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Abstract 23 

Mobile devices are ubiquitous in the population, and most have the capacity to download applications (apps). 24 

Some apps have been developed to collect physiological, kinanthropometric and performance data, however the 25 

validity and reliability of such data is often unknown. An appraisal of such apps is warranted as mobile apps may 26 

offer an alternative method of data collection for practitioners and athletes with money, time and space constraints. 27 

This article identifies and critically reviews the commercially available apps that have been tested in the scientific 28 

literature, finding evidence to support the measurement of resting heart through photoplethysmograpy, heart rate 29 

variability, range of motion, barbell velocity, vertical jump, mechanical variables during running, and distances 30 

covered during walking, jogging and running. The specific apps with evidence, along with reported measurement 31 

errors are summarised in the review. Whilst mobile apps may have the potential to collect data in the field, athletes 32 

and practitioners should exercise caution when implementing them into practice as not all apps have support from 33 

the literature, and the performance of a number of apps have only been tested on one device.    34 

Key words: Apps, testing, field testing, technology 35 
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Introduction  42 

 43 

Physiological and kinanthropometric measurements are an essential part of sport and exercise science as they can 44 

be used to monitor, evaluate and develop training programmes. Testing conditions can be tightly controlled under 45 

laboratory settings, with a number of tests that can be reproduced to relatively known degrees of accuracy with 46 

documentation of reliability testing. A possible limitation of these tests is the absence of ecological validity. 47 

Practitioners often rely upon field tests to measure and evaluate performance, either by choice to enhance 48 

familiarity and ecological validity for the athlete, or due to time, space, or facility constraints. Maximising the 49 

portability of equipment needed in the field would help the practitioner, and advances in technology means that 50 

smaller technologies are capable of much more. A recent paper from Cardinale and Varley (17) reviewed wearable 51 

technologies to monitor training, such as global positioning system (GPS) units, heart rate monitors, and 52 

accelerometers. However, some technologies do not require wearables, only the mobile device itself to collect 53 

data through downloadable applications (apps). With some of the most recent advances it is not unfathomable that 54 

coaches can collect the majority of their data using only their mobile device. However, the validity and reliability 55 

of this data can often be unknown. The purpose of this review is to critically appraise the literature in this area 56 

and identify variables that can be measured using commercially available apps on a mobile device. 57 

 58 

Capacity for apps to collect physiological and kinanthropometric data  59 

 60 

In terms of collecting physiological data mobile devices can be used in two primary ways; (i) by acting as the data 61 

logger and interface for a peripheral attachment, and (ii) using the external sensors (e.g. microphone, camera) and 62 

internal processors of the device itself to collect and interpret signals. It is beyond the scope of this review to 63 

comment on the engineering of the methods in depth, instead the focus of this section is to review the validity and 64 

practical use of the latter method i.e. collection and interpretation using only the mobile device.  65 

 66 

 67 

 68 
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Heart rate measurement  69 

 70 

Heart rate is a fundamental physiological measurement in the sport, health and exercise sciences. The criterion, 71 

or ‘gold-standard’, remains to be the electrocardiogram (ECG), which can be impractical in the field. A number 72 

of telemetry devices have been validated against the ECG for use in more practical situations (81, 108), however 73 

these devices also come with cost implications for multiple units, and the placement of a chest strap may be 74 

deemed intrusive by some clients. Furthermore the requirement for extra hardware may limit widespread use (98). 75 

This may particularly be the case in more health related environments such as fitness centres and rehabilitation 76 

units. Practitioners in these areas may only have manual palpation methods available to them, which have been 77 

demonstrated to be inaccurate (41, 59). It is in such cases that the technology within ubiquitously available mobile 78 

devices may be of benefit. The most simplistic of apps to facilitate heart rate measurement act in a similar way to 79 

a metronome, whereby the screen is tapped every time a pulse has been palpated. This method is presumably 80 

designed to reduce error by separating the tasks of palpating and counting. However Peart et al. (83) found that 81 

one such app on an iOS iPad mini 2 (‘Tap the Pulse’ by Orangesoft LLC) had greater discrepancy to telemetry 82 

measurements when compared to manual methods (r2 = 0.636, CV = 7% and r2 = 0.851, CV = 3% respectively).  83 

 84 

More advanced measurements use technology known as photoplethysmograpy (PPG). PPG is the technology 85 

currently used in finger tip pulse oximeters, and works on the basis that when capillaries are filled with blood light 86 

is obstructed, and more light can pass through as blood is retracted. Pelegris et al (85) explain that it is this change 87 

in average brightness that acts as the signal for the device to interpret and extract heart rate readings from. The 88 

same authors looked to validate their technology that calculated heart rate taken from a stream of picture frames 89 

when the finger was held against the camera lens and flash of a HTC Tatoo (Android 1.6) mobile phone, compared 90 

to a pulse oximeter. Unfortunately the main focus of this paper appeared to be the description of the technology 91 

and there is little information about how the technology was actually validated. The raw data is provided in the 92 

paper and the correlation between methods has been calculated as moderate (r = 0.6) with an average four beats 93 

per minute (bpm) difference between methods. Popescu et al (90) and Losa-Iglesias et al (62) both assessed the 94 

capabilities of two commercially available apps that worked on the same premise of applying the fingertip to the 95 

device’s camera and flash. Popescu al. (90) compared ‘Cardiowatch’ by Radu Ionescu on an iPhone to an ECG 96 
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machine, and Losa-Iglesias et al (62) compared ‘Heart Rate Plus’ by AVDApps on a Samsung Galaxy Note phone 97 

to a pulse oximeter, with both studies reporting a typical difference of ± 3-4 bpm between measurement methods.  98 

 99 

Whilst the contact PPG technology seems to be able to measure resting heart rate relatively accurately, data from 100 

Wackel et al (109) suggest that error may increase as heart rate increases. These authors reported resting values 101 

measured with ‘Instant Heart Rate’ by Azumio and ‘Heart Beat Rate’ by Bio2imaging on an iPhone 5 to be within 102 

± 4 bpm of an ECG measurement (r = 0.99) in paediatric patients, similar to the afore mentioned work (62, 85, 103 

90). However when the apps were used during a period of tachycardia (156 - 272 bpm) the average difference 104 

compared to an ECG increased to 18 bpm (up to 47 bpm), and the correlation reduced to r = 0.56. This has obvious 105 

implications for sport and exercise as heart rate measurements are likely to take place after exercise. It should be 106 

considered though that the use of such technology post-exercise may be most likely to be used following 107 

submaximal predictor tests, where the heart rate is unlikely to be as high as those observed by Wackel et al (109). 108 

Whilst the tachycardic range witnessed by Wackel et al (109) was from 156 bpm, the majority were greater than 109 

200 bpm. Ho et al (51) measured heart rates in 126 children admitted to hospital on four different apps on a iPhone 110 

4S at the earlobe and fingertip alongside an ECG machine. The heart rates from the apps were more closely 111 

correlated with the ECG at the earlobe rather than finger, with correlations ranging from r2 = 0.215 to 0.857. App 112 

A considerably outperformed the other three apps with anomalous results appearing to start at approximately 160 113 

bpm. Unfortunately the authors did not provide the names of the apps tested. The only known study to test contact 114 

PPG technology on mobile devices after exercise was conducted by Mitchell et al (70). Participants had their heart 115 

rate measured at rest and after a 1-minute step test, so replicating the conditions under which the technology is 116 

perhaps most likely to be used. Measurements were taken using the same ‘Instant Heart Rate’ by Azumio app 117 

used by Wackel et al (109) on an iOS and Android phone, and a Polar telemetry chest strap. Intraclass correlation 118 

coefficients with the telemetry method (with 95% confidence intervals) were 0.97 (0.95 - 0.98) and 0.95 (0.92 - 119 

0.96) at rest, and 0.90 (0.86 – 0.93) and 0.94 (0.91 – 0.96) after exercise for the iOS and Android phones 120 

respectively. The authors concluded that both platforms could be used with confidence, however when viewing 121 

the Bland-Altman plots the error again appears to increase as heart rate increases.  122 

 123 

Kong et al (56) have suggested that PPG may be made more accurate by using contactless methods, as the contact 124 

force on the sensor may affect the waveform of the signals. Contactless PPG using a webcam on a laptop has been 125 
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described by Poh et al (89). This technology works on a similar principle to the contact PPG, but instead observes 126 

video recordings of the face. A number of freely available apps make use of this contactless PPG method and 127 

instruct users to hold the device’s camera in front of their face until a reading has been taken. Peart et al (83) 128 

investigated two contactless PPG apps at rest on an iPad mini 2, ‘What’s my heart rate’ by ViTrox Technologies 129 

and ‘Cardiio’ by Cardiio Inc, reporting average differences compared to a Polar telemetry monitor of one and two 130 

beats per minute, and correlations of r2 = 0.918 and r2 = 0.646 respectively. In a subsequent study ‘What’s my 131 

heart rate’ was used to collect heart rates after a 1-minute step test (84). Average heart rate after the test was 132 

measured as 129 bpm using a Polar telemetry strap, but only 84 bpm using the app. Furthermore when the heart 133 

rates were used to estimate aerobic capacity, average values were 17% higher when using the app.  134 

 135 

Heart rate alone may only be of limited interest to some practitioners, and many may instead be more interested 136 

in the regularity of the heart beat. An abstract with limited information from Sardana et al (98) reports high 137 

sensitivity and reliability for an iPhone app to identify atrial fibrillation (AF). McManus and colleagues describe 138 

apps that can identify AF as well as premature atrial contractions (PAC) and premature ventricular contractions 139 

(PVC) (65, 66). Whilst such measurements may not be of widespread interest to sport and exercise scientists, the 140 

ability to determine regularity will be, particularly when considering measurements such as heart rate variability 141 

(HRV) for monitoring responses and adaptation to training (87). At present there is limited means to measure 142 

HRV using the mobile device alone, although some studies have described valid measurement with chest strap or 143 

fingerpad peripherals by ithlete (HRV Fit Ltd) that attach to a mobile phone (34, 49), sensitive enough to track 144 

changes over a period of three weeks (35). However some self contained apps are currently being developed. 145 

Scully et al (100) describe an app that can take 720x480 pixel resolution video recordings that can then be analysed 146 

for HRV using Matlab, and Guede-Fernandez et al (45) have developed a non-commercially available app for 147 

HRV. Interestingly, the standard deviation of the beat to beat error differed between devices (Motorola Moto X 148 

and Samsung S5), identifying potential transferability issues between research and practice. The only known 149 

commercially available HRV app present in the literature is 'HRV4Training' by Marco Altini. This app uses the 150 

device's camera to obtain PPG data from the user's fingertip, from which peak to peak intervals are used to identify 151 

the route mean square of the successive differences (rMSSD) and calculate HRV (1). A recent paper in press has 152 

described the validation of the app against an ECG machine (88), and it has been demonstrated that measurements 153 

from the 'HRV4Training' App are sensitive enough to detect changes in HRV following intense training (1). Plews 154 



7 
 

et al. (88) did not provide the name of the device used to validate the app against an ECG, but did specify a frame 155 

rate requirement of 30 Hz. Furthermore two studies implementing the app have collected data from 532 (2) and 156 

797 (1) participants respectively, demonstrating that it offers real potential to collect large amounts of  free-living 157 

data outside of laboratory settings.  158 

 159 

Respiratory measurements 160 

Folke et al. (36) suggest that tidal volume (VT) and respiratory rate (RR) are two basic vital signs breathing 161 

monitoring should provide. Methods of recording VT typically includes the use of a spirometer that can be either 162 

portable (e.g. hand-held) or much larger (e.g. simple float). RR can be obtained by simple human observation or 163 

via more sophisticated procedures such as breath-by -breath gas analysis or transthoracic impedance. Whilst Reyes 164 

et al. (91) acknowledge the existence of clinical measures of VT and RR, they also highlight the limitations and 165 

disadvantages of existing equipment, in particular the limited access outside of clinical and / or research settings. 166 

Further limitations in existing methods include high costs, specialist personnel and lack of portability (79, 91). 167 

Respiratory function can be assessed through numerous ways via the different smartphone hardware including the 168 

camera, microphone, and accelerometer.  169 

 170 

Reyes et al. (91) used the frontal camera of a HTC One M8 smartphone with the Android v4.4.2 (KitKat) operating 171 

system to acquire a chest movement signal which demonstrated a strong relationship (r2 > 0.9) with a spirometer 172 

when recording VT. Nam et al. (79) demonstrated similar findings, concluding accurate estimation of breathing 173 

rate on the same HTC device. However, although Reyes et al. (91)  did not find statistically-significant bias in 174 

recording VT, the authors questioned whether the error estimate was acceptable for home use. Although the 175 

investigation demonstrated reliability and validity in estimating VT and RR, there was still the presence of 176 

limitations inherent to contactless optical procedures. Motion artifacts are present in any contactless / noncontact 177 

optical procedure of data acquisition and previous research has demonstrated artifact removal improves estimation 178 

of respiratory rate (101, 105). Furthermore, Nam et al. (79) suggested that clothing affected the video signal, for 179 

example plain designs compared to striped or non-uniform designs produced smaller relative changes in recorded 180 

chest and abdominal movements.  Beyond the limitations of the data acquisition and processing, noncontact 181 

optical procedures in estimating respiratory parameters lack practical applicability to a more general use setting. 182 
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Reyes et al.´s (91) procedure requires calibration per individual use with a spirometer, and a qualitative 183 

observation of changes in VT is recommended if calibration instrumentation is not available. Reyes et al. (92) did 184 

extend their work to demonstrate the efficacy of smartphone use when calibrated with a low-cost incentive 185 

spirometer, whereby individuals inspired to a target volume. However, at this stage, it could be argued that there 186 

is currently a redundancy in using a smartphone to record respiratory parameters whilst there is a need to calibrate 187 

using additional equipment. Furthermore, Reyes et al. (92) themselves suggest “the development of an 188 

inexpensive and portable breathing monitoring system for on-demand VT and RR estimation capabilities is still 189 

pending for the general population”. Therefore technically, Reyes et al. (91, 92) have developed software for a 190 

smartphone to record respiratory data independently, but reliability is questionable without the use of additional 191 

hardware.   192 

 193 

Both Reyes et al. (91) and Nam et al. (79) have demonstrated the valid and reliable use of smartphone hardware 194 

to record parameters of lung function. However, in keeping with the theme of this paper, neither author has 195 

investigated the validity and reliability of a specific smartphone software application that is commercially 196 

available for public use. There are currently a range of apps available that provide estimations of RR obtained 197 

from tapping on the screen of a smartphone or tablet device, similar to apps such as 'Tap the Pulse' (Orangesoft 198 

LLC) for determining heart rate. Current apps available that utilise this procedure include 'RRate' (PART BC 199 

Children’s), 'Medtimer' (Tigerpixel), and 'Medirate' (MobileMed Sarl). Karlen et al. (55) assessed the accuracy 200 

of the 'RRate' app by showing pre-recorded videos to hospital staff, and asking them to tap on the screen of an 201 

iPod touch (3rd generation) every time they witnessed the child on the screen breathe. The purpose was to enhance 202 

efficiency and accuracy of RR estimations by replacing absolute counts with continuous time intervals. It was 203 

reported that the use of the app reduced collection time from 60 seconds to 8.1 ± 1.2 seconds, with a typical error 204 

of only 2.2 breaths per minute. 205 

 206 

 207 

 208 
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Anthropometry and range of motion 209 

 210 

Body composition has been assessed in a number of ways including Hydrostatic Weighing (HW) (21) and Dual 211 

Energy X-ray Absorptiometry (DXA/DEXA) (53) with some disagreement on the gold standard. There is, 212 

however, agreement that these methods present difficulties such as expense, time-consumption, access, and 213 

portability (54, 63). Such equipment is typically restricted to University laboratories and research settings, and 214 

therefore difficult to access for some practitioners such as primary healthcare workers, nutritionists, fitness 215 

instructors and personal trainers. 216 

 217 

With developments in technology, comes the potential for more cost-effective solutions in measuring and 218 

assessing body composition. Farina et al. (29) consider 2D imaging, using frontal and lateral images obtained 219 

from a standard digital camera, an alternative to costly 3D systems. Using 2D images to provide accurate 220 

anthropometric data is not a new development (52). More recent applications of digitizing 2-dimensional images 221 

to provide anthropometric include providing hand measurements for the production of work gloves (46). However 222 

these applications of 2-dimensional images only provide surface measurements and do not make inferences on 223 

tissue composition. Farina et al. (29) examined the use of a smartphone built-in camera to obtain digital whole-224 

body images to estimate human body composition, finding a negligible (p = 0.96) 0.02 kg and 0.07 kg difference 225 

in estimated fat mass  between the app and DXA in females and males respectively (Android version 4.2.2 on a 226 

Huawei G730 smart phone (resolution 540 × 960 pixels or 51.8 megapixels) or iOS 9.2 on an iPhone 5s (resolution 227 

1136 × 640 pixels or 72.7 megapixels). The study utilised bespoke, in-house, software as a proof of concept to 228 

suggest their findings were ‘promising’ for the use of a smartphone application to monitor bodyfat. LeanScreenTM 229 

(Postureco, Trinity, Florida, USA) is a software application that uses two-dimensional (2D) photographs taken 230 

using a smartphone or tablet to estimate percentage bodyfat by digitizing a series of girths. Shaw et al. (102) 231 

assessed the reliability of this software application on an iPad mini against skinfold measurements and bio-232 

electrical impedance which were considered as other field measures comparable to use of a tablet device (i.e. cost, 233 

portability). There were no significant differences between the methods for estimated percentage body fat (%BF) 234 

(p = 0.818) and intra-class correlation coefficients demonstrated the reliability of each method to be good 235 

(≥0.974). However, the absolute reproducibility, as measured by coefficient of variance and typical error of 236 

measurement, was much higher in skinfold measurements and bio-electrical impedance (≤1.07 and ≤ 0.37 237 
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respectively) compared with LeanScreenTM (6.47 % and 1.6%). The authors concluded that the LeanScreenTM 238 

smartphone / tablet application is not suitable for a single, one-off, measurement of %BF and that individual 239 

variance should be measured to determine minimal worthwhile change. 240 

 241 

Previous studies have investigated the use of smartphones in more applied anthropometry contexts such as posture 242 

assessment. PostureScreen Mobile® is a smartphone application, from the same company that produced 243 

LeanScreen® (PostureCo Inc., Trinity, FL, USA), that assesses posture using 2-dimensional photographs taken 244 

by smartphone or tablet. Boland et al. (10) examined intra- and inter-rater agreement of PostureScreen Mobile® 245 

in assessing standing static posture on an iPad . The authors concluded to have found acceptable levels of 246 

agreement for three different examiners of varying experience. However, the investigators consisted of a doctor 247 

of physical therapy (US licenced physiotherapist) and two undergraduate students with the authors making no 248 

reference to their undergraduate program of study. Of the 13 postural measures that PostureScreen Mobile®  249 

provides (head shift lateral, head shift longitudinal, head tilt, shoulder shift lateral, shoulder shift longitudinal, 250 

shoulder tilt, ribcage shift, hip shift lateral, hip shift longitudinal, hip tilt, head weight, effective head weight, and 251 

knee shift), inter-rater agreement (ICC) ranged from 0.10 - 1.00 in the fully clothed condition and from 0.26 - 1.00 252 

in the minimal clothing condition. Boland et al. (10) rationalised their investigation by suggesting the measures 253 

from the app would only have value if they could be reliable across multiple trials. However they only assessed 254 

intra-rater agreement for the doctor of physical therapy. Considering that PostureScreen Mobile® is commercially 255 

available to public, the reliability of this app can be questioned based on the investigation by Boland et al. (2016).  256 

 257 

In relation to specific postural anomalies, Driscoll et al. (27) used an iPhone 4 to examine the reliability of 258 

Scolioscreen  (Spinologics Inc., Montreal, Canada) to assess adolescent idiopathic scoliosis  by measuring 259 

maximum angle of trunk inclination (ATI). The 'Scolioscreen' app is additional to the actual Scolioscreen which 260 

is a scoliometer design to house any smartphone contains inclinometer hardware. The manufacturers state that the 261 

Scolioscreen can be combined with any app that measure inclinations. However Driscoll et al. (27) investigated 262 

the reliability of the scolioscreen-smartphone combination as well as the smartphone alone. In all three 263 

investigators used (Spine Surgeon, Nurse, Patient Parent), intra- and inter-observer reliability was higher (0.94-264 

0.89) with the scolioscreen-smartphone combination than the smartphone alone (0.89-0.75). Furthermore the 265 
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smartphone alone demonstrated lower consistency (ICC = 0.86) with the gold standard (Spine Surgeon using 266 

standard scoliometer) than the scolioscreen-smartphone (ICC = 0.95). At this stage, using a smartphone 267 

independent of additional equipment does not offer an effective alternative for examining scoliosis.  268 

 269 

The validity and reliability of goniometric data obtained using smartphone photography has previously been 270 

examined. 'DrGoniometer' (CDM, Italy) has been shown to validly measure flexion at the elbow and knee (31, 271 

33) as well as external rotation of the shoulder (71). In addition to providing reliable and valid measures of joint 272 

range of motion, photographic-based apps are advantageous by inevitably provide a lasting record of the 273 

measurement i.e. the actual photo (69). Although Ferriero et al. (32) propose the potential applications of 274 

photographic-based apps in telemedicine, Milani et al. (69) argue apps of this type have the same limitations of 275 

standard digital photography such as handling instability and imprecision. Therefore photographic-based apps 276 

offer nothing alternative to a standard digital camera. Furthermore conventional long-arm goniometers can be 277 

purchased at the or lower cost to 'DrGoniometer'. Given that photographic-based goniometry apps can not record 278 

range of motion in dynamic conditions in the same way that conventional long-arm goniometers can not, it is 279 

argued that this type of smartphone application does not offer a more practical nor cost-effective solution to 280 

existing instruments.  281 

 282 

Accelerometer-based apps may provide an effective alternative to a conventional long-arm goniometer. These 283 

apps utilise the triaxial accelerometer hardware built into smartphones, traditionally serving as position sensors 284 

for the use in video games by measuring inclination of the smartphone device (82). Ockendon and GIlbert (82) 285 

have demonstrated high reliability (r = 0.947) and validity of a smartphone accelerometer-based app (iPhone 286 

3GS). Furthermore, the authors also found greater inter-rater reliability compared to a traditional goniometer. 287 

Given that most practitioners that typically assess range of motion (e.g. physiotherapists, strength and conditioning 288 

coaches) would do so independently, it can be argued that inter-rater reliability is not relevant to this context. 289 

However the same study did demonstrate superior intra-rater reliability compared to the traditional method, 290 

offering support for accelerometer-based apps as a viable alternative to traditional methods of goniometry. Milani 291 

et al. (69) argue that accelerometer-based, photographic-based, and magnetometer-based apps all possess the same 292 

limitation in that they can only measure range of motion in static conditions. Therefore for smartphone 293 
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applications to be considered as an effective alternative, they must be able to validly and reliably measure angular 294 

movement in dynamic conditions e.g. active rotations. More recently Bittel et al. (9) used the accelerometer of an 295 

iPhone 4 to measure extension and flexion movements concurrently with an isokinetic dynamometer at a range of 296 

different speeds (30, 60, 90, 120, and 150°/s). The authors demonstrated limits of agreement of 2° between the 297 

smartphone and the dynamometer.  298 

 299 

To summarise, previous investigations have demonstrated inter-and-intra-rater reliability as well as validity of 300 

photography-based, accelerometer-based, and magnetometer-based goniometer apps. Whilst the review by Milani 301 

et al. (69) provides a comprehensive discussion on the efficacy of currently available smartphone apps, a more 302 

up-to-date review is required now that more recent investigations such as Bittel et al. (9) have demonstrated 303 

validity and reliability of the iPhone accelerometer to measure angular changes in dynamic conditions. However 304 

there is currently no app commercially available with this specific function 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 
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Table 1. Summary of apps for taking physiological and kinanthropometric measurements  316 

At current, what physiological and 

anatomical measurements can 

apps take? 

 

 

 

 

 

 

 

 

What measurements can apps 

currently not take? 

 

 

 

 

 

 

 

 

Do the currently available apps 

offer anything beyond traditional 

measurements? 

 

Commercially available apps using contact and contactless PPG 

technology can accurately measure resting heart rate within ± 4bpm. 

Some non-commercially available apps are able to detect some 

irregularities at rest. Most recently, the HRV4Training App has been 

validated to measure heart rate variability against an ECG (trivial 

standardised difference of 0.10; 90% CI 0.08, 0.13). Commercially 

available apps can validly and reliably measure range of motion during 

static conditions. This can be done using either the smartphone’s camera, 

accelerometer, or magnetometer. 

 

The accuracy of PPG apps reduces significantly at higher heart rates 

associated with exercise. For respiratory measurements, existing 

research has only validated the use of smartphone hardware in 

conjunction with bespoke non-commercially available software. There 

are no commercially available apps that measure range of motion during 

dynamic conditions. Research into the estimation of body composition is 

in its early stages, but demonstrates potential. 

 

 

If used with care and interpreted correctly PPG Apps may be appropriate 

in some situations when telemetry is unavailable, particularly at rest. The 

HRV app provides an alternative to the ECG for practitioners working 

outside of the laboratory. Accelerometer-based apps may offer increased 

inter-and-intra-reliability of measures of range of motion compared to a 

standard goniometer. 

 

 317 

 Capacity for apps to analyse physical performance  318 

 319 

One of the main problems that strength and conditioning coaches face is how to objectively quantify the physical 320 

capabilities of their athletes (37, 57). Measuring physical performance is, indeed, a key part of any training 321 

program since it allows the practitioner to monitor and adjust workloads (44, 76), analyse fatigue (47, 106), detect 322 

talents (38, 72), identify weaknesses (97), or prevent injuries (16, 67, 68). Thus, a common practice when 323 

designing strength and conditioning programs is to measure specific variables of interest that could help in the 324 

prescription of the training stimulus (42, 44, 57, 76); however, the technology and expertise required to do so is 325 

often expensive and non-user-friendly, especially for coaches or teams outside big organizations or Universities. 326 

For this, the rise of smartphones, which currently include several sensors specifically designed to measure physical 327 

performance (like heart rate monitors, GPS or accelerometers) are gaining popularity in the fitness and health 328 

community (4, 11, 107). For example, fitness and health apps are among the top fitness trends in the list elaborated 329 
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by the American College of Sports Medicine (107). However, just a few of the thousands of fitness apps available 330 

are scientifically validated (11). Thus, the purpose of this section is to provide an updated review of some of the 331 

most relevant studies that have analyzed the validity and reliability of smartphone apps for the measurement of 332 

several variables related to physical performance. 333 

 334 

Maximal strength 335 

 336 

Resistance training prescription is based on the well-known 1-Repetition maximum (1-RM) paradigm, by which 337 

intensities are designed as a percentage of the maximal load the athlete can lift just once (57, 99). However, 338 

measuring the 1-RM requires the performance of a maximal lift which may not be appropriate for all populations, 339 

especially those with little expertise in lifting heavy weights since it could lead to inaccurate results and might 340 

increase the risk of injuries (44). 341 

 342 

Several alternatives, such as performing repetitions to failure or using the rate of perceived exertion has been used 343 

to predict the 1-RM with submaximal loads (26, 77). However, it has been advocated that the most accurate 344 

methodologies consist of measuring the speed of the barbell. This is due to the fact that it has been extensively 345 

demonstrated that there is a very strong (r2>0.97) relationship between the load in terms of %1-RM and the 346 

velocity at which each load is lifted (18, 76, 86). Thus, a new resistance training paradigm, often described as 347 

velocity based training, has emerged based on systematic measurements of barbell velocity to adjust and prescribe 348 

training intensities, since each %1-RM has a specific velocity range (22, 44, 76). The gold standard for the 349 

measurement of barbell velocity are high-frequency linear transducers (23, 76); however its cost, above $2,000 in 350 

most cases, prevent its use in small organizations or clubs with little resources. 351 

 352 

Trying to address this limitation, an iOS app named 'PowerLift' has been recently validated for the measurement 353 

of barbell velocity in the bench press exercise in resistance trained males (5). To do this, authors measured several 354 

repetitions in a group of powerlifters with a linear transducer (working at 1kHz) and the 'PowerLift' app on an 355 

iPhone 6 (iOS 9.3.2) simultaneously, and then compared the results. 'PowerLift', which consists of the recording 356 
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and ulterior analysis of a slow-motion video of the lift thanks to the high-speed camera on the most recent iOS 357 

devices, was significantly correlated with the linear transducer (r = 0.94) and showed a small standard error of 358 

estimate (SEE = 0.008m/s) in the measurement of barbell velocity. Moreover, there were no significant differences 359 

between the 1-RM predicted by the velocity measured with the linear transducer or the app, meaning that 360 

'PowerLift' could be a less expensive, yet accurate and valid alternative for the estimation of maximal strength. 361 

 362 

Muscular power or impulse: Vertical jump height 363 

 364 

The measurement of vertical jump height has been used extensively in the literature to assess muscle power, detect 365 

talents, or analyse neuromuscular fatigue (6, 23, 58, 95). Considering that vertical jumping is an essential ability 366 

in many sports (4, 25, 95), its measurement is often a key part of any performance analysis. Several approaches 367 

have been proposed to measure the height an athlete can reach during a vertical jump (7, 30, 40, 95), although the 368 

most accurate typically consist of the measurement of either the take-off velocity or flight time of the jump. This 369 

is since these parameters can calculate the vertical displacement of the centre of mass using well-known 370 

Newtonian equations (95). Whilst force platforms are often considered the gold standard for the measurement of 371 

vertical jumps by measuring the take-off velocity of the athlete (23, 95), several systems based on the detection 372 

of the flight time (such as infrared platforms) have become popular in the strength and conditioning community 373 

since they are less expensive, more portable and can still provide very accurate measures of jump height (4, 7, 374 

43). One of those systems is an iPhone app ('My Jump') which measures the flight time of the jump thanks to the 375 

slow-motion recording capabilities on the iPhone 5s and later (4, 103). With a simple video-analysis in which the 376 

take-off and landing of the jump are visually detected by the user within the app, 'My Jump' calculates the flight 377 

time of the jump in an accurate, valid and reliable way. The performance of the app has been confirmed widely in 378 

the literature over recent years, showing levels of correlation above 0.96 and a systematic bias less than 10 mm in 379 

comparison with reference systems (4, 39, 104). 380 

 381 

 382 

 383 
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Human locomotion: Running and sprinting 384 

 385 

The analysis of human locomotion is of great interest for both performance and injury prevention purposes (68, 386 

74, 80, 96). For example, several mechanical variables such as ground contact time, leg stiffness, or the horizontal 387 

force applied to the ground has been shown to be related with running and maximal sprinting performance (73, 388 

93, 96). Moreover, studies have suggested that the asymmetries between legs in some of these variables could be 389 

used as a relevant indicator related to risk of injury (12, 50). As with the performance variables described above, 390 

the measurement of running and sprinting mechanics has usually required advanced measurement systems such 391 

as instrumented treadmills, force platforms, timing gates or radar guns (15, 75, 94); expensive technology which 392 

most coaches do not have access to. Using the same approach than with the jumping and resistance training apps 393 

mentioned above, two new apps also based on high-speed video-analysis were recently validated for the 394 

measurement of running and sprinting mechanics  on an iPhone 6 (iOS 9.2.1, 240 frames per second) (3, 94). The 395 

first one, 'Runmatic', was tested against an infrared platform for the detection of contact and flight times during 396 

running at several speeds ranging 10-20km/h in male runners (3). Moreover, the app made use of some validated 397 

spring-mass model equations that allow the calculation of different mechanical variables based on contact time, 398 

flight time and simple anthropometrics (74). The app was shown to be valid and reliable for the measurement of 399 

leg stiffness, vertical oscillation of the centre of mass, maximal force applied to the ground, and stride frequency 400 

(r = 0.94-0.99, bias = 2.2-6.5%). The second one, 'My Sprint', was also shown to be highly valid and reliable for 401 

the measurement of 30 m sprint time and the production of horizontal force, velocity, and power in male sprinters 402 

in comparison with timing gates and a radar gun, with no significant differences between devices (94). Thus, these 403 

apps allow the practitioner to measure important variables related with running and maximal sprinting without the 404 

need of any advanced instruments. 405 

 406 

Distance tracking using GPS and accelerometer sensors 407 

 408 

When talking about running, probably the most popular variable in the sports technology industry is the distance 409 

covered using GPS signals (and, consequently, running pace) (14, 28, 48). Several wearable devices (mainly 410 

watches) have been used both in practice and research to measure running distances (13, 78), although the 411 

inclusion of GPS sensors on most smartphones in recent years has catalysed the creation of apps which take 412 
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advantage of that technology to track distances and running pace (24). In fact, distance trackers are among the top 413 

twenty fitness trends for 2017 (107); however, there is a lack of evidence regarding their validity and reliability. 414 

One recent study analysed the validity and reliability of an iOS app designed to measure distances during running 415 

by using the GPS included in the iPhone smartphones (8). To do this, researchers had subjects run on a 400 m 416 

track for a total of 2,400 m while wearing an iPhone in an armband, and then compared the values of distance and 417 

speed obtained by the app with the actual values. The app underestimated both distance and speed by 3-4%, 418 

meaning an absolute difference of approximately 100 m or 0.7 km/h. However, the good test-retest reliability 419 

observed (i.e. comparing values in two separate trials) and the relatively low bias between the app and the actual 420 

distance made the authors conclude that the app might be appropriate to track running in the general population, 421 

although it might be not adequate for trained athletes. 422 

 423 

Another widespread variable related to walk or running is step count (20, 64). Specifically, it has been proposed 424 

that a minimum count of 10,000 steps per day is associated with good levels of daily physical activity and health 425 

status (20, 64). For this, many of the most popular wearable devices available in the market are focused in steps 426 

tracking using acceleration data to provide users with information about their step count (11, 19, 60). Of course, 427 

since smartphones include accelerometers, literally thousands of step tracking apps have been developed to count 428 

the steps of the users without the use of external devices. However, a recent study has showed that these apps lack 429 

accuracy in comparison with a professional pedometer, probably due to the low quality of the accelerometers 430 

included in most smartphones (61). In this investigation, researchers compared a reference pedometer to three 431 

Android based step tracking apps ('Runtastic', 'Pacer Works', 'Tayutau') on a Samsung Galaxy S4 GT-I9500 under 432 

laboratory conditions, and each participant's own respective smartphone in a free-living setting. The three apps 433 

significantly under or overestimated the steps counting by 16-50% and showed low levels of agreement with the 434 

reference method (r < 0.5), so the researchers concluded that this kind of app cannot be recommended for step 435 

tracking in their current state of development. 436 

 437 

 438 

 439 

 440 
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Table 2. Summary of apps for analysing physical performance 441 

At current, what physical 

performance measurements can 

apps take? 

 

 

 

 

 

What measurements can apps 

currently not take? 

 

Do the currently available apps 

offer anything beyond traditional 

measurements? 

 

Barbell velocity (standard error of estimate = 0.008 m/s), vertical jump 

(systematic bias of 10 mm), and different mechanical variables during 

running (leg stiffness, vertical oscillation of the centre of mass, maximal 

force applied to the ground, and stride frequency r = 0.94-0.99, bias = 

2.2-6.5%) using high-speed video analysis.  Distances during walking, 

jogging or running using GPS signal can also be measured within 3-4% 

of reference values. 

 

Measure speed/acceleration during walking, jogging or running using 

GPS signal and daily steps. 

 

 

Affordability, transportability and ease of use. Apps are often designed 

with a user-friendly interface, which does not require great expertise in 

the biomechanics or physiology implied in the data processing. 

 

 442 

Practical applications 443 

 444 

A summary of the currently available apps described in the scientific literature is available in tables 1 and 2 of 445 

this review. Mobile apps have the potential to transform data collection in the field, particularly for practitioners 446 

that face space, cost and time constraints. A number of apps have been validated to collect physiological and 447 

anatomical measurements such as heart rate and range of motion, and physical performance measurements such 448 

as vertical jump height, barbell velocity and contact times. However, practitioners and athletes should exercise 449 

caution and be critical when integrating apps into their training practices, as this review has identified some areas 450 

where research support is lacking. Furthermore, whilst the accuracy of some apps has been validated, their low 451 

cost commercial availability makes them widely available to a lay audience. Therefore, it is important that app 452 

developers consider implementing clear guidance on result interpretation for all potential users. A final 453 

consideration is the limited information on transfer between devices, due to the majority of papers testing the apps 454 

on a single platform, and the regular technological updates from manufacturers. Care has been taken in this review 455 

to provide as much information as possible about the device used in the described studies, and readers should 456 

make a judgment as to the appropriateness for their own device. 457 

 458 

 459 
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