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ABSTRACT

Swarming has been observed in many animal species, includjnsh, birds, insects and

mammals. These biological observations have inspired ma#matical models of dis-
tributed coordination that have been applied to the development of multi-agent robotic

systems, such as collections of unmanned autonomous velasl (UAVS). The advantages
of a swarming approach to distributed coordination are clea& each agent acts accord-
ing to a simple set of rules that can be implemented on resougsconstrained devices,
and so it becomes feasible to replicate agents in order to bigi more resilient systems.
However, there remain signi cant challenges in making the @proach practicable. This

thesis addresses two of the most signi cant: coordination ad scalability. New coordi-

nation algorithms are proposed here, all of which manage th@roblem of scalability by

requiring only local proximity sensing between agents, wihout the need for any other
communications infrastructure.

A major source of ine ciency in the deployment of a swarm is “cscillation’: small move-
ments of agents that arise as a side e ect of the application btheir rules but which
are not strictly necessary in order to satisfy the overall sgtem function. The thesis
introduces a new metric for “oscillation' that allows it to be identi ed and measured in
swarm control algorithms.

A new perimeter detection mechanism is introduced and appéd to the coordination
of goal-based swarms. The mechanism is used to improve thet@rnal coordination of
agents whilst maintaining a directional focus to the swarm;this is then analysed using
the new metric.

A mechanism is proposed to allow a swarm to exhibit a “healingbehaviour by identi-
fying internal perimeter edges (doughnuts) and then alterng the movement of agents,
based upon a simple criterion, to remove the holes; this alsbas the emergent e ect of
smoothing the outer edges of a swarm and creating a more unifim swarm structure.

Area coverage is an important requirement in many swarm apgtations. Two new,
e cient area- lling techniques are introduced here and exit conditions are identi ed to
determine when a swarm has lled an area.

In summary, the thesis makes signi cant contributions to the analysis and design of
e cient control algorithms for the coordination of large-s cale swarms.
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1. INTRODUCTION AND OVERVIEW

Swarming in the animal kingdom of ants, bees, sh and birds for instan@ has long been
studied by scientists. From these studies mathematical modls and algorithms have
evolved. The models and algorithms have in turn captured theinterest of computing

scientists who are interested in applying them to large grops of autonomous mobile
agents (‘robots'). The cooperative coordination of these agents &n take many forms
such as following a set path [62], existing in a static space3p, 39, 40] or foraging as
a colony [55, 47]. One of the attributes of swarms that has cajred the interest of

scientists is that the models and algorithms used to coordiate them are generally sets
of simple rules. These simple rules cause the agents to apge@ work cooperatively.

Swarms can also exhibit features or behaviours which were n@xpected. This is due
to the global e ects of the simple algorithms being executedin a distributed manner.

These unexpected behaviours are known a®mergent behaviours'[125, 126].

The ability to have autonomous agents working collaboratively has led to the develop-
ment of systems that use this phenomenon to solve problems idi erent ways. In 1986,

before swarming was being widely used as a technology, thewas an explosion at the
Chernobyl nuclear power station. To determine the extent ofthe destruction, a robot

was deployed to inspect the reactor base and carry out survéance of the damage to
the building [1]. The robot was manually operated and had no atonomous capabilities.
More recently, in 2015, a project was undertaken to carry outsurveillance of forest re
perimeters [17]. The di erence between these two surveillace projects was that rather
than employing a single robot to carry out the surveillance d the forests, a swarm of
decentralised autonomous agents was deployed. This illustrates a develamy trend of

applying swarms to the problem of environmental surveillarce.

1.1 Biological swarms

Swarming has been identi ed in many species including sh, lirds, insects, and more
recently, mammals [146]. It is believed that this behaviourhas evolved over thousands of
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years, through natural selection, as a mechanism to improvéhe survival of species [166].

Fish swarm in the form of shoals [112] in an attempt to make it nmore dicult for
predators to catch them. It is thought that grouping together makes it di cult for a
predator to isolate an individual [88].

Birds ock together for the same reason as sh, to increase tleir survival prospects,
but also to improve the e ciency of area coverage when feedig [112]. In the case of
starlings and their evening murmurings [162], it is believe that the ock is identifying
an optimal roost for itself, while ensuring its survival by disorientating predators. The
disorientation for the predator stems from the distributio n of the individuals in the ock
as it moves [20].

Locusts swarm when feeding to make best use of the food resaar by increasing the
coverage of an area to ensure the resources are exhausted,[488].

Ants and bees live in colonies [73, 135] and it is believed tlyeswarm to make best
use of their resources and also to allow specialisations vhiin their communities. The

specialised individuals would not be able to survive alone bt, as part of a colony, they

add value to the group. Ants for instance have specialisatins such as soldier ants for
defence and nursing ants to look after pupae. In bee swarms éne are workers that
forage and queens and drones that remain in the hive [16].

More recently there has been research to show that swarminbased behaviours exist
in higher order animals such as baboons [146], where they useconsensus-based deci-
sion process to determine a troupe's movement. Yao and Hwanbave analysed human
behaviour and found humans exhibitboid-basedbehaviours when in groups throughcohe-
sion (x 2.4) and repulsion (x 2.5) which they refer to asseparation, the third component
they discuss isalignment (x 2.7), which is a consensus-based directional movement [161]
Reynolds [124] describes this same structure when descnitg boid-basedmovement.

All these adaptations and behaviours have led to the ecologgommunity focusing on

how these behaviours emerge and to use computer simulatiortemulate the behaviour,

and therefore understand the mechanisms the swarms use [34h the case of analysing
baboons, they used high-accuracy GPS trackers and with humas they used phone based
GPS data [146].

The general consensus is that nature, through natural seldion, re nes behaviours to
sustain a population or to help it adapt or expand. This has lel to research into the me-
chanics of how animals interact to achieve these swarming &cts [34, 108, 148]. Passino
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has analysed bee populations in a hive [135] and authored bk® on bio-mimicry. He
has also authored several papers on the computational thegrof swarm stability with
Gazi [40, 39, 38]. This shows a link between the natural worlcand computer science.

All these naturally occurring swarms provide paradigms tha allow the categorisation of

swarms. Naturally occurring swarms include foraging-base (bees), colony-based (ants)
and ocking-based ( sh/birds). These basic swarming modek have been used to in u-
ence how computational models are designed to mimic the bekiours found in nature.

These models can be applied to robotic swarms which are usedrfspeci c tasks based
upon behavioural requirements [82].

1.2 Computational swarms

Computational swarms are inspired by aspects of biologicabwarms. The degree to
which the biological swarm is emulated within the computational environment varies. A
prominent feature that is frequently emulated is the coopeative behaviour of the swarm
agents by simulating agents movements using repulsion andobiesion between the agents.
The emergent behaviours that simple algorithms create thragh these agent interactions
is the focus of this thesis.

1.2.1 Foraging swarms

Foraging swarms are composed of agents that emulate the natal world by carrying
out tasks that involve a permanent base. The tasks are carrig out by agents to ensure
the colony survives or expands. The coordination in these tges of swarm is for the
colony to maintain itself by using scout agents to locate resurces that are required and
then to return those resources to the colony [38, 58, 85, 84]The foraging component of
this process is the locating of resources. There is also a comnications component to
foraging swarms. Foraging agents inform the rest of the colay of the resource locations
to optimise the foraging tasks. Beeclust [115, 55], Swarmgent [97] and other bee-
inspired algorithms [78] are all implementations of this type of swarming behaviour.

1.2.2 Ant-colony swarms

Ant-colony swarms [138, 96, 51, 89] are similar to foragingwearms in terms of their
interactions. The di erence is in the way the agents communcate with each other. The
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agents move independently and there is no need for them to ense proximity as the

agents follow prede ned routes. The agents are therefore ilependent in that there is

no centralised coordinator and they act autonomously. The ocoperation component of
the swarm is realised by agents highlighting desirable or udesirable routes. The agents
then follow the same trails back to a base and either reinfore or reduce the importance
of the routes by adding or removing a pheromone [154]. The puyrose of the trails are
determined by identifying the needs of the colony centrally(at the base). In nature this

is exactly how ant colonies function [69]. Some robotic antolony simulations include
the concept of the “pheromone decay' process as found in bagjical ant colonies [127].
This process allows for changes in the priorities of the agés to be based on time as well
as reinforcement as a colony propagates through, or existsithin, an environment.

1.2.3 Boid-based swarms

Boid-based swarms, as originally de ned by Reynolds [124]are modelled on the be-
haviour of sh and birds. They are composed of autonomous ag#s that are decen-
tralised and formulate their positions based upon an awareness of thcation of their
neighbours [68, 25, 57]. The agents in a boid-based swarm anmedependent and each
control their own position. The two major factors that creat e the swarming e ect are
cohesionand repulsion. Cohesion ensures the swarm has a tendency to stay togethes a
a single entity. This has been used in the SmartBot project, were it has been found
that cohesion promotes the collaboration of autonomous ages [29, 30, 97]. Repulsion
ensures that the agents do not collide, and when balanced wit cohesion create a well-
structured swarm. The balancing of these two factors is idetied by Gazi and Passino
in their swarm stability papers [40, 39, 38] and as part of theGUARDIAN project [130].
They also discuss cohesion and repulsion in their book on swa optimisation [42].

A directional component can also be incorporated into the meement of agents. The
movement can be based on the direction of an agent's neighbasias in [124, 68], where
direction is referred to as alignment. Alignment is a consesus-based direction that the
agents negotiate by communicating with each other. The negtiated direction is not
based on a set goal that the swarm must move towards.

Direction can also be applied as a goal as discussed by Hirdsét al. and Navarro et al.
in [53, 103] where the direction is based on a position that te swarm must move towards
and each agent is able to identify the direction locally. Thegoal can be determined based
upon local environmental stimuli, such as temperature [11B If a swarm is to be used in
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an open air environment covering a large area, a GPS sensor rtde used to determine
its goal [131].

1.2.4 Centralised swarms

The concept of centralised coordination is not seen in biolgical swarms. Centralised
swarms are inspired by the bene ts of cooperative agents bag used to solve a problem.
The agents themselves are autonomous in terms of their funain but their positional
autonomy is removed and they are centrally managed. This camalised paradigm deter-
mines the type of tasks the swarm can be applied to [7, 96, 81 Centralised swarms are
deployed into a known environment and a central controller ®ordinates the positional
information [65, 105, 144, 95]. The model calculates posithal requirements for all the
agents and transfers that information to the agents througha communications infras-
tructure. This is di erent to decentralised swarms, such asboid-based swarms, that are
predominantly based upon localised proximity eld e ects [11, 10, 12, 14]. Field e ects
are the omni-directional ranges used by an autonomous agembd determine the proximity
of nearby agents to determine their relationship [11]. Centalised swarms are di erent
from swarms that use an internal communications infrastrudure to negotiate roles and
exchange information [107] such as the BEECLUST swarm [55].

In a centralised swarm the positioning of the agents is entiely determined by a central
controller, and communicated to them by it. The controller is a single point of failure
and the communications overheads can be signi cant [90]. Tis adversely a ects the
reliability and scalability of the swarm.

The central processing of the algorithm is complex due to calating multiple agent

locations rather than a single location. The processing complexity can be overcome
by increasing the performance of the central controller, bti this will not overcome the

communications problem. This type of swarm works well when meating prede ned

structures such as the tower building swarm [45] or the knot ying quad-copters [7] that

have been developed as part of the research projects of D'Amnéla in the department of

Dynamic Systems and Control at ETH Zurich. The focus of this thesis is on swarms
that do not require a central controller. Control is distrib uted and each agent acts
independently.
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1.3 Swarming applications

Many industries require the exploration or reconnaissancef environments that are not
easily accessible by humans. Consider for instance disastareas following earthquakes,
or environments that are simply hard to survey due to their size, such as large scale
commercial farms [17, 21].

There are occasions on which it is necessary to explore undgound or enclosed spaces [64].
In mining, for example, the environment may be a labyrinth of tunnels that may be dan-
gerous due to rock falls or toxic gas etc. Such environments ay consist of many rejoining
routes and dead ends. This type of work is best performed by savms of autonomous
robots [82].

An example of a large implementation of a swarming platform & Project Loon [71, 44, 43].
Google have completed trials and are now creating aerial ptforms with high altitude
balloons to provide communication infrastructures in remde areas of New Zealand [106,
54]. There are also smaller scale projects investigating # use of swarms in surveying
crops to check the health of plants [17]. This is to identify emedial actions that can
improve crop yields. The forestry commission have carried at surveys of forest envi-
ronments using swarms of UAVs (Unmanned Aerial Vehicles). Al these applications
require the agents not only to coordinate themselves withirnthe swarm environment, but
also to carry sensor arrays to detect environmental condithns.

There is a view that swarms can be made to interact with humans In 2011, a trial
took place that used swarms to assist individuals in the re rvice [114] as part of
the GUARDIAN project [130]. In 2005 there was research by Stamont into the use
of swarms to assist homeland rst responders [145]. The papeconcluded that \the
RoboCup goal of fully autonomous collaborative rescue rotsoby 2050 is a pretty good
estimate”.

It is clear that the application of swarms has increased and tversi ed into many indus-
tries. This has been made possible by the increased understding of their capabilities.
The work in this thesis further increases that understandirg.

1.4 Focus of the thesis

This thesis takes its lead from swarming in the natural world and focuses on boid-based
swarms with the addition of a directional component where neessary. The directional
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component will be applied as a global positional requiremenof the swarm as used in
large scale reconnaissance projects.

Although research into swarming algorithms can be carried at using both physical
implementations [29, 30] and software simulations [11, 39the work covered in this thesis
uses only software simulations. This makes possible the stly of very large swarms over
exible time scales.

The application of swarms to solve large scale problems hasdreased as greater under-
standing of how swarms can be coordinated and monitored hasriproved. This thesis
describes the development of a new metric for evaluating cogurable coordination al-
gorithms. This increases the understanding of how the dynantcs of a swarm can be
tailored to speci c application areas. The algorithms, metric, and simulator have been
developed as part of this thesis.

The thesis argues that the utility of a swarm in reconnaissage can be improved by
exploiting emergent behaviours to improve the area coverag of goal based swarms when
encountering obstacles. This could improve detection rate when swarms are used for
searching activities such as locating targets within a larg area. These targets could be
mountaineers in remote areas or livestock on commercial fams.

The thesis also identi es behaviours that can be used to prorote a self-healing e ect
to improve the structure of a swarm [129]. Self-healing is tlke ability of a swarm to
remove "holes' from it's structure. This behaviour can alsobe applied to surrounding
objects. The oil industry has been involved in several man-rade disasters involving
large scale oil spillages. Research into possible contairent of these spillages has shown
it is possible to use warms to identify an oil slick's perimeer [165]. This thesis shows
that the self-healing e ect can be applied to the task of contining an oil spillage.

1.5 Contributions

Navarro de ned a set of metrics for the analysis of swarms [14]. These metrics were
based on the positions of agents in a swarm and looked at avega speed, density of the
population, and variations in distances. This thesis prop@es a new metric for swarm
analysis.

The new metric is based upon the inter-agent interactions ad is independent of the
distribution of the agents. The interactions are the magnitudes of the cohesion and
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repulsion vectors that the eld e ects and algorithms produce. These same vectors
when summed and normalised produce the directional vectorfeceach agent. By focusing
on the interaction of the agents at the mathematical layer raher than just the spatial
distribution the metric identi es the degree of in uence each agent has upon its neigh-
bours. The inter-agent interactions can be used as a compati@e metric for di erent
swarming algorithms. The new metric identi es the e ects of di erent algorithms when
they produce both regular and irregular spatial distributions. The metric can also be
used to highlight speci ¢ states in a swarm such as when ood lling an area. i.e. the
inter-agent magnitude increases without causing a spatiatlistance increase. This state
identi cation can be used as an exit condition for an area lIling task.

This thesis introduces three directional algorithms that allow swarms to be applied to
tasks such as search and rescue or reconnaissance. Most difenal swarms use some
kind of positioning system which all agents employ. This thesis demonstrates that it is
possible to reduce the number of agents in a swarm employing positioning system in
a consistent manner such that the swarm still exhibits a directional bias. These new
algorithms also reduce the gross energy consumption of thensrm making the swarm
more energy e cient. The thesis also demonstrates that a rediction in the position
system utilisation reduces the inter-agent disturbances.

This thesis demonstrates that emergent behaviours can be @oited to improve the

structure of a swarm. Swarms, by consisting of many agents, re resistant to agent
failures. However failures can occur and when they do they eate gaps in the swarm's
structure where the failed agents were located. Swarms canlso develop irregularly
shaped perimeters with dents. Dents are concave deformatis caused by deployment
irregularities, external e ects such as obstacles, or pemeter agents coming into contact
with additional agents. These characteristics (anomalie} reduce the e ectiveness of
a swarm in some tasks due to the overall structure being non-uiform. This thesis

addresses these speci ¢ issues by extending the basic swang algorithm to produce a

localised agent e ect that has a global impact on the swarm'sstructure by reducing and

removing these anomalies thus “healing' the swarm.

Riano [125] has shown that there are hidden bene ts in usingwarms due to the emer-
gent behaviours of group dynamics which can assist reconresance. Swarms are often
modelled in environments that include obstacles that must ke avoided [37, 8, 149]. These
obstacles can cause voids in a swarm. A void is an area withinhe body of a swarm
where there are no agents. The void reduction technigue del@ped in this thesis increase
the ability of a swarm to reduce voids that are created by an olstacle when they are in
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the path of a goal based swarm. By using this "healing' e ect b remove the voids it is
possible to increasing the “coverage' around an obstacle. his builds upon the work by
Geunho Lee and Nak Young Chong [77].

Arkin et al., Fang et al., Krothapalli et al. and Luc Moreau st ate that agents in a
swarm need to communicate with one another locally in order 6 maintain a swarm's
structure [5, 35, 74, 98, 117]. Ho et al. have shown that locéising communications
to just neighbours is advantageous [58] as it reduce the mesge propagation pathways
within a swarm. Nithin et al. state that agents could have a central communications
infrastructure that is independent of the agents [90], as ued in centralised swarms.

Alternatively Higgins et al. and Navarro et al. state that in ter-agent communications

limit or impair a swarm's functionality [56, 103]. This thesis proposes that a communi-

cations infrastructure is not required for the identi cati on of features such as perimeters
as local positional information is all that is required. Local positioning can be obtained

without inter-agent communications by using sensors such san omni-directional cam-

era.

This thesis demonstrates algorithms that are able to detectperimeters, which are the

edges of a swarm, and perimeter anomalies (deformations) thiout the need for a global

swarm based communications infrastructure. This removal 6 the need for message
propagation allows the algorithms to be applied to arbitrary sized swarms.

This thesis focuses on arbitrary sized swarms. Modelling l@ge numbers of agents in a
swarm is most practicably carried out using a simulator. Therequirements of the swarm
analysis using inter-agent interactions is a very speci ¢ equirement. Combining these
two requirements a bespoke simulator is presented as part dhis thesis. The simulator
is designed using an object model approach with data capturand accurate modelling as
the primary goals. The object model used in the simulator is snilar to that described
by Vankerkom and Yu [152] and provides an extensible framewt for the development
of swarming applications. This thesis uses the framework t@reate two applications. A
graphical scenario creation tool and a command line simuldbn tool.

1.6 Structure of the thesis

The rest of the thesis is structured as follows: Chapter 2 cosrs methods tools and tech-
nigques used to implement the coordination of agents in a swaning structure. Chapter
3 covers the simulator that has been developed in order to imestigate the algorithms
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proposed as part of this thesis. Chapter 4 discusses the ddepment and application of
the metric that allows the analysis of the e ect a particular swarming algorithm has on
a swarm's internal movement. Chapter 5 presents the metric ad shows how the metric
can be used to identify the e ects of algorithms and eld e ects on the structure of a
swarm and how di erent inter-agent relationships can be identi ed. Chapter 6 discusses
two methods of coordinating a goal-based swarm and a baseknfor comparison. This
chapter also identi es the changes these algorithms geneta on the movements of agents
within a swarm. Chapter 7 examines the emergent behavioursforoid reduction on goal-

based and stationary swarms. Chapter 8 discusses the use oéld e ects to create an
area lling behaviour and demonstrates how the new metric ca be used to identify an

exit condition when the area lling is completed. Chapter 9 sums up all the ndings of

the thesis and identi es additional work that has been identi ed through the research

carried out as part of this thesis.



2. METHODS, TECHNIQUES, TOOLS

This chapter introduces the representation of agents, swans, obstacles, the environ-
ment, and the algorithms applied to inter-agent and obstack interactions to produce a
swarming e ect. Movement of agents and the application of adestination vector for goal
based swarms are presented [100].

2.1 Modelling agents and swarms

Currently, much swarm research uses eld e ects as the methd of modelling inter-agent
interactions [11, 10, 14, 3, 39, 40, 38, 41, 42, 95]. The modalsually use two eld e ects
to implement the swarming characteristic. These e ects arecohesion to draw agents
closer, andrepulsion to prevent agents colliding. Field e ects are the ranges arand
an agent that determine the e ect other agents have upon its novement (Figure 2.1).
It is usual for the cohesion eld to have a radius C, which is larger than the repulsion
radius Rp. When an agent () moves into the neighbour eld of an agent {) then B is
said to be a neighbour ofb and is subject to cohesion. When an agent® moves into
the repulsion eld of bthen b has a tendency to move away fromt, i.e. to be repulsed.
When an agentb moves too close to an obstacle, i.e. within the obstacle repsion range
Oy, it has a tendency to move away from the obstacle.

A common approach to the application of eld e ects is to use xed ranges common
to all agents. Cohesion is applied graduated by neighbour mximity and repulsion is
applied as a xed magnitude when an agent is within therepulsion eld.

Sensing devices have a limited range within which they detdcagents, this determines
a sensing eld shown is black (Figure 2.1). In a physical implementation ofa swarm,
distance may be determined by some form of sensing device $uas an omni-directional
camera, as used in the s-bot project [60, 97, 93], or lidar [T%r ultrasonic sensors [22]
or by an array of simple proximity detectors [59]

This thesis uses a similar approach to applying the cohesioe ect but for repulsion a
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graduated eld e ect based on neighbour agent proximity is used.
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Fig. 2.1: Agent eld e ects

A swarm is modelled as a set of agents [93, 152]. An agent is melted as a point in 2
dimensional space with no mass or size. This is similar to theepresentation used by
Vankerkom and Yu to visualise swarms [152]. Mohan and Ponnaivalam, and Gazi and
Passino [152, 40], Barnes et al. [11, 10, 12] and Bennet and Maes [14] and Andreou
et al. [3] also use a similar model which includes agents mawj at a constant speed.

The interaction of agents within a swarm is modelled using vetorial and geometric
techniques [55, 11]. The position of an agent is modelled usj cartesian coordinates
and the movements are modelled using vectors. The positionector is given by the
coordinates of an agent.

The “world' that the swarm is modelled within is an unbounded 2 dimensional Euclidean
plain.

The use of vectors to model inter-agent interactions is alsoeferred to a arti cial potential
elds [37, 157, 133, 11, 10, 12, 14, 61] or vector elds [161,94 111].

2.2 Modelling agents and environment interactions

The environment contains agents with a position in the coordnate system. It may
also contain obstacles(Figure 2.6) and destinations (Figure 2.7). An obstacle can be
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considered as a point with an associatedepulsion eld e ect and a destination as a
point towards which agents move. This modelling technique $ similar to that used by
Barnes et al. [11, 10].

The distribution of each of these objects, along with the eld e ects, produce sets of
vectors that represent the inter-object interactions in the system. The vector sets for
each agent are used to calculate a vector for each interactiotype (cohesion, repulsion,
direction, and obstacle repulsion). This is similar to the techniques used by Jung et al.
and Saldana et al. [70, 101].

The resultant vector generated by an agent's interaction wih other agents and obstacles
is referred to as the agent'sinteraction vector. The resultant vector generated between
two agents is referred to as theinter-agent vector. The vector applied to an agent to
in uence its movement towards a destination is referred to & the agent's destination

vector. The weighted combination of the destination vector and the interaction vector

produces themovement-direction vector The movement-direction vector indicates the

direction an agent may move.

2.3 Boid-based model

The model introduced in Figure 2.2 is based heavily on the wdt by Reynolds and other
authors on boid-based swarms.

Hereford [55] and Barnes et al. [11] model static swarms usina bi-variable technique.
A bi-variable model is based upon inter-agent cohesion andepulsion, which appears as
the interaction vector above.

Gazi and Passino also used this bi-variable technique to exaine inter-agent interactions

when creating stable swarm structures and ensuring agentsemain part of a swarm while

not colliding [38, 39, 40]. They de ne the degree to which an gent remains cohesive to
a swarm as an agent's stability.

If a swarm is to be goal based, the swarm is modelled using thieiteraction vector and
a destination vector to create the movement-direction vector as discussed by Saldana et
al., Stranders et al., Nash and Koenig [101, 147, 102].

The rst swarming model to use three components was the Boid mdel [124]. In the
Boid model, cohesion and repulsion are used to produce dnter-agent vector. The main
di erence in the model is how the destination vector is introduced. In a Boid swarm
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the destination vector is not based upon a xed destination. It is determined by each
agent communicating with its neighbours to generate a consesus-based direction. Each
agent calculates an average of the neighbourmovement-direction vector and applies
the result as adestination vector. This consensus-based movement creates a ~ ocking'
eect [72, 124]. This cooperative method of creating movemet can be seen in the
formation of sh shoals as discussed by Yang et al. [L60] anddarce et al. [112]. The same
ocking characteristic also occurs in starling murmurations as discussed by Campbell and
Samsel [19], and Zhang et al. [164].

Barnes et al., Bennet and Mclnnes, Cai et al. Correl and Rus, holov et al. and
Ekanayake and Pathirana take a di erent approach to creating a destination vector [11,
10, 14, 18, 24, 28, 32]. They generate destination vector in a similar manner to that
described in Figure 2.2 using theinteraction vector and the destination vector.

2.4 Swarm cohesion

Several views of cohesion exist within the swarm research sonunity. Cohesion, in some
cases, is considered as an agent moving towards the centroad a swarm. The centroid
is the centre of the swarm. This approach is used by Gazi and Pssino who measure
stability based on changes in distance from the centroid of awarm [42, 40]. They de ne
stability as the “degree' to which a swarm will remain a coheent entity. Shinichi et al. [6]
also use the concept of the centroid of a swarm to de ne a metd to measure stability.

Alternatively Long et al. [120], Shinichi et al. [6] and Ekanayake and Pathirana [32] refer
to cohesion as an attractive force' and de ne cohesion as lirgg localised to an agent and
its “visible' neighbours. The visibility they discuss is déermined by a sensor that pro-
vides localised proximity information that includes angles and distances to neighbouring
agents.

Similarly, this thesis will view cohesion as the interactilmm of an agent with its local

neighbours. Agents are viewed as being autonomous using gnlocalised proximity

information. The Boid model requires information about the swarm's structure, the
positions and directions of neighbours. This requires a comunications infrastructure.

The model in this thesis does not require this information ard therefore does not require
a communications infrastructure.

This thesis, when analysing the data captured from an experment, will only use the
centroid as a means of tracking the position of a swarm. The a#roid and the logic to
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identify it will not be used by agent algorithms for coordination.

Cohesion is based on the principle that all agents will remai part of their immediate
neighbours' “cluster' and will = ock' together in a “localised' manner [151, 11, 10, 12,
14, 53, 62]. Localised being that the agents will only be “awa' of their immediate
neighbours.

Flocking, in this thesis, should be considered as the procesof agents moving towards
each other to attain their most stable position [46, 103] wheh is the centre of mass of
their immediate neighbours (Figure 2.2).

The cohesion vector is calculated by summing the relative psition vectors identi ed
from the origin agent (b) to each neighbouring agent. This vector is divided by the
total number of neighbour agents (Figure 2.2) to produce a reultant cohesion vector.
The closer a neighbouring agent is to the agent of interest ten the smaller the cohesion
vector generated.

Fig. 2.2: Cohesion: Originb

Formally the cohesion vectorvg(b) for agent b is the vector calculated by summing the
vectors bl formed from the agent to each of its neighbourd®2 nbr(b) [53] and dividing
by the number of neighbours.

A neighbour of b is any agent within the swarm S that is within neighbour range:

nbr(b) = fB°2 S : kbisk <= Cyg (2.1)
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2.5 Swarm repulsion

Repulsion is de ned by Reynolds, Kawabayashi and Chen, and Kinichi et al. as
the tendency for an agent to move away from another agent thatenters its repulsion
eld [124, 72, 6]. This creates a " eld e ect' around the agert such that when another
agent enters that area a vector is applied to prevent the agets colliding. Repulsion is
also applied to agents when they interact with obstacles, tlis is covered in Figure 2.6.

Kawabayashi and Chen [72], Reynolds [124] and Aso et al. impment repulsion as a
vector at a boundary with a xed magnitude (Figure 2.3).
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Fig. 2.3: Agent xed magnitude repulsion

This approach produces a resultant repulsion vector that isbased upon the angles at

which the neighbour agents approach an agent without consiering the proximity of the
neighbours to the agent.

In this thesis the repulsion vector has a graduated magnitué. Each neighbouring agent's
repulsive e ect is applied proportionally (Figure 2.4). When an agent encroaches upon
another agent the degree of the eld intrusion is mapped to a alue in the range 0! 1.
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This a ects the magnitude of the repulsive vectors that are goplied and therefore the
resultant repulsion vector (Figure 2.6).
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Fig. 2.4: Graduated agent repulsion

This technique changes the repulsion vector such that the dection reduces the prob-

ability of a collision. In this thesis the inter-agent repulsion will be calculated as the
average of all the proportional repulsion vectors (Figure 25).
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Fig. 2.5: Proportional agent repulsion
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Figure 2.6 shows a comparison of the two repulsion models witthe proportional repul-
sion magnitude shown in green and the xed magnitude shown irred. The two models
produce di erent repulsion angles. The angle produced by tle proportional model in-
creases the distance agentbj will move away from b° when motion is applied. This
reduces the chance of a collision between the two agents. Theroposed proportional
model is therefore suited to swarm's where agent collisionsay cause problems.
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Fig. 2.6: Repulsion comparison

To calculate the total inter-agent repulsion the neighbours that are within the repulsion
eld must be identi ed. This is shown in Figure 2.3.

R(b) is the set of all agents that are within the repulsion eld. Ry is the repulsion eld
and kbbk is the distance betweenb and its neighbour b°.

R(b)= f°2 S : kbbk <= Ryg (2.3)

V¢ (b) is the repulsion vector generated for agent based on the proximity of its neigh-

bours. If R(b) is empty then v, (b) = 0 otherwise it is given by equation 2.4. The
proportion of eld intrusion is calculated by 1 %tfk. The eld e ect distance Ry is the

range around the agent where the repulsion e ect is introdued to prevent collisions.

1

0
vi= —— B 1 kgf‘ bisk 2.4)



2. Methods, techniques, tools 19

2.6 Swarm agents/obstacles interactions

Obstacles, like agents, can be represented as a point in thegstem. As an agent moves
it may enter an obstacle'sobstacle repulsion eld causing the agent to move away.

In this thesis agents are modelled with a xed obstacle repuion distance O, where a
repulsion vector is applied. The repulsion is then a vector d magnitude Oy. If more
than one obstacle is within the eld e ect agent the total rep ulsion vector is the sum
of the repulsion vectors due to each obstacle Figure 2.7. Theesult is normalised and
scaled such that the magnitude is the same as the eld distang Oy,

obstacle range

obstacles

resultan or

Fig. 2.7: Obstacle repulsion

Equation 2.5 shows the resultant repulsion vectow,(b) for an agent. fo 2 O : kbdk <= Opg
is the set of obstacles that are within range of agenb. O is the set of obstacles. The
obstacles are identi ed using the distance between an agerind an obstaclekbd and
comparing the result to the xed obstacle repulsion rangeOy,. The result is calculated

by scaling the normalised sum of the normalised vectorsqd” by Op. Note that ~ is the

equivalent of ¢ = - the normalised vector.

X !
Vo(b) = Op (ob™ ~ (2.5)
020 : kolkk< =0
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2.7 Swarm direction (goal based swarms)

There are two directional aspects to swarm motion. Theinteraction vector which is
the vector created by inter-agent reactions through the cotesive and repulsive elds as
discussed in Figure 2.4 and Figure 2.5 and the vector for avdance of obstacles Figure 2.6.
The destination vector is applied to in uence the motion of a agent towards a particuar
coordinate [15] and the interaction vector to maintain the swarm's structure. This
model is used by Barnes et al. [11, 10], Bennet and Mclnnes [[L4Cai et al. [18], Correll
and Rus [24], Dinolov et al. [28] and Ekanayake et al. [32]. Tis thesis uses a similar
technique, de ning a single destination as adestination vector for goal based swarms.
The application and e ect of multiple destinations is discussed in future work.

vg(b) (Equation 2.6) is the destination vector whered is the destination.

va(b) = bd (2.6)

2.8 Weighted movement-direction model

An agent's movement-destination vectoris the sum of all the component vectors ¥¢; Vi ; Vg; Vo)
(Equation 2.7) [53]. For a vector to be used for movement it mist have a magnitude of
1 before the agent's speed can be applied (Section 2.7).

v(b) = ve(b) + v (b) + vg(b) + vo(b) (2.7)

This model is extended by adding a weighting to each of the comonent vectors. The ad-
dition of the weightings allows the in uence of each componat vector set to be adjusted
to produce a bespoke movement vectory2.8). The resultant vector is normalised to
produce a unit movement-direction vector that can be used to create motion [72]. The
agent's speed characteristic is used along with timet{ [35, 41] to determine an agent's
next position. This derived vector is the movement vector

The purpose of a weighted aggregation model is to alter the leel of in uence of each
component of the equation. This technique is generally refeed to as a ‘weighted sum
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aggregation' or “ordered weighted averaging' The technique is applied to optimisation
algorithms such as PSO (Particle Swarm Optimisation) and involves applying all the
possible combinations of weightings to a multi-variable epression to obtain an optimum
output [87, 158].

In this thesis the technique of weighted sum aggregatioris applied to the vector calcu-
lations to allow tuning of the swarming algorithm of an agent and to change the degree
of in uence to obtain a required swarming e ect.

The tuning is applied to each component as a weighing factok Equation 2.8. The
weightings (kc; Ky ; Kq; ko) are applied before normalising themovement-directional vector.
This change of bias allows levels of importance to be applietb a system characteristic
i.e. ke > kg implies it is more important for the agents to remain together than it is to
travel towards the destination. This technique is similar to those identi ed by Muniganti
and Pujol in their survey of mathematical modelling techniques [100].

Weightings can be applied in several ways. The weighting carbe applied as a set of
arbitrary integer values (12, 67, 99) or as a set of values thzalways have a summed value
of 1 e.g. 0.5, 0.25, 0.25. Either of these techniques are aptable as the resultant vector

is normalised following the application of the weighting. This thesis implements the
weightings as a set of arbitrary integer values (Equation 28). Where k. is the weighting

factor for cohesion,k; is the weighting factor for repulsion, k, is the weighting factor for

obstacles andkq is the weighting factor for a destination.

v(b) = keve(b) + krvr (D) + koVo(b) + kgva(b) (2.8)

Special cases of Equation 2.8 can be applied to a swarm modelA swarm with no
destination can be modelled with the destination weighting set to zero to create the
model shown in Equation 2.9 as used in Chapter 7. This is alsorflown as theinteraction
vector

v(b) = keve(b) + ki vr (D) + koVo(b) (2.9)

A swarm that does not interact with obstacles and has no goal destination) can have
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ko and kqy set to zero creating the model as shown in Equation 2.10. Thissialso known
as the inter-agent vector as discussed irx 3.7 on page 40.

v(b) = keve(b) + kvr (b) (2.10)

Equation 2.10 is also the model used in the calculation of theswarm magnitude metric
as discussed in chapter 3 wherg(b) P (b).

2.9 Modelling movement

Each agent within a swarm calculates itsmovement-direction vector based on itsin-
teraction and destination vectors. The movement vector (byos) is calculated using the
unit movement-direction vector of Equation 2.8 multiplied by the time elapsed (t) in the
system and the speed characteristic of the agentst).

This process is carried out for every agent in the swarm to crate the entire swarm's
next position.

Bhos = spt v(b) * (2.11)

The increment in the location of agentb over time interval t is shown in Equation 2.11
where sy, is the speed of agenb. Models of time are discussed irx 2.13.

2.10 Stable swarm structures

A swarming behaviour can be created using only cohesion anapulsion. This technique
is known as a bi-variable model [11, 10]. The bi-variable moel produces natural geo-
metric structures. The structures tend to be based on equilteral triangles and when
the distribution of the agents allows, regular hexagons argdformed. These structures
only occur when the repulsion and cohesion eld e ects prodee a distribution such that



2. Methods, techniques, tools 23

an agent's detected neighbours do not extend beyond the rstagent detected in any
direction [109, 110]. The e ect of eld e ect ranges on a swam's structure is discussed
in chapter 4.

The most stable state for agents is for all agents to be equidiant with equal angles.
If two agents are in close proximity they will naturally adhere to each other due to
the proximity rule (cohesion) (Figure 2.8); repulsion will ensure a minimum distance
is preserved. In the case of 3 agents a triangle will form. Inhe case of 4 agents the
most stable shape will be a diamond with the centre agents joied. With 5 and 6 agents
a triangular lattice will emerge and with 7 agents a stable heagon will form. The
hexagon (Figure 2.9) is the most stable structure with all agents being equidistant and
all angles between each neighbouring agent equal [11, 41]. h&se structures are seen
throughout the natural world [123].

WL n
NV

Fig. 2.8: Stable swarm formations

Fig. 2.9: Stable hexagonal formation



2. Methods, techniques, tools 24

2.11 Resultant swarm model

The swarm model created by Equation 2.8 with suitable weighings will allow a swarm
to form “stable’ structures such that the agents will remain connected (Figure 2.11) and
over time migrate to an optimum overall structure for the models parameters. The
parameters are the eld e ect ranges, the cohesion and repion magnitude models and
the weightings.

The initial random deployment of a set of agents to create a sarm produces a “disorgan-
ised’ state. The disorganisation is caused by the varying doesion and repulsion vectors
that are generated by the inter-agent relationships. Follaving the initial deployment the
magnitudes will create movements that gradually stabilisethe swarm structure to a level
of movement that best ts the model parameters [113, 155]. Tl point of equilibrium
for the swarm and the resultant structure is dependent upon he agent's cohesion and
repulsion elds level of overlapping. This is discussed irx 4.2 andx 4.3.

When modelling swarms it is common practice to have the agerstin constant motion [83,
49]. In this thesis agents are modelled moving at a constantmeed with no inertial e ect

such that an agent can move freely within the system plane. Tle only exception to this
will be if an equilibrium state is encountered where the sumned vectors produce a null
vector. If this occurs the agent will stop moving.

2.12 Swarm deployment

Using the methods discussed in this chapter, a swarming belk#@ur emerges from a
collection of agents. The initial deployment of a swarm may ke a random dispersal of
agents such that the swarm is in a disorganised state (2.10)kaused by an instability in

the magnitudes that are acting upon each of the agents (as dafled above). Based upon
the application of the models discussed, the swarm will initally move in such a way as
to balance all the vectors, resulting in a period of disorgaisation where the swarm's
movement towards a goal is limited, as the vectors generatedo disperse the agents
outweigh the directional vector.

This phase of the swarm's life cycle is the Tinitialisation fase' (Figure 2.12). When
the initialisation phase is over, the vectors (cohesion, rpulsion, and direction) become
more balanced and the swarm forms a more regular shape, sucls @ hexagonal lat-
tice, where all the angles and lengths (distances between agts) tend toward being
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equal (Figure 2.11)

The e ects can be seem in the screenshots (Figures 2.10, 2,12.12) from the simulator
discussed inx 2.13.

Fig. 2.10: Disorganised swarm

Fig. 2.11: Stable swarm

Fig. 2.12: Swarm stabilisation
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2.13 Swarm simulator

Swarm behaviours can be investigated by means of experimentwith physical robots
or by means of simulations. The latter approach has the advatages of scalability,
generalisation, speed of development, and cost. This thesis based upon data generated
from simulated swarms. There are several open source robetsimulators available, the
most popular being ARGoS, Player/Stage, and Gazebo.

ARGOS is described as a multi-physics simulator and has gaad interest in the swarm
robots community. In 2011 Luca and Caro published an overvier of the simulator's en-
gine discussing how the system functioned [116] and the plusophy behind its structure.
They also published a framework for using the simulator in 222 [75].

Player/Stage and Player/Gazebo are used in many projects isluding projects simulating
single robots as discussed by Song and Gupta [142] and also hipie-robot swarming
simulations as described by Lei et al [80]. There are projestthat have simulated the
use of pheromone trails when simulating foraging based swars as discussed by Shi et
al [139]. Shietal. have also published an overview of the soarios in which Player/Stage
can be used [140].

The Webot [86] simulator, which is a commercial product, hasbeen used successfully
in other research projects such as the swarm simulations deloped by Srivastava and
Nandi [143]. One problem found with the product was that it was restrictive in terms
of how much of the system could be con gured to meet the needsfdhe thesis. Another
factor that had to be taken into consideration was the high cet of a licence for the PRO
version of Webot.

These simulators all provide a discrete time simulation enironment. The main purpose
of these simulators is to visualise either an individual rotot or a swarm of robots based on
a model that is de ned through bespoke libraries and con guration parameters. On the
other hand, in this thesis the main purpose of each simulatin is to log all the positional
and vector data associated with every agent at each discretéme interval. Due to this
disparity in approaches it was decided to develop a simulatowhose main purpose is the
collection of data on distance, positions, distribution ard inter-object vector magnitude
in uence.

This section discusses the design, development and usagetbé simulator used in this
thesis and the creation of the raw experimental data. The seiion also discusses how the
data is processed to produce the aggregated data requiredrfeisualisation.
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2.13.1 Simulator overview

The simulator has two distinct components: a graphical deggn/simulation tool (Ap-
pendix B.1) and a command line based simulation-only tool (Aopendix B.2). Both
parts of the simulator are written in Python 3 [119] using an dbject model as shown
in appendix E. Both use the same modelling engine by sharinghe base classes. The
nal object model is similar to that proposed by Vankerkom and Yu for swarm visuali-
sation [152]. The simulator design is also in uenced by the main loop' proposed in the
ARGoOS simulator [116].

2.13.2 Simulator architecture

The main purpose of the graphical environment is for the setp of an experiment's initial
con guration. This is achieved by positioning the agents, destinations, and obstacles in
an environment and saving the con guration as a simulation le. As a secondary purpose
the graphical environment is capable of running small scalsimulations. The command
line tool is used to execute the simulation experiments degned using the graphical tool.

The graphical tool, shown as (1) in Figure 2.13, uses PyGamelB6] as its graphical
presentation layer. PyGame supports several rendering enges; in this application the
default SDL rendering engine is used. The graphical simulair runs in real-time and is ca-
pable of simulating small swarms of< 150 agents on a PC with anintel Core i7-4770
CPU @ 3.40GHz * @ocessor. This swarm size limitation is due to the Python cde
being executed on a single processor core. There is also ailiation in the performance
of the graphical engine due to the rendering being performedby the interpreter.

The command line tool, shown as (2) in Figure 2.13, reads in th experiment con gu-

ration le generated via the graphical tool, shown as (1). The command line tool uses
simulated discrete time (Figure 2.13.3) and is able to run wih arbitrary sized swarms

without real-time processing limitations. The command line tool simulates the swarm
and generates the initial data extract (3a). The data extrad is then loaded into a MySQL

database (3b) and the data is then aggregated to create the coplete dataset for the

experiment (4). The processes 5 and 6 are discussed in Figuee7. This thesis deals
with arbitrary sized swarms, so simulations are designed irthe graphical environment

but executed using the command-line-based simulator.
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Fig. 2.13: Simulator process overview

Figure 2.13 shows the stages of the simulation from developg an experiment (1) through
to the production of simulation results (6).

2.13.3 Simulated time

There are two options for representing time when modelling aswarm: continuous time
and discrete time. Continuous time [52] isdense between any two points in time there
is another point. Discrete time [35, 41, 128, 55, 100, 110] otine other hand proceeds in
“ticks' with no intermediate time points. In this thesis dis crete time is used. This same

approach is identi ed by Muniganti and Pujol in their survey of mathematical swarming
models [100].

Vision based coordination for robots was a subject of greatnterest in the 1980s and
90s [27]. This interest moved to omni-directional cameras & a means of determine po-
sition and mapping through image analysis in a process knowas SLAM (Simultaneous
Localisation And Mapping) [149, 142]. A general purpose omrdirectional camera can
operate at speeds between 1Hz and 60Hz, depending upon thesodution of the images
and the accuracy of the positional data required.

For the identi cation of an agent's position, a GPS with a sample rate in the same range
may be used. For example, the SparkFun Venus GPS [33] operaeat up to 20Hz.
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The simulator allows the sampling rate to be adjusted to provde a model that is as close
as possible to the physical sensors. For the experiments irhis thesis, the sample rate
is set at 10Hz, clearly within the scope of currently availalde sensors. This gives a “tick’
interval of 100ms.

2.13.4 Simulated eld e ects

The ranges for the cohesion, repulsion, and obstacle avoidae elds are user-con gurable
parameters in the simulator, as is the location of a destinaibn goal, if present. The
simulation of the operations of cohesion, repulsion, obstde avoidance and goal-seeking
then directly follow the de nitions given by equations 2.2, 2.4, 2.5, and 2.6. The details
of the implementation are shown in Appendix E.1.

2.13.5 Simulated agent movement

The motion model of the simulation is implemented through the modelling of vectors
that in uence an agent's resultant direction. The vectors that model the swarm envi-
ronment are the cohesion and repulsion vectors created by far-agent and inter-object
interactions.

Agent positions are modelled using oating point numbers. These coordinates are trans-
lated to integer based §;y) co-ordinates for the presentation layer. The integer trars-

lation is only for the visualisation of the swarm. This is the same approach used by
Vankerkom and Yu in their paper on swarm visualisation [152] They model the agent

using a class that consists of positional variables of type auble. This is also seen in the
SwarmVis software developed by Miner and Kasch [94].

The incremental positions of the agents are calculated basktupon the simulated time
slice, “tick’, as discussed irx 2.13.3, and the agent speed, given as a parameter of the sim-
ulation. These parameters are used as and sy, respectively, in applying Equation 2.11
to the calculation of the position of each agent at the next 'tick'. This movement is
implemented within the simulator as shown in Appendix E.1.23.

2.13.6 Simulator data capture

To enable the analysis of a simulation run, the simulator geerates an SQL database.
As a simulation executes, at each tick, the state of each agein the swarm is captured
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and the data is saved as a pair of SQL insertions,tick number; agents’ states), that are
added to a set of transaction les. The implementation of the data capture component
of the simulator is described in detail in Appendix E.3. This approach generates a large
amount of data but allows for very detailed, o ine analysis of swarm behaviour.

2.14 Conclusion

This chapter notes the trend in using vectors as a modelling @échnique for swarms and
discusses the use of eld e ects in determining agent movent@. The chapter then intro-
duces the mathematical model that is applied throughout thethesis. The introduction
covers the cohesion model that ensures agents remain part afswarm and the repulsion
model that ensures agents do not collide with each other, ths maintaining a stable
swarm structure. The chapter also introduces two additiond aspects of swarming to the
model: goal-based direction and obstacle avoidance. Finig| the chapter discusses the
simulation of swarms. All simulations in this thesis are caried out using the simulator
described in this chapter. The data created by each simulatin is aggregated to generate
the nal datasets that allow the characteristics of the simulated swarm to be evaluated.
Data analysis results are visualised from the aggregated da.



3. SWARM MOVEMENT METRIC

This chapter examines the distance metric as a mechanism to easure the internal move-
ment of agents and introduces a newnagnitude based metric The internal movement

of a swarm is identi ed by analysing the changes in the interagent interactions. The

two metrics di er in their approach to identifying the chang es. The distance metric uses
variations in the inter-agent spaces, as used by Navarro etla[104]. The new metric,

devised as part of this thesis, uses the magnitudes from thegents' inter-agent vectors

that are induced by agents' eld e ects as de ned in Equation 2.10.

Both metrics allow a comparison of the e ects of di erent swarming algorithms on a
swarm's structure. The type of information that can be derived from each of the metrics
is compared inx 3.12.

The magnitude based metric is used in chapter 5 to identify tle e ects of dierent
coordination algorithms. In chapter 6 the metric is used to dentify the e ects of both
obstacles on a swarm's movement and the encapsulating behiawur a swarm exhibits
when usingconcave reduction

3.1 Inter-agent vector magnitude e ect on internal
movement

Figure 3.1 shows the cohesion and repulsion vector contrikiions to v¢(b), v, (b) due to
neighbour kP, as given in equations 2.2, 2.4. Notice that the vectors arelang the line of
separation bi.

Using the cohesion and repulsion vectors generated by the laionship of b’ to b a
resultant vector can be calculated. This vector creates an gent characteristic that can
be used as a metric. Summing the vectors creates a resultaniegtor with a magnitude
that a ects the agent. Summing the vectors also provides an mdication of the direction
an agent will move based on the relationship. This is de ned in chapter 2 as theinter-
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agent vector

From here throughout x 3.2 and x 3.3 imagine agentb has just a single neighbour?® and
consider the e ect of b’ on v(b), the inter-agent vector of b.

cohesion
vector

line of
repulsion separation
vector

Fig. 3.1: Vectors on line of separation

3.2 Swarm movement analysis

The repulsive and cohesive vectors are generated for an agethrough the intersection
of their eld e ects ( x 2.4 andx 2.5). There are a limited number of intersections that
can occur; These are illustrated in Figures 3.2, 3.3, 3.4, 8.

Figures 3.2, 3.3, 3.4, 3.5 show the cohesion of an agent pais &.v; and the repulsion
as krv;. The example data extracts (Tables 3.2, 3.3, 3.4, 3.5) are gerated from the
simulator using the parameters in table 3.1 that create a bag swarming behaviour.
The tables show the simulation results. The simulation conssts of 200 agents over a 20
second period. The simulation produces a neighbour extractf 248,798 records.
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Weight Swarm | Description
Component
Sample Rate 100 ms - Unit sampling interval
K¢ 5 weight adjuster for cohesion bias
Ky 15 weight adjuster for repulsion bias
Kq 0 weight adjuster for directional bias 0 for
static baseline 100 from directional

Repulsion eld 70 units
Cohesion eld 80 units
Speed 20 units/s

Tab. 3.1: Swarm parameters model

33

Figure 3.2 shows two agents within each others cohesion eklbut su ciently distant to
be outside of the repulsion elds. The “neighbour region' ad “repulsion region' are the
limits of the eld e ects for cohesion and repulsion. In this casekcve > 0 and k;v, = 0:
the result is the agent's resultant magnitudes cause the ages to move towards each
other. Table 3.2 shows the repulsion magnitude with a value ©0. The only in uence
on the agent pairs are cohesive vectors.
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Fig. 3.2: Internal movement cohesion (no repulsion)

In tables 3.2, 3.3, 3.4 and 3.5Log is the sample identi er, Id is the unique identi er
for an agent andN.Id is the Id of the agent neighbour.

Log | Id | N.Id | Distance Repulsion
0 1|3 70.50359957272653 0
0 1 | 100 | 71.78005530038806 0
0 1 | 151 | 78.33995887998715 0
0 2 |99 72.04066804327307 0

Tab. 3.2: Data extract (k,v, =0)

Figure 3.3 shows two agents close together with repulsion daoinating cohesion such that
keve < k(vy. The resultant vector will direct the agents away from each dher. Table 3.3
shows the repulsion magnitude with a value greater than cohson.
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Fig. 3.3: Internal movement repulsion
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Log | Id | N.ld | Distance Repulsion

0 1 ]2 28.325225929649267 1544.86014983782]
0 1|6 41.48517221724064 721.717364824014%
0 1|7 35.264128136470426 1034.27101091394]
0 1|8 43.545037655009644 637.9075999959364

+— IV UT

Tab. 3.3: Data extract (jkevej < jKrvrj)

Figure 3.4 shows two agents close together but with cohesiovector magnitudes greater
than the repulsion magnitudesjkcvej > jKkrvrj. The resultant vector will draw the agents
together. The magnitude of the resultant cohesion vector wi be reduced due to the
cancelling e ect of the repulsion vector. Table 3.4 shows a dta extract with the cohesion

magnitude greater than repulsion.
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Fig. 3.4: Internal movement cohesion

Log | Id | N.Id | Distance Repulsion

0 1|5 64.17214469587854 95.35676418993891
0 119 63.880497718571355 100.58590062663305
0 1 ]95 65.6152270119206 70.16681717258929
0 1 | 152 | 63.10700566424517 114.68844031437281

Tab. 3.4: Data extract (jkcvej > jkrvrj)

Figure 3.5 shows two agents close together witfkcvej = jk; vy ] the resultant vector will be
a null vector and the agents will have no in uence upon each other due to thenagnitude
of the resultant vector being zero. Table 3.5 is an extract fom the table.
The data shows an extract that is near equilibrium. The simulation produced no null
magnitude results.
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Fig. 3.5: Internal movement equilibrium

Log | Id | N.Id | Distance Repulsion

7 76 | 91 55.390312278311875 276.9468428106153
24 | 75| 6 55.39032191143417 276.9466120367043
32 | 72| 38 55.39002603773678 276.95370011064875
35 | 63|64 55.390227283173054 276.9488789826377

Tab. 3.5: Data extract (jkevej | Krvrj)

3.3 Internal movement and the null vector

When the two vectors (cohesion and repulsion) have magnituds that are equal and
opposite they produce a null vector. This indicates that two agents are optimally spaced
for a given set of conditions. Although the agents are at an opmum position it does not

mean the swarm is optimally distributed. If a swarm is in a conned space it is possible
for an optimum position to be created where the vector magnitide is positive due to
a compression e ect. This phenomenon is used in the identi ation of the emergent
behaviour of area ooding, covered in chapter 7.

If we consider the equilibrium state (Figure 3.5) the resulant vector of bis (0;0). A
null vector cannot be normalised to produce a directional vetor (¥ = ﬁ if vé 0; 0
if v = 0). The e ect of the resultant magnitude being a null vector is that the agent
will remain stationary. If all agent pairs are in this condition the swarm will stop
moving (Figure 3.6).
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resultant
ors
Kevel= K|

Fig. 3.6: Equilibrium with null vectors

Due to the independent nature of the agents this situation isvery rare. The residual
motion that persists in a swarm is the background “noise' orjitter' that an algorithm
creates.

If a swarm is goal-based the additionaldirectional vector will prevent all agents simul-
taneously producing null vectors (Figure 3.7).

agent direction

esultant

resultant
ors

@ (1) (b) (t+1)

Fig. 3.7: Directional movement and the null vector

3.4 Residual internal movement (Jitter)

Due to the dynamic nature of a swarm maintaining optimum internal movement as
in (Figure 3.5) a stationary swarm is highly unlikely. The agent pairs will uctuate

between the 3 states (Figures 3.3, 3.4, 3.5). This alternatin between the states is
jitter . The degree to which this variation occurs can be measured ugy either the
change in distance between the agent pairs, or the change irhé resultant magnitude
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between the agent pairs. Jitter is motion that is produced to maintain the structure
of a swarm. A coordination algorithm that produces minimal jitter is generally more
desirable. Jitter (the uctuation in and between the states) is an indication of the
e ciency of an algorithm and an integral component of a swarm's measurable behaviour.

3.5 Magnitude based metric

Magnitude based internal movement @gent resultant magnitudg is measured by identi-
fying the balance between the repulsion and cohesion betweeagents. “Jitter' in the case
of the agent resultant magnitude metric is measured as the variance of the potentials
created by the agents. The identi cation of this variance produces the clarifying part
of the agent resultant magnitudemetric. The agent resultant magnitudeis identi ed by
Gazi and Passino [42] and Barnes et al [12] as a ‘resultant clecteristic' of a swarm.
There are two ways of using the cohesion and repulsion in iddifying a resultant vector.
The two vectors can be added as absolute values to give an ol “size' to the magnitude
that is a ecting each relationship. Alternatively the resu ltant magnitude can be the sum
of the actual magnitudes. The repulsion vector has a negat® magnitude and the cohe-
sion vector has a positive magnitude. In this thesis the magitude analysis will be based
on summing the two actual vectors to determine the result of he inter-agent interaction.
This thesis will refer to the resultant magnitude as the “aget resultant magnitude' of
the relationship. The “state’ of a swarm is the e ect the envronmental constraints and
algorithms have upon the agent resultant magnitude. It is a @rt of the “quality' measure
for a swarm's performance.

If the agent resultant magnitudeis a negative value (absolute values would prevent this
analysis) the swarm's bias is to expand. This is seen in the dbrganised stage of a swarm.
If the agent resultant magnitudeis positive then the swarm is exhibiting a tendency to
contract and this indicates the swarm is a cohesive entity. his could also be described
as the swarm being “sticky' as the agents bias is to “pull' toards each other.

The agent resultant magnitudeon its own does not give a complete measure of a swarm's
internal state. There needs to be a qualifying component to he metric that identi es
the degree of deviation in the resultant magnitude, this is te jitter . The smaller the
degree of deviation the more uniform the structure of the swam. These two components
identify the degree to which a swarm has progressed towards stable state.

The agent resultant magnitudeprovides a view of the swarm's state through the balance
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between the repulsive and the cohesive vectors that are begnapplied to each agent. The
variance component identi es the degree to which the swarm hs stabilised. The ideal
status for inter-agent interactions would be for the agentsto have a resultant vector
(agent resultant magnitude of zero or above. This would indicate that the agents are
distributed such that they are at their distribution limit ( outer most range of the cohesion
eld) or at a level that causes the agents to “pull' together. The ideal degree of deviation
is zero as this indicates an even distribution of agents. Theefore for a fuller indication
of a swarm's state both measurements need to be combined. The deviation from th
mean clarifying the internal movement and the agent resultant magnitudeproviding an
indication of the “compression' that a swarm is logically eyeriencing (cohesiveness).
These two aspects of a swarm's features are not considered Bazi and Passino [42] or
Barnes et al [12] as a means of quantifying the structure of avgarm in terms of stability.

3.6 Distance based metric

The distance based metric considers the e ect of the resultat vectors upon a swarm in
terms of how the agents are physically distributed: i.e. orny the inter-agent distances
and the deviation from the mean of the agents (jitter) are corsidered. As with the
agent resultant magnitude metric the variations are important to determine the agent
distribution. The standard deviation from the mean allows the internal "characteristic'
of the measure to be realised. If the standard deviation is ze then all the agents
are evenly spaced. The distance metric does not take into caideration the vector
magnitudes between the agents as discussed above. The mettherefore is unable to
identify the potential state of the swarm in terms of its cohesive or repulsive state.

Navarro and Fernando describe a mean distance error metrichiat is based on the vari-
ations in distances between inter-agent spaces [104]. This the same as the standard
deviation of the distance based internal movement metric aslescribed here.

3.7 Magnitude based internal movement model

Using the formulae for the calculation of cohesion (Equation 2.2, page 16) and repul-
sion (Equation 2.4, page 18) for every agent and its neighbas it is possible to calculate
an agent resultant magnitude value (sum of agent resultant magnitudes). This value
represents the overall potential of an agent. This magnitug& when normalised produces
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a component of the movement-destination vector (Equation 2.7) for a swarm. |If the
agent resultant magnitude is zero (null vector) then the aget will not move. P (b) is the
inter-agent resultant magnitude vector for agent b de ned by:

P(b) = keve(b) + krvi (D) 3.1

Although it is possible for agent b to have a resultant vector of null there could still be a
variation in the constituent components. The variation calculation (standard deviation)
is shown in x 3.8. Equation 3.2 is the mean of theagent resultant magnitudesfor an
agent and its neighbours whergnbr(b)j is the number of neighbours.

P
PO = fobr (b

(3.2)

To identify the swarm based agent resultant magnitudeEquation 3.2 must be extended
to iterate over all the agents in the swarm. EquaticF))n 3.3 shog p(S) as the swarm based
magnitude where the swarm iteration is shown as ,5 and , 5 jnbr(b)j calculates the
total number of inter-agent relationships.

X
P(b)

o(S)= X2 (3.3)
jnbr(b)j
b2 S

3.8 \Variance in agent resultant magnitude metric

The mechanism just described provides an overall indicatin of the internal movement
based on inter agent vectors that produce theagent resultant magnitude This model
however is not su cient to give an indication of the swarm “state' as an overall metric.
To improve the metric clari cation is required in terms of th e deviation from the agent
resultant magnitude norm. The variation in the metric is the standard deviation of the
entire swarm from the mean of the inter-agent potential magntudes (Equation 3.2).

The standard deviation is calculated as Equation 3.4 where ,(S) is thF()a stan%ard devi-
ation at a time t and p(S) is the mean at the same point inPtime. k2S  B2nbr(b)
iterates over every agent in the swarm and its neighbours and , g jnbr(b)j calculates
the total number of inter-agent relationships.
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X 2
P(K)  p(S)
b2S b02nbrg))
jnbr(b)j
b2 S

©
—~
n
~
I}
~coococoe<

(3.4)

The metric for the internal movement is a set of numbers, the nean and standard
deviation of the swarm's internal agent resultant magnitude derived from each agent
and its neighbour interactions Equation (3.5). The pair p(S), p(S) may be written

informally as:

p= p(S) p(S) (3.5)

3.9 Distance metric

The distance based internal movement is measured by identfng the mean length of
the vectors between an agent and its neighbours. As with thegent resultant magnitude
a coordination algorithm produces Jjitter' which is the variations from the mean. In the
case of the distance based metric the jitter is identi ed by the changes in the distances
rather than the changes in vector magnitude @gent resultant magnitude. The distance
metric is the mean and the standard deviation “jitter' of the inter-agent distances.

3.10 Calculating distance based internal movement

The relative position vector generated for an agentb to its neighbour t° bt, is shown
in (Equation 2.2). The magnitude of that vector gives the distance between two agents.
For an individual agent the average magnitude ¢(b) is calculated as Equation 3.6 where
b is the agent andjnbr(b)j is the number of neighbours.

X
kbisk

k%2 nbr (b)

o= by

(3.6)

Equation 3.6 identi es the mean distance for an individual agent. The mean distance for
a swarm is calculated by Equation 3.7. All the inter-agent irteractions must be included
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P
for the swarm (§). |, jnbr(b)j calculates how many inter-agent relationships exist in
the swarm algd 12 nbr (b kbidk calculates the total distance between each agent and its
neighbours. |, iterates over all the agents in the swarm G).

X X
kbk

b2§(b°2nbr(b)
jnbr(b)j
b2 S

d(S) = (3.7)

3.11 Variance in distance metric

The mechanism above provides an overall indication of the ditribution of the agents.

This model, as with the agent resultant magnitude model, is @t su cient to give an

indication of the internal distribution of the agents. The addition of the standard de-

viation from the norm clari es the distribution within the s warm as shown in equa-

gon 3.8Ij (kbtsk (S))? is the square of the di erence in a distance to the mean and
s  wenor(p Calculates the number of inter-agent interactions.

X X 2
kb d(S)

~ccccoe<

b2S b2 nbr(h)

jnbr(b)j
b2s

(o}
—~
n
~

1

(3.8)

The distance metric for the internal distribution of the agents is the pair consisting of
d(S), 4(S) the mean and the standard deviation of the swarm's internal resultant
distances from every agent in the swarm. This can be writtenmformally as:

a= d(S) d(S) (3.9

3.12 Conclusion - metric comparison

The two metrics appear to be similar in terms of the measuremst of the structure of
a swarm. The main di erence is in how these two metrics can be sed when examining
the state of the swarm.
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Both metrics identify the state of a swarm with respect to variations in the disbursement
of the agents from an average distribution.

The main di erence in the metrics is that the distance metric is based upon the physical
distribution of the agents and the magnitude based metric is based upon thigical
interaction of the agents.

The distance based metric provides and analysis of the actdaistribution of the agents at
a point in time and allows the agitation of the swarm to be assesed without considering
the possible distribution of agents that the eld e ects could produce.

The agent resultant magnitude metric provides a view of the interaction magnitude.
This provides an indication of the swarm's potential movement. This is independent of
the physical distribution. The lack of dependence on the phgical distribution allows
the metric to be used in heterogeneous eld e ect swarmsx 8.2.1 where the physical
distribution may vary.

Combining the two metrics allows a deeper evaluation of a swan to be made. Consider
the following: the repulsion eld is increased but the internal distances do not change
as a result the agent resultant magnituderises: This indicates "something' is con ning
the swarm's distribution. This analysis could be used in idetifying e ective swarm
distribution for the coverage of a sensor array as discussdoy Ramaithitima et al. [121]



4. SWARM TYPE IDENTIFICATION

This chapter applies the metrics de ned in chapter 3 to identfy how the cohesion and
repulsion eld e ects of the interaction vector aect the internal movement and the
vector magnitudes between agents in a swarm.

There are two distinct inter-agent structures that can emerge in a boid-based swarm,
hexagonally-connectedor hyper-connected These two swarm types are the result of the
cohesion eld e ect detecting immediate neighbours only ard when the neighbour eld
e ect range extends beyond immediate neighbours to includeadditional agents.

If the goal is to maximise the coverage of an area by a swarm'sgegnts then a hexagonal
lattice is the most appropriate structure. In a hexagonally-connectedswarm agents
have visibility only of their immediate neighbours and are una ected by agents beyond
those neighbours. This e ect can be implemented by ignoringagents beyond the initial
neighbours detected or con ning the eld e ects such that th e connections do not occur.
If the eld e ects extend beyond the immediate neighbours swch that further agents
are detected then there will be additional vectors a ecting the calculations of an agent's
interaction vectors. These additional vectors cause the structure to change lagally from
a lattice to a mesh. A mesh structure is ahyper-connectedswarm.

4.1 Internal movement testing (static swarms)

To evaluate the metrics simulation parameters (eld e ects) need to be created such
that they generate the two swarm types (Table 4.1).

Table 4.1 shows the parameter requirements for two swarm typs. The parameters in the
Hexagonalcolumn generate a swarm structure where an agent can only dett immediate

neighbours. The parameters in theHyper column allow agents to detect agents beyond
their immediate neighbours and therefore create addition&neighbour connections which
results in a hyper-connected swarm.
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Weight com- Hexagonal Hyper Description

ponent Swarm connected

Sample Rate 100 100 ms - Unit sampling interval

K¢ 5 5 weight adjuster for cohe-
sion bias

Ky 15 15 weight adjuster for repul-
sion bias

Kqg 0 0 weight adjuster for direc-
tional bias

Cohesion eld 50 60 units

Repulsion eld 40 40 units

Speed 20 20 units/s

Tab. 4.1: Swarm Weighted Model

The two sets of parameters are simulated using a swarm of 200gants randomly dis-
tributed in an environment. The simulation generates data a described inx 2.13. The
data extracts contain the distances and inter-agent magnitides (nteraction vectors)
produced by the parameters.

4.2 Hexagonal swarm analysis

In a hexagonal swarm the eld e ects cause the agents to form aregular lattice. All
the agents tend towards an even distributed with similar digances between each agent
and its neighbours. In a well structured deployment, the agats in the swarm will show
limited variation in the inter-agent distances and the interaction vectors. A perfect
distribution is very unlikely in a swarm of agents due to the constant movement of the
agents adjusting their positions to obtain an optimum position and the agents moving
at a constant speed.

42.1 Distance based metric

The distance analysis graph (Figure 4.1) for the hexagonalwarm (using the parameters
in Table 4.1, repulsion eld 40 units, cohesion eld 60 units) shows the distance metric
being applied to the swarm over a period of 200 cycles. The gpd shows a trace of the
distance with the standard deviation displayed as error bas above and below the mean.
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The swarm is initially (0-20 cycles) in a state of disorganisition, where the agent dis-
tribution is varied. The swarm then enters a phase where the bxagons are forming
and the swarm starts to stablise (20-50 cycles). After about50 cycles the eld e ects
have stabilised the swarm structure and the swarm settles ta more stable state for the
given set of parameters. The swarm then uctuates as the resiual internal movement
maintains the swarm's structure. At this point the internal movement (jitter) is the
“background noise' generated by the eld e ects to maintain the swarm's structure.

Fig. 4.1: Hexagonal swarm - distance metric

Figure 4.2 shows the distribution of the inter-agent distarces for the duration of the
simulation. The data forms a bell shaped distribution with a mean distance of approx-
imately 37 units, the mean distance is the average of all therter agent distances as
shown in Figure 4.1. The graph shows the changes in the distoution of distances based
on the aggregation of the whole simulation.



4. Swarm type identi cation 48

Fig. 4.2: Distance distribution

Figures 4.3 and 4.4 show the distributions at each time cycleand shows the changes in
the distribution of the distances as the agents coalesce inta stable structure. Figure 4.3
shows the initial distribution for the time intervals from 0 to 100 cycles (10 seconds).
As the cycles progress the mean increases and the standardwi&tion reduces as the
inter-agent distances equalise. Figure 4.4 shows the naltate of the swarm after 10

seconds.



4. Swarm type identi cation

il o‘t"‘"&’a’f’%’a“'

N «A H
M‘ M» H
.42.!"&4".\“'"«« | ‘

m
m‘ ‘

Fig. 4.3: Distance distribution / Time 0-10 seconds

."W" "Qh l%,‘ \ ‘
.’ 'M Wn\lm‘"
‘ ‘wa‘",“ww
i o”‘ o il
w" .W'w’o l’

‘M‘&
l

»'H
\
i

‘h
i

'
‘

v\/l"\."
i
wM\M\,«\H w\

‘n

(“‘C’Q‘m‘“ ‘ ‘Im WA \\\\\‘

Fig. 4.4: Distance distribution / Time 10-0 seconds

49



4. Swarm type identi cation 50

4.2.2 Agent resultant magnitude (  interaction vector ) based metric

The distribution of the interaction vector magnitude can be plotted in the same manner
as the distances. Figure 4.6 shows the distribution of the agnts based on thenteraction
vector magnitude for the entire duration of the simulation. As with the distance based
metric the data forms a normal bell shaped distribution with a mean magnitude evolving
in time as shown in Figure 4.5. Figure 4.6 includes negative agnitudes, this indicates
that sections of the swarm are expanding.

Fig. 4.5: Hexagonal swarm - Agent resultant magnitude metric
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Fig. 4.6: Agent resultant magnitude distribution

Figure 4.7 and 4.4 show the distributions at each time cycle ad show the change in
the distributions of the magnitudes. As with the distance graphs Figure 4.7 shows the
distribution at time interval 0 to 100 and Figure 4.8 shows the nal state of the swarm
after 10 seconds (100 cycles).

Fig. 4.7: Agent resultant magnitude distribution / Time 0-10 seconds
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Fig. 4.8: Agent resultant magnitude distribution / Time 10-0 seconds

The hexagonal structure is the most stable structure [50] ad can be classed as a swarm's
most e cient state as the swarm is maximally distributed wit h agents having minimal
or no cross connected agents. These results show that the @le ects are producing a
swarm that will tend towards having all distances equal whid will produce the hexagonal
e ect as shown in Figure 2.8 on page 23.

4.3 Hyper-connected swarm analysis

When the eld e ects create a hyper-connected swarm the inte connectivity of the
agents create a multi-modal distribution of the inter-agert distances. Figure 4.9 shows
the inter-agent distances highlighted, near neighbours irgreen and extended neighbours
in red. This is detectable in terms of how the internal movemat metrics present these
distributions. A hyper-connected swarm has a high level of chesion causing the swarm to
become very in exible. The swarm appears “stable' in terms bw the overall structure is
maintained (Figure 4.10), however, there is a greater varition in the interaction vector
magnitudes, and resultant distances, than in a hexagonal sarm. The distances will
maintain a good sound structure but the standard deviation fom the mean is high.
This elevated standard deviation (Figure 4.11 and 4.15) inécates that the swarm is not
at its optimum distribution as the swarm's agents could be distributed further covering a
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greater area without causing the swarm to break up. This can le achieved by increasing
the repulsion eld e ect. In some circumstances this hyperconnected structure may
be a desirable con guration to create a more ‘rigid' platform: for instance to provide a
close proximity wireless sensor network with multiple routing pathways. The connected
distribution that causes the high standard deviation can beseen in Figure 4.12. There
are two distinct peaks in the inter-agent distribution at ap proximately 38 and 58 units

Fig. 4.9: Inter-agent links in a hyper-connected swarm

Fig. 4.10: Hyper-connected structure
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4.3.1 Distance based metric

The distance based analysis graph (Figure 4.11) for the hypeconnected swarm shows
the metrics being applied to the swarm over a period of 200 cyes.

The swarm is initially in a state of disorganisation and the average distance over the rst
20 cycles shows the swarm compressing as the average distarfalls. The swarm then
enters a phase where the mesh structure forms and the swarmasts to stabilise. After
about 100 cycles the eld e ects have resolved and the swarmteucture settles to its most
stable state for the given set of parameters. As with the hexgonal swarm the hyper-
connected swarm's internal movement uctuates to maintain the swarm's structure.

Fig. 4.11: Distance metric

Figure 4.12 shows the distribution of the agents over the erte simulation. By looking at
the data in terms of the distribution graph it is possible to identify why the standard de-
viation is greater than that of the hexagonal swarm. The eld e ects, in this simulation,
have created a bi-modal hyper-connected swarm. A bi-modalvgarm is created when the
agents in a swarm have the cohesion eld e ect set such that agnts are neighbours one
level further out from the immediate neighbours as shown in kgure 4.10. The result of
this type of connectivity is that the distribution of the age nts distances will produce two
peaks in the distribution graph.
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Fig. 4.12: Distance distribution

Figure 4.13 shows the initial distribution of the agents andthe progression of the dis-
tribution of the swarm agents until 10s into the simulation. The initial state of the
distribution at Os is the same for both swarm types. The impad of the eld e ects
are immediate as the swarm stabilises to a bi-modal distribtion. Figure 4.14 shows
the distribution of the data at 10 seconds (100 cycles) showig the resultant bi-modal
frequencies the swarm is therefore a hyper-connected swarm
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Although the eld e ects in this simulation have produced a b i-modal distribution in-

creasing the neighbour distance will create further swarmypes that will be multi-modal
as more distant agents are identi ed as neighbours
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4.3.2 Agent resultant magnitude based metric

tances. Figure 4.16 shows the distribution of the agents basl on potential magnitude for
the entire duration of the simulation. As with the distance based metric the data forms

a bi-modal distribution with a mean magnitude as shown in Figure 4.15. Figure 4.16

The distribution of the potential magnitudes can be visualised in the same way as the dis-
shows negative magnitudes which indicates sections of thevsrm are expanding.

Fig. 4.15: Agent resultant magnitude metric
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Fig. 4.16: Agent resultant magnitude distribution

Figure 4.17 and 4.18 show the distributions at each time cyd and visualise the change in
the distributions of the agent resultant magnitudes. As with the distance visualisations
Figure 4.17 shows the initial distribution at time interval 0 to 100 and Figure 4.18 shows
the nal state of the swarm after 10 seconds (100 cycles). Bdt show the bi-model state
of the swarm emerging.

Fig. 4.17: Agent resultant magnitude distribution / Time 0-10s
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Fig. 4.18: Agent resultant magnitude distribution / Time 10-0s

4.4 Metric comparison

Looking at the two swarm types together the characteristicsof the swarm types present
themselves as change in the standard deviation from eitherhte average distance or the
average magnitude of the agents in the swarm.

Figure 4.19 shows the swarm with the two di erent eld e ects for cohesion. The metric
used in this analysis is the distance between agents. The rel shows that the deviation
on the hyper-connected swarm (shown in green) has a higher atdard deviation than
the hexagonal swarm (shown in brown). This is caused by the bmodal nature of the
hyper-connected swarm.

Figure 4.20 shows the analysis of the agent resultant magnitde between the agents in
the swarm which demonstrates the same characteristic emengg.
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