most robust minutiae from the fingerprint images. The 

position, scale, orientation and descriptor of each keypoint in the SIFT and minutiae 

coordinate, angle and type are computed. The absolute radial distance between the 

positioned SIFT points and the coordinates of the minutiae are calculated. Based on 

the relative difference of the pixel the most robust minutiae are detected along with 

the orientation and descriptor. In addition, the SIFT-Minutiae combination is 

represented by the coordinates, orientation and descriptor respectively. This robust 

minutia from the fingerprint image is post-processed using shape content based 

procedures to plot the accuracy, as described in section 5.5. 
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5.5  Image Hashing Based On Shape Contexts 

Roy et al [111] presented a technique to encode the geometric relationship between 

the SIFT points into a short vector, but the robustness is limited to attacks like 

rotation, cropping and compression. In [112], [113] the authors use the SIFT local 

feature points to detect image copies or near-duplicate copies by matching the high-

dimensional local feature descriptors of keypoints. However, this is not possible in 

image hashing, where, the robust features are compressed into compact hash and 

match the hashes during the detection stage.   

Lv et al [16] recommend using the shape contexts, which is a promising method to 

measure shape similarity for object recognition, so as to generate image hashes based 

on the robust local feature points that have been detected. The distribution of local 

feature points is composed of the content structure of images and considers this 

geometric structure as an abtract object. Furthermore, the use of a descriptor 

represents this structure as an unique signature. In the following sections, the basic 

concept of shape contexts and shape contexts based image hashings are described in 

detail. 

5.5.1 Shape Contexts 

Given a set of points P= 𝑝𝑖 𝑖=1
𝑁 , which are sampled from the contour of an object, the 

shape context of point 𝑝𝑖with respect to the reference point 𝑝𝑐  is defined in [114] as:  

                            hi(k)  =  #{pi ≠ pc  : (pi − pc ) ∈ bin(k)}                             (5.5) 

where pi ∈ 𝑃 and 𝑏𝑖𝑛(𝑘) are uniform in log-polar coordinates as shown in Figure 5.7 

with the centre located at pc . The shape context of each point is a coarse histogram, 

which represents the relative positions of other points to the reference point. It has 

been identified that this descriptor is highly robust to shape deformation and offers a 

globally discriminative characterization, which is effective in solving shape matching 

and transforming model estimation problems. 
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Figure 5.7: Diagram of the original shape contexts and the proposed shape contexts 

hashing: RSCH.ASCH. (a) Original Shape Contexts. (b) Radial Shape Contexts 

hashing (c) Angular shape Contexts hashing [16].   

 

5.5.2 Shape Context Based Hashing 

In our proposed approach, shape context based hashing [16] is used for fingerprint 

authentication and provides an excellent description of the geometric structure of a 

shape. We can embed the geometric distribution of robust feature points, as well as 

their descriptors into shape contexts to generate a compact image hash. The original 

shape context was designed to be computed for each point sampled from the object 

contours, which means that for N local feature points we have N shape contexts. In 

addition, it provides a rich descriptor to represent the shapes, although it has to be 

compressed to be used for hashing directly.     

It can be observed in the image content authentication that all perceptually 

insignificant distortions and malicious manipulations on the image content would not 

lead to viewpoint changes. In addition, the centre of an image is generally preserved 

and relatively stable under certain geometric attacks. This encourages Lv et al [16] to 

generate shape contexts with the reference point in the centre and obtain a compact 

signature for the image. Another reason for avoiding computing shape context for 

each local feature point in the hashing is that the detection of keypoints cannot 

guarantee to yield exactly the same feature points when the image is under different 

attacks and manipulations. As a trade-off, Radial Shape Context Hashing (RSCH) 

and Angular Shape Context Hashing (ASCH) are used to generate hashes using 

shape contexts with respect to the central reference point. 
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Given a set of robust feature points 𝑃 =  𝑝𝑖 𝑥, 𝑦  𝑖=1
𝑁 and their corresponding  

descriptors 𝐷 = 𝑑𝑝𝑖 (x, y)}𝑖=1
𝑁 , the basic steps of RSCH and ASCH are as follows : 

A.  Radial Shape Context Hashing (RSCH) 
 

a. Given the coordinates of the central point 𝐶 = (𝑥𝑐 ,𝑦𝑐) and the required length of 

the hash L, construct bins 𝐵 =  𝑏 𝑘  𝑘=1
𝑁 of shape contexts with incremental          

𝑙 =max (𝑥𝑐 ,𝑦𝑐)/L in the radial direction of the polar coordinates. 

𝑏(𝑘) = {𝑝𝑖 ∈ 𝑃:  𝑘 − 1 𝑙 ≤  𝑝𝑖 − 𝐶 ≤ 𝑘𝑙}            (5.6) 

Where  𝑝𝑖 − 𝐶 is the relative distance between pi and the central point 𝐶. 

 

b. Generate pseudorandom weights  ∝𝑘 𝑘=1
𝐿  from the normal distribution N (𝑢, 𝜎2) 

using a secret key. Each ∝𝑘  is a random vector with 128 dimensions to be 

consistent with the dimensions of the SIFT descriptors. 

 

c. Let 𝐻 =  𝑕𝑘 𝑘=1
𝐿  be the hash vector and thus, we have each component 𝑕𝑘  as   

           

 𝑕𝑘 =  𝑤
 
𝐿∆𝜃𝑝𝑖

2𝜋
 
 ∝𝑘, 𝑑𝑝𝑖  

𝑝𝑖∈𝑏 𝑘 

 

       (5.7) 

Where ∆𝜃𝑝𝑖 = (𝜃𝑝𝑖 − 𝜃𝑐) ∈ (0,2𝜋) is the relative difference in orientations 

between 𝑝𝑖  and the central point𝐶. The weight w [𝐿∆𝜃𝑝𝑖 / 2𝜋] ∈ 𝑊 =  𝑤𝑖 𝑖=1
𝐿 , is 

the set of random weights generated from uniform distribution U(0.5,1). This is 

to differentiate between the points located at different orientations of the same 

hash bin 𝑏(𝑘) along the radial direction. 
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B. Angular Shape Context Hashing (ASCH) 

 

a. Given the coordinates of the central point 𝐶=(𝑥𝑐 ,𝑦𝑐) and the required length of 

the hash L, construct bins 𝐵 =  𝑏 𝑘  𝑘=1
𝑁 of shape contexts with incremental   

𝑙 = 2𝜋/L in the angular direction of the polar coordinates . 

  𝑏(𝑘) = {𝑝𝑖 ∈ 𝑃:  𝑘 − 1 𝑙 ≤ (𝜃𝑝𝑖 − 𝜃𝑐) ≤ 𝑘𝑙}                                    (5.8) 

         Where (𝜃𝑝𝑖 − 𝜃𝑐) =∆𝜃𝑝𝑖 ∈  0,2𝜋 . 

b. Generate pseudorandom weights  ∝𝑘 𝑘=1
𝐿 from the normal distribution N(𝑢, 𝜎2) 

using a secret key. Each ∝𝑘  is a random vector with 128 dimensions to be 

consistent with the dimension of the SIFT descriptors. 

c. Let 𝐻 =  𝑕𝑘 𝑘=1
𝐿  be the hash vector, we have each component 𝑕𝑘  as 

  𝑕𝑘 =  𝑤
 
𝐿 𝑝 𝑖−𝐶 

 𝐶 
 
 ∝𝑘 , 𝑑𝑝𝑖  

𝑝𝑖∈𝑏 𝑘 

 

                   (5.9) 

Where  𝑝𝑖 − 𝐶  is the same as referred to in section 5.5.2A and  𝐶  = 𝑥𝑐
2 + 𝑦𝑐

2 is 

the normalization factor. The weight 𝑤[𝐿 𝑃𝑖−𝐶 / 𝐶 ] ∈ 𝑊 =  𝑤𝑖 𝑖=1
𝐿  is the set of 

random weights generated from the uniform distribution U(0.5,1). This is to 

differentiate between the points located at different orientations on the same hash bin 

𝑏(𝑘) along the angular direction. 

Estimation of Central Orientation  𝜃C : The central orientation  𝜃C  is significantly 

important for both the ASCH and RSCH and moreover, is required as a reference 

direction to calculate the relative difference in orientation between the local feature 

point 𝑝𝑖  and the central point 𝐶. However, estimating based on local gradient 

distribution is not reliable due to different image processing attacks. Alternatively, 

Radon transform is used to estimate an accurate reference orientation for central 

point 𝐶.  

Radon transform is the integral transform consisting of the integral of a function over 

straight lines. Given a 2-D function 𝑓 (𝑥, 𝑦) and line 𝑝 with orientation 𝜃 as shown in 

figure5.8 
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Figure 5.8 Radon transform 𝑅(p,𝜃) of a 2-D function 𝑓 (𝑥, 𝑦) 

 

The Radon transform of 𝑓 (𝑥, 𝑦) is the integral of the orthogonal projection to line 𝑝. 

 

          𝑅𝑓 (𝑝,𝜃)=∫ 𝑓 𝑥, 𝑦 𝑑𝑞
∞

−∞
      (5.10) 

Where 𝑞 is the orthogonal axis of line 𝑝. 

𝑥 = 𝑝𝑐𝑜𝑠𝜃– 𝑞𝑠𝑖𝑛𝜃                     (5.11) 

        𝑦 = 𝑝𝑠𝑖𝑛𝜃+ 𝑞𝑐𝑜𝑠𝜃              (5.12) 

Based on Radon transform [16][17], the estimation of the reference orientation for 

the central point 𝐶 is as follows: 

Step1)  Select the circular neighborhood where the radius = 64 and denotes this 

region as a 2-D function 𝑓 (𝑥, 𝑦). Subsequently, compute the radon transform 

of 𝑓 (𝑥, 𝑦) from 0 to2𝜋 and get  𝑅𝑓 (p,𝜃), where 𝜃 ∈  0,2𝜋 . 

Step2) Choose a reference point 𝑝𝑟  on the 𝑝 axis neighborhood Ω ∈     𝑝𝑟 − 𝑡, 𝑝𝑟 + 𝑡  

as shown in figure5.8. 
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The reference orientation  𝜃C  are estimated by  

  
𝜃C

= arg max
𝜃

  𝑅𝑓  p, 𝜃 , 𝜃 ∈  0,2𝜋 

𝑝𝑟+𝑡

𝑝=𝑝𝑟−𝑡

 

                                                                     (5.13)  

Here  𝜃C is not the extract orientation of the central point  𝐶.  However, it provides us 

with a reference orientation, which could be used to calculate the relative difference 

in orientations between  𝐶 and other keypoints. 

5.6 Experimental Results 

In this work, a Euclidean distance metric and Receiver Operating Characteristics 

(ROC) are chosen to distinguish the robustness and discriminability of the perceptual 

hashing scheme. These are:  

a) Euclidean Distance 

Let 𝑆 =  𝑠𝑖 𝑖=1
𝑁 be the set of original images in the database. The corresponding 

hashes space  H S =  H si  i=1
N  where H (𝑠𝑖) = {𝑕1 𝑠𝑖 , 𝑕2 𝑠𝑖 , … … …𝑕3(𝑠𝑖)} is the 

hash vector with length n for image 𝑠𝑖 . Hence, we use Euclidean distance 

D( 𝑕1), (𝑕2 ) to measure the similarity between two hash vectors H(𝑠1) and H(𝑠2). 

Subsequently, given a query image Q, we generate its hash H(Q) and calculate its 

distance to each original image in the hash space H(S). The distance between two 

hashes is defined as the square root of the sum of the squares of the differences 

between the corresponding hash values. i.e., the distance between two hashes 

𝑕1 𝑎𝑛𝑑 𝑕2 is given by 

𝑑𝑖𝑠𝑡  𝑕1), (𝑕2  =    𝑕1𝑖
− 𝑕2𝑖

 
2

𝑖=1

 

 

   (5.14) 
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b)Receiver Operating Characteristics (ROC) 

The ROC curve is used to evaluate the identification performance of the proposed 

robust minutiae based fingerprint image hashing technique. To plot the ROC curve, 

the 𝑇𝑃𝑅  𝜏  and 𝐹𝑃𝑅  𝜏   are defined as: 

𝑇𝑃𝑅  𝜏 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐷 𝐻𝑘 𝐼  ,  𝐻𝑘 𝐼𝑑  ) < 𝜏   (5.15) 

𝐹𝑃𝑅  𝜏 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐷 𝐻𝑘 𝐼  ,  𝐻𝑘 𝐼′  ) < 𝜏   (5.16) 

Where, 𝜏 is the identification threshold. The image 𝐼𝑑  is a modified version of I and 

𝐼′  is a distinct image of the original image I. ROC curves were generated by varying 

the threshold 𝜏 from the minimum to the maximum value of all the distances.  TPR 

against FPR were plotted in ROC curves which suggest that the best possible 

performance should correspond to point in the top left corner (coordinate 0, 1) of the 

ROC space. 

Table 5.2: Different Attacks used to assess the hashing performance 

Attack 

 

Parameters 

 

Image Processing Operations 

JPEG lossy compression 

Median filtering 

Gaussian Blur 

 

Quality Factor =10 

Window size 3x3 

Variance 𝜎 = 0.5,  Window size 3x3 

 

Geometric Distortion 

Rotation 

Translation 
Degree 50 

Variance 𝜎 = 0.5,  Window size 5x5 

 

 c) Result and Analysis        

  

The proposed technique was evaluated using 100 images in the FVC 2002/DB1_A 

database (Figure 5.9) [115] and we evaluated the perceptual robustness of the image 

hashing techniques, RSCH and ASCH against the known attacks, as mentioned in 

Table 5.2. The selected length of the hash vector for the RSCH and ASCH is L=20 

[14]. The proposed robust feature extraction of fingerprint images, such as SIFT-

Harris-Minutiae, SIFT-Wavelet-Minutiae and SIFT-Minutiae were compared to the 
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SIFT technique, as shown in Figure 5.10- 5.13(a-e). The results are discussed as 

follow:  

 

 

              

         Figure 5.9 Fingerprint images from FVC2002/DB1_A database. 

SIFT-Harris-Minutiae: The advantage of generating hashes on robust feature points 

lie in the robustness against geometric transform, especially the rotation attacks. The 

location to extract robust feature are determined by detected keypoint, the 

corresponding hashes are invariant to rotation transform. The  proposed fingerprint 

image hashing based on  SIFT-Harris-Minutiae approaches can achieve better 

performance for JPEG lossy compression (QF=10%) and translation ( 𝜎 = 0.5, 5x5 

window) attacks and exhibits good robustness against different attacks especially for 

median filtering (3x3 window), Gaussian blur ( 𝜎 = 0.5, 3x3 window) and a rotation 

(5 degrees)  as shown in Figure 5.10. It can be seen that the shape contexts provide 

an outstanding description of the geometric structure of a shape and allows 

embedding the geometric distribution of robust minutiae feature points as well as 

their descriptors into a short hash vector. The result also demonstrates that ASCH 

relatively outperforms the RSCH. This leads that the distribution of feature points in 

the angular direction is better discriminated than in the radial direction [16].  

SIFT-Wavelet-Minutiae: Fingerprint image hashing based on an effective 

combination of wavelet based feature and SIFT feature along minutiae, to determine 

most prominent features for fingerprint image.  The experimental result shows that 
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fingerprint image hashing based on SIFT-Wavelet minutiae  are  provides improved 

robustness for the median filtering (3x3 window) and Gaussian blur ( 𝜎 = 0.5, 3x3 

window) and a rotation (5 degrees). However, through RSCH, its hash shown high 

sensitive to the JPEG lossy compression (QF=10%) and translation attacks ( 𝜎 = 0.5, 

5x5 window) as shown in Figure 5.11. This is because of RSCH has less capacity in 

distribution of feature points in radial direction.  

 

SIFT-Minutiae: The SIFT combined with minutiae based  hashing technique 

performs moderately well for median filtering (3x3 window), Gaussian blur ( 𝜎 =

0.5, 3x3 window), although it is highly susceptible to the JPEG lossy compression 

(QF=10%), rotation (5 degrees) and translation attacks ( 𝜎 = 0.5, 5x5 window) 

(Figure 5.12).  

SIFT: For the sake of comparison the SIFT was compared with the proposed 

technique. The performance is slightly affected by the median filtering (3x3 

window), and highly sensitive to JPEG lossy compression (QF=10%), Gaussian blur 

( 𝜎 = 0.5, 3x3 window), rotation (5 degrees) and translation attacks ( 𝜎 = 0.5, 5x5 

window) (Figure 5.13). Alongside, To justify the research contribution of combined 

methods, experiment was performed on SIFT -Harris and SIFT-wavelet approach. 

The performances of these two approaches are highly competitive and resulted in 

Table 5.2.  

The advantage of generating hashes based on the robust minutiae of fingerprint 

image lies in the robustness against geometric distortions like rotations and 

translations. Furthermore, the hashing techniques ASCH and RSCH perform better 

for identification accuracy. Also, we have observed that Angular shape context 

hashing relatively outperforms Radial shape context hashing (Table 5.2), which 

indicates that the distribution of feature points in the angular direction is better 

discriminative capacity than the distribution in the radial direction. However, image 

hashing using feature points still has limitations on considering the distortions of 

additive noise and blurring large scale.   
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Table 5.3: Summary of proposed fingerprint image hashing technique 

 

Performance Evaluation of Fingerprint Image Hashing Technique 

 

Attacks 

 

SIFT- Harris - 

Minutiae 

SIFT- Wavelet- 

Minutiae 
SIFT- Minutiae SIFT SIFT- Harris[16] SIFT- Wavelet 

ASCH RSCH ASCH RSCH ASCH RSCH ASCH RSCH ASCH RSCH ASCH RSCH 

JPEG lossy 

Compression 

QF=10% 

Good Good Good Low Good Low Moderate Low Good Moderate Moderate Low 

Median 

filtering 3x3 
Better Good Better Moderate Better Moderate Moderate Low Good Good Good Moderate 

Gaussian 

Blur σ=0.5,  

3x3 

Better Better Better Better Moderate Moderate Moderate Low Better Moderate Good Good 

Rotation 5
0
 Better Good Good Moderate Moderate Low Low Low Good Good Moderate Moderate 

Translation 

σ=0.5,  5x5 
Good Good Good Low Low Low Low Low Good Moderate Good Low 
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(a) ROC curves under JPEG lossy compression 

 

(b) ROC curves under median filter 
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(c)  ROC curves under Gaussian blur 

 

(d) ROC curves under rotation 
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(e) ROC curves under translation 

 

Figure 5.10:  ROC curves for the proposed robust minutiae of the fingerprint image 

(SIFT-Harris-Minutiae) using the shape context based image hashing technique, (a) 

ROC curves under JPEG lossy compression (b) ROC curves under median filter (c) 

ROC curves under Gaussian blur (d) ROC curves under rotation (e) ROC curves 

under translation 
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(a) ROC curves under JPEG lossy compression

 

(b) ROC curves under median filter 
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(c) ROC curves under Gaussian blur 

 

(d) ROC curves under rotation 
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           (e) ROC curves under translation 

 

Figure 5.11: ROC curves for the proposed robust minutiae of the fingerprint image 

(SIFT-Wavelet-Minutiae), using the shape context based image hashing technique, 

(a) ROC curves under JPEG lossy compression (b) ROC curves under median filter 

(c) ROC curves under Gaussian blur (d) ROC curves under rotation (e) ROC curves 

under translation  
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(a) ROC curves under JPEG lossy compression  

 

(b) ROC curves under median filter 
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                                         (c)  ROC curves under Gaussian blur 

 

 

(d) ROC curves under rotation 
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         (e) ROC curves under translation 

 

Figure 5.12: ROC curves for the proposed robust minutiae of the fingerprint image 

(SIFT-Minutiae) using the shape context based image hashing technique, (a) ROC 

curves under JPEG lossy compression (b) ROC curves under median filter (c) ROC 

curves under Gaussian blur (d) ROC curves under rotation (e) ROC curves under 

translation. 
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             (a) ROC curves under JPEG lossy compression            

 

(b) ROC curves under median filter 
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(c)  ROC curves under Gaussian blur 

 

 

                                   (d) ROC curves under rotation 
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(e) ROC curves under translation 

Figure 5.13: ROC curves for the proposed robust minutiae of the fingerprint 

image(SIFT) using the shape context based image hashing technique, (a) ROC 

curves under JPEG lossy compression (b) ROC curves under median filter (c) ROC 

curves under Gaussian blur (d) ROC curves under rotation (e) ROC curves under 

translation. 
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5.7 Summary 

In this chapter, we have developed robust minutiae based fingerprint image hashing. 

Based on the geometric invariance of SIFT-Harris keypoints, we combined the 

minutiae of the fingerprint with the SIFT-Harris feature to detect robust minutiae. 

Furthermore, we incorporated the orientation and descriptor in the minutiae of 

fingerprint image and fingerprint identification is performed using hashed robust 

minutiae. It can be noted that shape contexts provide an outstanding description of 

the geometric structure of a shape. Thus, we can embed the geometric distribution of 

robust minutiae feature points as well as their descriptors into a short hash vector. 

Therefore, SIFT-Harris-Minutiae are more suitable for generating a template and for 

comparison of the fingerprint content. In next chapter, the perceptual hashing 

technique to improve the minutiae extraction of the fingerprint image is presented.     
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Chapter 6 
 

Perceptual Hashing For Efficient Fingerprint-Based 

Identification    

In the fingerprint recognition system, the protection of feature points as well as their 

authentic usage is an important issue.  Problems in image data protection have 

emerged due to recent developments in the field of multimedia systems and 

communication technologies.  Therefore, the security of image data has gained much 

more importance and thus, the researcher has been developing approaches for 

protecting and authenticating image data.  

A prominent solution to protect image data is perceptual hashing. Nevertheless, other 

methods, for instance steganography, watermarking and cryptography that can 

provide protection for image data exist, alongside perceptual hashing.  

Steganography and watermarking both come under data hiding techniques and are 

used to hide secret information in the original image. However, differences exists 

between steganography and watermarking i.e., steganography conceals the very 

existence of secret information.   

Therefore, if the existence of secret information is revealed, the steganography fails, 

whereas, in watermarking the existence of secret information can be known. The 

goal of watermarking is to make the removal/manipulation of secret information 

impossible. In contrast, cryptography does not conceal the existence of secret 

information; rather it encrypts the information in such a way that it appears useless to 

an imposter unless decrypted with an appropriate key. The advantage and properties 

of perceptual hashing has been discussed in chapter 5. 

In this research, we use perceptual hashing to improve the minutiae extraction of 

fingerprint images. We particularly focus on securing the hash and improving 

minutiae extraction, even if the fingerprint image has been distorted. The proposed 

method extracts the hash after the wavelet transform and singular value 

decomposition (SVD). Consequently, the extracted hash obtains good 

imperceptibility and robustness. The recent literature describes the robustness and 
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imperceptibility of image data. Lei et al [116] presented robust and reversible 

watermarking schemes that embed and /or extract watermarks blindly using 

Recursive Dither Modulation (RDM) with a combination of wavelet transform and 

Singular Value Decomposition (SVD).  In addition, Differential Evolution (DE) 

optimization is used to control the strength of the watermark. This method 

demonstrates excellent robustness and imperceptibility, in terms of  Structural 

Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR). 

Additionally, Aslantas [117] presented a new optimal method of robust image 

watermarking based on SVD using DE. The DE was employed to optimise the 

fitness function to achieve maximum robustness and transparency.  

Bhatnagar and Raman [118] presented a new semi-blind reference watermarking 

scheme based on Discrete Wavelet Transform (DWT) and Singular Value 

Decomposition (SVD) for copyright protection and authenticity. The result 

demonstrates the semi-blind reference watermarking scheme withstand to  various 

noise operation like average fingering, median filtering, additive Gaussian noise, 

JPEG compression, cropping, rotation  and other blurring operation. 

Ghouti et al [119] presented a novel image-adaptive watermarking scheme based on 

a subband decomposition to balance multiwavelet transform and this scheme use 

various statistical models for the host image to derive the watermarking (data-hiding) 

capacity.  

Ramakrishnan et al [120] developed a hybrid image watermarking algorithm which 

satisfies both imperceptibility and robustness requirements. The watermarking 

scheme use singular values of Wavelet Transformation‘s HL and LH subbands to 

embed watermark. The efficiency of the scheme are explained through PSNR, 

Normalized Cross Correlation (NCC) and gain factor against  to  signal and image 

processing operation. 

Moreover, Hore and Ziou [121] analysed a theoretical study to compare the PSNR 

and SSIM.  The study reveals that an analytical link exists between them, which 

work for various kinds of image degradations, such as Gaussian blur, additive white 

noise, jpeg and jpeg 2000 compression. The authors also explained the sensitivity of 

PSNR and SSIM to these degradations 
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Tang et al [122] demonstrated a metric to evaluate the perceptual similarity between 

an original image and its distorted version. The result discloses that the metric is 

insensitive to content-preserving processing, for instance JPEG compression, 

rotation, low-pass filtering, watermarking embedding and other moderate noise, but 

that it is very sensitive to malicious modification. The metric evaluation is useful in 

applications, such as image hashing and content-based image retrieval.  

Image quality assessment plays an important role in the field of image manipulation. 

Wang et al [123] summarized the traditional approach to image quality assessment 

and its limitations. The authors introduced structural similarity as an alternative 

principle for the design of image quality measures.  Al-Najjar et al [124] presented 

the comparison of image quality assessment between PSNR, HVS, SSIM and 

universal image quality index (UIQI) metrics.  

Additionally, Hofbauer et al [125] described fusion scenario by combining image 

metrics and hamming distance approaches in iris biometric systems. The 

incorporation of distinct image metrics in a fusion scenario significantly improves 

the recognition accuracy of systems. Keimel and Diepold [126] improved the 

predication accuracy of PSNR by simple temporal pooling and demonstrate the 

effectiveness of temporal pooling on a set of high –definition television sequences 

and broadcasting applications, whilst Run et al [127] demonstrated two methods to 

develop reliability and robustness: the principle components of the watermark are 

embedded into the host image in discrete cosine transform (DCT) and inserted into 

the host image in DWT. The particle swarm optimization (PSO) is used for suitable 

scaling factors, to improve robustness. 

In addition, Braeckman et al [128] illustrated a flexible framework algorithm for 

reduced reference (RR) visual quality assessment, which is based on perceptual 

hashing and image and video watermarking. The RR quality assessment is based on 

perceptual hashing and watermarking techniques. Gao et al [129] proposed a 

reduced-reference image quality assessment framework, by incorporating merits of 

multiscale geometry analysis, contrast sensitivity function and Weber‘s law of just-

noticeable difference. 
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 Li et al [130] recommended a method of effective combination of the human vision 

system with regional mutual information (RMI). This method measures the similarity 

between an original image and its distorted version. The performance comparison 

shows that the MRMI method performs better than the SSIM and PSNR method. 

Weng et al [131] suggested a novel image authentication system by combing 

perceptual hashing and robust watermarking. In these algorithms, an image is divided 

into blocks and each block is represented by a compact hash value, which is 

embedded in the block. The authenticity of the image can be verified by re-

computing hash values and comparing them with the ones extracted from the image. 

Thus, the system tolerates a wide range of attacks and tamper location of the image. 

 

6.1 Singular value decomposition (SVD) 

The basic concepts of singular value decomposition (SVD) operations are discussed 

as follows: SVD decomposes a 𝑁x𝑁 real matrix A into a product of 3 matrices: 

 

𝐴 =  𝑈𝑆𝑉𝑇  =  𝑢1, 𝑢2, 𝑢3…….,𝑢𝑛       

𝜎1

𝜎2

𝜎3

  𝑣1, 𝑣2, 𝑣3…….,𝑣𝑛  
𝑇
   (6.1) 

Where s is a 𝑁x𝑁 diagonal matrix 𝑈 and 𝑉𝑇are 𝑁x𝑁 orthogonal matrices, whose 

column vectors are 𝑢𝑖 ′𝑠 and 𝑣𝑖 ′𝑠, respectively. The elements of 𝑆 are only non-Zero 

on the diagonal arranged in decreasing order and are called the 𝑆𝑉𝑠 of A. when the 

rank of A is r,  S = diag(ς1, ς2, … … , ςn) satisfiesς1 ≥ ς2 ≥ ⋯ ≥ ςr ≥ ςr+1 =

ςr+2 … … ςn = 0. Let A be a matrix whose elements are pixel values of an image. 

The image can be written as: 

𝐴 =  ςi

𝑟

𝑖=0

𝑢𝑖𝑣𝑖
𝑇  

 (6.2) 
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6.1.1 Properties of SVD 

SVD has several attractive properties from the viewpoint of image processing 

applications. SVD efficiently represents the intrinsic algebraic properties of an 

image, where singular values specify the brightness of the image and the 

corresponding pair of singular vectors reflects the geometry of the image. The main 

properties of SVD operations are as follows: 

 

 Stability: Let𝐴,𝐵 ∈  𝑅𝑚𝑥𝑛  and their corresponding SVs are ς1, ς2, … … , ςn  

and τ1 , τ2 , … … , τn , respectively. Then a relation can be established between them 

as ςi − τi ≤   𝐴 − 𝐵 2. This indicates that the singular value of an image has 

very good stability.         

 Proportionality: The singular values of 𝐴(ς1, ς2, … … , ςn) and the singular values 

of 𝑘𝐴(ς1,
∗ ς2

∗ , … … … . ς𝑛
∗ ) are related as  𝑘 (ς1, ς2, … … , ςn)=(ς1,

∗ ς2
∗ , … … … . ς𝑛

∗ ) 

which indicates that the proportion invariance of singular value must depend on 

standardization of singular value.        

 Transpose: 𝐴 and its transposed counterpart 𝐴𝑇  have the same non-zero singular 

values.           

 Flip: 𝐴 and its flipped versions give the same non-zero singular values.   

 Rotation: 𝐴 and its rotated version obtained by rotating 𝐴 through an arbitrary 

angle have the same non-zero singular values.      

 Scaling: Let 𝐴 ∈  𝑅𝑚𝑥𝑛   has the singular values ς1, ς2, … … , ςn  then its scaled 

counterpart is equal to 𝐴𝑠  and has singular values equal to ς𝑖
∗ 𝐿𝑟𝐿𝑐 , where 𝐿𝑟  and 

𝐿𝑐  are the scaling factors or rows and columns, receptively. If the scaling function 

affects only rows or columns,  𝐴𝑠  has the singular values equal to ς𝑖
∗ 𝐿𝑟  or  𝐿𝑐  , 

respectively.          

 Translation: Both the matrix 𝐴 and its translated counterpart 𝐴𝑡  have the same 

non-zero singular values. 

6.2.  Proposed hash security for fingerprint images 

 

Figure 6.1 illustrates the block diagram for the proposed hash security technique of 

the fingerprint image, which is presented in detail below:  
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Step1: The original fingerprint image (𝐼∗) is partitioned into sub-blocks 𝐵∗𝑘 , 

 where 𝑘 = 1,2, … . 𝑁. 

Step 2:  Two-level transform is performed to each subblock 𝐵∗∗𝑘 .  The approximate 

 coefficients are selected for SVD calculation. The basic operation of SVD 

 and its properties are explained in section 6.1 and 6.1.1 respectively. 

Step 3:  Perform SVD on the low frequency of each block to generate SVs 𝑆∗∗𝑘 .   

Step 4:  The SVs  (𝑆∗∗𝑘 )  is normalised as 

     𝑆𝑁
∗𝐾=  𝑆∗∗𝑘                    (6.3) 

 

Let 𝑆𝑎
∗∗𝐾=floor 𝑆𝑁

∗∗𝐾 /∆𝐾 and the hash is extracted with the following rule 

 

𝐸 ∗  𝑖, 𝑗 =  
0, 𝑚𝑜𝑑  𝑆𝑤

𝐾∗, 2 = 0

1, 𝑚𝑜𝑑  𝑆𝑤
𝐾∗, 2 = 1

                        (6.4) 

Where floor (. ) is rounding toward the negative infinity and ∆𝐾 is quantization steps 

 

Step 5: The final hash is obtained from the original fingerprint image. 

 

Original Image

H
as

h

Noise Addition
Attacked Image

Image Correction

Enhanced/ Proposed Image 

Hash Extraction

Figure 6.1: Proposed hash securing for fingerprint images 

 

The hash is extracted after wavelet transform and singular value decomposition and 

stored in the database.  As shown in the figure 6.1, when the given image is distorted 

by noise (Table6.1), the stored hash is used to correct the distorted image. Thus, the 

corrected image (Enhanced/Proposed Image) is close to the original image in 

structural similarity.  Through this approach, we can retain the maximum minutiae of 

the fingerprint image, even if the original image is distorted as mentioned in Table 

6.1. The performance evaluation of the proposed approach includes important 
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metrics, such as SSIM and PSNR, which are utilized to represent imperceptibility. 

Experimentally, the proposed technique demonstrates good quality robustness 

against image processing operations and geometric attacks. The results are detailed 

in section 6.4. 

6.3 Performance Evaluation of Proposed Approach  

The proposed approached is evaluated in relation to their robustness and 

imperceptibility.  The SSIM and PSNR are utilized to represent imperceptibility, and 

BER used to measure robustness. These are explained in the following section. 

6.3.1 Structural similarity Index Measure (SSIM) 

The structural similarity index measure (SSIM) is used to measure quality by 

capturing the similarity of images [123] based on three comparisons: luminance, 

contrast and structure, which are selected for the measure of imperceptibility. Three 

components are combined to yield an overall similarity measure as: 

 

                          SSIM 𝑋, 𝑌 = 𝑙 𝑋, 𝑌 𝑐 𝑋, 𝑌 𝑠 𝑋, 𝑌                      (6.5)

  

                                    

 
 
 

 
 

  

𝑙 𝑋, 𝑌 =
2𝜇𝑋 𝜇𝑌 +𝐶1

𝜇𝑋
2 +𝜇𝑌

2 +𝐶1
            

𝑐 𝑋, 𝑌 =
2𝜎𝑋 𝜎𝑌  +𝐶2

𝜎𝑋
2 +𝜎𝑌

2+𝐶2
                 

𝑠 𝑋, 𝑌 =
𝜎𝑋𝑌 +𝐶3

𝜎𝑋 𝜎𝑌 +𝐶3
                    

                                 (6.6) 

The first term in the equation (6.6) is the luminance comparison function, which 

measures the closeness of the two images mean luminance 𝜇𝑋and𝜇𝑌 . The second 

term 𝑐 𝑋, 𝑌  is the contrast comparison function, which measures the closeness of 

the contrast of the two images. Consequently, the contrast is measured by the 

standard deviation 𝜎𝑋 and 𝜎𝑌 . The third term𝑠  𝑋, 𝑌  is the structure comparison 

function, which measures the correlation coefficient between the two 

images 𝑋and 𝑌. The covariance between 𝑋 and 𝑌 is represented as 𝜎𝑋𝑌 . The positive 

value of the SSIM index is in [0, 1]. A value of 0 means no correlation between the 

images, and 1 means that 𝑋 = 𝑌. The positive constant 𝐶1 , 𝐶2 , 𝐶3  provides stability.  
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By combining the three comparison functions, the SSIM index is obtained as  

                              SSIM 𝑋, 𝑌 =  𝑙 𝑋, 𝑌  𝛼 .  𝑐 𝑋, 𝑌  𝛽 .  𝑠 𝑋, 𝑌  𝛾                     (6.7) 

Where 𝛼> 0, 𝛽> 0 and 𝛾 > 0 are parameters used to adjust the relative importance of 

the three components and the parameters are set as 𝛼 = 𝛽 = 𝛾  and 𝐶3=𝐶2/2. From 

the above parameters, the SSIM index can be defined as:   

 

                  SSIM 𝑋, 𝑌 =
 2𝜇𝑋 𝜇𝑌 +𝐶1 (2𝜎𝑋𝑌 +𝐶2)

(𝜇𝑋
2 +𝜇𝑌

2 +𝐶1)(𝜎𝑋
2 +𝜎𝑌

2+𝐶2)
                       (6.8) 

 

6.3.2 Peak Signal-to-Noise Ratio (PSNR) 

Given a reference image X and a test image Y, both sizes MxN, the PSNR between, 

the PSNR between X and Y is defined as: 

                           PSNR 𝑋, 𝑌 = 10log10  2552

𝑀𝑆𝐸 𝑋, 𝑌                       (6.9) 

Where,                   

𝑀𝑆𝐸 𝑋, 𝑌 =  
1

𝑀𝑁
   𝑋𝑖𝑗 − 𝑌𝑖𝑗  

2
𝑁

𝑗=1

𝑀

𝑖=1

 

(6.10) 

The PSNR [114] value approaches infinity as the MSE approaches zero; therefore, 

this shows that a higher PSNR value provides an enhanced quality image. At the 

other end of the scale, a small value of the PSNR implies a high numerical difference 

between images.   

6.3.3 Bit- Error- Rate (BER) 

In digital transmission, the number of bit errors is the number of received bits of a 

data stream over a communication channel that have been altered due to noise, 

interference, distortion or bit synchronization errors. The bit error rate or bit error 

ratio (BER) is the number of bit errors divided by the total number of transferred bits 

http://www.wikipedia.org/wiki/Digital_transmission
http://www.wikipedia.org/wiki/Bit
http://www.wikipedia.org/wiki/Data_stream
http://www.wikipedia.org/wiki/Communication_channel
http://www.wikipedia.org/wiki/Noise_%28telecommunications%29
http://www.wikipedia.org/wiki/Interference_%28communication%29
http://www.wikipedia.org/wiki/Distortion
http://www.wikipedia.org/wiki/Bit_synchronization
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during a studied time interval. The BER is a unitless performance measure, often 

expressed as a percentage number. 

 

   BER = Errors /Total Number of Bits                                    (6.11) 

 

6.4 Experimental Results        

The image hashing scheme are applied in the fields of image authentication and 

retrieval. In general the experiments are tested on 20 standard natural images to show 

the robustness against usual content preserving operations [132]. The proposed hash 

security technique is applied on 20 randomly selected images from fingerprint 

database of FVC2002/DB1_A. The number of blocks has a great effect on the 

extraction of hash and is used to correct the image. Therefore, the number of blocks 

should be taken in such a way so as to achieve a superior PSNR and SSIM. In this 

research, the block size is 8x8. In addition, the performance evaluation of the 

proposed approach includes important metrics, such as robustness and 

imperceptibility. Hence, the SSIM and PSNR are utilized to represent 

imperceptibility, while the BER is used to measure robustness.  

The PNSR is easy to evaluate but is not always in accordance with human judgment 

of quality. On other hand, the SSIM is closer to human visual system. It can be seen 

that the proposed hash security technique is tested on content-preserving operations 

(Table 6.1):  rotation (1 degree), average filter (3x3 window), Gaussian noise (𝜎 = 

0.005), salt and pepper (𝜎 = 0.01), JPEG compression of 90%, and Contrast Low 

(CL) and Contrast High (CH). Table 6.2 gives the average SSIM and PSNR values 

between the proposed image and distorted image. The wavelet transform- singular 

value decomposition (DWT-SVD) method is included for comparison. 

A drawback of basic SSIM index [133] has sensitivity to relative operation like 

rotation, JPEG compression, Gaussian noise, salt and pepper noise, blurring, 

translation and scaling. The proposed hash security technique provides high  SSIM 

values (closer to value of 1) for average filter (3x3 window), JPEG compression 

(QF=90%), Contrast Low (CL) and slightly sensitive to rotation (1 degree), salt and 

pepper (𝜎 = 0.01) and Contrast High (CH), whilst Gaussian noise (𝜎 = 0.005) has 

better correlation when compared to DWT-SVD method.  
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The PSNR improvement for the proposed image are more than 3dB for rotation (1 

degree), average filter (3x3 window), Gaussian noise (𝜎 = 0.005), JPEG 

compression (QF=90%) and Contrast Low (CL). The PSNR value is less sensitivity 

for salt and pepper (𝜎 = 0.01) and Contrast High (CH), ranging from 2.5 dB to 3dB. 

The average SSIM and PNSR values for different attacks are illustrated in figures 6.2 

and 6.3.  The plot demonstrates the metric performance to evaluate the perceptual 

similarity between a proposed image and its distortion version. The result reveals that 

the metric achieves a higher value of SSIM and PSNR values for the fingerprint 

images for all the content-preserving operations.   

To assess the robustness, the BER was calculated between the original and enhanced 

image.  The result shows that the proposed method demonstrates good robustness. 

However, the approached method is still sensitive to a rotation (1 degree) and 

Gaussian noise (𝜎 = 0.005). The robustness moderately affected the average filter 

(3x3 window), JPEG lossy compression (QF= 90%), and the Contrast Low (CL) and 

Contrast High (CH). Hence, for salt and pepper noise (𝜎 = 0.01), the bit error rate is 

good. 

In addition, we observed the performance of the minutiae extraction technique as 

shown in Table 6.3 and Figure 5.4. Subsequently, we calculate the Hausdorff 

distance (as explained in section 4.1.1) between the minutiae from the distorted 

image and the enhanced image.  The Hausdorff distance value is comparatively low 

for our proposed approach, by retaining maximum minutiae compared to the DWT 

SVD method. Table 6.4 describes the performance evaluation of the metrics and 

minutiae of the fingerprint images.  

   

 

 

 

 

 



108 
 

 Table 6.1: Content preserving operation used to assess the hash performance 

Attack Parameters 

Image Processing Operations 

JPEG lossy compression 

Gaussian Noise 

 Average Filter 

Salt and Pepper 

Contrast Low 

Contrast High 

 

Quality Factor =90% 

Variance = 0.005 

Window size 3x3 

Variance = 0.01 

/ 

/ 

Geometric Distortion 

Rotation 

 

Degree 1
0 
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Table 6.2:  Average SSIM and PSNR Value                     

 

Attack and its 

Parameters 

 
 

Average SSIM Value 
 

 

Average PSNR Value 
 

 

Average 

BER 

 

 

Attacked 

Image 

 

 

 

Proposed 

Image 

 

 

Difference 

between the 

attacked and 

proposed 

image 

 

Attacked 

Image 

 

 

 

Proposed 

Image 

 

 

Difference 

between the 

attacked and 

proposed 

image 

Rotation 1
0
 0.6825 0.8306 0.1481 16.6131 19.9298 3.3167 0.3209 

Average Filter 3x3 0.8615 0.9345 0.073 22.8825 25.8975 3.015 0.3089 

Gaussian Noise  

V=0.005 
0.4968 0.5543 0.0575 24.5433 27.6197 3.0764 0.5074 

Salt and pepper 

V=0.01 
0.7129 0.8026 0.0897 23.7273 26.2882 2.5609 0.1871 

Jpeg 90% 0.9164 0.9531 0.0367 40.6526 43.6505 2.9979 0.3002 

Contrast Low(CL) 0.9179 0.9499 0.032 19.3134 22.3275 3.0141 0.2924 

Contrast High(CH) 0.8540 0.8638 0.0098 19.2542 22.2454 2.9912 0.2982 
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                           Table 6.3:  Average Hausdorff Distance of the Minutiae 

 

Attack and its Parameters 

 

Average Hausdorff 

distance 

 

Attacked 

Image 

Proposed 

Image 

Rotation 1
0
 0.0103 0.0106 

Average Filter 3x3 0.0161 0.0112 

Gaussian Noise  V=0.005 0.0133 0.0107 

Salt and pepper V=0.01 0.0201 0.0062 

Jpeg 90% 0.0053 0.0024 

Contrast Low(CL)    0.0548 0.0117 

Contrast High(CH) 0.0282 0.0131 

 

                                         

Table 6.4: Performance Evaluation of Metrics and Minutiae 

Attacks 

 

SSIM 

 

PSNR 

 

Hausdorff distance 

of the Minutiae 

Rotation 1
0
 Better Good Slightly sensitivity 

Average Filter 3x3 Good Good Better 

Gaussian Noise  

V=0.005 
Moderate Good Better 

Salt and pepper 

V=0.01 
Better Good Good 

Jpeg 90% Good Good Good 

Contrast Low(CL) Good Good Good 

Contrast High(CH) Better Good Good 
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Figure 6.2: Average SSIM 

 

 

Figure 6.3: Average PSNR 

 

 

Figure 6.4: Average Hausdorff Distance of Minutiae 
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6.5 Summary 

In this research, a robust perceptual hash extract technique using DWT-SVD method 

is proposed. The proposed method focus on extraction and securing the hash in the 

database after wavelet-SVD combination. The tradeoff between robustness and 

imperceptibility is achieved by proper selection of quantization steps. Overall, the 

proposed method demonstrates to enhance the fingerprint image and provide good 

balance of robustness and imperceptibility. Additionally, this approach retains the 

maximum minutiae of the fingerprint image, even if the given image is distorted.   
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Chapter 7 

 

Conclusion and future work 

7.1 Introduction 

With the rapid increase in biometric recognition systems in the commercial sector, 

the security of stored biometric data is increasingly becoming crucial. Current 

biometric systems have a number of vulnerabilities and a motivated adversary can 

undoubtedly cause severe harm to a biometric system, as well as to users enrolled in 

the system. Furthermore, due to the permanent nature of biometrics data, its theft and 

misuse may be irreversible and have lasting consequences.  

This thesis focuses on improving the security of fingerprint templates and accurate 

comparison of fingerprint content. The generation of fingerprint templates, which in 

turn are used to compare fingerprint content or their perceptual hashes mostly rely on 

feature extraction techniques, for instance SIFT or fingerprint minutiae. We used 

shape context based perceptual hashes using the RSCH and ASCH methods to plot 

the accuracy of fingerprint comparison using ROC curves. The framework of 

perceptual fingerprint image hashing algorithms has major components, including 

pre-processing on image, feature extraction and post processing. The robustness of 

fingerprint image hashing in conjunction with content-preserving operations such as 

Gaussian noise, JPEG compression, filtering and geometric attacks are investigated.  

 

7.2 Contribution of the thesis 

The design of fingerprint image hashing has three important modules: feature 

extraction, feature compression and security issues. In this thesis, I focused mainly 

on robust feature extraction and security issues. The contributions of this thesis are 

concluded as follows: 

 We discuss the implementation of robust minutiae based fingerprint image 

hashing. In this method, the minutiae of the fingerprint is combined with the 

SIFT-Harris features (that tolerate geometric invariance) to detect robust minutiae. 
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In addition, the orientation and descriptor in the minutiae of the fingerprint image 

is incorporated whilst fingerprint identification is performed using hashed robust 

minutiae.  

It shows that the shape contexts provide an outstanding description of the 

geometric structure of a shape. Moreover, this approach allows embedding the 

geometric distribution of robust minutiae feature points as well as their descriptors 

into a short hash vector. The experimental results demonstrate that angular shape 

context hashing relatively outperforms the radial shape context hashing. This 

leads to conclusion that the distribution of feature points in the angular direction is 

better discriminated than in the radial direction, however with slightly sensitivity 

to the geometric attacks. 

 

 The important contribution is fingerprint image hashing based on an effective 

combination of wavelet based feature and SIFT feature. In this approach, SIFT-

Wavelet is combined with the Fingerprint Minutiae extraction method to 

determine the most prominent fingerprint features. These features are post-

processed using RSCH and ASCH techniques to plot the accuracy of fingerprint 

comparison using ROC curves.  

It shows that SIFT-Wavelet minutiae based fingerprint image hashing is robust to 

attacks, such as median filter and Gaussian blur and rotation, but high sensitivity 

to the JPEG compression and translation. For further investigation, SIFT is 

combined with the Fingerprint Minutiae extraction procedure and post-processed 

using RSCH and ASCH techniques to plot the accuracy. The experimental results 

demonstrate that the fingerprint template and accuracy of fingerprint comparison 

improved when a combination of two different feature extraction techniques are 

used, in contrast to using only a single feature extraction procedure. 

ROC plots of SIFT-Harris-Minutiae, SIFT-Wavelet-Minutiae, SIFT-Minutiae and 

SIFT are shown in Chapter 4. These ROCs further demonstrate that the SIFT-

Harris-Minutiae outperform other combinations. Therefore, the new SIFT-Harris-

Minutiae technique is more suitable for generating a template and comparison of 

the fingerprint content. 
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 The third contribution of thesis is to enhance the performance of a fingerprint 

system, perceptual hashing is used to improve the minutiae extraction of 

fingerprint images. The proposed work focused on securing the hash and 

improving minutiae extraction, under various content preservation operations. The 

hash extraction is performed after wavelet transform and singular value 

decomposition (SVD). The performance evaluation of this approach includes 

important metrics such as SSIM and PSNR. Experimentally, it has shown 

robustness against image processing operations and geometric attacks. 

 

7.3 Future work 

This section highlights the direction of future research to improve security of 

biometric recognition systems based on hash techniques. 

 

 In this research, we developed robust minutiae based fingerprint image 

hashing and investigated their perceptual robustness against content 

persevering manipulations. Based on the geometric invariance of SIFT-Harris 

keypoints, we combined the minutiae of fingerprint with SIFT-Harris feature 

to detect robust minutiae. Shape contexts provide an outstanding description 

of the geometric structure of a shape. We can embed the geometric 

distribution of robust minutiae feature points as well as their descriptors into 

a short hash vector and proposed minutiae based fingerprint image hashing, 

i.e., The RSCH in the radial direction and ASCH in the angular direction. To 

achieve better perceptual robustness, a joint RSCH-ASCH can be promising 

future direction for fingerprint image hashing. 

 

 The shape contexts based hashes has an advantage of embedding the 

geometric structure of the image, the proposed minutiae based fingerprint 

image hashing technique could be applied in image tampering detection.  

 

 In this research, the robust points in the SIFT have been determined through 

approximation coefficients using the Haar wavelet. Horizontal, vertical and 

diagonal coefficients are utilized to localize the salient points. A detailed 
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study of various wavelet transform could be conducted to optimise the 

performance of fingerprint image hashing.     

 

 We presented a technique to improve the minutiae extraction of fingerprint 

images using perceptual hashing. The hash is extracted using a combination 

of the wavelet algorithm and SVD technique. It demonstrated that the 

proposed scheme has superior robustness against image processing operations 

and geometric attacks. Machine learning technique will be used to model 

these attacks in order to improve the hashing system.  

 

 Further the proposed work can be extended to other biometric traits (e.g. face, 

palmprint, iris, etc.,) and other image media to enhance recognition 

performance. Although biometrics may be susceptible to false matches, 

possibly due to scanning and sensor errors, there are ways to minimize this, 

currently, by utilizing multi-factor options like a password or smartcard 

combined with biometrics to add an extra layer of security towards 

authentication. If used together, and not alternatively, the systems are 

significantly stronger than when used individually.  

 

Recent trends, multi-biometrics (the use of different sets of biometric data 

simultaneously) as a good alternative to increase matching accuracy for 

identification and verification. Multimodal biometrics systems, which use 

multiple sensors for data acquisition, offer multiple recognition algorithms 

and take advantage of each biometric technology while overcoming the 

limitations of a single technology. 

 In terms of use, the future of biometrics could be in mobile devices and 

 applications for eGovernment, eHealth and eBanking. Through biometric 

 mobile scanning devices, authentication and identification can be brought to 

 the field. It is easy to imagine the possible uses for such systems for other 

 professions, like law enforcement, borders control, medical and emergency 

 services, or even to secure access to government or financial services.  
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           Biometric technology could soon become mainstream to the growth of the 

 mobile devices market. Biometrics Research Group, Inc.estimates that the 

 sale of smartphones, in the U.S. only, will grow to 121 million in 2018. 

 Due to this proliferation and to the increased functionalities they offer 

 their users, their analysts believe there will be a strong push toward the 

 integration of biometric technology to replace traditional authentication  via 

 pin and password. Biometrics Research Group, Inc. predicted that already  in 

 2014 over 90 million smartphones would be shipped with biometric 

 technology, while Goode Intelligence has forecasted that by 2019 the number 

 of mobile and wearable biometric technology users in the world will reach 

 5.5 billion. 
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