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ABSTRACT

Swarming has been observed in many animal species, including �sh, birds, insects and

mammals. These biological observations have inspired mathematical models of dis-

tributed coordination that have been applied to the development of multi-agent robotic

systems, such as collections of unmanned autonomous vehicles (UAVs). The advantages

of a swarming approach to distributed coordination are clear: each agent acts accord-

ing to a simple set of rules that can be implemented on resource-constrained devices,

and so it becomes feasible to replicate agents in order to build more resilient systems.

However, there remain signi�cant challenges in making the approach practicable. This

thesis addresses two of the most signi�cant: coordination and scalability. New coordi-

nation algorithms are proposed here, all of which manage theproblem of scalability by

requiring only local proximity sensing between agents, without the need for any other

communications infrastructure.

A major source of ine�ciency in the deployment of a swarm is `oscillation': small move-

ments of agents that arise as a side e�ect of the application of their rules but which

are not strictly necessary in order to satisfy the overall system function. The thesis

introduces a new metric for `oscillation' that allows it to be identi�ed and measured in

swarm control algorithms.

A new perimeter detection mechanism is introduced and applied to the coordination

of goal-based swarms. The mechanism is used to improve the internal coordination of

agents whilst maintaining a directional focus to the swarm; this is then analysed using

the new metric.

A mechanism is proposed to allow a swarm to exhibit a `healing' behaviour by identi-

fying internal perimeter edges (doughnuts) and then altering the movement of agents,

based upon a simple criterion, to remove the holes; this alsohas the emergent e�ect of

smoothing the outer edges of a swarm and creating a more uniform swarm structure.

Area coverage is an important requirement in many swarm applications. Two new,

e�cient area-�lling techniques are introduced here and exit conditions are identi�ed to

determine when a swarm has �lled an area.

In summary, the thesis makes signi�cant contributions to the analysis and design of

e�cient control algorithms for the coordination of large-s cale swarms.



CONTENTS

1. Introduction and overview : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.1 Biological swarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Computational swarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Foraging swarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Ant-colony swarms . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Boid-based swarms . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Centralised swarms . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Swarming applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Focus of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Methods, techniques, tools : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

2.1 Modelling agents and swarms . . . . . . . . . . . . . . . . . . . . . . . .. 11

2.2 Modelling agents and environment interactions . . . . . . . . . . . . . . . 12

2.3 Boid-based model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Swarm cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Swarm repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Swarm agents/obstacles interactions . . . . . . . . . . . . . . .. . . . . . 19

2.7 Swarm direction (goal based swarms) . . . . . . . . . . . . . . . . .. . . . 20



Contents v

2.8 Weighted movement-direction model . . . . . . . . . . . . . . . . . . . . . 20

2.9 Modelling movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 Stable swarm structures . . . . . . . . . . . . . . . . . . . . . . . . . .. . 22

2.11 Resultant swarm model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.12 Swarm deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.13 Swarm simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.13.1 Simulator overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.13.2 Simulator architecture . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.13.3 Simulated time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.13.4 Simulated �eld e�ects . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.13.5 Simulated agent movement . . . . . . . . . . . . . . . . . . . . . . 29

2.13.6 Simulator data capture . . . . . . . . . . . . . . . . . . . . . . . . 29

2.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. Swarm movement metric : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

3.1 Inter-agent vector magnitude e�ect on internal movement . . . . . . . . . 31

3.2 Swarm movement analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Internal movement and the null vector . . . . . . . . . . . . . . . . . . . . 37

3.4 Residual internal movement (Jitter) . . . . . . . . . . . . . . . . . . . . . 38

3.5 Magnitude based metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Distance based metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Magnitude based internal movement model . . . . . . . . . . . . .. . . . 40

3.8 Variance in agent resultant magnitude metric . . . . . . . . . . . . . . . . 41

3.9 Distance metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 Calculating distance based internal movement . . . . . . .. . . . . . . . . 42

3.11 Variance in distance metric . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.12 Conclusion - metric comparison . . . . . . . . . . . . . . . . . . . .. . . . 43



Contents vi

4. Swarm type identi�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

4.1 Internal movement testing (static swarms) . . . . . . . . . . . . . . . . . . 45

4.2 Hexagonal swarm analysis . . . . . . . . . . . . . . . . . . . . . . . . . .. 46

4.2.1 Distance based metric . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Agent resultant magnitude based metric . . . . . . . . . . . . . . . 50

4.3 Hyper-connected swarm analysis . . . . . . . . . . . . . . . . . . . .. . . 52

4.3.1 Distance based metric . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Agent resultant magnitude based metric . . . . . . . . . . . . . . . 57

4.4 Metric comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Static swarm conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 Arbitrary sized swarms . . . . . . . . . . . . . . . . . . . . . . . . 65

5. Swarm coordination - perimeter detection : : : : : : : : : : : : : : : : : 68

5.1 Baseline speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Destination vector application . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Swarm destination vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Identifying the coordinator role . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Monolithic swarm - (all-agent) . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5.1 Baseline and e�ect of no perimeter detection . . . . . . . .. . . . 75

5.6 Simple multifaceted swarm (basic-count) . . . . . . . . . . . . . . . . . . . 79

5.6.1 Simple multifaceted algorithm . . . . . . . . . . . . . . . . . . . . 80

5.6.2 Basic-count e�ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Complex multifaceted swarm (full-perimeter) . . . . . . . . . . . . . . . . 83

5.7.1 Full-perimeter coordinator detection . . . . . . . . . . . . . . . . . 85

5.7.2 Baseline/full perimeter comparison . . . . . . . . . . . . . . . . . . 92

5.7.3 Complex Multifaceted Swarm (full-perimeter) - Simulation . . . . 94



Contents vii

5.8 Baseline and e�ect comparison . . . . . . . . . . . . . . . . . . . . . .. . 95

5.8.1 Internal movement comparison . . . . . . . . . . . . . . . . . . . . 95

5.8.2 Swarm GPS utilisation . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.8.3 Swarm path propagation comparison . . . . . . . . . . . . . . . .. 100

5.8.4 Speed of Swarm (Based on centroid) . . . . . . . . . . . . . . . . .103

5.8.5 Alternate weightings for directional bias . . . . . . . . . . . . . . . 105

5.8.6 Swarm coordination evaluation . . . . . . . . . . . . . . . . . . . . 112

5.9 Energy e�ciency evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.10 Message Propagation Performance . . . . . . . . . . . . . . . . . .. . . . 114

5.10.1 SenseSwarm Message Propagation Comparison . . . . . . .. . . . 115

5.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6. Swarm coordination - concave reduction : : : : : : : : : : : : : : : : : : 118

6.1 Concave reduction implementation . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Concave reduction agent movement . . . . . . . . . . . . . . . . . . .. . . 124

6.2.1 Perimeter Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Concave reduction mathematical model . . . . . . . . . . . . . . .. . . . 126

6.4 Application of concave reduction on perimeter agents . .. . . . . . . . . . 127

6.5 Application of concave reduction on concave perimeters(voids) . . . . . . 138

6.6 Concave reduction for object surrounding . . . . . . . . . . . .. . . . . . 147

6.7 Concave reduction for destination-based swarms . . . . . .. . . . . . . . 154

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7. Swarm coordination - area ooding : : : : : : : : : : : : : : : : : : : : : : 161

7.1 Field e�ect modi�cation with cohesion and repulsion . . . . . . . . . . . . 162

7.1.1 Magnitude analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.1.2 Distance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



Contents viii

7.1.3 Combined magnitude and distance analysis . . . . . . . . . .. . . 169

7.2 Field e�ect modi�cation with repulsion only . . . . . . . . . . . . . . . . . 171

7.2.1 Inter-agent magnitude analysis . . . . . . . . . . . . . . . . . . . . 175

7.2.2 Distance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8. Summary and additional work : : : : : : : : : : : : : : : : : : : : : : : : : 183

8.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.1.1 Model/Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.1.2 Inter-agent magnitude metric . . . . . . . . . . . . . . . . . . . . . 184

8.1.3 Perimeter coordination . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.1.4 Concave reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.1.5 Flood �lling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2.1 Magnitude metric application . . . . . . . . . . . . . . . . . . . . . 187

8.2.2 Area ooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2.3 Path following and shape forming swarms . . . . . . . . . . . .. . 188

8.2.4 Self optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 189

Appendix 206

A. ENVIRONMENT SETUP : : : : : : : : : : : : : : : : : : : : : : : : : : : 207

A.1 MATPLOTLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.2 PYGAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.3 PYTHON EDITOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

A.4 MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208



Contents ix

B. PySwarmWorld Code Listing : : : : : : : : : : : : : : : : : : : : : : : : : : 209

B.1 Graphical Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B.2 CLI Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

C. APPENDIX 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 219

C.1 Analysis database schema . . . . . . . . . . . . . . . . . . . . . . . . . .. 219

D. SIMULATOR DATA SETS : : : : : : : : : : : : : : : : : : : : : : : : : : : 220

E. Simulator and data capture : : : : : : : : : : : : : : : : : : : : : : : : : : : 223

E.1 Python Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

E.1.1 Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

E.1.2 Repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

E.2 Swarm simulator object model . . . . . . . . . . . . . . . . . . . . . . . . 226

E.3 Simulator data capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

E.4 Data capture implementation . . . . . . . . . . . . . . . . . . . . . . . . . 227

E.5 Data capture tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

E.5.1 PARTICIPANT table (Agents) . . . . . . . . . . . . . . . . . . . . . 228

E.5.2 NEIGHBOUR table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

E.6 Simulator data aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 228

E.6.1 Data aggregation views . . . . . . . . . . . . . . . . . . . . . . . . 229

E.7 Data graphing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231



LIST OF FIGURES

2.1 Agent �eld e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Cohesion: Originb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Agent �xed magnitude repulsion . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Graduated agent repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Proportional agent repulsion . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Repulsion comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Obstacle repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Stable swarm formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Stable hexagonal formation . . . . . . . . . . . . . . . . . . . . . . . .. . 23

2.10 Disorganised swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.11 Stable swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.12 Swarm stabilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.13 Simulator process overview . . . . . . . . . . . . . . . . . . . . . . .. . . 28

3.1 Vectors on line of separation . . . . . . . . . . . . . . . . . . . . . . .. . . 32

3.2 Internal movement cohesion (no repulsion) . . . . . . . . . . .. . . . . . . 34

3.3 Internal movement repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Internal movement cohesion . . . . . . . . . . . . . . . . . . . . . . . .. . 36

3.5 Internal movement equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Equilibrium with null vectors . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Directional movement and the null vector . . . . . . . . . . . . . . . . . . 38



List of Figures xi

4.1 Hexagonal swarm - distance metric . . . . . . . . . . . . . . . . . . .. . . 47

4.2 Distance distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Distance distribution / Time 0-10 seconds . . . . . . . . . . . . . . . . . . 49

4.4 Distance distribution / Time 10-0 seconds . . . . . . . . . . . . . . . . . . 49

4.5 Hexagonal swarm - Agent resultant magnitude metric . . . . . . . . . . . 50

4.6 Agent resultant magnitude distribution . . . . . . . . . . . . . . . . . . . 51

4.7 Agent resultant magnitude distribution / Time 0-10 seconds . . . . . . . . 51

4.8 Agent resultant magnitude distribution / Time 10-0 seconds . . . . . . . . 52

4.9 Inter-agent links in a hyper-connected swarm . . . . . . . . .. . . . . . . 53

4.10 Hyper-connected structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.11 Distance metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.12 Distance distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.13 Distance distribution / Time 0-10 seconds . . . . . . . . . . . . . . . . . . 56

4.14 Distance distribution / Time 10-0 seconds . . . . . . . . . . . . . . . . . . 56

4.15 Agent resultant magnitude metric . . . . . . . . . . . . . . . . . . . . . . 57

4.16 Agent resultant magnitude distribution . . . . . . . . . . . . . . . . . . . 58

4.17 Agent resultant magnitude distribution / Time 0-10s . . . . . . . . . . . . 58

4.18 Agent resultant magnitude distribution / Time 10-0s . . . . . . . . . . . . 59

4.19 Distances metric comparison . . . . . . . . . . . . . . . . . . . . . .. . . 60

4.20 Agent resultant magnitude metric comparison . . . . . . . . . . . . . . . . 60

4.21 Distance based metric . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 61

4.22 Agent resultant magnitude based metric . . . . . . . . . . . . . . . . . . . 61

4.23 Distance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 62

4.24 Distance comparison / Time 0-10 seconds . . . . . . . . . . . . .. . . . . 62

4.25 Distance comparison / Time 10-0 seconds . . . . . . . . . . . . .. . . . . 63

4.26 Agent resultant magnitude comparison . . . . . . . . . . . . . . . . . . . . 63



List of Figures xii

4.27 Agent resultant magnitude comparison / Time 0-10 seconds . . . . . . . . 64

4.28 Agent resultant magnitude comparison / Time 10-0s . . . . . . . . . . . . 64

4.29 Swarm size distance comparison . . . . . . . . . . . . . . . . . . . .. . . . 66

4.30 Swarm size magnitude comparison . . . . . . . . . . . . . . . . . . .. . . 66

5.1 Sample swarm 200 agents initial state . . . . . . . . . . . . . . . .. . . . 69

5.2 Baseline internal movement - magnitude . . . . . . . . . . . . . .. . . . . 70

5.3 Baseline internal movement - distance . . . . . . . . . . . . . . .. . . . . 71

5.4 Baseline swarm path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Monolithic agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Baseline/All agents comparisoninter-agent vector magnitude . . . . . . . 76

5.7 Baseline/All agents comparison (distance) . . . . . . . . . .. . . . . . . . 77

5.8 Conical destination trajectories . . . . . . . . . . . . . . . . . . . . . . . . 78

5.9 Baseline/All agents magnitude comparison . . . . . . . . . . .. . . . . . . 78

5.10 Baseline/All agents distance comparison (60 seconds). . . . . . . . . . . . 79

5.11 Baseline/basic-count magnitude potential comparison . . . . . . . . . . . 81

5.12 Baseline and basic-count distance comparison . . . . . . .. . . . . . . . . 82

5.13 Simple multifaceted agents . . . . . . . . . . . . . . . . . . . . . . .. . . 83

5.14 Swarm perimeters and voids . . . . . . . . . . . . . . . . . . . . . . . .. . 84

5.15 Swarm with full perimeter detection . . . . . . . . . . . . . . . . . . . . . 84

5.16 Complex multifaceted agents . . . . . . . . . . . . . . . . . . . . . .. . . 85

5.17 Neighbour visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.18 Convex multifaceted agents . . . . . . . . . . . . . . . . . . . . . . .. . . 89

5.19 Perimeter detection error . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.20 Simulator perimeter detection . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.21 Baseline/Full perimeter magnitude comparison . . . . . . . . . . . . . . . 93



List of Figures xiii

5.22 Baseline/Full perimeter distance comparison . . . . . . .. . . . . . . . . . 94

5.23 Baseline distance comparison . . . . . . . . . . . . . . . . . . . . .. . . . 96

5.24 Baseline distance comparison . . . . . . . . . . . . . . . . . . . . .. . . . 96

5.25 Baseline magnitude comparison . . . . . . . . . . . . . . . . . . . .. . . . 97

5.26 Baseline and magnitude comparison . . . . . . . . . . . . . . . . .. . . . 97

5.27 200 agent swarm GPS Usage . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.28 Swarm propagation path comparison . . . . . . . . . . . . . . . . .. . . . 101

5.29 Swarm propagation path comparison . . . . . . . . . . . . . . . . .. . . . 102

5.30 Swarm traversal at end of 60s run . . . . . . . . . . . . . . . . . . . .. . 103

5.31 200 agent swarm path (over 20s period) . . . . . . . . . . . . . . .. . . . 105

5.32 Neighbour count e�ect from destination vectors . . . . . . . . . . . . . . . 106

5.33 Neighbour count e�ect from balanced directional bias . . . . . . . . . . . 107

5.34 Swarm distance analysis . . . . . . . . . . . . . . . . . . . . . . . . . .. . 107

5.35 Swarm distance analysis . . . . . . . . . . . . . . . . . . . . . . . . . .. . 108

5.36 Swarm magnitude analysis . . . . . . . . . . . . . . . . . . . . . . . . .. . 109

5.37 Swarm magnitude analysis . . . . . . . . . . . . . . . . . . . . . . . . .. . 109

5.38 Swarm path analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

5.39 Swarm path analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

5.40 Swarm path analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

5.41 Omni-ball motor arrangement . . . . . . . . . . . . . . . . . . . . . . . . 113

5.42 Message Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

6.1 Stable swarm edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Concave reduction agents . . . . . . . . . . . . . . . . . . . . . . . . . .. 121

6.3 Inner perimeter e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Outer perimeter e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



List of Figures xiv

6.5 Agent concave motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Inter-agent e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Perimeter Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

6.8 Baseline/Concave e�ect distance . . . . . . . . . . . . . . . . . . . . . . . 129

6.9 Baseline/Concave e�ect magnitude . . . . . . . . . . . . . . . . . . . . . . 130

6.10 Baseline/Concave perimeter size . . . . . . . . . . . . . . . . . .. . . . . 131

6.11 Outer perimeter snapping e�ects . . . . . . . . . . . . . . . . . . . . . . . 132

6.12 Baseline/Concave path e�ect (after 600 iterations / 60s) . . . . . . . . . . 132

6.13 Baseline/Concave path e�ect (after 600 iterations / 60s) . . . . . . . . . . 133

6.14 Baseline/Concave e�ect distance (cohesion �led 80/ repulsion �eld 60) . . 135

6.15 Baseline/Concave e�ect magnitude (cohesion �eld 80 / repulsion �eld 60) 135

6.16 Baseline/Concave perimeter size (cohesion �eld 80 / repulsion �eld 60) . . 136

6.17 Simulation end points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.18 Baseline/Concave path e�ect (repulsion �eld 80 / cohesion �eld 60) . . . . 137

6.19 Baseline/Concave path e�ect (cohesion �eld 80 / repulsion �eld 60) . . . . 138

6.20 Simulation end points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.21 200 agent swarm with void . . . . . . . . . . . . . . . . . . . . . . . . . .140

6.22 Concave reduction stability e�ect distance . . . . . . . . . . . . . . . . . . 141

6.23 Concave reduction stability e�ect distance . . . . . . . . . . . . . . . . . . 142

6.24 Concave reduction stability e�ect magnitude . . . . . . . . . . . . . . . . 143

6.25 Concave reduction stability e�ect magnitude . . . . . . . . . . . . . . . . 144

6.26 Concave reduction perimeter e�ect . . . . . . . . . . . . . . . . . . . . . . 145

6.27 Agent movement comparison . . . . . . . . . . . . . . . . . . . . . . . .. 146

6.28 Agent movement comparison . . . . . . . . . . . . . . . . . . . . . . . .. 147

6.29 Concave reduction oil slick surrounding . . . . . . . . . . . .. . . . . . . 148

6.30 Oil spill containment simulation . . . . . . . . . . . . . . . . . . . . . . . . 149



List of Figures xv

6.31 Baseline oil spill containment . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.32 Concave reduction spill containment . . . . . . . . . . . . . . . . . . . . . 151

6.33 Oil spill containment distance . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.34 Oil spill containment magnitude . . . . . . . . . . . . . . . . . . . . . . . 153

6.35 Swarm perimeter size comparison . . . . . . . . . . . . . . . . . . .. . . . 154

6.36 Swarm perimeters and voids . . . . . . . . . . . . . . . . . . . . . . . .. . 155

6.37 Initial con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.38 Swarm without concave reduction (repulsion �eld 60 units for obstacle) . 158

6.39 Swarm with concave reduction (repulsion �eld 60 units for obstacle) . . . 159

6.40 Swarm structure with no concave reduction . . . . . . . . . . .. . . . . . 160

7.1 Space �lling via �eld e�ect expansion . . . . . . . . . . . . . . . . . . . . . 164

7.2 Magnitude metric 0-120 seconds . . . . . . . . . . . . . . . . . . . . .. . 165

7.3 Magnitude metric 0-60 seconds . . . . . . . . . . . . . . . . . . . . . .. . 166

7.4 Magnitude metric 60-120 seconds . . . . . . . . . . . . . . . . . . . .. . . 167

7.5 Distance metric 0-120 seconds . . . . . . . . . . . . . . . . . . . . . .. . . 167

7.6 Distance metric 0-60 seconds . . . . . . . . . . . . . . . . . . . . . . .. . 168

7.7 Distance metric 60-120 seconds . . . . . . . . . . . . . . . . . . . . .. . . 169

7.8 Distance metric 80-110 seconds . . . . . . . . . . . . . . . . . . . . .. . . 170

7.9 Magnitude metric 80-110 seconds . . . . . . . . . . . . . . . . . . . .. . . 170

7.10 Distance metric 100-120 seconds . . . . . . . . . . . . . . . . . . .. . . . 171

7.11 Magnitude metric 100-120 seconds . . . . . . . . . . . . . . . . . .. . . . 171

7.12 Space �lling via repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.13 Magnitude metric 0-450 seconds . . . . . . . . . . . . . . . . . . . .. . . 175

7.14 Magnitude metric 0-65 seconds . . . . . . . . . . . . . . . . . . . . .. . . 176

7.15 Magnitude metric 70-85 seconds . . . . . . . . . . . . . . . . . . . .. . . 177



List of Figures xvi

7.16 Magnitude metric 235-315 seconds . . . . . . . . . . . . . . . . . .. . . . 178

7.17 Distance metric 0-450 seconds . . . . . . . . . . . . . . . . . . . . .. . . . 179

7.18 Distance metric 60-75 seconds . . . . . . . . . . . . . . . . . . . . .. . . . 179

7.19 Distance metric 70-85 seconds . . . . . . . . . . . . . . . . . . . . .. . . . 180

7.20 Distance metric 180-280 seconds . . . . . . . . . . . . . . . . . . .. . . . 181

7.21 Distance metric 235-315 seconds . . . . . . . . . . . . . . . . . . .. . . . 182

C.1 Analysis database schema . . . . . . . . . . . . . . . . . . . . . . . . . .. 219

E.1 Simulator object model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

E.2 Sample graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232



LIST OF TABLES

3.1 Swarm parameters model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Data extract (kr vr = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Data extract (jkcvcj < jkr vr j) . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Data extract (jkcvcj > jkr vr j) . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Data extract (jkcvcj � j kr vr j) . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Swarm Weighted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Swarm Weighted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Swarm GPS enabled coordinators . . . . . . . . . . . . . . . . . . . . .. . 100

5.3 Swarm centroid after stabilisation (40s) . . . . . . . . . . . . . . . . . . . 104

5.4 Swarm centroid after stabilisation (60s) . . . . . . . . . . . . . . . . . . . 104

5.5 Swarm distance and speed after stabilisation (40s-60s). . . . . . . . . . . 104

5.6 Distance to destination after run . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Swarm GPS proportional weighting . . . . . . . . . . . . . . . . . . . . . . 106

5.8 Energy consumption per agent . . . . . . . . . . . . . . . . . . . . . . .. 114

5.9 Energy consumption of swarm . . . . . . . . . . . . . . . . . . . . . . . .. 114

5.10 Energy consumption of swarm . . . . . . . . . . . . . . . . . . . . . . .. . 114

6.1 Baseline comparison for concave reduction . . . . . . . . . . .. . . . . . . 128

6.2 Baseline comparison for concave reduction . . . . . . . . . . .. . . . . . . 134

6.3 Comparison of perimeter size . . . . . . . . . . . . . . . . . . . . . . .. . 136



List of Tables xviii

6.4 Baseline comparison for concave reduction . . . . . . . . . . .. . . . . . . 139

6.5 Swarm coverage parameters . . . . . . . . . . . . . . . . . . . . . . . . .. 156

7.1 Swarm parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 �eld e�ect expansion sequence . . . . . . . . . . . . . . . . . . . . . .. . . 163

7.3 Swarm parameters repulsion only . . . . . . . . . . . . . . . . . . . .. . . 172

7.4 �eld e�ect expansion sequence . . . . . . . . . . . . . . . . . . . . . .. . . 172



ACKNOWLEDGEMENTS

I would like to thank my Mother for the mantra of `Keep on learn ing!' I will be forever

grateful.

I would like to thank my Wife who is both an inspiration and a pi llar to my existence,

without her there would be no me!

I would also like to thank my Supervisory team (Dr David Kendall, Dr Michael Brockway

and Prof. Ahmed Bouridane) without whom none of this would have been possible. I

hope that the University appreciate their dedication to teaching and research and bestow

upon them sabbaticals and research time so they may inuenceothers as they have

inuenced me.

I would also like to thank others who have inuenced me at di�erent stages in my life,

to mention but a few, Bill (William) Henderson, John Eakins and Adrian Robson and

from secondary school Mr (Dominic) James an inspirational teacher!



DECLARATION

I declare that the work contained in this thesis has not been submitted for any other
award and that it is all my own work. I also con�rm that this wor k fully acknowledges
opinions, ideas and contributions from the work of others. Any ethical clearance for
the research presented in this thesis has been approved. Approval has been sought and
granted by the Faculty Ethics Committee on 3rd March 2016.

Word count: 44,876

Name: Neil Eliot

Signature:

Date:



1. INTRODUCTION AND OVERVIEW

Swarming in the animal kingdom of ants, bees, �sh and birds for instance has long been

studied by scientists. From these studies mathematical models and algorithms have

evolved. The models and algorithms have in turn captured theinterest of computing

scientists who are interested in applying them to large groups of autonomous mobile

agents (`robots'). The cooperative coordination of these agents can take many forms

such as following a set path [62], existing in a static space [32, 39, 40] or foraging as

a colony [55, 47]. One of the attributes of swarms that has captured the interest of

scientists is that the models and algorithms used to coordinate them are generally sets

of simple rules. These simple rules cause the agents to appear to work cooperatively.

Swarms can also exhibit features or behaviours which were not expected. This is due

to the global e�ects of the simple algorithms being executedin a distributed manner.

These unexpected behaviours are known as̀emergent behaviours'[125, 126].

The ability to have autonomous agents working collaboratively has led to the develop-

ment of systems that use this phenomenon to solve problems indi�erent ways. In 1986,

before swarming was being widely used as a technology, therewas an explosion at the

Chernobyl nuclear power station. To determine the extent of the destruction, a robot

was deployed to inspect the reactor base and carry out surveillance of the damage to

the building [1]. The robot was manually operated and had no autonomous capabilities.

More recently, in 2015, a project was undertaken to carry outsurveillance of forest �re

perimeters [17]. The di�erence between these two surveillance projects was that rather

than employing a single robot to carry out the surveillance of the forests, a swarm of

decentralised autonomous agents was deployed. This illustrates a developing trend of

applying swarms to the problem of environmental surveillance.

1.1 Biological swarms

Swarming has been identi�ed in many species including �sh, birds, insects, and more

recently, mammals [146]. It is believed that this behaviourhas evolved over thousands of
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years, through natural selection, as a mechanism to improvethe survival of species [166].

Fish swarm in the form of shoals [112] in an attempt to make it more di�cult for

predators to catch them. It is thought that grouping together makes it di�cult for a

predator to isolate an individual [88].

Birds ock together for the same reason as �sh, to increase their survival prospects,

but also to improve the e�ciency of area coverage when feeding [112]. In the case of

starlings and their evening murmurings [162], it is believed that the ock is identifying

an optimal roost for itself, while ensuring its survival by disorientating predators. The

disorientation for the predator stems from the distributio n of the individuals in the ock

as it moves [20].

Locusts swarm when feeding to make best use of the food resource by increasing the

coverage of an area to ensure the resources are exhausted [48, 148].

Ants and bees live in colonies [73, 135] and it is believed they swarm to make best

use of their resources and also to allow specialisations within their communities. The

specialised individuals would not be able to survive alone but, as part of a colony, they

add value to the group. Ants for instance have specialisations such as soldier ants for

defence and nursing ants to look after pupae. In bee swarms there are workers that

forage and queens and drones that remain in the hive [16].

More recently there has been research to show that swarming-based behaviours exist

in higher order animals such as baboons [146], where they usea consensus-based deci-

sion process to determine a troupe's movement. Yao and Hwanghave analysed human

behaviour and found humans exhibitboid-basedbehaviours when in groups throughcohe-

sion (x 2.4) and repulsion (x 2.5) which they refer to asseparation, the third component

they discuss isalignment (x 2.7), which is a consensus-based directional movement [161].

Reynolds [124] describes this same structure when describing boid-basedmovement.

All these adaptations and behaviours have led to the ecologycommunity focusing on

how these behaviours emerge and to use computer simulation to emulate the behaviour,

and therefore understand the mechanisms the swarms use [34]. In the case of analysing

baboons, they used high-accuracy GPS trackers and with humans they used phone based

GPS data [146].

The general consensus is that nature, through natural selection, re�nes behaviours to

sustain a population or to help it adapt or expand. This has led to research into the me-

chanics of how animals interact to achieve these swarming e�ects [34, 108, 148]. Passino
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has analysed bee populations in a hive [135] and authored books on bio-mimicry. He

has also authored several papers on the computational theory of swarm stability with

Gazi [40, 39, 38]. This shows a link between the natural worldand computer science.

All these naturally occurring swarms provide paradigms that allow the categorisation of

swarms. Naturally occurring swarms include foraging-based (bees), colony-based (ants)

and ocking-based (�sh/birds). These basic swarming models have been used to inu-

ence how computational models are designed to mimic the behaviours found in nature.

These models can be applied to robotic swarms which are used for speci�c tasks based

upon behavioural requirements [82].

1.2 Computational swarms

Computational swarms are inspired by aspects of biologicalswarms. The degree to

which the biological swarm is emulated within the computational environment varies. A

prominent feature that is frequently emulated is the cooperative behaviour of the swarm

agents by simulating agents movements using repulsion and cohesion between the agents.

The emergent behaviours that simple algorithms create through these agent interactions

is the focus of this thesis.

1.2.1 Foraging swarms

Foraging swarms are composed of agents that emulate the natural world by carrying

out tasks that involve a permanent base. The tasks are carried out by agents to ensure

the colony survives or expands. The coordination in these types of swarm is for the

colony to maintain itself by using scout agents to locate resources that are required and

then to return those resources to the colony [38, 58, 85, 84].The foraging component of

this process is the locating of resources. There is also a communications component to

foraging swarms. Foraging agents inform the rest of the colony of the resource locations

to optimise the foraging tasks. Beeclust [115, 55], Swarm-agent [97] and other bee-

inspired algorithms [78] are all implementations of this type of swarming behaviour.

1.2.2 Ant-colony swarms

Ant-colony swarms [138, 96, 51, 89] are similar to foraging swarms in terms of their

interactions. The di�erence is in the way the agents communicate with each other. The
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agents move independently and there is no need for them to ensure proximity as the

agents follow prede�ned routes. The agents are therefore independent in that there is

no centralised coordinator and they act autonomously. The cooperation component of

the swarm is realised by agents highlighting desirable or undesirable routes. The agents

then follow the same trails back to a base and either reinforce or reduce the importance

of the routes by adding or removing a pheromone [154]. The purpose of the trails are

determined by identifying the needs of the colony centrally(at the base). In nature this

is exactly how ant colonies function [69]. Some robotic ant-colony simulations include

the concept of the `pheromone decay' process as found in biological ant colonies [127].

This process allows for changes in the priorities of the agents to be based on time as well

as reinforcement as a colony propagates through, or exists within, an environment.

1.2.3 Boid-based swarms

Boid-based swarms, as originally de�ned by Reynolds [124],are modelled on the be-

haviour of �sh and birds. They are composed of autonomous agents that are decen-

tralised and formulate their positions based upon an awareness of thelocation of their

neighbours [68, 25, 57]. The agents in a boid-based swarm areindependent and each

control their own position. The two major factors that creat e the swarming e�ect are

cohesionand repulsion. Cohesion ensures the swarm has a tendency to stay together as

a single entity. This has been used in the SmartBot project, where it has been found

that cohesion promotes the collaboration of autonomous agents [29, 30, 97]. Repulsion

ensures that the agents do not collide, and when balanced with cohesion create a well-

structured swarm. The balancing of these two factors is identi�ed by Gazi and Passino

in their swarm stability papers [40, 39, 38] and as part of theGUARDIAN project [130].

They also discuss cohesion and repulsion in their book on swarm optimisation [42].

A directional component can also be incorporated into the movement of agents. The

movement can be based on the direction of an agent's neighbours as in [124, 68], where

direction is referred to as alignment. Alignment is a consensus-based direction that the

agents negotiate by communicating with each other. The negotiated direction is not

based on a set goal that the swarm must move towards.

Direction can also be applied as a goal as discussed by Hiroshi et al. and Navarro et al.

in [53, 103] where the direction is based on a position that the swarm must move towards

and each agent is able to identify the direction locally. Thegoal can be determined based

upon local environmental stimuli, such as temperature [113]. If a swarm is to be used in
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an open air environment covering a large area, a GPS sensor can be used to determine

its goal [131].

1.2.4 Centralised swarms

The concept of centralised coordination is not seen in biological swarms. Centralised

swarms are inspired by the bene�ts of cooperative agents being used to solve a problem.

The agents themselves are autonomous in terms of their function but their positional

autonomy is removed and they are centrally managed. This centralised paradigm deter-

mines the type of tasks the swarm can be applied to [7, 96, 81].Centralised swarms are

deployed into a known environment and a central controller coordinates the positional

information [65, 105, 144, 95]. The model calculates positional requirements for all the

agents and transfers that information to the agents through a communications infras-

tructure. This is di�erent to decentralised swarms, such asboid-based swarms, that are

predominantly based upon localised proximity �eld e�ects [11, 10, 12, 14]. Field e�ects

are the omni-directional ranges used by an autonomous agentto determine the proximity

of nearby agents to determine their relationship [11]. Centralised swarms are di�erent

from swarms that use an internal communications infrastructure to negotiate roles and

exchange information [107] such as the BEECLUST swarm [55].

In a centralised swarm the positioning of the agents is entirely determined by a central

controller, and communicated to them by it. The controller i s a single point of failure

and the communications overheads can be signi�cant [90]. This adversely a�ects the

reliability and scalability of the swarm.

The central processing of the algorithm is complex due to calculating multiple agent

locations rather than a single location. The processing complexity can be overcome

by increasing the performance of the central controller, but this will not overcome the

communications problem. This type of swarm works well when creating prede�ned

structures such as the tower building swarm [45] or the knot tying quad-copters [7] that

have been developed as part of the research projects of D'Andrea in the department of

Dynamic Systems and Control at ETH Zurich. The focus of this thesis is on swarms

that do not require a central controller. Control is distrib uted and each agent acts

independently.
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1.3 Swarming applications

Many industries require the exploration or reconnaissanceof environments that are not

easily accessible by humans. Consider for instance disaster areas following earthquakes,

or environments that are simply hard to survey due to their size, such as large scale

commercial farms [17, 21].

There are occasions on which it is necessary to explore underground or enclosed spaces [64].

In mining, for example, the environment may be a labyrinth of tunnels that may be dan-

gerous due to rock falls or toxic gas etc. Such environments may consist of many rejoining

routes and dead ends. This type of work is best performed by swarms of autonomous

robots [82].

An example of a large implementation of a swarming platform is Project Loon [71, 44, 43].

Google have completed trials and are now creating aerial platforms with high altitude

balloons to provide communication infrastructures in remote areas of New Zealand [106,

54]. There are also smaller scale projects investigating the use of swarms in surveying

crops to check the health of plants [17]. This is to identify remedial actions that can

improve crop yields. The forestry commission have carried out surveys of forest envi-

ronments using swarms of UAVs (Unmanned Aerial Vehicles). All these applications

require the agents not only to coordinate themselves withinthe swarm environment, but

also to carry sensor arrays to detect environmental conditions.

There is a view that swarms can be made to interact with humans. In 2011, a trial

took place that used swarms to assist individuals in the �re service [114] as part of

the GUARDIAN project [130]. In 2005 there was research by Stormont into the use

of swarms to assist homeland �rst responders [145]. The paper concluded that \the

RoboCup goal of fully autonomous collaborative rescue robots by 2050 is a pretty good

estimate".

It is clear that the application of swarms has increased and diversi�ed into many indus-

tries. This has been made possible by the increased understanding of their capabilities.

The work in this thesis further increases that understanding.

1.4 Focus of the thesis

This thesis takes its lead from swarming in the natural world and focuses on boid-based

swarms with the addition of a directional component where necessary. The directional



1. Introduction and overview 7

component will be applied as a global positional requirement of the swarm as used in

large scale reconnaissance projects.

Although research into swarming algorithms can be carried out using both physical

implementations [29, 30] and software simulations [11, 39], the work covered in this thesis

uses only software simulations. This makes possible the study of very large swarms over

exible time scales.

The application of swarms to solve large scale problems has increased as greater under-

standing of how swarms can be coordinated and monitored has improved. This thesis

describes the development of a new metric for evaluating con�gurable coordination al-

gorithms. This increases the understanding of how the dynamics of a swarm can be

tailored to speci�c application areas. The algorithms, metric, and simulator have been

developed as part of this thesis.

The thesis argues that the utility of a swarm in reconnaissance can be improved by

exploiting emergent behaviours to improve the area coverage of goal based swarms when

encountering obstacles. This could improve detection rates when swarms are used for

searching activities such as locating targets within a large area. These targets could be

mountaineers in remote areas or livestock on commercial farms.

The thesis also identi�es behaviours that can be used to promote a self-healing e�ect

to improve the structure of a swarm [129]. Self-healing is the ability of a swarm to

remove `holes' from it's structure. This behaviour can alsobe applied to surrounding

objects. The oil industry has been involved in several man-made disasters involving

large scale oil spillages. Research into possible containment of these spillages has shown

it is possible to use warms to identify an oil slick's perimeter [165]. This thesis shows

that the self-healing e�ect can be applied to the task of containing an oil spillage.

1.5 Contributions

Navarro de�ned a set of metrics for the analysis of swarms [104]. These metrics were

based on the positions of agents in a swarm and looked at average speed, density of the

population, and variations in distances. This thesis proposes a new metric for swarm

analysis.

The new metric is based upon the inter-agent interactions and is independent of the

distribution of the agents. The interactions are the magnitudes of the cohesion and
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repulsion vectors that the �eld e�ects and algorithms produ ce. These same vectors

when summed and normalised produce the directional vector of each agent. By focusing

on the interaction of the agents at the mathematical layer rather than just the spatial

distribution the metric identi�es the degree of inuence each agent has upon its neigh-

bours. The inter-agent interactions can be used as a comparative metric for di�erent

swarming algorithms. The new metric identi�es the e�ects of di�erent algorithms when

they produce both regular and irregular spatial distributi ons. The metric can also be

used to highlight speci�c states in a swarm such as when ood �lling an area. i.e. the

inter-agent magnitude increases without causing a spatialdistance increase. This state

identi�cation can be used as an exit condition for an area �ll ing task.

This thesis introduces three directional algorithms that allow swarms to be applied to

tasks such as search and rescue or reconnaissance. Most directional swarms use some

kind of positioning system which all agents employ. This thesis demonstrates that it is

possible to reduce the number of agents in a swarm employing apositioning system in

a consistent manner such that the swarm still exhibits a directional bias. These new

algorithms also reduce the gross energy consumption of the swarm making the swarm

more energy e�cient. The thesis also demonstrates that a reduction in the position

system utilisation reduces the inter-agent disturbances.

This thesis demonstrates that emergent behaviours can be exploited to improve the

structure of a swarm. Swarms, by consisting of many agents, are resistant to agent

failures. However failures can occur and when they do they create gaps in the swarm's

structure where the failed agents were located. Swarms can also develop irregularly

shaped perimeters with dents. Dents are concave deformations caused by deployment

irregularities, external e�ects such as obstacles, or perimeter agents coming into contact

with additional agents. These characteristics (anomalies) reduce the e�ectiveness of

a swarm in some tasks due to the overall structure being non-uniform. This thesis

addresses these speci�c issues by extending the basic swarming algorithm to produce a

localised agent e�ect that has a global impact on the swarm'sstructure by reducing and

removing these anomalies thus `healing' the swarm.

Riano [125] has shown that there are hidden bene�ts in using swarms due to the emer-

gent behaviours of group dynamics which can assist reconnaissance. Swarms are often

modelled in environments that include obstacles that must be avoided [37, 8, 149]. These

obstacles can cause voids in a swarm. A void is an area within the body of a swarm

where there are no agents. The void reduction technique developed in this thesis increase

the ability of a swarm to reduce voids that are created by an obstacle when they are in
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the path of a goal based swarm. By using this `healing' e�ect to remove the voids it is

possible to increasing the `coverage' around an obstacle. This builds upon the work by

Geunho Lee and Nak Young Chong [77].

Arkin et al., Fang et al., Krothapalli et al. and Luc Moreau st ate that agents in a

swarm need to communicate with one another locally in order to maintain a swarm's

structure [5, 35, 74, 98, 117]. Ho� et al. have shown that localising communications

to just neighbours is advantageous [58] as it reduce the message propagation pathways

within a swarm. Nithin et al. state that agents could have a central communications

infrastructure that is independent of the agents [90], as used in centralised swarms.

Alternatively Higgins et al. and Navarro et al. state that in ter-agent communications

limit or impair a swarm's functionality [56, 103]. This thes is proposes that a communi-

cations infrastructure is not required for the identi�cati on of features such as perimeters

as local positional information is all that is required. Local positioning can be obtained

without inter-agent communications by using sensors such as an omni-directional cam-

era.

This thesis demonstrates algorithms that are able to detectperimeters, which are the

edges of a swarm, and perimeter anomalies (deformations) without the need for a global

swarm based communications infrastructure. This removal of the need for message

propagation allows the algorithms to be applied to arbitrary sized swarms.

This thesis focuses on arbitrary sized swarms. Modelling large numbers of agents in a

swarm is most practicably carried out using a simulator. Therequirements of the swarm

analysis using inter-agent interactions is a very speci�c requirement. Combining these

two requirements a bespoke simulator is presented as part ofthis thesis. The simulator

is designed using an object model approach with data captureand accurate modelling as

the primary goals. The object model used in the simulator is similar to that described

by Vankerkom and Yu [152] and provides an extensible framework for the development

of swarming applications. This thesis uses the framework tocreate two applications. A

graphical scenario creation tool and a command line simulation tool.

1.6 Structure of the thesis

The rest of the thesis is structured as follows: Chapter 2 covers methods tools and tech-

niques used to implement the coordination of agents in a swarming structure. Chapter

3 covers the simulator that has been developed in order to investigate the algorithms
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proposed as part of this thesis. Chapter 4 discusses the development and application of

the metric that allows the analysis of the e�ect a particular swarming algorithm has on

a swarm's internal movement. Chapter 5 presents the metric and shows how the metric

can be used to identify the e�ects of algorithms and �eld e�ects on the structure of a

swarm and how di�erent inter-agent relationships can be identi�ed. Chapter 6 discusses

two methods of coordinating a goal-based swarm and a baseline for comparison. This

chapter also identi�es the changes these algorithms generate on the movements of agents

within a swarm. Chapter 7 examines the emergent behaviours of void reduction on goal-

based and stationary swarms. Chapter 8 discusses the use of �eld e�ects to create an

area �lling behaviour and demonstrates how the new metric can be used to identify an

exit condition when the area �lling is completed. Chapter 9 sums up all the �ndings of

the thesis and identi�es additional work that has been identi�ed through the research

carried out as part of this thesis.



2. METHODS, TECHNIQUES, TOOLS

This chapter introduces the representation of agents, swarms, obstacles, the environ-

ment, and the algorithms applied to inter-agent and obstacle interactions to produce a

swarming e�ect. Movement of agents and the application of adestination vector for goal

based swarms are presented [100].

2.1 Modelling agents and swarms

Currently, much swarm research uses �eld e�ects as the method of modelling inter-agent

interactions [11, 10, 14, 3, 39, 40, 38, 41, 42, 95]. The models usually use two �eld e�ects

to implement the swarming characteristic. These e�ects arecohesion, to draw agents

closer, and repulsion to prevent agents colliding. Field e�ects are the ranges around

an agent that determine the e�ect other agents have upon its movement (Figure 2.1).

It is usual for the cohesion �eld to have a radius Cb which is larger than the repulsion

radius Rb. When an agent (b0) moves into the neighbour �eld of an agent (b) then b0 is

said to be a neighbour ofb and is subject to cohesion. When an agentb0 moves into

the repulsion �eld of b then b has a tendency to move away fromb0, i.e. to be repulsed.

When an agentb moves too close to an obstacle, i.e. within the obstacle repulsion range

Ob, it has a tendency to move away from the obstacle.

A common approach to the application of �eld e�ects is to use � xed ranges common

to all agents. Cohesion is applied graduated by neighbour proximity and repulsion is

applied as a �xed magnitude when an agent is within therepulsion �eld .

Sensing devices have a limited range within which they detect agents, this determines

a sensing �eld shown is black (Figure 2.1). In a physical implementation ofa swarm,

distance may be determined by some form of sensing device such as an omni-directional

camera, as used in the s-bot project [60, 97, 93], or lidar [79] or ultrasonic sensors [22]

or by an array of simple proximity detectors [59]

This thesis uses a similar approach to applying the cohesione�ect but for repulsion a
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graduated �eld e�ect based on neighbour agent proximity is used.

b

cohesion (neighbour)
� eld

repulsion
� eld

sensing
 

�
eld

b'

neighbour 
of b

Rb

Cb

obstacle repulsion
�

eld Ob

Fig. 2.1: Agent �eld e�ects

A swarm is modelled as a set of agents [93, 152]. An agent is modelled as a point in 2

dimensional space with no mass or size. This is similar to therepresentation used by

Vankerkom and Yu to visualise swarms [152]. Mohan and Ponnambalam, and Gazi and

Passino [152, 40], Barnes et al. [11, 10, 12] and Bennet and McInnes [14] and Andreou

et al. [3] also use a similar model which includes agents moving at a constant speed.

The interaction of agents within a swarm is modelled using vectorial and geometric

techniques [55, 11]. The position of an agent is modelled using cartesian coordinates

and the movements are modelled using vectors. The position vector is given by the

coordinates of an agent.

The `world' that the swarm is modelled within is an unbounded2 dimensional Euclidean

plain.

The use of vectors to model inter-agent interactions is alsoreferred to a arti�cial potential

�elds [37, 157, 133, 11, 10, 12, 14, 61] or vector �elds [161, 49, 111].

2.2 Modelling agents and environment interactions

The environment contains agents with a position in the coordinate system. It may

also contain obstacles(Figure 2.6) and destinations (Figure 2.7). An obstacle can be
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considered as a point with an associatedrepulsion �eld e�ect and a destination as a

point towards which agents move. This modelling technique is similar to that used by

Barnes et al. [11, 10].

The distribution of each of these objects, along with the �eld e�ects, produce sets of

vectors that represent the inter-object interactions in the system. The vector sets for

each agent are used to calculate a vector for each interaction type (cohesion, repulsion,

direction, and obstacle repulsion). This is similar to the techniques used by Jung et al.

and Salda~na et al. [70, 101].

The resultant vector generated by an agent's interaction with other agents and obstacles

is referred to as the agent'sinteraction vector. The resultant vector generated between

two agents is referred to as theinter-agent vector. The vector applied to an agent to

inuence its movement towards a destination is referred to as the agent's destination

vector. The weighted combination of the destination vector and the interaction vector

produces themovement-direction vector. The movement-direction vector indicates the

direction an agent may move.

2.3 Boid-based model

The model introduced in Figure 2.2 is based heavily on the work by Reynolds and other

authors on boid-based swarms.

Hereford [55] and Barnes et al. [11] model static swarms using a bi-variable technique.

A bi-variable model is based upon inter-agent cohesion and repulsion, which appears as

the interaction vector above.

Gazi and Passino also used this bi-variable technique to examine inter-agent interactions

when creating stable swarm structures and ensuring agents remain part of a swarm while

not colliding [38, 39, 40]. They de�ne the degree to which an agent remains cohesive to

a swarm as an agent's stability.

If a swarm is to be goal based, the swarm is modelled using theinteraction vector and

a destination vector to create the movement-direction vector as discussed by Salda~na et

al., Stranders et al., Nash and Koenig [101, 147, 102].

The �rst swarming model to use three components was the Boid model [124]. In the

Boid model, cohesion and repulsion are used to produce aninter-agent vector. The main

di�erence in the model is how the destination vector is introduced. In a Boid swarm
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the destination vector is not based upon a �xed destination. It is determined by each

agent communicating with its neighbours to generate a consensus-based direction. Each

agent calculates an average of the neighboursmovement-direction vector and applies

the result as a destination vector. This consensus-based movement creates a `ocking'

e�ect [72, 124]. This cooperative method of creating movement can be seen in the

formation of �sh shoals as discussed by Yang et al. [160] and Pearce et al. [112]. The same

ocking characteristic also occurs in starling murmurations as discussed by Campbell and

Samsel [19], and Zhang et al. [164].

Barnes et al., Bennet and McInnes, Cai et al. Correl and Rus, Dinolov et al. and

Ekanayake and Pathirana take a di�erent approach to creating a destination vector [11,

10, 14, 18, 24, 28, 32]. They generate adestination vector in a similar manner to that

described in Figure 2.2 using theinteraction vector and the destination vector.

2.4 Swarm cohesion

Several views of cohesion exist within the swarm research community. Cohesion, in some

cases, is considered as an agent moving towards the centroidof a swarm. The centroid

is the centre of the swarm. This approach is used by Gazi and Passino who measure

stability based on changes in distance from the centroid of aswarm [42, 40]. They de�ne

stability as the `degree' to which a swarm will remain a coherent entity. Shinichi et al. [6]

also use the concept of the centroid of a swarm to de�ne a metric to measure stability.

Alternatively Long et al. [120], Shinichi et al. [6] and Ekanayake and Pathirana [32] refer

to cohesion as an `attractive force' and de�ne cohesion as being localised to an agent and

its `visible' neighbours. The visibility they discuss is determined by a sensor that pro-

vides localised proximity information that includes angles and distances to neighbouring

agents.

Similarly, this thesis will view cohesion as the interaction of an agent with its local

neighbours. Agents are viewed as being autonomous using only localised proximity

information. The Boid model requires information about the swarm's structure, the

positions and directions of neighbours. This requires a communications infrastructure.

The model in this thesis does not require this information and therefore does not require

a communications infrastructure.

This thesis, when analysing the data captured from an experiment, will only use the

centroid as a means of tracking the position of a swarm. The centroid and the logic to
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identify it will not be used by agent algorithms for coordination.

Cohesion is based on the principle that all agents will remain part of their immediate

neighbours' `cluster' and will `ock' together in a `localised' manner [151, 11, 10, 12,

14, 53, 62]. Localised being that the agents will only be `aware' of their immediate

neighbours.

Flocking, in this thesis, should be considered as the process of agents moving towards

each other to attain their most stable position [46, 103] which is the centre of mass of

their immediate neighbours (Figure 2.2).

The cohesion vector is calculated by summing the relative position vectors identi�ed

from the origin agent (b) to each neighbouring agent. This vector is divided by the

total number of neighbour agents (Figure 2.2) to produce a resultant cohesion vector.

The closer a neighbouring agent is to the agent of interest then the smaller the cohesion

vector generated.

b

b'

b''

b'''

vc

Fig. 2.2: Cohesion: Origin b

Formally the cohesion vectorvc(b) for agent b is the vector calculated by summing the

vectors bb0 formed from the agent to each of its neighboursb0 2 nbr(b) [53] and dividing

by the number of neighbours.

A neighbour of b is any agent within the swarm S that is within neighbour range:

nbr(b) �= f b0 2 S : kbb0k < = Cbg (2.1)
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vc(b) =

X

b02 nbr (b)

bb0

jnbr(b)j
(2.2)

2.5 Swarm repulsion

Repulsion is de�ned by Reynolds, Kawabayashi and Chen, and Shinichi et al. as

the tendency for an agent to move away from another agent thatenters its repulsion

�eld [124, 72, 6]. This creates a `�eld e�ect' around the agent such that when another

agent enters that area a vector is applied to prevent the agents colliding. Repulsion is

also applied to agents when they interact with obstacles, this is covered in Figure 2.6.

Kawabayashi and Chen [72], Reynolds [124] and Aso et al. implement repulsion as a

vector at a boundary with a �xed magnitude (Figure 2.3).

b b'

b''

cohesion
� eld

repulsion
� eld

� x ed repulsion 
d� � �� � �� tor b'

� x ed repulsion 
d� � �� � � � tor b''

Fig. 2.3: Agent �xed magnitude repulsion

This approach produces a resultant repulsion vector that isbased upon the angles at

which the neighbour agents approach an agent without considering the proximity of the

neighbours to the agent.

In this thesis the repulsion vector has a graduated magnitude. Each neighbouring agent's

repulsive e�ect is applied proportionally (Figure 2.4). Wh en an agent encroaches upon

another agent the degree of the �eld intrusion is mapped to a value in the range 0! 1.
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This a�ects the magnitude of the repulsive vectors that are applied and therefore the

resultant repulsion vector (Figure 2.6).

b
1 0

cohesion
�eld

repulsion 
�eld

Fig. 2.4: Graduated agent repulsion

This technique changes the repulsion vector such that the direction reduces the prob-

ability of a collision. In this thesis the inter-agent repulsion will be calculated as the

average of all the proportional repulsion vectors (Figure 2.5).
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Fig. 2.5: Proportional agent repulsion
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Figure 2.6 shows a comparison of the two repulsion models with the proportional repul-

sion magnitude shown in green and the �xed magnitude shown inred. The two models

produce di�erent repulsion angles. The angle produced by the proportional model in-

creases the distance agent (b) will move away from b0 when motion is applied. This

reduces the chance of a collision between the two agents. Theproposed proportional

model is therefore suited to swarm's where agent collisionsmay cause problems.
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Fig. 2.6: Repulsion comparison

To calculate the total inter-agent repulsion the neighbours that are within the repulsion

�eld must be identi�ed. This is shown in Figure 2.3.

R(b) is the set of all agents that are within the repulsion �eld. Rb is the repulsion �eld

and kbb0k is the distance betweenb and its neighbour b0.

R(b) = f b0 2 S : kbb0k < = Rbg (2.3)

vr (b) is the repulsion vector generated for agentb based on the proximity of its neigh-

bours. If R(b) is empty then vr (b) = 0 otherwise it is given by equation 2.4. The

proportion of �eld intrusion is calculated by 1 � kbb0k
Rb

. The �eld e�ect distance Rb is the

range around the agent where the repulsion e�ect is introduced to prevent collisions.

vr (b) = �
1

jR(b)j
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2.6 Swarm agents/obstacles interactions

Obstacles, like agents, can be represented as a point in the system. As an agent moves

it may enter an obstacle'sobstacle repulsion �eld causing the agent to move away.

In this thesis agents are modelled with a �xed obstacle repulsion distanceOb where a

repulsion vector is applied. The repulsion is then a vector of magnitude Ob. If more

than one obstacle is within the �eld e�ect agent the total rep ulsion vector is the sum

of the repulsion vectors due to each obstacle Figure 2.7. Theresult is normalised and

scaled such that the magnitude is the same as the �eld distance Ob.

%

&'

&''

resultan ( )*+( or

obstacle range

obstacles

Fig. 2.7: Obstacle repulsion

Equation 2.5 shows the resultant repulsion vectorvo(b) for an agent. f o 2 O : kbok < = Obg

is the set of obstacles that are within range of agentb. O is the set of obstacles. The

obstacles are identi�ed using the distance between an agentand an obstaclekbok and

comparing the result to the �xed obstacle repulsion rangeOb. The result is calculated

by scaling the normalised sum of the normalised vectors (ob)^ by Ob. Note that ^ is the

equivalent of v̂ = v
kvk the normalised vector.

vo(b) = Ob

 X

o2O : kobk< = Ob

(ob)^

!

^ (2.5)
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2.7 Swarm direction (goal based swarms)

There are two directional aspects to swarm motion. Theinteraction vector which is

the vector created by inter-agent reactions through the cohesive and repulsive �elds as

discussed in Figure 2.4 and Figure 2.5 and the vector for avoidance of obstacles Figure 2.6.

The destination vector is applied to inuence the motion of a agent towards a particular

coordinate [15] and the interaction vector to maintain the swarm's structure. This

model is used by Barnes et al. [11, 10], Bennet and McInnes [14], Cai et al. [18], Correll

and Rus [24], Dinolov et al. [28] and Ekanayake et al. [32]. This thesis uses a similar

technique, de�ning a single destination as adestination vector for goal based swarms.

The application and e�ect of multiple destinations is discussed in future work.

vd(b) (Equation 2.6) is the destination vector where d is the destination.

vd(b) = bd (2.6)

2.8 Weighted movement-direction model

An agent's movement-destination vectoris the sum of all the component vectors (vc; vr ; vd; vo)

(Equation 2.7) [53]. For a vector to be used for movement it must have a magnitude of

1 before the agent's speed can be applied (Section 2.7).

v(b) = vc(b) + vr (b) + vd(b) + vo(b) (2.7)

This model is extended by adding a weighting to each of the component vectors. The ad-

dition of the weightings allows the inuence of each component vector set to be adjusted

to produce a bespoke movement vector (x 2.8). The resultant vector is normalised to

produce a unit movement-direction vector that can be used to create motion [72]. The

agent's speed characteristic is used along with time (t) [35, 41] to determine an agent's

next position. This derived vector is the movement vector.

The purpose of a weighted aggregation model is to alter the level of inuence of each

component of the equation. This technique is generally referred to as a `weighted sum
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aggregation' or `ordered weighted averaging'. The technique is applied to optimisation

algorithms such as PSO (Particle Swarm Optimisation) and involves applying all the

possible combinations of weightings to a multi-variable expression to obtain an optimum

output [87, 158].

In this thesis the technique of weighted sum aggregationis applied to the vector calcu-

lations to allow tuning of the swarming algorithm of an agent and to change the degree

of inuence to obtain a required swarming e�ect.

The tuning is applied to each component as a weighing factork Equation 2.8. The

weightings (kc; kr ; kd; ko) are applied before normalising themovement-directional vector.

This change of bias allows levels of importance to be appliedto a system characteristic

i.e. kc > k d implies it is more important for the agents to remain together than it is to

travel towards the destination. This technique is similar to those identi�ed by Muniganti

and Pujol in their survey of mathematical modelling techniques [100].

Weightings can be applied in several ways. The weighting canbe applied as a set of

arbitrary integer values (12, 67, 99) or as a set of values that always have a summed value

of 1 e.g. 0.5, 0.25, 0.25. Either of these techniques are acceptable as the resultant vector

is normalised following the application of the weighting. This thesis implements the

weightings as a set of arbitrary integer values (Equation 2.8). Where kc is the weighting

factor for cohesion,kr is the weighting factor for repulsion, ko is the weighting factor for

obstacles andkd is the weighting factor for a destination.

v(b) = kcvc(b) + kr vr (b) + kovo(b) + kdvd(b) (2.8)

Special cases of Equation 2.8 can be applied to a swarm model.A swarm with no

destination can be modelled with the destination weighting set to zero to create the

model shown in Equation 2.9 as used in Chapter 7. This is also known as theinteraction

vector

v(b) = kcvc(b) + kr vr (b) + kovo(b) (2.9)

A swarm that does not interact with obstacles and has no goal (destination) can have
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ko and kd set to zero creating the model as shown in Equation 2.10. This is also known

as the inter-agent vector as discussed inx 3.7 on page 40.

v(b) = kcvc(b) + kr vr (b) (2.10)

Equation 2.10 is also the model used in the calculation of theswarm magnitude metric

as discussed in chapter 3 wherev(b) � P(b).

2.9 Modelling movement

Each agent within a swarm calculates itsmovement-direction vector based on its in-

teraction and destination vectors. The movement vector (bpos) is calculated using the

unit movement-direction vector of Equation 2.8 multiplied by the time elapsed (t) in the

system and the speed characteristic of the agent (sb).

This process is carried out for every agent in the swarm to create the entire swarm's

next position.

bpos = sbt
�
v(b)

�
^ (2.11)

The increment in the location of agent b over time interval t is shown in Equation 2.11

where sb is the speed of agentb. Models of time are discussed inx 2.13.

2.10 Stable swarm structures

A swarming behaviour can be created using only cohesion and repulsion. This technique

is known as a bi-variable model [11, 10]. The bi-variable model produces natural geo-

metric structures. The structures tend to be based on equilateral triangles and when

the distribution of the agents allows, regular hexagons areformed. These structures

only occur when the repulsion and cohesion �eld e�ects produce a distribution such that
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an agent's detected neighbours do not extend beyond the �rstagent detected in any

direction [109, 110]. The e�ect of �eld e�ect ranges on a swarm's structure is discussed

in chapter 4.

The most stable state for agents is for all agents to be equidistant with equal angles.

If two agents are in close proximity they will naturally adhere to each other due to

the proximity rule (cohesion) (Figure 2.8); repulsion will ensure a minimum distance

is preserved. In the case of 3 agents a triangle will form. In the case of 4 agents the

most stable shape will be a diamond with the centre agents joined. With 5 and 6 agents

a triangular lattice will emerge and with 7 agents a stable hexagon will form. The

hexagon (Figure 2.9) is the most stable structure with all agents being equidistant and

all angles between each neighbouring agent equal [11, 41]. These structures are seen

throughout the natural world [123].

Fig. 2.8: Stable swarm formations
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Fig. 2.9: Stable hexagonal formation
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2.11 Resultant swarm model

The swarm model created by Equation 2.8 with suitable weightings will allow a swarm

to form `stable' structures such that the agents will remain connected (Figure 2.11) and

over time migrate to an optimum overall structure for the models parameters. The

parameters are the �eld e�ect ranges, the cohesion and repulsion magnitude models and

the weightings.

The initial random deployment of a set of agents to create a swarm produces a `disorgan-

ised' state. The disorganisation is caused by the varying cohesion and repulsion vectors

that are generated by the inter-agent relationships. Following the initial deployment the

magnitudes will create movements that gradually stabilisethe swarm structure to a level

of movement that best �ts the model parameters [113, 155]. The point of equilibrium

for the swarm and the resultant structure is dependent upon the agent's cohesion and

repulsion �elds level of overlapping. This is discussed inx 4.2 and x 4.3.

When modelling swarms it is common practice to have the agents in constant motion [83,

49]. In this thesis agents are modelled moving at a constant speed with no inertial e�ect

such that an agent can move freely within the system plane. The only exception to this

will be if an equilibrium state is encountered where the summed vectors produce a null

vector. If this occurs the agent will stop moving.

2.12 Swarm deployment

Using the methods discussed in this chapter, a swarming behaviour emerges from a

collection of agents. The initial deployment of a swarm may be a random dispersal of

agents such that the swarm is in a disorganised state (2.10),caused by an instability in

the magnitudes that are acting upon each of the agents (as detailed above). Based upon

the application of the models discussed, the swarm will initially move in such a way as

to balance all the vectors, resulting in a period of disorganisation where the swarm's

movement towards a goal is limited, as the vectors generatedto disperse the agents

outweigh the directional vector.

This phase of the swarm's life cycle is the `initialisation phase' (Figure 2.12). When

the initialisation phase is over, the vectors (cohesion, repulsion, and direction) become

more balanced and the swarm forms a more regular shape, such as a hexagonal lat-

tice, where all the angles and lengths (distances between agents) tend toward being
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equal (Figure 2.11)

The e�ects can be seem in the screenshots (Figures 2.10, 2.11, 2.12) from the simulator

discussed inx 2.13.

Fig. 2.10: Disorganised swarm

Fig. 2.11: Stable swarm

Fig. 2.12: Swarm stabilisation
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2.13 Swarm simulator

Swarm behaviours can be investigated by means of experiments with physical robots

or by means of simulations. The latter approach has the advantages of scalability,

generalisation, speed of development, and cost. This thesis is based upon data generated

from simulated swarms. There are several open source robotic simulators available, the

most popular being ARGoS, Player/Stage, and Gazebo.

ARGoS is described as a multi-physics simulator and has gained interest in the swarm

robots community. In 2011 Luca and Caro published an overview of the simulator's en-

gine discussing how the system functioned [116] and the philosophy behind its structure.

They also published a framework for using the simulator in 2012 [75].

Player/Stage and Player/Gazebo are used in many projects including projects simulating

single robots as discussed by Song and Gupta [142] and also multiple-robot swarming

simulations as described by Lei et al [80]. There are projects that have simulated the

use of pheromone trails when simulating foraging based swarms as discussed by Shi et

al [139]. Shi et al. have also published an overview of the scenarios in which Player/Stage

can be used [140].

The Webot [86] simulator, which is a commercial product, hasbeen used successfully

in other research projects such as the swarm simulations developed by Srivastava and

Nandi [143]. One problem found with the product was that it was restrictive in terms

of how much of the system could be con�gured to meet the needs of the thesis. Another

factor that had to be taken into consideration was the high cost of a licence for the PRO

version of Webot.

These simulators all provide a discrete time simulation environment. The main purpose

of these simulators is to visualise either an individual robot or a swarm of robots based on

a model that is de�ned through bespoke libraries and con�guration parameters. On the

other hand, in this thesis the main purpose of each simulation is to log all the positional

and vector data associated with every agent at each discretetime interval. Due to this

disparity in approaches it was decided to develop a simulator whose main purpose is the

collection of data on distance, positions, distribution and inter-object vector magnitude

inuence.

This section discusses the design, development and usage ofthe simulator used in this

thesis and the creation of the raw experimental data. The section also discusses how the

data is processed to produce the aggregated data required for visualisation.
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2.13.1 Simulator overview

The simulator has two distinct components: a graphical design/simulation tool (Ap-

pendix B.1) and a command line based simulation-only tool (Appendix B.2). Both

parts of the simulator are written in Python 3 [119] using an object model as shown

in appendix E. Both use the same modelling engine by sharing the base classes. The

�nal object model is similar to that proposed by Vankerkom and Yu for swarm visuali-

sation [152]. The simulator design is also inuenced by thè main loop' proposed in the

ARGoS simulator [116].

2.13.2 Simulator architecture

The main purpose of the graphical environment is for the setup of an experiment's initial

con�guration. This is achieved by positioning the agents, destinations, and obstacles in

an environment and saving the con�guration as a simulation � le. As a secondary purpose

the graphical environment is capable of running small scalesimulations. The command

line tool is used to execute the simulation experiments designed using the graphical tool.

The graphical tool, shown as (1) in Figure 2.13, uses PyGame [136] as its graphical

presentation layer. PyGame supports several rendering engines; in this application the

default SDL rendering engine is used. The graphical simulator runs in real-time and is ca-

pable of simulating small swarms of< 150 agents on a PC with anIntel Core i7-4770

CPU @ 3.40GHz * 8processor. This swarm size limitation is due to the Python code

being executed on a single processor core. There is also a limitation in the performance

of the graphical engine due to the rendering being performedby the interpreter.

The command line tool, shown as (2) in Figure 2.13, reads in the experiment con�gu-

ration �le generated via the graphical tool, shown as (1). The command line tool uses

simulated discrete time (Figure 2.13.3) and is able to run with arbitrary sized swarms

without real-time processing limitations. The command line tool simulates the swarm

and generates the initial data extract (3a). The data extract is then loaded into a MySQL

database (3b) and the data is then aggregated to create the complete dataset for the

experiment (4). The processes 5 and 6 are discussed in FigureE.7. This thesis deals

with arbitrary sized swarms, so simulations are designed inthe graphical environment

but executed using the command-line-based simulator.
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Fig. 2.13: Simulator process overview

Figure 2.13 shows the stages of the simulation from developing an experiment (1) through

to the production of simulation results (6).

2.13.3 Simulated time

There are two options for representing time when modelling aswarm: continuous time

and discrete time. Continuous time [52] isdense: between any two points in time there

is another point. Discrete time [35, 41, 128, 55, 100, 110] onthe other hand proceeds in

`ticks' with no intermediate time points. In this thesis dis crete time is used. This same

approach is identi�ed by Muniganti and Pujol in their survey of mathematical swarming

models [100].

Vision based coordination for robots was a subject of great interest in the 1980s and

90s [27]. This interest moved to omni-directional cameras as a means of determine po-

sition and mapping through image analysis in a process knownas SLAM (Simultaneous

Localisation And Mapping) [149, 142]. A general purpose omni-directional camera can

operate at speeds between 1Hz and 60Hz, depending upon the resolution of the images

and the accuracy of the positional data required.

For the identi�cation of an agent's position, a GPS with a sample rate in the same range

may be used. For example, the SparkFun Venus GPS [33] operates at up to 20Hz.
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The simulator allows the sampling rate to be adjusted to provide a model that is as close

as possible to the physical sensors. For the experiments in this thesis, the sample rate

is set at 10Hz, clearly within the scope of currently available sensors. This gives a `tick'

interval of 100ms.

2.13.4 Simulated �eld e�ects

The ranges for the cohesion, repulsion, and obstacle avoidance �elds are user-con�gurable

parameters in the simulator, as is the location of a destination goal, if present. The

simulation of the operations of cohesion, repulsion, obstacle avoidance and goal-seeking

then directly follow the de�nitions given by equations 2.2, 2.4, 2.5, and 2.6. The details

of the implementation are shown in Appendix E.1.

2.13.5 Simulated agent movement

The motion model of the simulation is implemented through the modelling of vectors

that inuence an agent's resultant direction. The vectors that model the swarm envi-

ronment are the cohesion and repulsion vectors created by inter-agent and inter-object

interactions.

Agent positions are modelled using oating point numbers. These coordinates are trans-

lated to integer based (x; y) co-ordinates for the presentation layer. The integer trans-

lation is only for the visualisation of the swarm. This is the same approach used by

Vankerkom and Yu in their paper on swarm visualisation [152]. They model the agent

using a class that consists of positional variables of type double. This is also seen in the

SwarmVis software developed by Miner and Kasch [94].

The incremental positions of the agents are calculated based upon the simulated time

slice, `tick', as discussed inx 2.13.3, and the agent speed, given as a parameter of the sim-

ulation. These parameters are used ast and sb, respectively, in applying Equation 2.11

to the calculation of the position of each agent at the next 'tick'. This movement is

implemented within the simulator as shown in Appendix E.1.2.3.

2.13.6 Simulator data capture

To enable the analysis of a simulation run, the simulator generates an SQL database.

As a simulation executes, at each tick, the state of each agent in the swarm is captured
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and the data is saved as a pair of SQL insertions, (tick number; agents0 states), that are

added to a set of transaction �les. The implementation of the data capture component

of the simulator is described in detail in Appendix E.3. This approach generates a large

amount of data but allows for very detailed, o�ine analysis o f swarm behaviour.

2.14 Conclusion

This chapter notes the trend in using vectors as a modelling technique for swarms and

discusses the use of �eld e�ects in determining agent movement. The chapter then intro-

duces the mathematical model that is applied throughout thethesis. The introduction

covers the cohesion model that ensures agents remain part ofa swarm and the repulsion

model that ensures agents do not collide with each other, thus maintaining a stable

swarm structure. The chapter also introduces two additional aspects of swarming to the

model: goal-based direction and obstacle avoidance. Finally, the chapter discusses the

simulation of swarms. All simulations in this thesis are carried out using the simulator

described in this chapter. The data created by each simulation is aggregated to generate

the �nal datasets that allow the characteristics of the simulated swarm to be evaluated.

Data analysis results are visualised from the aggregated data.



3. SWARM MOVEMENT METRIC

This chapter examines the distance metric as a mechanism to measure the internal move-

ment of agents and introduces a newmagnitude based metric. The internal movement

of a swarm is identi�ed by analysing the changes in the inter-agent interactions. The

two metrics di�er in their approach to identifying the chang es. The distance metric uses

variations in the inter-agent spaces, as used by Navarro et al. [104]. The new metric,

devised as part of this thesis, uses the magnitudes from the agents' inter-agent vectors

that are induced by agents' �eld e�ects as de�ned in Equation 2.10.

Both metrics allow a comparison of the e�ects of di�erent swarming algorithms on a

swarm's structure. The type of information that can be derived from each of the metrics

is compared inx 3.12.

The magnitude based metric is used in chapter 5 to identify the e�ects of di�erent

coordination algorithms. In chapter 6 the metric is used to identify the e�ects of both

obstacles on a swarm's movement and the encapsulating behaviour a swarm exhibits

when usingconcave reduction.

3.1 Inter-agent vector magnitude e�ect on internal

movement

Figure 3.1 shows the cohesion and repulsion vector contributions to vc(b), vr (b) due to

neighbour b0, as given in equations 2.2, 2.4. Notice that the vectors are along the line of

separation bb0.

Using the cohesion and repulsion vectors generated by the relationship of b0 to b a

resultant vector can be calculated. This vector creates an agent characteristic that can

be used as a metric. Summing the vectors creates a resultant vector with a magnitude

that a�ects the agent. Summing the vectors also provides an indication of the direction

an agent will move based on the relationship. This is de�ned in chapter 2 as theinter-
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agent vector.

From here throughout x 3.2 andx 3.3 imagine agentb has just a single neighbourb0 and

consider the e�ect of b0 on v(b), the inter-agent vector of b.

cohesion
vector

b

b'

repulsion
vector

x

Y

line of 
separation

Fig. 3.1: Vectors on line of separation

3.2 Swarm movement analysis

The repulsive and cohesive vectors are generated for an agent through the intersection

of their �eld e�ects ( x 2.4 and x 2.5). There are a limited number of intersections that

can occur; These are illustrated in Figures 3.2, 3.3, 3.4, 3.5.

Figures 3.2, 3.3, 3.4, 3.5 show the cohesion of an agent pair as kcvc and the repulsion

as kr vr . The example data extracts (Tables 3.2, 3.3, 3.4, 3.5) are generated from the

simulator using the parameters in table 3.1 that create a basic swarming behaviour.

The tables show the simulation results. The simulation consists of 200 agents over a 20

second period. The simulation produces a neighbour extractof 248,798 records.
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Weight
Component

Swarm Description

Sample Rate 100 ms - Unit sampling interval
kc 5 weight adjuster for cohesion bias
kr 15 weight adjuster for repulsion bias
kd 0 weight adjuster for directional bias 0 for

static baseline 100 from directional
Repulsion �eld 70 units
Cohesion �eld 80 units
Speed 20 units/s

Tab. 3.1: Swarm parameters model

Figure 3.2 shows two agents within each others cohesion �elds but su�ciently distant to

be outside of the repulsion �elds. The `neighbour region' and `repulsion region' are the

limits of the �eld e�ects for cohesion and repulsion. In this casekcvc > 0 and kr vr = 0:

the result is the agent's resultant magnitudes cause the agents to move towards each

other. Table 3.2 shows the repulsion magnitude with a value of 0. The only inuence

on the agent pairs are cohesive vectors.
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Fig. 3.2: Internal movement cohesion (no repulsion)

In tables 3.2, 3.3, 3.4 and 3.5,Log is the sample identi�er, Id is the unique identi�er

for an agent andN.Id is the Id of the agent neighbour.

Log Id N.Id Distance Cohesion Repulsion
0 1 3 70.50359957272653 352.5179978636327 0
0 1 100 71.78005530038806 358.9002765019403 0
0 1 151 78.33995887998715 391.69979439993574 0
0 2 99 72.04066804327307 360.20334021636535 0

Tab. 3.2: Data extract ( kr vr = 0)

Figure 3.3 shows two agents close together with repulsion dominating cohesion such that

kcvc < k r vr . The resultant vector will direct the agents away from each other. Table 3.3

shows the repulsion magnitude with a value greater than cohesion.
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Fig. 3.3: Internal movement repulsion

Log Id N.Id Distance Cohesion Repulsion
0 1 2 28.325225929649267 141.62612964824635 1544.860149837827
0 1 6 41.48517221724064 207.42586108620318 721.7173648240145
0 1 7 35.264128136470426 176.32064068235212 1034.271010913942
0 1 8 43.545037655009644 217.72518827504823 637.9075999959364

Tab. 3.3: Data extract ( jkcvcj < jkr vr j)

Figure 3.4 shows two agents close together but with cohesionvector magnitudes greater

than the repulsion magnitudesjkcvcj > jkr vr j. The resultant vector will draw the agents

together. The magnitude of the resultant cohesion vector will be reduced due to the

cancelling e�ect of the repulsion vector. Table 3.4 shows a data extract with the cohesion

magnitude greater than repulsion.
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Fig. 3.4: Internal movement cohesion

Log Id N.Id Distance Cohesion Repulsion
0 1 5 64.17214469587854 320.86072347939273 95.35676418993891
0 1 9 63.880497718571355 319.4024885928568 100.58590062663305
0 1 95 65.6152270119206 328.07613505960296 70.16681717258929
0 1 152 63.10700566424517 315.53502832122587 114.68844031437281

Tab. 3.4: Data extract ( jkcvcj > jkr vr j)

Figure 3.5 shows two agents close together withjkcvcj = jkr vr j the resultant vector will be

a null vector and the agents will have no inuence upon each other due to themagnitude

of the resultant vector being zero. Table 3.5 is an extract from the NEIGHBOURS table.

The data shows an extract that is near equilibrium. The simulation produced no null

magnitude results.
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Fig. 3.5: Internal movement equilibrium

Log Id N.Id Distance Cohesion Repulsion
7 76 91 55.390312278311875 276.9515613915594 276.9468428106153
24 75 6 55.39032191143417 276.95160955717085 276.9466120367043
32 72 38 55.39002603773678 276.9501301886839 276.95370011064875
35 63 64 55.390227283173054 276.9511364158653 276.9488789826377

Tab. 3.5: Data extract ( jkcvcj � j kr vr j)

3.3 Internal movement and the null vector

When the two vectors (cohesion and repulsion) have magnitudes that are equal and

opposite they produce a null vector. This indicates that two agents are optimally spaced

for a given set of conditions. Although the agents are at an optimum position it does not

mean the swarm is optimally distributed. If a swarm is in a con�ned space it is possible

for an optimum position to be created where the vector magnitude is positive due to

a compression e�ect. This phenomenon is used in the identi�cation of the emergent

behaviour of area ooding, covered in chapter 7.

If we consider the equilibrium state (Figure 3.5) the resultant vector of b is (0; 0). A

null vector cannot be normalised to produce a directional vector ( v̂ = v
jvj if v 6= 0; 0

if v = 0). The e�ect of the resultant magnitude being a null vector is that the agent

will remain stationary. If all agent pairs are in this condit ion the swarm will stop

moving (Figure 3.6).
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Fig. 3.6: Equilibrium with null vectors

Due to the independent nature of the agents this situation isvery rare. The residual

motion that persists in a swarm is the background `noise' or `jitter' that an algorithm

creates.

If a swarm is goal-based the additionaldirectional vector will prevent all agents simul-

taneously producing null vectors (Figure 3.7).
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Fig. 3.7: Directional movement and the null vector

3.4 Residual internal movement (Jitter)

Due to the dynamic nature of a swarm maintaining optimum internal movement as

in (Figure 3.5) a stationary swarm is highly unlikely. The agent pairs will uctuate

between the 3 states (Figures 3.3, 3.4, 3.5). This alternation between the states is

jitter . The degree to which this variation occurs can be measured using either the

change in distance between the agent pairs, or the change in the resultant magnitude



3. Swarm movement metric 39

between the agent pairs. Jitter is motion that is produced to maintain the structure

of a swarm. A coordination algorithm that produces minimal jitter is generally more

desirable. Jitter (the uctuation in and between the states) is an indication of the

e�ciency of an algorithm and an integral component of a swarm's measurable behaviour.

3.5 Magnitude based metric

Magnitude based internal movement (agent resultant magnitude) is measured by identi-

fying the balance between the repulsion and cohesion between agents. `Jitter' in the case

of the agent resultant magnitudemetric is measured as the variance of the potentials

created by the agents. The identi�cation of this variance produces the clarifying part

of the agent resultant magnitudemetric. The agent resultant magnitudeis identi�ed by

Gazi and Passino [42] and Barnes et al [12] as a `resultant characteristic' of a swarm.

There are two ways of using the cohesion and repulsion in identifying a resultant vector.

The two vectors can be added as absolute values to give an overall `size' to the magnitude

that is a�ecting each relationship. Alternatively the resu ltant magnitude can be the sum

of the actual magnitudes. The repulsion vector has a negative magnitude and the cohe-

sion vector has a positive magnitude. In this thesis the magnitude analysis will be based

on summing the two actual vectors to determine the result of the inter-agent interaction.

This thesis will refer to the resultant magnitude as the `agent resultant magnitude' of

the relationship. The `state' of a swarm is the e�ect the environmental constraints and

algorithms have upon the agent resultant magnitude. It is a part of the `quality' measure

for a swarm's performance.

If the agent resultant magnitudeis a negative value (absolute values would prevent this

analysis) the swarm's bias is to expand. This is seen in the disorganised stage of a swarm.

If the agent resultant magnitudeis positive then the swarm is exhibiting a tendency to

contract and this indicates the swarm is a cohesive entity. This could also be described

as the swarm being `sticky' as the agents bias is to `pull' towards each other.

The agent resultant magnitudeon its own does not give a complete measure of a swarm's

internal state. There needs to be a qualifying component to the metric that identi�es

the degree of deviation in the resultant magnitude, this is the jitter . The smaller the

degree of deviation the more uniform the structure of the swarm. These two components

identify the degree to which a swarm has progressed towards astable state.

The agent resultant magnitudeprovides a view of the swarm's state through the balance
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between the repulsive and the cohesive vectors that are being applied to each agent. The

variance component identi�es the degree to which the swarm has stabilised. The ideal

status for inter-agent interactions would be for the agentsto have a resultant vector

(agent resultant magnitude) of zero or above. This would indicate that the agents are

distributed such that they are at their distribution limit ( outer most range of the cohesion

�eld) or at a level that causes the agents to `pull' together. The ideal degree of deviation

is zero as this indicates an even distribution of agents. Therefore for a fuller indication

of a swarm's state both measurements need to be combined. The deviation from the

mean clarifying the internal movement and the agent resultant magnitudeproviding an

indication of the `compression' that a swarm is logically experiencing (cohesiveness).

These two aspects of a swarm's features are not considered byGazi and Passino [42] or

Barnes et al [12] as a means of quantifying the structure of a swarm in terms of stability.

3.6 Distance based metric

The distance based metric considers the e�ect of the resultant vectors upon a swarm in

terms of how the agents are physically distributed: i.e. only the inter-agent distances

and the deviation from the mean of the agents (jitter) are considered. As with the

agent resultant magnitudemetric the variations are important to determine the agent

distribution. The standard deviation from the mean allows the internal `characteristic'

of the measure to be realised. If the standard deviation is zero then all the agents

are evenly spaced. The distance metric does not take into consideration the vector

magnitudes between the agents as discussed above. The metric therefore is unable to

identify the potential state of the swarm in terms of its cohesive or repulsive state.

Navarro and Fernando describe a mean distance error metric that is based on the vari-

ations in distances between inter-agent spaces [104]. Thisis the same as the standard

deviation of the distance based internal movement metric asdescribed here.

3.7 Magnitude based internal movement model

Using the formulae for the calculation of cohesion (Equation 2.2, page 16) and repul-

sion (Equation 2.4, page 18) for every agent and its neighbours it is possible to calculate

an agent resultant magnitude value (sum of agent resultant magnitudes). This value

represents the overall potential of an agent. This magnitude when normalised produces
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a component of the movement-destination vector (Equation 2.7) for a swarm. If the

agent resultant magnitude is zero (null vector) then the agent will not move. P(b) is the

inter-agent resultant magnitude vector for agent b de�ned by:

P(b) = kcvc(b) + kr vr (b) (3.1)

Although it is possible for agent b to have a resultant vector of null there could still be a

variation in the constituent components. The variation calculation (standard deviation)

is shown in x 3.8. Equation 3.2 is the mean of theagent resultant magnitudesfor an

agent and its neighbours wherejnbr(b)j is the number of neighbours.

� p(b) =
P(b)

jnbr(b)j
(3.2)

To identify the swarm based agent resultant magnitudeEquation 3.2 must be extended

to iterate over all the agents in the swarm. Equation 3.3 shows � p(S) as the swarm based

magnitude where the swarm iteration is shown as
P

b2 S and
P

b2 S jnbr(b)j calculates the

total number of inter-agent relationships.

� p(S) =

X

b2 S

P(b)

X

b2 S

jnbr(b)j
(3.3)

3.8 Variance in agent resultant magnitude metric

The mechanism just described provides an overall indication of the internal movement

based on inter agent vectors that produce theagent resultant magnitude. This model

however is not su�cient to give an indication of the swarm `state' as an overall metric.

To improve the metric clari�cation is required in terms of th e deviation from the agent

resultant magnitude norm. The variation in the metric is the standard deviation of the

entire swarm from the mean of the inter-agent potential magnitudes (Equation 3.2).

The standard deviation is calculated as Equation 3.4 where� p(S) is the standard devi-

ation at a time t and � p(S) is the mean at the same point in time.
P

b2 S
P

b02 nbr (b)

iterates over every agent in the swarm and its neighbours and
P

b2 S jnbr(b)j calculates

the total number of inter-agent relationships.
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� p(S) =

vu
u
u
u
u
u
t

X

b2 S

X

b02 nbr (b)

�
P(b0) � � p(S)

� 2

X

b2 S

jnbr(b)j
(3.4)

The metric for the internal movement is a set of numbers, the mean and standard

deviation of the swarm's internal agent resultant magnitude derived from each agent

and its neighbour interactions Equation (3.5). The pair � p(S), � p(S) may be written

informally as:

 p = � p(S) � � p(S) (3.5)

3.9 Distance metric

The distance based internal movement is measured by identifying the mean length of

the vectors between an agent and its neighbours. As with theagent resultant magnitude

a coordination algorithm produces `jitter' which is the variations from the mean. In the

case of the distance based metric the jitter is identi�ed by the changes in the distances

rather than the changes in vector magnitude (agent resultant magnitude). The distance

metric is the mean and the standard deviation `jitter' of the inter-agent distances.

3.10 Calculating distance based internal movement

The relative position vector generated for an agentb to its neighbour b0, bb0, is shown

in (Equation 2.2). The magnitude of that vector gives the distance between two agents.

For an individual agent the average magnitude� d(b) is calculated as Equation 3.6 where

b is the agent andjnbr(b)j is the number of neighbours.

� d(b) =

X

b02 nbr (b)

kbb0k

jnbr(b)j
(3.6)

Equation 3.6 identi�es the mean distance for an individual agent. The mean distance for

a swarm is calculated by Equation 3.7. All the inter-agent interactions must be included
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for the swarm (S).
P

b2 S jnbr(b)j calculates how many inter-agent relationships exist in

the swarm and
P

b02 nbr (b) kbb0k calculates the total distance between each agent and its

neighbours.
P

b2 S iterates over all the agents in the swarm (S).

� d(S) =

X

b2 S

X

b02 nbr (b)

kbb0k

X

b2 S

jnbr(b)j
(3.7)

3.11 Variance in distance metric

The mechanism above provides an overall indication of the distribution of the agents.

This model, as with the agent resultant magnitude model, is not su�cient to give an

indication of the internal distribution of the agents. The a ddition of the standard de-

viation from the norm clari�es the distribution within the s warm as shown in equa-

tion 3.8. (kbb0k � � (S))2 is the square of the di�erence in a distance to the mean and
P

b2 S
P

b02 nbr (b) calculates the number of inter-agent interactions.

� d(S) =

vu
u
u
u
u
u
t

X

b2 S

X

b02 nbr (b)

�
kbb0k � � d(S)

� 2

X

b2 S

jnbr(b)j
(3.8)

The distance metric for the internal distribution of the agents is the pair consisting of

� d(S), � d(S) the mean and the standard deviation of the swarm's internal resultant

distances from every agent in the swarm. This can be written informally as:

 d = � d(S) � � d(S) (3.9)

3.12 Conclusion - metric comparison

The two metrics appear to be similar in terms of the measurement of the structure of

a swarm. The main di�erence is in how these two metrics can be used when examining

the state of the swarm.
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Both metrics identify the state of a swarm with respect to variations in the disbursement

of the agents from an average distribution.

The main di�erence in the metrics is that the distance metric is based upon the physical

distribution of the agents and the magnitude based metric is based upon thelogical

interaction of the agents.

The distance based metric provides and analysis of the actual distribution of the agents at

a point in time and allows the agitation of the swarm to be assessed without considering

the possible distribution of agents that the �eld e�ects could produce.

The agent resultant magnitude metric provides a view of the interaction magnitude.

This provides an indication of the swarm's potential movement. This is independent of

the physical distribution. The lack of dependence on the physical distribution allows

the metric to be used in heterogeneous �eld e�ect swarmsx 8.2.1 where the physical

distribution may vary.

Combining the two metrics allows a deeper evaluation of a swarm to be made. Consider

the following: the repulsion �eld is increased but the internal distances do not change

as a result the agent resultant magnituderises: This indicates `something' is con�ning

the swarm's distribution. This analysis could be used in identifying e�ective swarm

distribution for the coverage of a sensor array as discussedby Ramaithitima et al. [121]



4. SWARM TYPE IDENTIFICATION

This chapter applies the metrics de�ned in chapter 3 to identify how the cohesion and

repulsion �eld e�ects of the interaction vector a�ect the internal movement and the

vector magnitudes between agents in a swarm.

There are two distinct inter-agent structures that can emerge in a boid-based swarm,

hexagonally-connectedor hyper-connected. These two swarm types are the result of the

cohesion �eld e�ect detecting immediate neighbours only and when the neighbour �eld

e�ect range extends beyond immediate neighbours to includeadditional agents.

If the goal is to maximise the coverage of an area by a swarm's agents then a hexagonal

lattice is the most appropriate structure. In a hexagonally-connectedswarm agents

have visibility only of their immediate neighbours and are una�ected by agents beyond

those neighbours. This e�ect can be implemented by ignoringagents beyond the initial

neighbours detected or con�ning the �eld e�ects such that th e connections do not occur.

If the �eld e�ects extend beyond the immediate neighbours such that further agents

are detected then there will be additional vectors a�ecting the calculations of an agent's

interaction vectors. These additional vectors cause the structure to change logically from

a lattice to a mesh. A mesh structure is ahyper-connectedswarm.

4.1 Internal movement testing (static swarms)

To evaluate the metrics simulation parameters (�eld e�ects) need to be created such

that they generate the two swarm types (Table 4.1).

Table 4.1 shows the parameter requirements for two swarm types. The parameters in the

Hexagonalcolumn generate a swarm structure where an agent can only detect immediate

neighbours. The parameters in theHyper column allow agents to detect agents beyond

their immediate neighbours and therefore create additional neighbour connections which

results in a hyper-connected swarm.
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Weight com-
ponent

Hexagonal
Swarm

Hyper
connected

Description

Sample Rate 100 100 ms - Unit sampling interval
kc 5 5 weight adjuster for cohe-

sion bias
kr 15 15 weight adjuster for repul-

sion bias
kd 0 0 weight adjuster for direc-

tional bias
Cohesion �eld 50 60 units
Repulsion �eld 40 40 units
Speed 20 20 units/s

Tab. 4.1: Swarm Weighted Model

The two sets of parameters are simulated using a swarm of 200 agents randomly dis-

tributed in an environment. The simulation generates data as described inx 2.13. The

data extracts contain the distances and inter-agent magnitudes (interaction vectors)

produced by the parameters.

4.2 Hexagonal swarm analysis

In a hexagonal swarm the �eld e�ects cause the agents to form aregular lattice. All

the agents tend towards an even distributed with similar distances between each agent

and its neighbours. In a well structured deployment, the agents in the swarm will show

limited variation in the inter-agent distances and the interaction vectors. A perfect

distribution is very unlikely in a swarm of agents due to the constant movement of the

agents adjusting their positions to obtain an optimum position and the agents moving

at a constant speed.

4.2.1 Distance based metric

The distance analysis graph (Figure 4.1) for the hexagonal swarm (using the parameters

in Table 4.1, repulsion �eld 40 units, cohesion �eld 60 units) shows the distance metric

being applied to the swarm over a period of 200 cycles. The graph shows a trace of the

distance with the standard deviation displayed as error bars above and below the mean.
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The swarm is initially (0-20 cycles) in a state of disorganisation, where the agent dis-

tribution is varied. The swarm then enters a phase where the hexagons are forming

and the swarm starts to stablise (20-50 cycles). After about50 cycles the �eld e�ects

have stabilised the swarm structure and the swarm settles toa more stable state for the

given set of parameters. The swarm then uctuates as the residual internal movement

maintains the swarm's structure. At this point the internal movement (jitter) is the

`background noise' generated by the �eld e�ects to maintain the swarm's structure.
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Fig. 4.1: Hexagonal swarm - distance metric

Figure 4.2 shows the distribution of the inter-agent distances for the duration of the

simulation. The data forms a bell shaped distribution with a mean distance of approx-

imately 37 units, the mean distance is the average of all the inter agent distances as

shown in Figure 4.1. The graph shows the changes in the distribution of distances based

on the aggregation of the whole simulation.
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Fig. 4.2: Distance distribution

Figures 4.3 and 4.4 show the distributions at each time cycleand shows the changes in

the distribution of the distances as the agents coalesce into a stable structure. Figure 4.3

shows the initial distribution for the time intervals from 0 to 100 cycles (10 seconds).

As the cycles progress the mean increases and the standard deviation reduces as the

inter-agent distances equalise. Figure 4.4 shows the �nal state of the swarm after 10

seconds.
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Fig. 4.3: Distance distribution / Time 0-10 seconds

����

�

��

��

��

	�

���


�������

��
��

��
��

��
��

��
��

��
��

���
���

�� 

�

��

���

���

���

���

���

���


������� �
����������������������������

Fig. 4.4: Distance distribution / Time 10-0 seconds
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4.2.2 Agent resultant magnitude ( interaction vector ) based metric

The distribution of the interaction vector magnitude can be plotted in the same manner

as the distances. Figure 4.6 shows the distribution of the agents based on theinteraction

vector magnitude for the entire duration of the simulation. As with the distance based

metric the data forms a normal bell shaped distribution with a mean magnitude evolving

in time as shown in Figure 4.5. Figure 4.6 includes negative magnitudes, this indicates

that sections of the swarm are expanding.
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Fig. 4.5: Hexagonal swarm - Agent resultant magnitude metric
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Fig. 4.6: Agent resultant magnitude distribution

Figure 4.7 and 4.4 show the distributions at each time cycle and show the change in

the distributions of the magnitudes. As with the distance graphs Figure 4.7 shows the

distribution at time interval 0 to 100 and Figure 4.8 shows the �nal state of the swarm

after 10 seconds (100 cycles).
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Fig. 4.7: Agent resultant magnitude distribution / Time 0-10 seconds
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Fig. 4.8: Agent resultant magnitude distribution / Time 10-0 seconds

The hexagonal structure is the most stable structure [50] and can be classed as a swarm's

most e�cient state as the swarm is maximally distributed wit h agents having minimal

or no cross connected agents. These results show that the �eld e�ects are producing a

swarm that will tend towards having all distances equal which will produce the hexagonal

e�ect as shown in Figure 2.8 on page 23.

4.3 Hyper-connected swarm analysis

When the �eld e�ects create a hyper-connected swarm the inter connectivity of the

agents create a multi-modal distribution of the inter-agent distances. Figure 4.9 shows

the inter-agent distances highlighted, near neighbours ingreen and extended neighbours

in red. This is detectable in terms of how the internal movement metrics present these

distributions. A hyper-connected swarm has a high level of cohesion causing the swarm to

become very inexible. The swarm appears `stable' in terms how the overall structure is

maintained (Figure 4.10), however, there is a greater variation in the interaction vector

magnitudes, and resultant distances, than in a hexagonal swarm. The distances will

maintain a good sound structure but the standard deviation from the mean is high.

This elevated standard deviation (Figure 4.11 and 4.15) indicates that the swarm is not

at its optimum distribution as the swarm's agents could be distributed further covering a
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greater area without causing the swarm to break up. This can be achieved by increasing

the repulsion �eld e�ect. In some circumstances this hyper-connected structure may

be a desirable con�guration to create a more `rigid' platform: for instance to provide a

close proximity wireless sensor network with multiple routing pathways. The connected

distribution that causes the high standard deviation can beseen in Figure 4.12. There

are two distinct peaks in the inter-agent distribution at ap proximately 38 and 58 units

D EF GHI

Fig. 4.9: Inter-agent links in a hyper-connected swarm

Fig. 4.10: Hyper-connected structure
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4.3.1 Distance based metric

The distance based analysis graph (Figure 4.11) for the hyper-connected swarm shows

the metrics being applied to the swarm over a period of 200 cycles.

The swarm is initially in a state of disorganisation and the average distance over the �rst

20 cycles shows the swarm compressing as the average distance falls. The swarm then

enters a phase where the mesh structure forms and the swarm starts to stabilise. After

about 100 cycles the �eld e�ects have resolved and the swarm structure settles to its most

stable state for the given set of parameters. As with the hexagonal swarm the hyper-

connected swarm's internal movement uctuates to maintain the swarm's structure.
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Fig. 4.11: Distance metric

Figure 4.12 shows the distribution of the agents over the entire simulation. By looking at

the data in terms of the distribution graph it is possible to i dentify why the standard de-

viation is greater than that of the hexagonal swarm. The �eld e�ects, in this simulation,

have created a bi-modal hyper-connected swarm. A bi-modal swarm is created when the

agents in a swarm have the cohesion �eld e�ect set such that agents are neighbours one

level further out from the immediate neighbours as shown in Figure 4.10. The result of

this type of connectivity is that the distribution of the age nts distances will produce two

peaks in the distribution graph.
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Fig. 4.12: Distance distribution

Figure 4.13 shows the initial distribution of the agents and the progression of the dis-

tribution of the swarm agents until 10s into the simulation. The initial state of the

distribution at 0s is the same for both swarm types. The impact of the �eld e�ects

are immediate as the swarm stabilises to a bi-modal distribution. Figure 4.14 shows

the distribution of the data at 10 seconds (100 cycles) showing the resultant bi-modal

frequencies the swarm is therefore a hyper-connected swarm.
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Fig. 4.13: Distance distribution / Time 0-10 seconds
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Fig. 4.14: Distance distribution / Time 10-0 seconds

Although the �eld e�ects in this simulation have produced a b i-modal distribution in-

creasing the neighbour distance will create further swarm types that will be multi-modal

as more distant agents are identi�ed as neighbours.
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4.3.2 Agent resultant magnitude based metric

The distribution of the potential magnitudes can be visualised in the same way as the dis-

tances. Figure 4.16 shows the distribution of the agents based on potential magnitude for

the entire duration of the simulation. As with the distance based metric the data forms

a bi-modal distribution with a mean magnitude as shown in Figure 4.15. Figure 4.16

shows negative magnitudes which indicates sections of the swarm are expanding.
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Fig. 4.15: Agent resultant magnitude metric
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Fig. 4.16: Agent resultant magnitude distribution

Figure 4.17 and 4.18 show the distributions at each time cycle and visualise the change in

the distributions of the agent resultant magnitudes. As with the distance visualisations

Figure 4.17 shows the initial distribution at time interval 0 to 100 and Figure 4.18 shows

the �nal state of the swarm after 10 seconds (100 cycles). Both show the bi-model state

of the swarm emerging.
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Fig. 4.17: Agent resultant magnitude distribution / Time 0-10s
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Fig. 4.18: Agent resultant magnitude distribution / Time 10-0s

4.4 Metric comparison

Looking at the two swarm types together the characteristicsof the swarm types present

themselves as change in the standard deviation from either the average distance or the

average magnitude of the agents in the swarm.

Figure 4.19 shows the swarm with the two di�erent �eld e�ects for cohesion. The metric

used in this analysis is the distance between agents. The result shows that the deviation

on the hyper-connected swarm (shown in green) has a higher standard deviation than

the hexagonal swarm (shown in brown). This is caused by the bi-modal nature of the

hyper-connected swarm.

Figure 4.20 shows the analysis of the agent resultant magnitude between the agents in

the swarm which demonstrates the same characteristic emerging.
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