Active Region Photospheric Magnetic Properties Derived from Line-of-sight and Radial Fields

Guerra, Jordan, Park, Sung-Hong, Gallagher, Peter, Kontogiannis, Ioannis, Georgoulis, Manolis and Bloomfield, Shaun (2018) Active Region Photospheric Magnetic Properties Derived from Line-of-sight and Radial Fields. Solar Physics, 293. p. 9. ISSN 0038-0938

[img]
Preview
Text (Full text)
Guerra et al - Active Region Photospheric Magnetic Properties.pdf - Accepted Version

Download (4MB) | Preview
Official URL: http://doi.org/10.1007/s11207-017-1231-z

Abstract

The effect of using two representations of the normal-to-surface magnetic field to calculate photospheric measures that are related to active region (AR) potential for flaring is presented. Several AR properties were computed using line-of-sight (Blos) and spherical-radial (Br) magnetograms from the Spaceweather HMI Active Region Patch (SHARP) products of the Solar Dynamics Observatory, characterizing the presence and features of magnetic polarity inversion lines, fractality, and magnetic connectivity of the AR photospheric field. The data analyzed corresponds to ≈4,000 AR observations, achieved by randomly selecting 25% of days between September 2012 and May 2016 for analysis at 6-hr cadence. Results from this statistical study include: i) the Br component results in a slight upwards shift of property values in a manner consistent with a field-strength underestimation by the Blos component; ii) using the Br component results in significantly lower inter-property correlation in one-third of the cases, implying more independent information about the state of the AR photospheric magnetic field; iii) flaring rates for each property vary between the field components in a manner consistent with the differences in property-value ranges resulting from the components; iv)flaring rates generally increase for higher values of properties, except Fourier spectral power index that has flare rates peaking around a value of 5=3. These findings indicate that there may be advantages in using Br rather than Blos in calculating flare-related AR magnetic properties, especially for regions located far from central meridian.

Item Type: Article
Uncontrolled Keywords: Active Regions, Magnetic Fields; Flares, Forecasting; Flares, Relation to Magnetic Field; Magnetic fields, Photosphere
Subjects: F300 Physics
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Paul Burns
Date Deposited: 19 Jan 2018 10:42
Last Modified: 01 Aug 2021 07:49
URI: http://nrl.northumbria.ac.uk/id/eprint/33145

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics