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off� such that ������� ������ �� ��� ��,����� � �, the corresponding
trajectory is bounded, but its positive limit set is the unit circle on �,
and therefore it is not a subset of �; see Fig. 2. In conclusion, � is not
attractive for the closed-loop system (and neither is it stable). This ex-
ample illustrates the fact that, when � � ����� is compact, simply
requiring condition (11) in place of �-detectability may not be enough
for attractivity of �.

In the light of Theorem V.2 and the example above, it is clear that
the addition of the stability requirement on �, relative to�, is a crucial
enhancement to the notions of detectability in [7] and [10].
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High Gain Observer for Structured
Multi-Output Nonlinear Systems

Hassan Hammouri, Guy Bornard, and Krishna Busawon

Abstract—In this note, we present two system structures that charac-
terize classes of multi-input multi-output uniformly observable systems.
The first structure is decomposable into a linear and a nonlinear part while
the second takes a more general form. It is shown that the second system
structure, being more general, contains several system structures that are
available in the literature. Two high gain observer design methodologies are
presented for both structures and their distinct features are highlighted.

Index Terms—High gains, nonlinear observers, nonlinear systems.

I. INTRODUCTION

The synthesis of nonlinear observers is generally a difficult problem
due to the fact that the observability property of nonlinear systems is
input dependent [17]. In effect, the dependence of the inputs on the
observability of nonlinear systems has led several authors to study the
problem of characterization of systems that are observable for all in-
puts; that is, uniformly observable systems (see, e.g., [7] and [18]).
This characterization is well established in the single output case for
control affine systems. As a matter of fact, a diffeomorphism has been
proposed that allows to transform such systems in a well-defined ob-
servable canonical form—which is commonly referred to as the trian-
gular observable canonical form, due to the triangular structure of the
nonlinearity in the new coordinates system (see, e.g., [7] and [8]). In
[8] this triangular observable canonical form has been employed to de-
sign a high gain observer for single output uniformly observable con-
trol affine systems. Various other observer design approaches, ranging
from extended Kalman filter to sliding-mode observers, have been pro-
posed for subclasses of single output uniformly observable systems
(see, e.g., [3], [4], [6], and [14]). In the same context, observer design
with linearizable error dynamics for such classes of systems has been
widely studied ([13]). With regards to the multi-output case, the char-
acterization of the structure of multi-input multi-output (MIMO) uni-
formly observable systems is still an open problem. However, there are
some special observable structures in the MIMO case that are easily
recognizable. In effect, suppose that one can find a diffeomorphism
that transforms the original MIMO system into a cascade of subsys-
tems; then, it is fairly obvious that if each subsystem is in the trian-
gular observable canonical form (as in the single output case) then the
overall system is uniformly observable. This particular structure is not
the only structure that characterizes every (MIMO) uniformly observ-
able system. There are indeed other structures, with intricate nonlinear
coupling between the subsystems, that characterize MIMO uniformly
observable systems. One such structure, which characterizes a subclass
of MIMO uniformly observable systems, was proposed in [1] and for
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which a high gain observer was also derived. By using the graph ap-
proach, the same authors ([2]) have proposed a structure of class of
nonlinear systems containing the class (S1) described in the next sec-
tion. However, the observer synthesis was not addressed.

Several other subclasses of MIMO uniformly observable systems
have been proposed for which a corresponding observer has been de-
signed (see, e.g., [5], [10], [11], and [16]).

In this note, we give an observer synthesis for two nonlinear
canonical forms which are characterized by structures (S1) and (S2)
described in the following section. The first structure (S1) contains
systems that can be decomposed into a linear part and a nonlinear part
that is dependent on the inputs. The overall system is displayed in the
form of � subsystems corresponding to the number of outputs. The
proposed system structure easily leads to the design of a high gain
observer for the system. The second canonical structure takes a more
general form and is not necessarily decomposable into a linear and
nonlinear part. It is a generalization of the first system structure and,
as such, characterizes a more general class of MIMO uniformly ob-
servable systems. An observer design is also proposed for the second
canonical structure. Its design is not as straightforward as for the first
canonical form but combines a structured high gain observer with a
constant gain, as proposed in [9] and [11]. As we have mentioned
above, the problem of finding normal forms for general multi-output
uniformly observable nonlinear systems is not solved and is, in effect,
a very difficult task. The classes of nonlinear systems proposed in this
note contain most classes of uniformly observable systems studied in
the literature; in particular, those stated in [1], [5], [10], [15], and [16].

The note is organized as follows. In the next section, we present the
two classes of MIMO systems under consideration. We set the assump-
tions and give the structural conditions on the nonlinearity involved.
Some examples are provided to clarify the nonlinear coupling between
the various subsystems. Afterwards, in Section III, observer design
methodologies are proposed for the considered classes of systems.

II. THE CLASS OF SYSTEMS CONSIDERED

In this section, we present two structures, ���� and ����, of MIMO
nonlinear systems for which a high gain observer can be designed.
These systems possess a normal form that generalizes most observ-
able normal forms existing in the literature. Even though the first class
���� is contained in ����, the implementation of the observer design
for ���� is much simpler compared to that for ����. Consequently, we
present these two system structures separately.

A. System Structure ����

We consider nonlinear systems that are equivalent by diffeomor-
phism to systems of the form

�� � �� ���� ��

� � ��
(1)

where � � ��� � � � � � �
�
�

�
� 	�; �� � ����� � � � � �

�
��

�
� 	�

with �

���

� � 
 and 
� � �; � � 	�; � � ���� � � � � ���

� � 	�

� �

��

. . .

��

� �� �

� 	 �
...

. . .

� � � � � 	

� � � � � �

is 
� � 
� matrix, � � 
��
���� � � � � ��� is a �� 
 block diagonal
matrix, where �� � �	� �� � � � � �� � 	� ; � � ��

� � � � � � �
�
�

�
and

�� � ����� � � � � ��� �� , the ��� are of class �� w.r.t. ��� ��.
We assume the following:

A1) There exist two sets of real numbers ���� � � � � ��� and
���� � � � � ���, with �� 
 �, � � 	� � � � � �, such that for
�� � � 	� � � � � �; � � 	� � � � � 
� and � � �� � � � � 
�, we have

����

����
��� �� �	 �
 ��� �

��
�


 ��� �
��
�

(2)

where ��� � ������	���, and ������������ �� �	 � means that
there exists ���� ��� � 	� �	�, s.t. �����������

�� ��� �� �.
Remark 1: For � � �, Condition (2) of Assumption A1) is equiva-

lent to the following.
For 	 � � � 
� � 	� �� � �� 	
 �������������� �� 	 ��
1) System Structure ����: Using the same notations as for structure

����, consider the following system:

�� � � ��� ��

� � ��
(3)

where � � � is a bounded Borelian subset of 	�

� ��� �� �

����� ��

� � �

����� ��

� ����� �� �

������ ��

� � �

��� ��� ��

�

For the sake of simplicity, � is assumed to be of class �� w.r.t. ��� ��.
System (3) can be rewritten as follows:

��� � ����� ��

�� � ����
� � 	� � � � � ��

(4)

A1’) There exist two sets of real numbers ���� � � � � ��� and
���� � � � � ���, with �� 
 �, � � 	� � � � � �, such that the following
conditions are satisfied:

��� �� � � 	� � � � � �� � �� �� ��� � � 	� � � � � 
�� � � �� � � � � 
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�� � � �� � � � � 
��
	


	�
��� �� �	 �
 ��� � �

�

 ��� �

��

�

(5)

	


	�
��� �� does not change the sign and satisfy:

for	 � � � 
� � 	


� 
 �� � ��� �� � � �	�� 	


	�
��� �� � �

(6)

where ��� � �� � �� � 	��� .
Remark 2:

1- The second implication of (5) is equivalent to: � � � � � �,
���������������� 	 �.
2- If 
� � �, then the second inequality of (5) must be dropped.
3- For systems having structure ����:

i) we have ������ �� � ��
��� � ������ ��, for � �
	� � � � � 
� � 	; in particular ���������
��������� � 	.

ii) Conditions (5) and (6) become equivalent to Condition (2).
Remark 3: Notice that if the set of real numbers

���� � � � � ��� ��� � � � � ��� satisfies Assumption A1’), so does
��� � �� � � ��� � �� ��� � � � � ���, for every � � 	.

Remark 4: For 	 � �, � � �; 	 � � � 
� , set ���� �� �� �
��� � � � � 
�� ���� ���� �������������� �� �	 �� and ���� �� �� �
��� ���� �� �� if ���� �� �� �� �. Then, Condition (5) is equivalent to the
following.

i) For � � �, for 	 � � � 
� , ���� �� �� �� � implies ���� �� �� �
� � 	.

ii) For � �� �, for 	 � � � 
� , ���� �� �� �� � implies �� � �� �
�	������ 
 �� � ����� �� ��� ��������.

We end this subsection by giving a procedure that permits to calculate
the ��� � � � � ��, ��� � � � � �� whenever they exist. To do so, we calculate
all ���� �� ��, 	 � �� � � �, 	 � � � 
� and we proceed as follows.
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a) For � � �, condition i) of Remark 4 can be obviously checked.
b) Condition ii) for � �� �, we consider the set � � ���� ��� � �

�� � � �� � �� � ��� �	
�	 �	
�
 
�
�� �� � � � �
��� ���� 	��� �� �� �� ��. We discuss two cases:
1) If � � �, then the structure ���� is a trivial one. It means

that for � � � � �, �
� � ����� 
� 
��� � � � � 
�� � and

� � ��
� . From the observation point of view, the observer
synthesis becomes equivalent to the single output one.

2) If � �� �, for ��� �� � �, we set 	��� �� � ��� � � � �
��� ���� 	��� �� �� �� ��. Then, condition ii) of Remark 4
becomes equivalent to

�� � ��� �

�
��� � �� � ����� �� ��� �

�
����

�� � �� �� � �

��� �� � �� � � 	��� ��

(7)

Using Remark 3, it follows that system (7) admits a solution,
iff (8)

�� � �� �

�
�� � �� � ���� �� ��� �

�
��

�� 	 �� �� 	 �� �� � �� �� � �

��� �� � �� � � 	��� ��

(8)

also admits a solution.
Let �� � � �� , the notation � 	 � (resp. � � �) means
that for every �, � � � � �, �� 	 �� (resp. �� � ��).
Setting � � ���� � � � � ��� ��� � � � � ���

� , �� � ���� � � � � ���,
�� � ���� � � � � ���, system (8) can be rewritten in the form

�� � �� �� 	 �� �� � � (9)

where � is an � 
 ���� constant matrix, and � is the cardinality of
the set ���� �� ��� ��� �� � �� � � 	��� ���.

Denoting by � the set of � satisfying (9). Set � � ��� � � � � ��� �
�� and �� � ����� � ���� 	 ���� 	 ��. Then, � �� � iff
for every � � �, �� �� �. Indeed, let � � � and assume that � �� �.
Let �� � � and � � � such that ���

� 	 �, thus ��� � �� . The
converse is trivial. Hence, system (9) admits a solution if, and only if,
the following linear program admits a solution:

�� � �� �� 	 �� �� 	 �

�
���
(10)

where � � ���� � � � � ����, is any vector, such that �� � � and � � �.
Consequently, the simplex algorithm can be used in order to obtain

a solution of (10).
For small dimensions or for some particular structure, the use of the

linear programming is not necessary, as we will show in the following
examples.

B. Some Examples

1) Example 1: For � � �,2 and �� 	 �, set 
� � �
��� � � � � 
�� �,

 � � 
� 
� � and consider the following pseudo triangular structure:

��� � � � � �� � �

�
�� � ������ 
��� � � � � 
������ 
���

�
�� � ��� ��� 
�

��� � � � � �� � �

�
�	 � ��	��� 
�� 
��� � � � � 
��	���

�
�� � ��� ��� 
�


 � � 
�� 
�� � �

(11)

We will show that system (11) satisfies Condition (5) of Assumption
A1’), or equivalently Conditions i) and ii) of Remark 4.

• Condition i) of Remark 4 is obviously satisfied.
• Let us check Condition ii) of Remark 4:

1) For � � �, � � �, � � � � �� � �, 	��� �� �� � �, and for
� � ��, generically, we have 	��� �� ��� � ����.

2) Similarly, for � � �, � � �, � � � � ��, 	��� �� �� �
��� � � � � ���; hence, ���� �� �� � ��.

Thus, system of inequalities (8) takes the form

�� 	 �� �� � �� � � �� �

�� � �� �
�

�
�� � �� � �� �

�

�
��

�� � �� �

�
�� � �� � �� �

�

�
��

� � � � ��

(12)

which is equivalent to

�� 	 �� �� � �� � � �� �

�� � �� �
�

�
�� � �� � �� �

�

�
��

�� �
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� �� � �� �

�

�
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(13)

Finally, the system is equivalent to

�� 	 �� �� � �� � � �� �

�� � �� �
�
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�� �
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�

�
���

(14)

Set �� � �� � ��� � �������� � ������ and �� � �� � ��� �
�������� � ��� � ��������. It suffices to find �� 	 �, �� � � and
�� � � such that �� 	 �, �� � �� � � and to set �� � ��� � �����.
To do so, it suffices to choose �� � �, �� � � and �� 	 � such that
�� � ������� ��� � �����

2) Example 2:
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�� 
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(15)

As for the above example, we will check Conditions i) and ii) of Re-
mark 4:

• Condition i) is obvious.
• Condition ii) of Remark 4:

a) For � � �, � � �: ���� �� �� � �, ���� �� �� � � and
���� �� �� � �

b) For � � �, � � �: 	��� �� �� � �, ���� �� �� � � and
���� �� �� � �.

System (8) takes the form

�� 	 �� �� � �� � � �� �
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�

�� �
�


�
� �� �

�


�

(16)

Set �� � �. Then, the system of inequalities (16) becomes equivalent
to

�� 	 �� �� � �� �� � �� � � �� �

� 


�
� 


�
� ��

�� �
�


�
� 


�

�� �
�


�
� �


�
�

(17)

Set  ����� ��� � ������� � ������,  ����� ��� � �������� ������
and  ����� ��� � ������� � �������. To obtain a solution
�� 	 �, �� � �, �� � � satisfying (17), it suffices to find
�� � �, �� � � such that  ����� ��� � �,  ����� ��� � �
and �
�� ����� ����  ����� ���� �  ����� ��� � �. A solution is
given by choosing �� � ������� � � and  ����� ��� � ���
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���������� ���� ������ ���� (take for instance, �� � �, �� � � and
�� � 	).

III. HIGH GAIN OBSERVER DESIGN

In this section, we firstly state the observer structure for systems of
the class ����, without giving the proof. Afterwards, we give the proof
of the convergence of the observer for the second structure; since ����
is contained in ����.

A. Observer Design for Structure ����

In this subsection, we will assume the following:
A2) The nonlinear term � of system (1) is a global Lipschitz func-
tion; that is: �� � 	; �� � 	; � 	, �	� � � ; � 
� 
� � ��,
���	� 
�	 ��	� 
��� � ��
 	 
��.

The candidate observer for system (1) takes the form


�
 � ��
 � ��	� �
� � 
�
���
 	 �� (18)

where:
i)

�
�� � �� ��� � � �� � � � � � ������� ����������

�
�� � �
��� ��� � 
� �
(19)

ii) 	 and � are the known output and input of system (1);
iii)



�

� ������� � ��� � � � � � �� � �


� � �����
� � � � � �

�

�
(20)

are diagonal matrices of dimension �� � �� and �� � respec-

tively, and
 �


�

. . .


�

is a diagonal matrix with
�

being a ��-column vector such that �� �
��� is Hurwitz.
Theorem 1: Assume that system (1) satisfies Assumptions A1)–A2)

and set ���� � �
���	
���. Then: �� � 	;��� � 	; � � � ��; ��� �
	; ��� � 	 such that ������� � ���

�� ����	��� for every admissible
control 	 such that �	�� � � and for every initial conditions �
�	�,

�	�.

This means that system (18) is an exponential observer for system
(1) which works for bounded inputs. Moreover, ������� �� � �
.

The proof of Theorem 1 can be obtained in a similar way as the proof
of Theorem 2 below.

B. Observer Design for Structure ����

Consider systems of the form (3) satisfying Conditions (5)–(6) of
Assumption A1’). By using the continuity of �������
�	�����	� 
�;
then, from Condition (6), either one of the two inequalities hold for
��� ��:

• � �	� �� � � � ��, �������
�	�����	�
� � � ;
• � �	� �� � � � ��, �������
�	�����	�
� � 	� .

From a trivial change of coordinates, we can assume that

��� � � � � �� � � � � �� 	 ��
����
�
�	���

�	� 
� � �� (21)

As in the above subsection, we will make the following assumption:
A2’) �� � 	; � 	 � � ; � 
� 
� � ��, �� �	� 
�	 � �	� 
��� �
��
 	 
��.

Combining this assumption with (21), we deduce that

� �
����
�
�	���

�	� 
� � �� (22)

In order to design a high gain observer for system (3), some prelim-
inary technical results will be required.

In effect, consider the following �� � �� matrix:

����� �

	 ����� 	 	
... �����

	
. . . �� �����

	 	 	 � � � 	

(23)

where the �����’s might be unknown and satisfy the following in-
equality:

� � ����� � �� (24)

Let  � be a �� � �� symmetric matrix of the form:

 � �

!�� !�� 	 	

!�� !�� !��
. . .

	
. . .

. . . 	
...

. . . !� ��	�

	 � � � 	 !� ��	� !� 	�

(25)

and where �� � ��� 	� � � � � 	� is the ��-row vector. The following
lemma is stated in [9] (and further improved in [12]).

Lemma 1: ([9], [12]): Assuming that (24) holds, then for every " �
	; there exist #� � 	 and a symmetric positive definite (SPD) matrix
 � of the form (25), such that

� � � 	� �

� ��� � �  ������	 "�


� �� � 	#�$�� (26)

Notice that the constant matrix  � depends only on " and the constants
� , � given in (24).

Now, consider the � � � SPD diagonal matrix
 � ����� �� � � � �  ��. Our candidate observer takes the
following form:


�
 � � �	� �
�	 �
� 
���
 ���
 	 �� (27)

where

�
�� � �� � 
��� for � � �� � � � � �

�
�� � �
��� for � 
� ��
(28)


� and 

�

are the diagonal matrices given in (20); � �
�����%�$�� � � � � %�$�� is a � � � diagonal matrix, where $� is the
����� identity matrix, and %� � 	� � � � � %� � 	 are constants which
must be judiciously chosen.

Theorem 2: Assume that system (3) satisfies Assumptions
A1’)–A2’) and set ���� � �
��� 	 
���. Then ��� � 	;
�%�� � 	� � � � � �%�� � 	; � � � ��; � %� � %��, � � �� � � � � �;
��� � 	; ��� � 	 such that ������� � ���

�� ����	���, for every
admissible control 	 taking its values in the bounded set � , and for
every initial conditions �
�	�, 
�	�. Moreover, ������� �� � �
.

Proof of Theorem 2: Setting � � 
	 
, �� � 
�	 
� , we obtain


�� � ���	� 
�	 ���	� 
�	 %�
�
 ��� �


� ����� (29)
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Set ���� �� �

����� ��
...

����� ��

� ��, where ����� �� �

������ ��
...

��� ��� ��

�

�� is defined by

��� � � � � �� � ��

��� � � �� �	
 � � �� �� ��������� �� � ������ (30)
��
������ ������� �� � ���
��� � � ��� ����� ��� � �

(31)

Setting 	��
� �� �� �

	���
� �� ��
...

	�� �
� �� ��

, where 	���
� �� �� �

	���
� ���� ���, then (29) becomes (32), as shown at the bottom of the
page.

��� � �	��
� ��� 	��
� �� ���

��	��
� �� ��� 	��
� ���� ����

��� �	

� �����
(32)

Setting ��� � ������ ��� ��� and using the definition of � and ���� ��,
then

��� � �� ��� � � � � ��

��� � ��� ��� � �� �� � �� �� � �	
 � �� �

������� �� � � ��� � � �� �	
 � � �� ��

(33)

From the mean value theorem, we obtain 	���
� �� ���	���
� �� �
	���
� ���� ���� 	���
� ���

�

���
�

��� �
��
�� ������ , where ����� ��� �

��	���������
� � � ���, for some � � ��� ��.
According to (33), we get

	���
� �� ���	���
� ���

�

����� ���

�

���

����� �������

�

����� �����

��������

(34)
• if �� � �, then the last term of the right side of (34) must be

dropped.
• From Condition (5), we know that we get

�� � �� �� 
�


�
�� �� ��� � 


�
� ��� �




�

�� � � �� �	
 � � �� 
�


�
�� �� ��� � 


�
� ��� �

�

�

(35)
The second inequality of (35) is equivalent to: � � � � � implies
�	������� � � (see Remark 2-1)), thus

�

����� �����

�������� �

�

���

�������� � (36)

Now, set

���� �� � ���� ��� � � � � �� � �� �� � � � � ���

���� ��� � 


�
� ��� �




�
	 
 ���� ��� � � � � �	�

(37)

It is obvious to see that if � � � � �, then ��� � ������ � ��� �
������. Combining this remark with (34), (36), and (37), we obtain

	���
� �� ��� 	���
� �� �
������������

����� ������

�

����	���� � ��� �� � ���� ��� ��� � 


�
� ��� �




�

(38)

Finally, using the definition of 	���
� �� ��, we get

	���
� ��� 	���
� �� �� � ������������ (39)

where ������ � ��	������������
���� ���� � ���������, for some
���� � ��� ��.

Now, set ����� �

� ������ � �
... ������

�
. . . ���� �����

� � � � � �

and

����� �

������������ �
��
�� ���

...

����������� � �
��

�� ���

.

Combining (32), (38), and (39), we obtain

��� � ������� � ����

��� �	

� ���� ������� (40)

Now, consider the �� � �� and the �� � diagonal matrices ����� �


������ � � � � � �
�

� and ���� � 
���������� � � � �������. One can
check that the following equalities hold:

���� ������������� � �
 �����

���� ����
�

� ��� �
 ��
������� � �� ���

(41)

Consider the following change of variables:  ��� � ��� ���,  �� �
���� ����� ,  � � �������, and using (40) and (41), we obtain

� �� � �
 ������ ��

��
� �	

� ��  �� � ���� ��������� (42)

From (22), � � ����� �  , and from Lemma 1, we know that for every
!� � �; there exist "� � � and a SPD matrix 
� such that

�	
� ���
� � 
������� "��

	
� �� � �!���� (43)

Set #� �  �	� 
� �� , and consider the quadratic positive definite func-
tion # � �� �  �	
 � � �

���#�� ���, where 
 � 
����
�� � � � � 
��.
In what follows, we will show that ���� exponentially converges to

0.
Differentiating #����, and using (43), we obtain

�#� ��!��

 
��


� � �
 ���� � "��������
�

� � �	� 
��
��
� ��������

��!��

 
��


� � �
 ���� � "��������
�

� �
 ��


�

�
��
� ��������


��!��

 
��


� � �
 ���� � "��������
�

� �
 ��


�


�

���

���

������������

����� ������ �

Choosing ��� � "� and using the fact that ��� � �� ��� , and that
����� �  ( is the Lipshitz constant given by Assumption A2’)), we

get
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��� ������ �����

� �����������
�

��� ������������

�	 �	 ���� �

������ �����

� �����������
�

��� ������������

�	 �	 ����

����� � � ������
Let �� 	 �, �� 	 � be two constants such that ���� � ����� �

����, � � 
 � �, we obtain

��� � � ���
� ����

� ��������
�

��� ������������

�	 �	
�
��

�
��

	 � � ���� �����
� � ��������

�
�

��� ������������

�

��

�	 �	 ��� 
����� 
��

�
����

� ���� ���� ���� ���� �

Hence

�� � �
�

���

� ���� �����
�

�

�

���

����� ���
��

�

�

��� ������������

�	 �	 ��� 
����� 
��

��
�
��

� ���� ���� ���� ���� �

From definition of ��
� �� [see (37)], we know that for every �
� �� �
��
� ��, ��

� � ��
� � ����� ���� � �. Thus, we can choose a constant

�� 	 � such that for every � 	 ��, we have

�� � ��

�

�

���

� ���� �����
� � ���� �

where �� 	 
������ 
 	 �� 
 
 
 � �	 and � 	 � is a constant.
This complete the proof of the theorem.

IV. CONCLUSION

In this note, we have presented two system structures, with specific
structural conditions, that characterize some classes of uniformly ob-
servable systems; that is, systems that are observable whatever the ap-
plied input. The classes of systems under consideration contain many
classes of nonlinear systems existing in the literature. However, the
structural conditions given are coordinates dependent, and the trans-
formations that are required to transform a system into the proposed
structures are not discussed. Two high gain observer design method-
ologies are presented for both structures and their distinct features are
highlighted.
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