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ABSTRACT 

Aims: To illustrate how Bayes Factors are important for determining the effectiveness of 

interventions.   

Method: We consider a case where inappropriate conclusions were publicly drawn based on 

significance testing, namely the SIPS Project (Screening and Intervention Programme for Sensible 

drinking), a pragmatic, cluster-randomized controlled trial in each of two healthcare settings and in 

the criminal justice system.  We show how Bayes Factors can disambiguate the non-significant findings 

from the SIPS Project and thus determine whether the findings represent evidence of absence or 

absence of evidence. We show how to model the sort of effects that could be expected, and how to 

check the robustness of the Bayes Factors.  

Results: The findings from the three SIPS trials taken individually are largely uninformative but, when 

data from these trials are combined, there is moderate evidence for a null hypothesis (H0) and thus 

for a lack of effect of brief intervention compared with simple clinical feedback and an alcohol 

information leaflet (B = 0.24, p = 0.43).  

Conclusion: Scientists who find non-significant results should suspend judgment – unless they 

calculate a Bayes Factor to indicate either that there is evidence for a null hypothesis (H0) over a (well-

justified) alternative hypothesis (H1), or else that more data are needed. 

 

KEYWORDS: Non-significance, Bayes Factors, Evidence of absence, Alcohol brief interventions, SIPS 

Project 
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Introduction 

The dominant approach to statistical inference in randomised controlled trials (RCTs) in addiction and 

related sciences is null hypothesis significance testing (NHST). However, when no significant 

differences on outcome measures between intervention and control groups are found, NHST is 

crucially uninformative [1I. it is unable to distinguish between two interpretations of non-significant 

findings: (i) there is no evidence that the population means of the groups differ (absence of evidence), 

or (ii) there is evidence that the population means do not differ (evidence of absence) [2]. The present 

article provides an illustration of this use of Bayes Factors to address this problem. 

When Fisher introduced significance testing he made clear that one should suspend judgment 

if findings are non-significant [3, 4].  Yet instances of using non-significance to assert the null 

hypothesis are still frequently found in the literature [5]. This cannot be regarded as an arcane or 

trivial matter. The SSRI paroxetine was originally said to carry no increased risk of suicide in children 

on the basis of a non-significant result but was later found to contain such a risk [6:59-62].  

There are two unfortunate consequences of the inability of NHST to demonstrate evidence of 

absence. First, where absence of evidence is concluded from non-significant findings, there may 

nevertheless have been good evidence that the postulated effect did not exist if the data had been 

evaluated in an informative way. Thus, where a conclusion may be warranted, the data and 

information available are wasted. Secondly, when evidence of absence is incorrectly concluded under 

NHST, there may nevertheless be a real effect of intervention in the population and, in this situation, 

an opportunity to support an effective intervention by further research will have been missed. Both 

these kinds of negative consequence will have had retarding effects on theory, research and practice 

(a problem not fully addressed by power [5]).  

A solution to this problem would be a method of statistical inference that gave an actual 

degree of evidence for the alternative versus the null hypothesis. Such a method is provided by Bayes 

Factors [7, 8]. While under NHST, only two conclusions are possible from the results of an RCT, either 

the null hypothesis is rejected or it is not, from a Bayesian perspective there are three: (i) there is 
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sufficient evidence for the alternative hypothesis that, for example, an intervention has an effect on 

participants’ behaviour; (ii) there is sufficient evidence for the null hypothesis that the intervention 

has no effect over the alternative considered; (iii) the data are insensitive in distinguishing the 

hypotheses.  

To determine which of these conclusions applies to any given data-set, one calculates the 

Bayes Factor (B). This is the ratio of how well the observed data are predicted by the alternative 

hypothesis over how well they are predicted by the null hypothesis. If this ratio is greater than 1, the 

alternative hypothesis is to that degree supported over the null hypothesis; if it is less than 1, the null 

hypothesis is supported over the alternative; and if it is about 1, neither hypothesis is supported more 

than the other.  To arrive at a decision in practice, recommended cut-offs [1,9] are that B greater than 

3 represents ‘substantial’ [9] (or better ‘moderate’ [10]) evidence for the alternative hypothesis and 

B less than 1/3 represents ‘substantial’ (or ‘moderate’) evidence for the null hypothesis, with values 

in between representing a range of weak evidence for either hypothesis depending on whether B is 

greater or less than 1. A B of 3 has been shown to correspond roughly with a p-value of 0.05 in 

conventional statistical testing [1].   

The SIPS Project 

This project consisted of a pragmatic, cluster RCT in each of two healthcare settings, primary health 

care (PHC) and accident and emergency services (A&E), and a similar trial in the criminal justice system 

(CJS). Each trial had a ‘step-up’ design involving three groups in which components were successively 

added: (i) a control group consisting of the provision of a Patient Information Leaflet (PIL) together 

with brief feedback of screening results (i.e., whether or not the patient was drinking at a hazardous 

or harmful level); (ii) a brief advice group  consisting of 5 minutes of structured advice about drinking 

plus the PIL; (iii) a brief lifestyle counselling group  consisting of 20 minutes of counselling preceded 

by brief advice and followed by the PIL, and given to those patients who returned for a subsequent 

consultation following the brief advice session.  The hypotheses tested were that both interventions 
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would result in greater reductions in hazardous or harmful drinking than simple clinical feedback of 

screening results and alcohol information provided by the PIL.  

The primary outcome measure in all three trials was whether or not the score on the Alcohol 

Use Disorders Identification Test (AUDIT) [11] was above the cut-point for a designation of hazardous 

drinking. The main analysis was by intention-to-treat but there was also a per protocol analysis which 

included only those patients who had received a complete intervention and were successfully 

followed up. For further details of all three trials, including large sample sizes and high follow-up rates, 

see the corresponding protocol [12-14] and outcome papers [15-17].  

In each trial all three groups showed reductions in the proportion of participants classified as 

hazardous drinkers or worse by the AUDIT but there were no statistically significant differences 

between groups on this measure at either 6-month or 12-month follow-up in any of the three trials 

[2-4]. This applied to both intention-to-treat and per protocol analyses. Neither were there significant 

differences between groups on any other alcohol outcome measure (i.e., mean AUDIT score or extent 

of alcohol problems).  

Heather [18] discussed several ways in which the SIPS findings had been misunderstood and 

the potential effects on research and practice. A prime example of ‘proving the null hypothesis’ 

appeared in an article [19] in the magazine Pulse, which is widely read by GPs and other health 

professionals. The article began “GPs should give patients with problem drinking a leaflet rather than 

advise them to reduce their alcohol intake,” because “The SIPS (PHC) study found informing patients 

of their drinking levels and offering a leaflet … was just as effective as giving patients five- or 10-

minutes of lifestyle counselling”.  

Aims 

The aims of the analysis reported here were: (i) to calculate Bayes Factors in order to disambiguate 

non-significant findings from the SIPS Project and thus determine whether they represent evidence of 

absence or absence of evidence; (ii) to illustrate how Bayes Factors  can clarify non-significant findings.  
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Method 

A Bayes factor requires a summary of the data (a measure of effect size such as a mean difference or 

an odds ratio, plus the standard error of that estimate) and in addition a specification of the size of 

effect predicted. One cannot tell how sensitive a study was to detect an effect without an idea of the 

size of effect that is possible [4]. To be more precise, the relative evidence for H1 versus H0 provided 

by the data depends on how well the data are predicted by H1 versus how well the data are predicted 

by H0 [20]. To know how well the data are predicted by H1, we need a model of H1: a specification of 

what (range of) effect sizes are plausible according to H1 [21].  

In a meta-analytic review of the effect of brief interventions on the proportion of hazardous 

drinkers (i.e. the same dependent variable as used in SIPS), Ballesteros et al. [22] found that brief 

interventions outperformed minimal interventions and usual care after 6-12 months with OR = 1.55 

(with a 95% confidence interval of [1.2, 1.90]). In a previous meta-analysis of brief interventions for 

alcohol use disorders using a wider range of dependent variables, Moyer et al. [23] found an average 

effect size of d = 0.2 for drinking-related outcomes, including alcohol consumption, for a brief 

intervention versus a control at six months (with a confidence interval from about 0.1 to 0.3, 

depending on the exact outcome).  Assuming an underlying continuous variable given a binary cut-off, 

this can be converted to Ln OR = d×π/√3 [24] or a Ln OR of 0.36 in this case, which is an OR of 1.4. A 

standardized effect size is a measure of signal relative to noise; and the amount of noise in a study 

depends on the details of the experimental design and the precise dependent variable used.  

Translating effect sizes between different dependent variables should therefore be done cautiously. 

However, the fact that the two meta-analyses above produce very similar estimates (OR = 1.4 vs 1.55) 

is reassuring. Thus, we will take the estimate from the meta-analysis [22] based on the same 

dependent variable as we analyse here, an OR of 1.55, i.e. ln OR = 0.44, as a plausible scale of effect 

for our brief interventions vs the PIL.  

We have estimated a rough scale of the effect size but effects smaller or bigger than this are 

also plausible.  Published effects often overestimate the true population effect size, as indicated by 
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systematic direct replication attempts in psychology and other disciplines [25-27].  One simple way of 

modelling this assumption is with a bell shape distribution, for example a normal distribution, centred 

on zero.  Because we are making predictions in one direction, one half of the distribution can be 

removed, to leave, for example, a half-normal distribution. For a half-normal there is one parameter 

left to decide, its standard deviation.  We scale using the rough effect size already derived, namely SD 

= 0.44.   

If a normal or half-normal distribution is used, the scale factor implies a rough maximum, 

namely twice the standard deviation, as there is only 5% probability of an effect larger than that. 

Another distribution often used in Bayes Factors is a Cauchy [8]; the rough maximum implied by a 

Cauchy is 7 times its scale factor (with 5% of its area beyond that). So the final decision to make is 

what defines a just plausible maximum more adequately, 2*0.44 or 7*0.44 (corresponding to ORs of 

2.4 and 21.8 respectively (see [28]). Given that the confidence interval on the effect sizes reviewed in 

Ballesteros et al [22] and Moyer et al. [23] (and see Wilk et al. [29]) were less than twice the mean 

estimated effect, the half-normal is more appropriate than the half-Cauchy.  

In sum, we use a half-normal model of H1 because it respects two general assumptions: i] that 

smaller effects are more likely than larger ones; and ii] that twice the estimated scale of effect is a 

rough plausible maximum.  We report a check on the robustness of our assumptions below. We notate 

using a half-normal with an SD of 0.44 to model H1 as BH(0, 0.44), the H to indicate a half-normal, the 0 

indicates its mode is 0 and the 0.44 indicates the standard deviation [for notation see [1]}. (If there 

were several theories we could use a Bayes factor to test each against H0 separately.) 

 

Results 

Table 1 shows the results for the three trials  at six months follow-up, the primary end-point.  While 

the Bayes factors for the individual trials on their own largely indicate  insensitive evidence, the effect 

of the data as a whole needs to be evaluated by combining the mean estimates of the ln OR. This can 

be done using, for example, the calculator from Dienes [7]  
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http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm1) for obtaining a 

posterior distribution2,3, which provides the results in the final two rows.  

TABLE 1 

Odds ratios for a negative AUDIT result after 6 months (primary outcome) 

     BA vs PIL     BLC vs PIL 

      Ln OR [95% CI] SE BH(0, 0.44)  Ln OR [95% CI]  SE BH(0, 0.44)  

PHC        -0.16 [-0.65, 0.33]  0.25 0.34  -0.25 [-0.73, 0.22] 0.24 0.26 

A&E      .10 [-1.11, 1.31] 0.62 0.88  -0.37 [-1.16, 1.60] 0.70 0.69 

CJS      -0.22 [-0.94, 0.48]   0.36 0.45  -0.31 [-1.08, 0.43] 0.39 0.44 

PHC/A&E  -0.12 [-0.58, 0.33] 0.23 0.33  -0.26 [-0.71, 0.18] 0.23 0.24 

All data      -0.15 [-0.53, 0.23] 0.19 0.24  -0.27 [-0.66, 0.11] 0.20 0.19 

BA = brief advice; BLC = brief lifestyle counselling; PIL = Patient information leaflet 

Note: The odds ratios and their 95% confidence intervals are reported in the original papers. Natural 

logs of these ratios, and of their 95% CI limits, are given in the table. (We take the 95% confidence 

intervals to be approximations of corresponding credibility intervals with vague priors.)  Dividing the 

width of each 95% CI by 2*1.96 gives the standard error of the estimate. For example, in the top left 

corner, the standard error for BA vs PIL for PHC is (0.33 - -0.65)/3.92 =  0.25.  The Bayes Factor can 

then be determined using the Dienes [7] online calculator, entering the Ln OR as the “sample mean”, 

                                                           
1 Archived here: http://www.webcitation.org/6s4eJTOTs 
2 The calculator assumes all data are estimates of the same population effect. H0 postulates a fixed effect 
(namely no effect).   Thus, for hypothesis testing, a fixed effects analysis typically serves adequately, because if 
H0 can be rejected on that basis it can be rejected. For estimation, by contrast, it makes sense to take into 
account the uncertainty in whether the different trials were drawn from the same population, a possibility not 
a priori denied by a tested hypothesis. 
3 The posterior distribution represents how probable different population effect sizes are, in the light of data. 

http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm
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the standard error as the  “sample standard error”; specifying the plausibility of different population 

values given H1 is not a Uniform; entering “0” for the mean of the normal, “1” for number of tails 

(the 0 and 1 are the settings for a half-normal) and then 0.44 for the SD (the half-normal parameter 

that needs setting according to context). See [1, 28, 33] for further examples of how to use the 

calculator.  This site https://medstats.github.io/bayesfactor.html (archived here: 

http://www.webcitation.org/6s4oBl7iG) allows a greater range of distributions to be used. 

 The effect of a brief intervention may be specific to its setting of implementation. For example, 

the motivation for changing drinking is likely to differ between medical patients and offenders. The 

Kaner team’s two Cochrane reviews of the effects of alcohol brief intervention [30, 31] combine 

primary care and A&E on the ground that, under a wider definition, both are considered forms of 

primary health care. The difference between brief advice vs PIL between the PHC and A&E trials was 

0.26 (SE = 0.67), BN(0, 0.44) = 0.864; that is, there is no evidence one way or the other for a difference 

between these studies.  The estimates are combined in the penultimate row of Table 1. Similarly, for 

brief lifestyle counselling  vs PIL, the difference between the PHC and A&E trials  was  0.46 (SE = 0.74), 

BN(0, 0.44) = 0.90, again no evidence one way or the other for a difference between the two studies.  The 

penultimate row in Table 1 indicates the importance of meta-analytically combining data. While each 

study alone did not lead to clear conclusions, overall there is moderate evidence for no effect of the 

brief interventions compared to control (i.e. Bayes factor less than about 1/3), assuming the sort of 

effect sizes that have been found before for such brief interventions.   

  Finally, one may wonder how strong the evidence is when all studies are combined. There 

was no evidence for a difference between CJS and the combined PHC/A&E for brief advice vs PIL, .10 

(SE = 0.43),  BN(0, 0.44) = 0.71; and no evidence for a difference for brief lifestyle counselling vs PIL, 0.16 

(SE = .50), BN(0, 0.44) = 0.77. Nonetheless, the final row In Table 1 indicates moderate evidence for no 

                                                           
4 H1 is modelled as a Normal here, hence the “N” in the notation. This allows the theoretical difference 
between conditions to go in either direction. 

https://medstats.github.io/bayesfactor.html
http://www.webcitation.org/6s4oBl7iG
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effect of the brief interventions compared to control for the combined data and for both comparisons, 

assuming the sort of effect sizes that have been found before for such brief interventions.   

The conclusion is relative to the model of H1 used. The robustness of the conclusion can be 

checked by determining if the same conclusion follows for different ways of representing the same 

scientific judgements. We used the review by Ballesteros and colleagues [22] for informing the use of 

a half-normal distribution; that is, this paper played a key role in our scientific judgments. We might 

also have used the posterior distribution of the effect size presented by Ballesteros et al. as our model 

of H1 (e.g. [32]).  Ballesteros et al.  estimated the ln OR as Ln(1.55) with a standard error of 0.21. Thus, 

using the Dienes [7] calculator, H1 could be modelled by a normal distribution with a mean of 0.44 

and a standard deviation of 0.21.  For BA vs PIL, BN(0.44,0.21) = 0.10, and for BLC vs PIL, BN(0.44,0.21) = 0.09. 

In both cases the conclusion remains the same. Thus, the difference in representations of H1 did not 

substantially change the conclusion. We may also perform a sensitivity analysis with the half-normal 

presentation to determine how conclusions depends on its standard deviation.  Any adjustment to 

allow the effect to be plausibly larger than we have represented will increase support for H0, leading 

to the same conclusion. Conversely, if one had good reason, independent of the current data, to doubt 

the effect could be as large as we have represented, that information could render the evidence 

insensitive. Specifically, with a half-normal, if the estimated effect was as low as 0.24, the Bayes factor 

for BLC vs PIL is 0.33. When using 0.24 as the SD of a half-normal, the maximum plausible Ln (OR) is 

about twice the SD, 0.48 (i.e. the maximum plausible OR is 1.6).  That is, the evidence becomes 

relatively insensitive if an effect above about 0.48 can be ruled out.  But based on the meta-analytic 

reviews we have referred to, current scientific judgment is that the effect could well be larger than 

this, so our conclusions stand. Further investigation into, for example, missing studies, the role of the 

significance filter, or the role of analytic flexibility in each study may refine the meta-analyses, and 

thus change our best scientific judgements about effects. The Bayes Factor stands as a provisional 

judgment given the current state of evidence. 
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 For reference, Table 2 presents the same statistics for the same dependent variable at 12 

months. A similar pattern emerges. 

TABLE 2 

Odds ratios for a negative AUDIT result after 12 months 

      BA vs PIL     BLC vs PIL 

      Ln OR [95% CI] SE BH(0, 0.44)  Ln OR [95% CI]  SE BH(0, 0.44)  

PHC        0.09 [-0.63, 0.44]  0.27 0.67  -0.01 [-0.51, 0.48] 0.25 0.48 

A&E      0.00 [-0.92, 0.92] 0.47 0.73  -0.11 [-1.20, 0.96] 0.55 0.71 

CJS      0.10 [-0.63, 0.85]   0.38 0.77  -0.36 [-1.08, 0.39] 0.38 0.40 

PHC/A&E  0.07 [-0.39, .53] 0.23 0.58  -0.03 [-0.47, 0.42] 0.23 0.43 

All data      0.08 [-0.31, 0.47] 0.20 0.57  -0.11 [-0.50, 0.27] 0.20 0.29 

 

Discussion 

We show that non-significant results from a family of trials involving a large number of participants do 

not provide compelling evidence for no effect, despite the way the trial results have in fact been 

interpreted to justify claims of the lack of effectiveness of the interventions.  For individual published 

trials, the results were scarcely moderate evidence for the null hypothesis over a plausible alternative.  

A problem arises from taking non-significance to mean evidence for H0. Even a high-powered non-

significant result does not necessarily mean there is evidence for the null hypothesis over the 

alternative [28].  However, we also showed that taking a key two trials, or else all three, in the family 

of trials together provided moderate evidence for no effect of brief advice or brief lifestyle counselling 

over simple clinical feedback and an alcohol information leaflet at 6 months follow-up compared to 
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the size of effect one might expect given meta-analyses of brief interventions. There was also 

moderate evidence for no effect of brief lifestyle counselling at 12-months follow-up. Thus, combining 

data is useful not just for establishing there is an effect, but in establishing there is not.  These 

conclusions did not follow from the mere fact of obtaining non-significant results; they had to carefully 

argued. Further, for each study taken separately the evidence is not yet there one way or the other; 

this conclusion itself depends on using Bayes factors and does not follow from p values alone. 

 The journal Addiction recommends that authors do not report no difference for non-

significant findings unless a Bayes Factor has been calculated [2]. In a recent analysis of papers in 

Addiction, only 20% of non-significant findings in a sample of randomised controlled trials were 

evidence of no effect [33]. 

A Bayes factor compares how well one model predicts the data (e.g. H1) compared to another 

model (e.g. H0). The axioms of probability show this is exactly the amount by which one should change 

one’s degree of belief in H1 over H0. Given that evidence is defined as the amount by which one should 

change belief, the Bayes factor is a measure of strength of evidence [20]. And given that the models 

are adequate approximations of the scientific theories they represent, there is thus the guarantee 

from the axioms of probability that the corresponding Bayes factor is a measure of the strength of 

evidence for the theory of, for example, an effect of a brief intervention over the theory that the 

intervention is ineffective.  

To model H1, we followed the recommendation of Dienes and McLatchie [28] of using a half-

normal with the standard deviation set by prior research, in our case by a relevant meta-analysis. The 

model is based on simple assumptions and the results of other studies; in that sense, it is objective. 

But further evidence concerning what the theory should predict may revise the outcome.   

We modelled H0 as the point prediction of absolutely no difference. It might be objected that 

this H0 must be wrong; there is never no difference between groups. But the question is whether the 

model is a good enough approximation, not that it is absolutely true. For example, the assumption of 

a normal distribution is never absolutely true for any real study; but the issue is whether or not it is a 
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good enough approximation. Instead of a point null hypothesis we could use an interval null 

hypothesis [1, 34].  Would an odds ratio between 0.95 and 1.05 be so small as to indicate that the 

intervention was not worth the cost? If so, instead of a point null, we can set a uniform distribution 

over the null region [ln (0.95), ln(1.05)] as the model of H0. With this null region hypothesis, the above 

Bayes Factors remain the same to within .01. That is, the point null hypothesis was a good enough 

approximation. 

Further discussion of the implications of this analysis for research and practice of alcohol brief 

interventions may be found in Appendix 1 in a supplementary file online. Scientific inference always 

depends on extra-statistical considerations, such as what control groups are appropriate, and the 

relation of statistical models to theory [5]. 

Conclusions 

We recommend that scientists who find non-significant results should suspend judgment – unless they 

calculate a Bayes Factor to indicate either that there is evidence for H0 over a (well justified) H1, or 

that indeed more data are needed [33, 35]. The present analysis suggests that the findings from the 3 

SIPS trials taken individually are largely uninformative but that, when data from these trials are 

combined, there is moderate evidence for a lack of effect of brief intervention in the SIPS trials.  We 

recommend Bayes factor to be used as standard in clinical trials - and indeed in all hypothesis tests5. 
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