Deep-ultraviolet second-harmonic generation by combined degenerate four-wave mixing and surface nonlinearity polarization in photonic crystal fiber

Yuan, Jinhui, Kang, Zhe, Li, Feng, Zhou, Guiyao, Zhang, Xianting, Mei, Chao, Sang, Xinzhu, Wu, Qiang, Yan, Binbin, Zhou, Xian, Zhong, Kangping, Wang, Kuiru, Yu, Chongxiu, Lu, Chao, Tam, Hwa Yaw and Wai, Ping-kong Alexander (2017) Deep-ultraviolet second-harmonic generation by combined degenerate four-wave mixing and surface nonlinearity polarization in photonic crystal fiber. Scientific Reports, 7. p. 9224. ISSN 2045-2322

[img]
Preview
Text
s41598-017-10028-3.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview
Official URL: https://doi.org/10.1038/s41598-017-10028-3

Abstract

Deep-ultraviolet (UV) second-harmonics (SHs) have important applications in basic physics and applied sciences. However, it still remains challenging to generate deep-UV SHs especially in optical fibers. Here, for the first time, we experimentally demonstrate the deep-UV SH generations (SHGs) by combined degenerate four-wave mixing (FWM) and surface nonlinearity polarization in an in-house designed and fabricated air-silica photonic crystal fiber (PCF). When femtosecond pump pulses with average input power Pav of 650 mW and center wavelength λp of 810, 820, 830, and 840 nm are coupled into the normal dispersion region close to the zero-dispersion wavelength of the fundamental mode of the PCF, the anti-Stokes waves induced by degenerate FWM process are tunable from 669 to 612 nm. Then, they serve as the secondary pump, and deep-UV SHs are generated within the wavelength range of 334.5 to 306 nm as a result of surface nonlinearity polarization at the core-cladding interface of the PCF. The physical mechanism of the SHGs is confirmed by studying the dependences of the output power PSH of the SHs on the PCF length and time. Finally, we also establish a theoretical model to analyze the SHGs.

Item Type: Article
Subjects: F300 Physics
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Becky Skoyles
Date Deposited: 11 Sep 2017 14:54
Last Modified: 01 Aug 2021 08:01
URI: http://nrl.northumbria.ac.uk/id/eprint/31721

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics