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Abstract Key design characteristics (KDCs) are important
information related to the product and part designs, which
significantly influence on the product’s functions, perfor-
mances, and quality. Identifying KDCs for a complex product
will help designers to focus on key design parameters during
the design process and rapidly obtain design schemes based
on their close relationships to the product’s functions, perfor-
mances, and quality. Although there are some researches on
key characteristic (KC) identification, most of them are fo-
cused on key process characteristics (KPCs) and few on
KDCs. There also lacks a KDC identification framework to
support KDC identification with better completeness and di-
verse usages. Adaptive design is the most important pattern of
complex product design. Therefore, this paper presents a sys-
tematic method to identify KDCs for complex product adap-
tive design, in which KDCs can be determined by two related
phases. Firstly, a product design specification (PDS)-KDC
Candidates Network (PKCN) is constructed by using existing
product instance data, cluster analysis, KC flow-down, and
network analysis approaches. Then, the result from the first
phase is used as a basis to identify KDCs for adaptive design.
Three KDC identification techniques: similarity reasoning
technique, breadth-first search (BFS), and the gray relational
analysis approach are applied to find out KDCs from the

PKCN, which are the most sensitive to the variation of a
PDS. These identified KDCs can help designers to understand
the relationships between KDCs and PDS and rapidly develop
a design scheme. The effectiveness and the feasibility of the
proposed method are verified by a case study via the develop-
ment of an electric multiple unit (EMU)’s bogie.

Keywords Identification of key design characteristics .

Systematic approach . Complex products . Adaptive design .

Network analysis . Gray relational analysis

1 Introduction

The manufacturing mode has transferred from mass produc-
tion to mass customization under the global competition. Mass
customization aims to provide customer satisfaction with in-
creasing variety and customization without a corresponding
increase in cost and lead time [1]. For enterprises engaged in
complex engineering products, to achieve this goal, they need
to (1) capture and reuse best practices and (2) to create strong
links with the suppliers. However, complex products show
complexities in the customer demands, product structures, em-
bedded techniques, etc., which involve in various design char-
acteristics and complex relations among them. This leads to a
challenge that the enterprises cannot easily reuse the existing
design knowledge to generate a design scheme and effectively
communicate with suppliers to develop a supply plan.

Some enterprises and scholars used a method called key
characteristic (KC) control to alleviate the above problems,
such as using KCs to capture the most similar instances
[2–5], or using KCs as an efficient medium for communica-
tion with suppliers [6, 7]. However, at present, there is no
mutual definition for a KC. Thornton [8] referred to the pre-
vious definitions of KCs and defined KCs as the product,
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subassembly, part, and process features that significantly im-
pact the real cost [23, 24], performance, or safety of a product
when the KCs vary from nominal. According to the main
phases of product development, KCs can be divided into de-
sign KCs and process KCs [9]. This paper focuses on the
product design applications; thus hereafter, we use the key
design characteristics (KDCs) instead of the general term
KCs to describe the product and part design information that
significantly influence on product functions, performances,
and quality. KDCs can better support adaptive design that is
the most important pattern of complex product design, which
helps designers focus on a small set of critical design charac-
teristics to rapidly develop an adaptive design scheme by
reusing KDC-based design knowledge. Therefore, how to
identify KDCs becomes an important issue in the complex
product adaptive design.

At present, there are some researches on the application of
KCs [2–7, 10–15], but few on the systematic identification. In
addition, most of these studies focus on the KPCs, less on
KDCs. KPCs are identified by establishing and analyzing
the relations between process characteristics and cost/quality
[23, 24], which are not completely applicable to the identifi-
cation of KDCs, because the KDCs are not only related to the
quality and cost but also mainly related to the functions and
performances. From the perspective of research methods, re-
search on the identification of KCs has focused on either qual-
itative analysis for KC acquisition [18–20] or quantitative
analysis for KC priority [21–28]. However, both have some
defects (see details in next section).

Therefore, this paper presents a systematic method to iden-
tify KDCs for complex product adaptive design. Our contri-
butions have twofold. Firstly, in theory, we propose a frame-
work with two related phases to (1) construct product design
specification (PDS)-KDC Candidates Network (PKCN) and
(2) identify KDCs for application. Secondly, in application,
we develop a set of KDC identification techniques to support
developments at each phase. Techniques used in phase 1 in-
clude the use of cluster analysis, KC flow-down, and a net-
work analysis approach. In phase 2, similarity reasoning tech-
nique, breadth-first search (BFS), and a gray relational analy-
sis approach are used to identify KDCs that are the most sen-
sitive to the changes of PDS [29], which in turn help designers
to focus on these KDCs and rapidly develop a design scheme.
Thirdly, this research makes a complementary contribution to
key process characteristic (KPC) identification by adding
KDCs, toward a whole design and process KC identification
for future rapid product life cycle development.

The remaining sections of this paper are organized as fol-
lows. Section 2 gives a brief review of the related work.
Section 3 presents a systematic method to identify KDCs
and related implementation techniques. Section 4 shows an
example to illustrate the proposed method. In the final section,
the conclusions are drawn.

2 Related work

2.1 The definition of KC and KDC

As mentioned before, there is no mutual definition for KCs
presently. Some typical definitions are given as follows.

In Boeing’s advanced quality system standard D1-9000, it
defines a KC as a feature whose variation has the greatest
impact on the fit, performance, or service life of the finished
product from the perspective of the customer [10].

General Motors in its key characteristic designation system
defines a KPC as a special characteristic where the loss func-
tion shows that reasonably anticipated variation within speci-
fication could significantly affect customer satisfaction with a
product [11].

Besides the enterprises, some researchers who studied on
the KCs also gave their definitions [7, 8]. Although the KC
definitions may vary from corporations to researchers, the
KC’s methods have a common goal that is to identify a small
set of critical features for an organization to focus on during
design and manufacturing [21].

According to the main phases of product development,
KCs are classified as key design characteristic and key process
characteristics, as shown in Fig. 1. The KDCs can be further
divided into functional design characteristics and structural
design characteristics. The KPCs can be further divided into
manufacturing process characteristics and assembly process
characteristics.

This paper focuses on the problem areas of product design;
thus, we define KDCs as the product and part design informa-
tion that significantly influence on product function, perfor-
mance, and quality. In this paper, the identification of KDCs is
our main focus.

2.2 The application of KCs

The concept of KCs can be applied in product design and
manufacturing [6]. In the area of product design, KCs (or
KDCs) mainly have the following two functions: (1) using
KCs as an important enabler to select similar cases and (2)
using KCs as an efficient medium for coordination and com-
munication. Firstly, since KCs are key product features that
reflect typical properties of a product, they are usually utilized
to find the most useful cases to help solve a target problem by
calculating the similarity of KCs in available cases. Peng et al.
[2], Kocsis et al. [3], and Zhu et al. [4] used KCs as an enabler
to select a similar case during an engineering design phase.
While Romli et al. [5] found the optimal from all possible
solutions based on KCs to support sustainable product design.
Secondly, effective communication among collaborators in-
volved in product development is critical to the realization
of rapid product development. Yang et al. [6] used KCs as
an efficient medium for coordination among contractors,
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subcontractors, and partners, to set up a feasible and efficient
model to facilitate the quality assurance in the supply chain.
Dantan et al. [7] used product and process KCs as well as
products and manufacturing resources to establish an informa-
tion model for supporting complex product collaborative
design.

In the area of product manufacturing, KCs (or KPCs) are
mainly used for (1) process planning and (2) product quality
control. Firstly, process planning includes manufacturing pro-
cess and assembly process planning. For manufacturing pro-
cess planning, Chin et al. [12] proposed an approach that
combined QFDwith FMEA to determine a process alternative
with an adequate process capability based on KCs during a
rough-machining process planning. For assembly process
planning, Mathieu [13] proposed an approach to select an
optimal assembly sequence based on KCs and assembly-
oriented graphs. Zheng et al. [14] presented a novel algorithm
for best assembly posture fit based on KCs for large compo-
nent assembly to assure the assembly quality. Secondly, in the
area of product quality control, Boeing [10] and General
Motors [11] developed a control plan based on KPCs and used
statistical process controls (SPCs) to monitor the variation of
KPCs during the production process. Once the KPCs
exceeded the control range, SPC would find the sources of
variation and determine a solution to ensure the quality and
performance of a product. Recently, Dai et al. [15] established
a reliability model of manufacturing processes based on prod-
uct KCs, material KCs, operation KCs, and equipment KCs,
to reduce the risk of manufacturing process and improve prod-
uct quality by calculating the reliability requirements of KCs
with respect to different manufacturing process scenarios.

2.3 The KC identification techniques

At present, research on the identification of KCs has focused
on either qualitative analysis for KC acquisition or quantita-
tive analysis for KC priority.

2.3.1 Qualitative analysis for KC acquisition

Most KC identification methods are based on qualitative anal-
ysis for KC acquisition that uses the concept of a KC flow-

down [16, 17], such as in Boeing [10] and GMMotors [11]. A
KC flow-down is a hierarchical approach to tracing/
propagating a key characteristic for an assembly or product
down to key characteristics on its subassemblies, details, and
processes believed to affect the variation of the top-level key
requirement KCs [10]. The KC flow-down provides a system-
atic view of potential variation propagation of KCs and cap-
tures a design team’s collective knowledge about variation
and its contributors. Figure 2 shows an example of the KC
flow-down for a car door [8].

In Fig. 2, one key customer requirement is the quality per-
ception of the car door. Several product KCs of the car door
(e.g., the evenness of the seams, etc.) influence the customer’s
perception of quality. Each product KC is linked to several
contributing subsystem KCs (e.g., outer perimeter of the door,
etc.). These, in turn, flow down to the part KCs (e.g., the door
panel shape, etc.) and process KCs (e.g., the fixtures and
stamping processes, etc.).

A variety of tools have been used to capture a KC flow-
down, such as datum flow chain (DFC), assembly-oriented
graph (AOG), and cause and effect diagram (CEA). For in-
stance, Whitney [18] defined KCs as assembly-level dimen-
sions related to design intention, and the delivery of those KCs
was through a DFC. Mathieu et al. [19] adopted the AOG
methodology to formulate an assembly model. A propagation
chain that was an error accumulation route of the KCs was
developed through analysis of the AOG. Sivasakthive et al.
[20] used CEAmethodology to identify the components’KCs
related to the product performance.

However, KC flow-downmethod still has some defects: (1)
it is a qualitative method for KC acquisition and lacks ability
to prioritize the identified KCs, and (2) it lacks a detailed
instruction of the processes of KC acquisition in the present
study; as a result, it is not easy to implement and may lead to
the incompleteness of the identified results.

2.3.2 Quantitative analysis for KC priority

KC flow-down is a qualitative method to identify KCs, which
lacks the ability to prioritize the identified KCs. Therefore,
some researchers have studied quantitative analysis ap-
proaches to determine which KCs have the most influence
on the quality and cost of a product.

A variety of tools have been used for quantitative analysis
of KC priority, such as Taguchi loss function, variation model,
variation mode and effect analysis (VMEA), and variation risk
management (VRMM). For instance, Tang et al. [21] used the
Taguchi loss function to calculate the influence degree of the
variations of characteristic candidates (CCs) on the product
quality. The influence degree could determine the relative im-
portance of CCs, and in turn, the relative importance could
help identify new KCs. Lee and Thornton [22] proposed a
variation model to calculate the importance degree of a part
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Fig. 1 KC classification
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KC, which was dependent on the sensitivity to the variation of
product quality. Recently, Estrada et al. [23] created a varia-
tionmodel to calculate the rework cost for KCs as a variable in
function of the expected amount of material to be removed.
This cost plus scrap cost was used to prioritize KCs running
with low capability. The identified critical KCs could help
engineers to develop solutions to eliminate what is causing
KCs running with low capability. Etienne et al. [24]
established a cost model for variation management to identify
key process characteristics, which could support tolerance de-
sign, computer-aided process planning (CAPP), and
computer-aided inspection planning (CAIP). As for VMEA,
Chakhunashvili et al. [25] and Johansson et al. [26] used
VMEA to analyze the sensitivity of product performance or
quality to the variation of KCs, and the relative importance
degree of KCs could be determined by the sensitivity degree.
Similar to the VMEA method, Ibrahim et al. [27, 28] recently
proposed a VRMMmethodology to prioritize KCs and quan-
tify their associated risk of variation.

The quantitative analysis of KCs can calculate the impor-
tance degrees of KCs, which helps designers to find which
KCs have the most influence on the quality and cost of a
product, and then focus on these KCs in the manufacturing
production to improve the quality of the product. However,
most of these methods are actually a process that uses a quan-
titative analysis tool to analyze and prioritize the potential
KCs and further finalize the real KCs, but it does not discuss
how to obtain the potential KCs (KC candidates) before eval-
uating them.

In addition, both the KC qualitative and quantitative anal-
ysis methods are mainly focused on the KPCs, but less on
KDCs. In view of the above problems, it is necessary to study

a systematic method to identify KDCs for complex product
development.

3 Proposed methodology

3.1 The framework for identifying KDCs

Figure 3 presents our framework for the identification of
KDCs for complex product designs. It includes two main
phases: (1) construction of PKCN and (2) identification of
KDCs for application.

In the first phase, previous design knowledge, case studies,
and data usages are main sources for the construction of
PKCN. The construction quality of PKCN not only depends
on the construction techniques but also on the reference data
quality. PKCN is a network structure, which includes PDS,
KDC candidates, and the relations between them. At the end
of phase 1, the PKCN is listed and distributed in a database,
which can be represented in Fig. 4 as the PDS attribute table
(a), KDC candidate attribute table (b), and characteristic (PDS
and KDC candidates) relations table (c).

The PKCN contains potential KDCs for a wide range of
application scenarios and forms the basis of the identification
of KDCs for a new product development. Therefore, in the
second phase of identification of KDCs for an application, the
PDS is used as a searching and retrieving item to find a small
set of KDCs from the PKCN for guiding a new product de-
sign. In Fig. 3, when a new project PDS is created, first check
whether the PDS item is a new one within a PDS attribute
table (a); if so, a new design pattern is required; if not, contin-
ue check whether its value is in the planned value range; if so,

Customer perception

of the door

Evenness of seam Steps between panels Door closing force

Outer perimeter

of door
Body Aperture

Alignment of door and

body
Door thickness Seal tightness

Door panel shape Hinge location

Body assembly

fixture
Door assembly

fixture

Customer

Requirement

Product-KCs

Subsystem-KCs

Part-KCs
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Fig. 2 KC flow down [8]
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an adaptive design pattern is required. Otherwise, an uncer-
tainty design pattern is required. The three design patterns will
identify the KDCs associated with PDS, and finally, a set of
KDCs will be obtained by getting union of the three identified
KDCs. The three design patterns are shown in Fig. 5, and their
characteristics are as follows.

(a) New design pattern

In this pattern, the new project PDS item (PDSnew) is a new
one that does not exist in the PDS attribute table. Some new
KDCs will be identified based on the theory of system design
[30], axiomatic design [31], and FBS [32], which usually pro-
duces a new conceptual scheme. This pattern is generally

accounted for 20% of the total design [33], which is a difficult
one because there is no similar instances that can be used for
reference. This paper will not discuss it in detail.

(b) Adaptive design pattern

In this pattern, the new project PDS item (PDScon) exists in
the PDS attribute table and its value is in the planned range,
which can be controlled. Some existing KDCs which are the
most sensitive to PDS changes need to be identified from the
PKCN, and the evolution rules of PDS to KDCs need to be
analyzed based on the existing instance data and expert
knowledge. Then, designers focus on these identified KDCs

Is it a new

PDS item?

Value range

matching

Is its value

in the rang?

(a) New

design pattern

(b) Adaptive

design pattern

Y

N

NY

KDC sets

(c) Uncertainty

design pattern

Data collection

Clustering analysis

Obtain the PKCN

and build a database
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Compute the importance degree of
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Phase 2.Identification of KDCs for application

Name matching
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Fig. 3 The framework for the identification of KDCs
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and determine their values to form a design scheme. This
pattern is generally accounted for 80% of the total design
[33], which is a common case. This paper will focus on this
pattern, and the details are shown in Sect. 3.3.

(c) Uncertainty design pattern

In this pattern, the new project PDS item (PDSncon) exists
in the PDS attribute table but its value is not in the planned
range, which cannot be controlled. The identified KDCs in
this pattern may be new KDCs (by a new design pattern), or
some may be existing KDCs (by an adaptive design pattern).
This pattern is a quite difficult one, and this paper will not
discuss it in detail.

3.2 Construction of PKCN

The PKCN is the basis for the identification of KDCs for
complex product development. It mainly includes the follow-
ing five steps:

& Step 1: data collection

Before collecting data, we need to determine what data
need to be collected. The product data is produced in the
product development process, as shown in the Fig. 6.

This paper focuses on the product design; thus, the follow-
ing data need to be collected in our research, as shown in
Table 1.

After determining what data need to be collected, it is nec-
essary to solve the problem of how to collect the data. A

standardized data collection form (DCF) is used to solve this
problem, as shown in Fig. 7. Based on DCF, the product and
part designers use the Excel tool to collect data in line with
their experience, knowledge, and existing instance data,
respectively.

In the DCF, the “item name” is determined by expe-
rienced product/part designers based on their actual
work experience; the “case value” and “unit” are deter-
mined by referring to the existing product family in-
stances; the “value range” is the planned product family
design scope by referring to the minimum and maxi-
mum values of product family instances; the “variabili-
ty” is determined after completion of step 2, which
shows whether the characteristic (PDS and DC) is
changeable or not within the planned value range. It
can help the designers to establish the characteristic re-
lations in step 3; the “importance” is determined after
completion of step 5, which shows the importance de-
gree of each characteristic in a characteristics network.

& Step 2: clustering analysis

Based on the collected DCF, using cluster analysis tool
to identify variant and invariant PDS and DCs (based on
how far between characteristics), helps designers to know
which characteristics change within the planned value
range. The clustering analysis method can refer to
[34–36]. In this step, a calculation program can be written
based on the cluster analysis method, which can automat-
ically calculate the distance between the characteristics
when importing the collected excel table, then, updating

Union
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KDC candidates
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Adaptive design pattern (b)

KEY KDCs (PDSnew)

KDCs (PDScon)

KDCs (PDSncon)

KEY

KEY
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Fig. 5 The new, adaptive, and uncertainty design patterns
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the column (variability) of product/part DCF based on the
calculated results, respectively.

& Step 3: establishing characteristic relations

If only collecting PDS and DCs without analyzing and
establishing the relations between them, it will not be able to
find out which DCs are sensitive to PDS changes and have the
greatest influence on other DCs; as a result, it will be unable to
effectively support subsequent product design. Therefore,
based on the DCF, the product and part designers need to
establish the relations among PDS, the relations between
PDS and DCs, and the relations among DCs, respectively.
Characteristic relations matrix (CRM) is used to solve this
problem, as shown in Fig. 8.

The items under the term of PDS and DCs come from the
DCF. Experienced designers determine the relations by func-
tion equations, charts, and semantic descriptions. The follow-
ing three questions can be used to ask the designers when they
encounter the variant characteristics (PDS and DCs) that are
determined in step 2: (1) why these characteristics need

changes, (2) how to achieve the needed changes, and (3) what
will be affected by these changes. Answers to these questions
could help designers to establish the characteristic relations.

After establishing the characteristic relations, product and
part designers can transform the CRM into a characteristic
relations network (CRN), as shown in Fig. 9. The CRN can
visually show the characteristics and their relations on a graph,
which helps designers to more easily check the established
characteristic relations (in step 4). In this step, network analy-
sis tools (e.g., Pajek [37], etc.) can be used to establish a CRN.

& Step 4: creating KC flow-down

The product/part-level CRN in the above steps is constructed
by the designers with field expert knowledge. However, complex
products involve many disciplines and have a lot of interaction
between product and parts; whether the product/part-level CRN
is accurate and complete or not still needs to be further verified,
which requires KC flow-down, as shown in Fig. 10.

Firstly, a cross-functional team consisting of customers,
product designers, part designers, suppliers, and college

Table 1 The collected data in our
research Item Description Phase

Product-level
PDS

The design specification of a product
design, which entails design inputs,
design objectives, and design constraints.

Conceptual
design

Product-level
DCs

A set of product-level design
characteristics, which entail performance characteristics
(to highlight a product’s overall performance) and structural
characteristics (to highlight a product’s overall structure
and layout features).

Conceptual
design

Part-level
PDS

The design specification of a part design,
which comes from three aspects: product-level PDS,
product-level DCs, other part-level DCs.

Detailed
design

Part-level
DCs

A set of part-level design characteristics,
which entails performance characteristics
(to highlight a part’s performance) and structural
characteristics (to highlight a part’s geometry features).

Detailed
design

Design inputs

Design objectives

Design constraints

Type
Item

name
Type Unit

Value

range Case1 ... Case k

Performance

characteristics

Structural

characteristics

PDS 1

PDS 2

PDS 3

PDS 4

...

PDS n

DCs 1

DCs 2

DCs m

...

Data collection form (DCF)

Value
ImportanceVariability

Fig. 7 The data collection form (DCF)
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professors is established. Then based on product/part-level
CRN, we can use a team approach to create KC flow-down,
which in turn determines PDS, product-level KDC candidates,
and part-level KDC candidates. The determination of PDS can
be done by referring to all product-level PDS and some part-
level PDS; product-level KDC candidates can be determined

by referring to all product-level DCs and some part-level PDS,
and similarly, part-level KDC candidates can be found by
referring to all part-level DCs and some other part-level
PDS. It is essentially a process that product/part-level CRN
is analyzed and verified by the cross-functional team and fi-
nally forms a relatively complete and accurate PKCN of the
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entire product. In this process, the data check should be con-
sidered in the following two aspects:

4 Is the item name consistent?

Due to a complex product involving many disciplines, it
may lead to the heterogeneity of the name of items
(PDS and DCs); as a result, it will affect the communi-
cation of designers in various fields. Therefore, it is
necessary to eliminate the heterogeneity among the col-
lected data and form a consistent item name.

5 Is the item correct?

Because the collected data and established relations are
done independently by the designers without checking
with other designers, the constructed product/part-level
CRN may be incorrect, which reflects in the following
two aspects: (1) omission and (2) unnecessary. For the

former, for instance, a PDSi of a part-level CRN comes
from a DCsi of the product-level CRN, while the
product-level CRN does not have this DCsi; thus, the
product-level CRN needs to add this DCsi when the
cross-functional team confirms it. As for the unneces-
sary aspect, for instance, there is a PDSi in a product-
level CRN, while the product/part-level design does not
need this PDSi; thus, the product-level CRN could re-
move this PDSi when the cross-functional team con-
firms it.

Through the data check by the cross-functional team, the
designers modify incorrect information and finally form a rel-
atively complete and accurate PKCN of the entire product that
includes three layers: PDS, product-level KDC candidates,
and part-level KDC candidates. Then, the product and part
designers update the DCF, CRM, and CRN based on the
checked results, respectively, and then obtain the product-
level PKCN and part-level PKCN. The product-level PKCN
is a database to support product-level design, which includes
two layers: product-level PDS and product-level KDC candi-
dates.While the part-level PKCN is a database to support part-

...

Establish a cross-functional team

Create KCs flowdown

Obtain PKCN of the entire product

The product-level CRN

...

Obtain product-level and part-level PKCN

Part 1 Part n

Product-level PDS Product-level DCs

Part-level 1 PDS Part-level 1 DCs

Part-level n DCs

New added PDS New added DCs

Characteristics relations

Data support
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Nodes Relations

PDS

Product-level
KDC candidates

Part-level
KDC candidates
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PDS

DCs
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DCs
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The product/part-level CRN

Part-level n PDS

The part-level CRN

DCs

Fig. 10 KC flow-down approach
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level design, which includes two layers: part-level PDS and
part-level KDC candidates.

& Step 5: computing the importance degree of characteristics

PKCN is a network structure, in which each characteristic
(a PDS or KDC candidate) is inter-related in a net and shows
the network properties, such as small world [38] and scale free
[39]. However, not all characteristics are equally important,
and some may have strong connections to other characteris-
tics, while others may have weak connections. In order to
allow designers to focus on a small set of critical design char-
acteristics in the product development, it needs to analyze the
importance degree of characteristics.

Through literature study, network analysis approach is
suitable for solving the calculation of importance degree
of characteristics. It not only can calculate the importance
degree of each characteristic but also can handle a large
number of data, which is convenient for computerization.
In literature, the network analysis approach has emerged
as a key method for analyzing a wide variety of complex
systems such as social science [40], information engineer-
ing [41], and biological science [42]. Recently, re-
searchers have applied the network theory into the devel-
opment of mechanical products. For instance, Sosa et al.
[43] and Fan et al. [44] built a component network and
used it to guide the module division through calculating
the degree of modularity of components. Batallas et al.
[45], Braha et al. [46], and Dan et al. [47, 48] constructed
a product development network to identify a “core team”
by analyzing the information flow of design team and
then to assign the core team to carry out the work for
improving the efficiency of multi-disciplinary design.

From the network theory, we know that the network
analysis is a quantitative analysis approach based on
statistical theory, and the importance degree of nodes
in the PKCN of an entire product can be calculated to
provide an objective reference to designers in the sub-
sequent KDC identification process. The formulas are
known as centrality measures and described in the
Table 2 [45].

In this step, the importance degree of characteristics
(PDS and KDC candidates) of PKCN of the entire prod-
uct can be calculated automatically by using the tools
from Pajek [37]. Then, the product and part designers
need to update the column (Importance) of product/part
DCF based on the calculated results, respectively.

Finally, the product/part-level PKCNs need to be rep-
resented in a database, which includes a PDS attribute
table, a KDC candidate attribute table, and a characteristic
relations table. The establishment of PDS and KDC can-
didates’ attribute table can refer to the DCF, and the char-
acteristic relations table can refer to the CRM.

5.1 Identification of KDCs for adaptive design

Adaptive design pattern is a common one in the product de-
velopment. Its core is to identify these KDCs that are sensitive
to PDS changes and then focus on them to rapidly develop an
adaptive scheme. Figure 11 shows the identification process
of KDCs for product level (the process for part level is simi-
lar), including the following three steps.

& Step 1: determine which PDS need to be analyzed

Firstly, obtain a set of controllable PDS that have no new
PDS item, and their item values are in the planned value
ranges by name and value range matching. Then, designers
determine which controllable PDS needs to be analyzed, by
considering the following two aspects:

6 Is it similar to existing PDS?

A new project PDS (controllable PDS) is first used as a
searching item to match PDS attribute table and calculate the
similarity between the controllable PDS and existing PDS
instances using similarity reasoning technique [49]. Then de-
termine whether there is a case that its similarity exceeds the
given threshold (e.g., 0.8) in the database; if so, it can be
chosen as an initial design scheme; if not, a case with the
highest similarity should be chosen. These controllable PDS
not similar to existing ones should be further analyzed. Then,
these KDCs which are sensitive to the variation of the chosen
PDS need to be identified, and designers focus on them to
develop an adaptive design scheme.

7 Is it important?

Not all PDSs are equally important, and some may have
strong connections to KDC candidates, while others may have
weak connections. Therefore, we can give priorities to these
PDS with higher importance degree for further analysis.

& Step 2: determine which KDC candidates need to be
analyzed

Input controllable PDS sets use product/part PKCN as da-
tabase and then apply the BFS to identify KDC candidates
associated with PDS. The BFS technology can refer to [50].

In general, a PDS will affect a number of KDC candidates,
if each KDC candidate needs to be analyzed in detail, which
will be time-consuming and laborious. Therefore, we can
choose these KDC candidates with higher importance degree
for further analysis, because these KDC candidates have
strong connections to PDS and other KDC candidates.
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& Step 3: identify the most sensitive KDC candidates to PDS
changes as final KDCs

A selected KDC candidate based on the importance
degree is an “important node” (with higher degree in

closeness and betweenness) in the PKCN, but whether it
is sensitive to PDS changes needs further analysis and
evaluation, because there are some KDC candidates which
are closely linked with PDS and other KDC candidates,
but they are not sensitive to PDS changes. Thus, we need

Table 2 The calculation formulas of importance degree

Indexes Description Formula

Degree
centrality

Degree centrality can be measured as the number of outlinks
connecting a node to its neighbors or as the number of inlinks
that a certain node is receiving from adjacent nodes. D nið Þ ¼

∑
∀ j≠i

xij

n−1 D
0
nið Þ ¼ D nið Þ

1
n ∑

n

i¼1
D nið Þ

xij ¼ 1; if i is indicent to j:
0; if i is not indicent to j:

�

D′(ni) is standardized degree centrality of node i. n is the number of
nodes.

Closeness
centrality

Closeness centrality reflects how close an actor is to other actors in
a network, which can be measured as a function of geodesic
distance that is a shortest path between two nodes.

C nið Þ ¼ n−1

∑
n

j¼1;i≠ j
d ni;n j1ð Þ

� �C
0
nið Þ ¼ C nið Þ

1
n ∑

n

i¼1
C nið Þ

C′(ni) is standardized closeness centrality of node i. d(ni,nj) is
geodesic between i and j.

Betweenness
centrality

Betweenness centrality focuses on these nodes that lie in the path
between other nodes, which have control over knowledge flow
since information must travel through them. B nið Þ ¼

∑
j< k;i≠ j;i≠k

gjk nið Þ
gjk

n−2ð Þ n−1ð Þ
2

B
0
nið Þ ¼ B nið Þ

1
n ∑

n

i¼1
B nið Þ

B′(ni) is standardized betweenness centrality of node i. gjk(ni) is the
number of geodesics linking j and k that contains i in between.
Gjk is the total number of geodesics linking j and k.

Important
degree

The important degree of nodes is the weighted sum of the degree
centrality, closeness centrality, and betweenness centrality. I nið Þ ¼ w1D

0
nið Þ þ w2C

0
nið Þ þ w3B

0
nið Þ

w1 þ w2 þ w3 ¼ 1

w1 is weight of degree centrality. w2 is weight of closeness
centrality. w3 is weight of betweenness centrality.
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Fig. 11 The identification
process of KDCs for adaptive
design pattern

Int J Adv Manuf Technol



to pay more attention to these KDCs which not only have
a higher importance degree but also are sensitive to PDS
changes.

Complex products involve multi-disciplines; thus, their
design is usually difficult to establish sensitivity analysis
model. Through literature study, the gray relational anal-
ysis model, a kind of order relation model, can describe
the strength of relations between factors by the gray rela-
tional degree [51, 52]. It can be used to deal with engi-
neering problems such as factor analysis and is suitable
for dealing with poor, incomplete, and uncertain informa-
tion systems [53–55]. Therefore, based on the selected
KDC candidates, this research uses the gray relational
analysis approach to further identify these KDCs that are
sensitive to PDS changes. The steps are as follows.

Firstly, use the selected PDS in step 1 as the target se-
quence, that is, X(i) = {X1, X2,..., Xn}, n is the number of the
PDS items, and use the selected KDC candidates in step 2 as
the comparable sequence, that is, Y(j) = {Y1, Y2,..., Ym}, m is
the number of the KDC candidates.

Secondly, calculate the gray relational degree of each KDC
candidate (Yj) to the ith PDS (Xi), that is, γ(Xi,Yj), and the
calculation formulas of gray relational degree can refer to
[51, 52].

Thirdly, calculate the weighted sum of the gray relational
degree of the each KDC candidate (Yj) to the all PDS, that is,
ζ(X,Yj) which can be calculated by Eq. (1).

ξ X ; Y j
� � ¼ ∑

n

i¼1
wiγ X i; Y j

� � ð1Þ

In Eq. (1), wi is the weight of the ith PDS which is deter-
mined by experienced experts by reference to the importance

degree of PDS, ∑
m

i¼1
wi ¼ 1.

The gray relational degree of a KDC candidate re-
flects the influence degree of the variation of PDS on
it. If a KDC candidate has a relatively high gray rela-
tional degree, it shows that it is sensitive to the varia-
tion of PDS. Therefore, in this way, we can identify
both sensitive and insensitive KDC candidates based
on the gray relational degree.

Finally, take these sensitive KDC candidates as the final
KDCs which their gray relational degree is larger than a
threshold δ. δ is a threshold determined by the expert’s expe-
rience. In this paper, δ is 0.7.

Based on the KDC identification results, we can make a
corresponding design: (1) For the sensitive KDCs, the evolu-
tion rules of PDS to KDCs need to be analyzed based on the
existing instances and expert knowledge, and then, designers
focus on these KDCs to determine their values. (2) For the
insensitive KDCs, because they are stable enough, we can
temporarily reuse the value of existing similar instances.

8 Case study

A bogie is a running unit of electric multiple unit (EMU) of a
train; it is equivalent to car’s chassis and wheels and has the
functions of guide, bearing, vibration, traction, and braking.
The bogie is composed of a frame, wheel sets, spring suspen-
sion device, drive transmission device, and basic brake device,
as shown in Fig. 12. The rationality of the design of EMU’s
bogie determines the performance and quality of the whole
vehicle, and thus, it is a key component in the development of
EMU. The development of a new bogie is always started from
the existing ones and makes an adaptive design. However,
when a new project PDS is put forward, such as maximum
speed is decreased from 250 to 220 km/h, deceleration emer-
gency braking (EB) is increased from 0.9 to 0.95 m/s2, inex-
perience designers often do not know which parts should be
changed, and cannot predict what the changes will affect.
Besides, when focusing on a product/part, they do not know
what key characteristic should be used as key design vari-
ables. They can effectively lead to an adaptive design or rap-
idly develop a technical document (including the key require-
ments of performance, structure, interface, etc.) for suppliers;
thus, it is difficult for enterprises to control the delivery lead
time and further the entire R&D cycle of a bogie.

In view of this, it needs to construct a KDC-based design
knowledge base to guide the development of bogie, so that
when a PDS has changed, the designers will be able to quickly
find the bogie’s KDCs, which will be affected by the PDS
changes and focus on designing them. We conducted a case
study within a bogie department of OEMs of EMU in China,
by building a KDC-based design knowledge base to support
the rapid development of a bogie. Here, we only discuss the
KDC identification of a bogie.

8.1 Construction of PKCN

Firstly, based on the planned product family of EMU, we
collected the existing six product instances that located in
the target segment. Then, we worked with the bogie
product-level designers and part-level designers (e.g., frame,
wheel sets, brake, etc.) for 2 weeks, guided them to collect
PDS and DCs, and then completed the DCF based on the
existing six instances, respectively. Subsequently, we clus-
tered the collected PDS and DCs into variant or invariant ones
by using cluster analysis tool and then updated the DCF of
product and its parts based on the calculated results, respec-
tively. After that, based on the DCF, the product-level and
part-level designers established the characteristic relations
and completed the CRM and CRN for 2 weeks. Upon that,
we spent 2 weeks to create KC flow-down, which in turn
determined PDS and product-level and part-level KDC candi-
dates. In this process, first, the product-level and part-level
CRNs were analyzed and verified by the cross-functional
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team via brainstorming. Second, designers modified incorrect
data and finally formed a relatively complete and accurate
PKCN of the entire bogie. The partial results are shown in
Fig. 13. The importance degree of the nodes (PDS and KDC
candidates) of PKCN was calculated by using the method of

Sect. 3.2. The partial results of the calculation are shown in
Table 3; the third column is the degree centrality of each node;
the fourth column is the betweenness centrality of each node;
the fifth column is the closeness centrality of each node, and
the sixth column is the importance degree of each node.

Fig. 13 The partial PKCN of the bogie

Fig. 12 The units of bogie
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8.2 Identification of KDCs for adaptive design

Use the new project PDS to match the constructed
PKCN, and identify its design patterns among new de-
sign, adaptive design, and uncertainty design. It is with
adaptive design, and therefore, the identification of
product-level KDCs starts (part-level KDCs are identi-
fied similarly, which is not discussed in this case study).

9 Determine which PDS needs to be analyzed

In the development of a new project, the new project
PDS (controllable PDS) including items “maximum
speed = 220 km/h” and “deceleration EB = 0.95 m/s2”
was not similar to existing PDS instances, but the two
items were in the planned value range (maximum speed
160–350 km/h and deceleration EB 0.85–1.0 m/s2). In

addition, the two PDS items had a higher importance
degree; thus, they were chosen for further analysis.

10 Determine which KDC candidates
need to be analyzed

With PDS (maximum speed and deceleration EB) as
input and product-level PKCN as database, use BFS to
identify KDC candidates associated with PDS, which
are shown in Table 4.

In order to help product designers to focus on a small
set of KDC candidates to save their time and energy, these
KDC candidates with higher importance degree were cho-
sen for further analysis. Based on the experience of prod-
uct designers, this case study selected five product-level
KDC candidates associated with maximum speed and de-
celeration EB to analyze. The five product-level KDC
candidates are disc braking force, brake cylinder pressure,

Table 3 The importance degree
of the partial bogie’s KDC
candidates

Types Node name Degree Betweenness Closeness Importance
sum

PDS Maximum speed 20.92 0 1.48 8.81

Axle load 20.00 0 1.61 8.48

Deceleration EB 2.15 19.41 1.31 7.08

Starting acceleration 1.23 8.71 1.03 3.41

Track gauge 1.23 0 0.58 0.67

Product-level KDC
candidates

Disc braking force 3.39 23.38 1.10 8.70

Tractive force 2.46 18.60 1.07 6.66

Brake pad clamping
force

1.85 4.04 0.87 2.21

Part-level KDC
candidates

Brake cylinder effective
area

1.23 0.85 0.87 1.01

Magnifying power 0.92 1.06 0.87 0.95

Traction motor power 1.85 2.17 1.38 1.81

Traction motor torque 1.54 1.00 1.37 1.33

Wheel seat diameter 1.23 0.06 1.16 0.86

Table 4 The product-level KDC
candidates associated with PDS Types Node name Importance sum

PDS Maximum speed 8.81

Deceleration EB 7.08

Product-level KDC candidates Disc braking force 8.70

Brake pad clamping force 2.21

Brake cylinder pressure 0.87

Brake cylinder thrust 0.59

Clamp return spring force 0.63

Train pipe air pressure 0.46
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brake pad clamping force, brake cylinder thrust, and clamp
return spring force. Most of them are performance-related de-
sign parameters.

11 Identify themost sensitive KDC candidates to PDS
changes as final KDCs

The selected five KDC candidates based on the importance
degree were important node, but whether they were sensitive
to PDS change was further analyzed and evaluated by using
the gray relational analysis approach.

The data for gray relational analysis are shown in Table 5.
Two PDS items are maximum speed and deceleration EB.
Five product-level KDC candidates are disc braking force,
brake cylinder pressure, brake pad clamping force, brake cyl-
inder thrust, and clamp return spring force.

The gray relational degrees of the five product-level KDC
candidates were calculated by using the method given in Sect.
3.3. The calculation results are shown in Table 6; the second
column is the gray relational degree of the five product-level
KDC candidates for the maximum speed; the third column is
the results for deceleration EB, and the fourth column is the
sum of the gray relational degree of each product-level KDC
candidates.

From Table 6, according to the gray relational de-
grees of product-level KDC candidates, we ranked them
in the following order: brake cylinder thrust > disc
braking force > brake pad clamping force > brake cyl-
inder pressure > clamp return spring force.

The gray relational degrees indicated the sensitivity of
KDC candidates to the PDS changes. From them, we identi-
fied these sensitive KDC candidates (sum > 0.7 the threshold)
as the final KDCs based on the gray relational degrees, which
are brake cylinder thrust, disc braking force, brake pad
clamping force, and brake cylinder pressure. The identifica-
tion results were agreed by the experienced engineers.

After identifying the KDCs, designers made an adaptive
design based on the results: (1) For the sensitive KDCs (e.g.,
brake cylinder thrust, disc braking force, brake pad clamping
force, and brake cylinder pressure), the evolution rules of PDS
to KDCs were analyzed resulting in some functions and em-
pirical formulas, and then, designers focused on these KDCs
to determine their values based on the evolution rules. (2) For
the insensitive KDCs (e.g., clamp return spring force), be-
cause it is stable enough, designers temporarily reused the
value (630 kN) of existing instances.

12 Conclusions

This paper presents a systematic identification framework to
support KDC identifications with better completeness and di-
verse usages. Firstly, a PKCN is established by using the
existing product instance data, a cluster analysis tool, KC
flow-down, and a network analysis approach, which will be
used as a basis for identifying KDCs for application. Then, the
KDC identification for adaptive design pattern is developed in
detail. Similarity reasoning technique, BFS, and gray relation-
al analysis approach are used to identify which KDCs are most

Table 5 The data for gray
relational analysis Types Node name Case

1
Case
2

Case
3

Case
4

Case
5

Case
6

PDS Maximum speed (km/h) 140 160 200 250 300 350

Deceleration EB (m/s2) 1.2 1.12 1.0 0.9 0.8 0.75

Product-level KDC
candidates

Disc braking force (kN) 85.68 80.6 77.2 72.59 68.4 60.63

Brake pad clamping force
(kN)

46.06 44.2 41.1 38.5 36.1 34.4

Brake cylinder pressure
(kPa)

456.6 438.2 418.5 386.9 355.3 330.5

Brake cylinder thrust (kN) 5.38 5.02 4.68 4.33 4.04 3.72

Clamp return spring force
(kN)

630 630 630 630 630 630

Table 6 The results of gray
relational analysis of product-
level KDC candidates

Node name Maximum speed Deceleration EB Sum Result

Brake cylinder thrust (kN) 0.750 0.825 0.780 Sensitive KDCs
Disc braking force (kN) 0.710 0.755 0.728

Brake pad clamping force (kN) 0.708 0.734 0.718

Brake cylinder pressure (kPa) 0.707 0.731 0.717

Clamp return spring force (kN) 0.579 0.543 0.565 Insensitive KDCs
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sensitive to PDS changes, which helps designers to focus on
these KDCs and rapidly develop a design scheme.

The case study of the KDC identification for an EMU’s
bogie shows that the proposed method is feasible and effec-
tive. This research mainly focuses on the identification of
KDCs in the design phase, which makes a complementary
contribution to the identification of KPCs in the manufactur-
ing and maintenance phases. In future research, we will study
a systematic method of identification of KDCs and KPCs to
support product life cycle development. The latest studies on
identification of KPCs published by Estrada et al. [23] and
Etienne et al. [24] can be used for reference.

So far, we have only studied the identification method of
KDCs; the development of a computer-aided design tool for
KDC identification is needed; therefore, as one of our future
works, we will develop a KDC-based computer-aided design
tool to better support the complex product adaptive design.
Specifically, the tool will include a data management module
for administrators and an adaptive design module for de-
signers. In the module of data management, the JDBC pro-
gramming technology will be used with an Oracle database to
sort and manage the constructed product/part-level PKCN.
Besides, cluster analysis and network analysis tools will be
integrated into this module, which can realize the function of
data clustering and data importance calculation. In the module
of adaptive design, the Java programming technology is
planned to be used to develop an operation interface to support
multi-disciplinary coordination design. Similarity reasoning,
BFS, and gray relational analysis tools will be integrated into
this module, which can realize the demand-oriented complex
product adaptive design.
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