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Abstract 1 

In a world of increasing urbanization, air pollution mitigation is one of the most important issues of 2 

city planning. Urban trees are of central importance for this issue because they facilitate the 3 

deposition of various gases and particles and affect microclimate and air turbulence. In addition, 4 

many trees emit allergens as well as a range of gaseous substances which take part in photochemical 5 

reactions. The degree to which direct and indirect effects are manifested depends on species-specific 6 

tree properties - or traits. Here we summarize and discuss the current knowledge on how such traits 7 

impact air pollution. We also present aggregated traits of the most common tree species in Europe 8 

that can be used as a decision support tool for city planning and for improving the parameterization 9 

of urban air quality models. 10 

 11 

“In a nutshell” 12 

• Typical groups of urban tree species are designated for northern, central-east, and southern 13 

Europe. Some species are ubiquitous while others occur only in specific regions. 14 

• The dominating tree traits regarding air pollution are canopy density, foliage longevity, water use 15 

strategy, and emission potential. Particularly the emission of compounds which contribute to 16 

ozone and particle formation might get more important under future climatic conditions.  17 

• Some trees traits such as foliage density are positively affecting specific ecosystem services (e.g. 18 

shading, pollution removal), but are detrimental for others (e.g. water use). Traits need thus to 19 

be combined to groups that are indicative for services.  20 

 21 

Introduction 22 

Urban forests and trees contribute to human wellbeing due to a multitude of services, of which the 23 

most studied is the positive effect on air quality that is expected to improve human health by 24 

removing gaseous air pollutants and particulate matter (PM) from the air (Weber 2013). Therefore, a 25 

prominent measure in urban development plans is to increase the number of street trees. But how 26 

does the positive impact of these trees on local air quality depend on species specific traits? Are 27 

potential tradeoffs connected to these traits that might decrease other environmental services? How 28 

can the best suitable tree species be selected?  29 

Pollution removal by plants follows two pathways: deposition at the foliage surface or stomatal 30 

uptake. Dry and wet deposition includes scavenging of pollutants by the leaf or bark and - in the 31 

cases of reactive air pollutants such as ozone – also in the gas-phase due to emitted reactive 32 

substances (Wesely and Hicks 2000; Janhäll 2015). Apart from air pollution concentrations and 33 
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meteorological conditions, stomatal and non-stomatal deposition rates depend on three bulk 1 

resistances: air movement in the crown space, transfer through the boundary layer adjacent to 2 

surfaces, and absorption capacity of surfaces themselves which includes stomatal conductance 3 

(Wesely and Hicks 2000). These resistances are controlled by vegetation properties on different 4 

scales: community (e.g. single trees, green corridors, parks, and forests), canopy (i.e. crown size, 5 

shape and density) and foliage structure (including leaf shape, surface properties and physiology). 6 

This review focuses on the species-specific properties or traits that determine canopy and foliage 7 

interaction with major air pollutants in European cities. It neglects the feedback from the community 8 

scale. 9 

Our work was stimulated by an increasing awareness that trees do also affect air quality by emission 10 

of primary particles and BVOCs (biogenic volatile organic compounds) (Churkina et al. 2015). BVOCs 11 

are already known to take part in the formation of ozone, secondary organic aerosol and PM 12 

(Fuentes et al. 2000). As BVOC emissions are likely to respond to future higher temperatures, 13 

pollutant and CO2 concentrations, this trait has been suggested to play an increasingly important role 14 

for air quality in the future (Calfapietra et al. 2013). In addition, primary organic particles such as 15 

pollen may act as allergens and are possibly more potent in combination with other urban pollutants 16 

(Beck et al. 2013). These are relatively new findings that are not yet established as selection criteria 17 

by urban planners.  18 

 19 

 Street tree species abundance 20 

Before discussing tree and leaf traits, a brief overview is given about what species are currently most 21 

abundant in European cities. By joining inventories from southern (Chaparro and Terradas 2009; 22 

Soares et al. 2011), northern (Sæbø et al. 2003; Sjöman et al. 2012) and central Europe (Halajova and 23 

Halaj 2014), some tree species emerge as ubiquitously highly abundant (e.g. Linden) or at least 24 

frequently present (Maples and Plane trees). Others differ in their regional importance as for 25 

example pines decrease in abundance from the South to the North and Cherries are distributed the 26 

other way round (Table 1). Our list considers only species that contribute at least about 1 % of the 27 

total tree number at any of the regions. It is similar to the one compiled from globally distributed 28 

inventories by Yang et al. (2015) but shows a higher importance of Linden (Tilia sp.) and Horse 29 

chestnut (Aesculus hippocastanum), the latter being a native European species despite it is now also 30 

planted in North America. Compared to the global inventories, Elms are underrepresented because 31 

their abundance has been largely decreased by the Dutch Elm disease in the 70’s and 80’s. All over 32 

Europe, broadleaved trees are more common as street trees than conifers. The most abundant 33 

evergreen trees are Pines, while Norway spruce (Picea abies) and Douglas fir (Pseudotsuga menziesii) 34 



4 
 

occur frequently in central and northern regions, and Holm oak (Quercus ilex) as well as some 1 

varieties of Kurrajong (Brachychiton populneus) and Privet (Ligustrum lucidum) often appears in the 2 

South, but do not exceed 1% of the total tree number. 3 

 4 

 How tree traits affect deposition of pollutants 5 

Air flow impact by tree crowns 6 

The majority of studies on air flow impacts of urban tree crowns have been conducted for street 7 

environments (Freer-Smith et al. 2005; Pugh et al. 2012; Gromke and Blocken 2015). Constituent 8 

vegetation traits (i.e. crown geometry, foliage distribution, etc.) are determining turbulence 9 

properties such as deceleration or acceleration of wind, as well as qualitative changes in the flow 10 

(Gromke and Blocken 2015). In particular, trees with dense crowns are prominent obstacles to 11 

airflow in poorly ventilated streets and also reduce vertical air exchange (Pugh et al. 2012). Only very 12 

recently, however, an index termed ‘pollution flux potential’ (PFP) has been suggested that combines 13 

canopy density (expressed as leaf area per ground surface LAI and inter-annual leaf cover IAL) with 14 

specific net exchange properties trying to merge different traits into one number (Tiwary et al. 2016). 15 

The calculation is based on literature derived annual BVOC emission (Pemit) vs. pollutant deposition 16 

(Pdep ) estimates, both expressed as kg yr-1, with Pdep including ozone, SO2 NO2, CO and PM less than 17 

10 um and Pemit isoprene, monoterpenes and other BVOCs. 18 

We calculated this index for some of the most common street trees in Europe for which we were 19 

able to gather the necessary data (Table 2). From this, it can immediately be derived that coniferous 20 

trees tend to remove more pollution from the air because they feature a continuous canopy cover, a 21 

high LAI, and relatively large deposition velocities. However, the variability between species groups is 22 

large as are the uncertainties in the different traits. For example low turbulence within a dense 23 

canopy favors contactless deposition of reactive gaseous pollutants in the presence of reactive 24 

compounds (Kurpius and Goldstein 2003). In contrast, CO deposition decreases under such 25 

conditions because a low reactive air pollutant can only be oxidized by radicals that are scavenged by 26 

BVOCs (Baumgardner et al. 2002). Furthermore, as will be discussed below, deposition and emission 27 

properties depend on multiple plant-specific traits that are variable during the season and plant 28 

development. 29 

 30 
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Capturing and holding air pollutants with leaves and needles 1 

The majority of gaseous and particle deposition happens at the leaf surface (Figure 1), particularly 2 

under conditions where stomata are closed. Particle deposition on urban woodlands has been 3 

extensively studied (see e.g. reviews by Janhäll 2015). Brantley et al. (2014) estimated the reduction 4 

of PM by Acer and Quercus at about 12 %. Assuming that PM reduction ability and PFP are 5 

equivalent, this value might be at the lower edge of deposition capacities (Table 2). Particularly the 6 

genera with more complex leaf structures such as Pseudotsuga for evergreen or Fraxinus for 7 

deciduous trees, are able to take up significantly higher quantities of PM than other genera with 8 

similar or higher leaf area (Beckett et al. 2000; Freer-Smith et al. 2005). In addition, particle 9 

deposition depends on the occurrence of hairs or the availability of waxes at the leaf surface which 10 

are different between species and in case of waxes have been found to almost double PM deposition 11 

in Tilia and Acer compared to Platanus (Dzierzanowski et al. 2011). This is partly attributed to the 12 

influence on leaf wettability: considerable amounts can be removed by reaction at wet surfaces with 13 

the rate of deposition increasing with the occurrence of waxes, salts, and ions (Altimir et al. 2006). If 14 

the pollutant is water soluble as for example NO2 or SO2, also direct dissolution in a plant surface 15 

water film is possible. Measurements also suggest encapsulation of particulates during the growing 16 

season in the wax layer, thereby immobilizing particles (Hofman et al. 2014).  17 

 18 

Stomatal uptake is driven by physiological properties 19 

Stomata regulate the intercellular concentration of CO2 and thus control photosynthesis. In turn, 20 

stomatal uptake depends on photosynthesis activity and turgor pressure, which are determined by 21 

environmental variables. For example, stomatal uptake accounts for 20 - 90 % of total ozone 22 

deposition in a Mediterranean evergreen forest (Fares et al. 2014) while only for 20 – 50 % in a 23 

Danish conifer forest (Mikkelsen et al. 2004). The differences can be attributed to the dryer 24 

conditions in the Mediterranean climate but also to two different water use strategies: anisohydric 25 

tree species which maintain high conductance as long as possible are more efficient in pollution 26 

uptake than “water saving” isohydric species, which tend to close their stomata early in response to 27 

decreasing water availability. Thus, it is not only the short-term response to drought that affect 28 

pollution uptake but also the selection of isohydric species such as Pinus or Platanus over those with 29 

anisohydric regulation (e.g. poplars and deciduous oaks) that defines water consumption. In addition, 30 

stomatal density is positively correlated with the capacity to sequestrate ozone from the atmosphere 31 

(Ollinger et al. 1997).  32 

Pollutant uptake through stomata is high as long as the respective compounds are quickly removed 33 

from the intercellular spaces. For example, ozone and NO2 are almost immediately metabolized, 34 
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which means that the uptake increases with outside concentrations in accordance with the Fick’s law 1 

as long as photosynthesis and membrane permeability are not seriously damaged. Thus, also the 2 

effectiveness of defense mechanisms can be considered as a leaf trait modifying deposition. In case 3 

of ozone and NOx, this is particularly the scavenging potential in the apoplast, while for SO2 4 

mesophyll resistance and the capability to counteract pH changes are of primary importance 5 

(Dizengremel et al. 2009).  6 

 7 

 The other side of the bi-directional exchange  8 

Pollen and other biological particles 9 

BPM are PM of biological origin emitted mainly by fungi (spores) and plants during flowering (pollen). 10 

Their size ranges from 0.1 - 5 µm of some fungal spores up to about 90 µm for large pollen. Despite 11 

its relatively large size, however, most of this material can be deposited far from the emission source. 12 

Part of the BPM appear in lower micron sized fragments due to the rupture of pollen grains while 13 

their allergenic activities remain intact (Cariñanos et al. 2001). Although pollen emissions are 14 

considered as one of the key ecosystem-disservices of urban vegetation, the specific allergenicity of 15 

pollen grains is seldom investigated and is thus not yet considered as a selection criteria for urban 16 

planning (Cariñanos et al. 2015). However we know that emission intensity is related to temperature 17 

and wind, and allergenicity of pollen, despite being species-specific, is modified by atmospheric 18 

pollutants. The latter is triggered by larger amounts of allergenic proteins or by changes in lipid 19 

composition under polluted conditions (Beck et al. 2013). For city-planners this might represent a 20 

dilemma since the general practice to place trees as closely as possible to the pollutant source in 21 

order to increase pollutant removal efficiently may at the same time increase the allergenicity of 22 

pollen grains. When selecting trees it is, therefore, important to assess and consider these potential 23 

allergenic impacts in order to avoid unsuitable combinations. 24 

 25 

Gaseous emissions - the dawn of volatile organic compounds  26 

BVOC emissions are generally expressed as a function of environmental conditions that modify 27 

compound- and species-specific emission potentials. Although BVOCs can also be deposited through 28 

stomatal uptake and surface degradation (Nguyen et al. 2015), this process is considered to be small 29 

and thus generally neglected. Plant species strongly differ in their capacity to release BVOCs, for 30 

example, many urban trees such as Populus and Quercus are intensely emitting isoprene (Churkina et 31 

al. 2015). Given a sufficiently high NOx level, isoprene can significantly contribute to the formation of 32 

ozone in the atmosphere and this effect may be predominant over the capacity to sequester ozone. 33 
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Secondary organic aerosols and thus PM formation is more closely related to the presence of 1 

monoterpenes and sesquiterpenes, which are emitted by species such as Pinus, Betula and Aesculus 2 

(Derwent et al. 1996). 3 

Flowering and plant stress induces the emission of various oxygenated compounds as well as some 4 

terpenoids (Xu et al. 2012). Such emissions are important to mitigate plant oxidative stress or to 5 

establish communication networks with insects but also take part in photochemical reactions. Having 6 

this in mind, heavily flowering plants may not always be the preferable choice for parks and gardens 7 

(Niinemets and Peñuelas 2008). Other gaseous emissions are small and thus play only a minor role in 8 

air pollution. For example NO is formed in a UV-induced photochemical reaction with nitric acid or 9 

nitrate at the leaf surface or can be emitted from woody tissue (Raivonen et al. 2009). Also CO 10 

production might be stimulated by abiotic stresses as CO can alleviate oxidative damage by up-11 

regulating antioxidant defense (He and He 2014). 12 

 13 

 Tree traits – a moving target 14 

The spatial and temporal plasticity of traits  15 

In deciduous species, time-dependent variations in traits occur during the season as new leaves 16 

develop, mature and age. In particular specific leaf area, leaf nitrogen content, photosynthesis 17 

activity and BVOC emission capacity increase in developing foliage, after which they are relatively 18 

stable in mature non-senescent tissue and rapidly decline in senescing leaves (Wilson et al. 2000). 19 

During these stages, the composition of emission compounds is also changing, which might be 20 

related to the specific requirements regarding communication or stress mitigation (e.g. to attract 21 

pollinators or parasite predators) (Niinemets et al. 2013). In the case of evergreens, analogous 22 

changes occur during leaf development and the maximum foliage physiological capacities are 23 

typically observed in summer (Gratani and Bombelli 2000). In addition to physiological changes, 24 

wettability of young leaves is higher than that of mature leaves but it also increases in older leaves, 25 

reflecting time-dependent accumulation of cuticular lesions (Wang et al. 2013).  26 

Leaf structural and physiological traits also vary within plant canopies reflecting the acclimation of 27 

foliage properties to light gradients (Van Wittenberghe et al. 2014; Niinemets 2015). Despite the 28 

generality of this feature, the degree of variation varies significantly among species and plant 29 

functional types (Niinemets 2015). Moreover, particle deposition at the leaf surface might reduce the 30 

light available to photosynthesis due to the creation of a shadow layer on the leaf surface in highly 31 

polluted environments (Delegido et al. 2014). It should be noted that concentrations of urban air 32 
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pollutants, especially traffic derived PM, decreases with height (Hofman et al. 2013). Thus, in urban 1 

trees, vertical gradients of traits are likely to be different than in natural environments. 2 

 3 

Impacts of environmental changes 4 

Climate scenarios suggest increasing atmospheric CO2 concentrations and air temperatures, which 5 

will come on top of the already elevated concentrations and temperatures experienced by urban 6 

trees compared to those growing in more rural environments. Temperature will rise by 1.7 to 4 °C 7 

and global atmospheric CO2 concentrations will approximately double from the currently 400 ppm by 8 

the end of this century. Additionally, frequency and severity of drought stress and heat waves are 9 

expected to increase, which in turn favors ozone formation in cities (Sicard et al. 2013).  10 

A known effect of higher temperatures is an extension of growing season length. In spring, elevated 11 

air temperatures accelerate bud burst, flowering, and stem elongation; in autumn, they may 12 

postpone litter fall, unless adverse effects cause premature senescence (Cleland et al. 2007). 13 

Seasonality is thus already different inside than outside urban areas (Jochner and Menzel 2015). 14 

BVOC emissions are expected to rise with higher temperatures, and decrease with elevated [CO2] 15 

(Possell and Hewitt 2011). However, the latter effect depends on nutrient availability, and well-16 

fertilized plants - as common in gardens and urban green spaces - are expected to rather enhance 17 

emissions in response to elevated [CO2] (Sun et al. 2013). Increasing [CO2] also increases leaf dry 18 

mass and leaf area while decreasing stomatal conductance, stomatal density, and water use 19 

efficiency (WUE) - although these changes vary considerably between species (Woodward et al. 20 

2002). Plants respond to drought by adjusting stomatal conductance, thereby increasing WUE in a 21 

similar way as in response to higher [CO2]. Intensive drought is furthermore inducing leaf shedding, 22 

decreasing leaf growth, size and branching, and increasing cuticle thickness and wax abundance. 23 

Interestingly, such a change in leaf properties might also impose a feedback on reflectance thus 24 

indirectly affecting leaf temperatures and WUE (Monneveux and Belhassen 1996). Temperature and 25 

CO2 also increases the amount and size of produced pollen (Bartra et al. 2007; Hamaoui-Laguel et al. 26 

2015) as well as - more importantly - their allergenicity (Ahlholm et al. 1998). 27 

Although the viability of pollen decreases with increasing air pollution, ozone is another agent that 28 

has been found to increase the allergenicity of pollen, giving rise to the assumption that an unhealthy 29 

link exists between air pollution and allergen toxicity (Bartra et al. 2007; Beck et al. 2013). High [O3] 30 

also decreases photosynthesis and thus stomatal conductance, but chronic O3 exposure impairs 31 

stomata and restricts their ability to close rapidly in response to drought (Hoshika et al. 2014). In 32 

contrast, BVOC emissions are initially enhanced under ozone exposure but chronic exposure leads to 33 
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decreased emissions (Calfapietra et al. 2013). Other air pollution impacts are similarly complex 1 

although generally less intense. For example NOx has been recognized as either detrimental (due to 2 

their oxidative impact) or beneficial (as a potential source of nutrients) for plant development 3 

(Takahashi et al. 2011). Also CO affects diverse physiological processes in plants, from seed 4 

germination and dormancy to stomatal closure and regulation of multiple environmental stresses (He 5 

and He 2014).  6 

An indirect impact of imposed environmental changes is the increasing abundance of new tree 7 

species or varieties, mostly coming from warmer climates (Holmes et al. 2013). This has important 8 

implications for estimates about urban tree impacts because these species may have other growth 9 

patterns, leaf longevity, emit new allergens and – in particular – more reactive BVOC emissions than 10 

endogenous plants. 11 

 12 

 How to get on? 13 

In this review we concentrated on tree traits that directly influence air pollution and neglected the 14 

numerous other ecosystem services and disservices (see e.g. Escobedo et al. 2011). Since improving 15 

air quality is not the only objective of city managers, other tree properties such as heat mitigation 16 

potential, stress tolerance, and beauty amongst others have also to be considered (Tiwary et al. 17 

2016). Some of the underlying traits are acting in opposite directions for specific services as for 18 

example uptake capacity increases air quality but decreases plant health while others such as a leaf 19 

area are cooling the environment and at the same time reduce air pollutants (Figure 2). It should also 20 

be mentioned that ecosystem services are sometimes indirectly related for example by modifying the 21 

microclimate and thus energy consumption which then reduces anthropogenic emissions. The 22 

complexity of the matter has prevented holistic investigations for specific cities or regions, although 23 

model approaches that combine at least some aspects into an integrated analysis are already 24 

available (Nowak et al. 2008). We encourage the further development of such tools, particularly the 25 

consideration of physiological responses to changing environmental conditions, including air 26 

pollution. 27 
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Tables: 1 

 2 

Table 1: Abundance of urban tree species in European cities classified by region (high = red, medium 3 

= green, unevenly distributed = white; +++, ++, + = among the top 3, 7, 11 species in the region; 0 = 4 

more than 1 % of tree number). Data are from Chaparro and Terradas (2009), Halajova and Halaj 5 

(2014), Sæbø et al. (2003), Sjöman et al. (2012), and Soares et al. (2011) 6 

Latin name Common name Northern Central-East Southern

Tilia sp. Linden/ Lime +++ +++ +++

Acer sp. Maple +++ +++ ++

Platanus sp. Plane ++ ++ +++

Quercus sp.* Oak ++ +++ +

Aesculus hippocastanum Horse chestnut + + +

Fraxinus sp. Ash + + +

Pinus sp. Pine + 0 +++

Prunus sp. Cherry ++ + 0

Populus sp. Poplar + 0 0

Ulmus sp. Elm + 0 0

* only deciduous oaks considered  7 
 8 

 9 

Table 2: Potential for air pollution (PFP) removal calculated for selected deciduous (blue) and 10 

evergreen (green) urban tree species. Picea abies and Pseudotsuga menziesii are not abundant in 11 

southern cities but are added to illustrate the properties of conifers. (LAI = leaf area index, IAL = intra 12 

annual leaf cover, Pemit = emission influence calculated from emission factors for isoprene and 13 

monoterpenes, Pdep = deposition factor calculated from deposition velocity, PFP = plant flux 14 

potential (the higher the value, the better the impact on air quality; for calculation of Pemit and Pdep 15 

see Tiwary et al. (2016)). The higher the PFP, the higher is the removal potential. 16 

Latin name LAI IAL Pemit Pdep PFP

Acer sp. 2.8 0.8 0.2 1.2 1.7

Fraxinus sp. 4.1 0.6 0.1 0.7 2.1

Populus sp. 3.5 0.6 1.8 0.9 -2.0

Quercus sp. * 2.3 0.6 1.5 1.6 0.1

Tilia sp. 3.9 0.6 0.1 0.6 1.9

Picea abies 9.8 1.0 2.4 4.6 4.7

Pinus sp. 5.0 1.0 0.3 1.1 3.6

Pseudotsuga menziesii 8.1 1.0 0.0 1.7 8.1

* only deciduous oaks considered  17 
18 
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Figures:  1 

 2 
Figure 1. Iron particles detected with SEM-EDX analysis from filters obtained from Quercus ilex leaves 3 

in the industrial city of Terni, central Italy. Details of the case study are available in Sgrigna et al. 4 

(2015). Photo Credit: C. Baldacchini and G. Sgrigna. 5 

 6 
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 1 
Figure 2. Ecosystem services of the most important urban tree species sorted by benefit for air 2 

quality. The indices are derived from morphological and physiological properties (allergenicity = 3 

pollination intensity (1-4) * toxicity (1-4), shading = LAI/IAL * width/height) and general information 4 

from literature (stress tolerance = drought tolerance (1-4) * air pollution tolerance (1-4)). 5 

 6 


