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ABSTRACT
Objectives: This article reports relationships between
serum cytokine levels and patient-reported levels of
fatigue, in the chronic immunological condition
primary Sjögren’s syndrome (pSS).
Methods: Blood levels of 24 cytokines were measured
in 159 patients with pSS from the United Kingdom
Primary Sjögren’s Syndrome Registry and 28 healthy
non-fatigued controls. Differences between cytokines in
cases and controls were evaluated using Wilcoxon test.
Patient-reported scores for fatigue were evaluated,
classified according to severity and compared with
cytokine levels using analysis of variance. Logistic
regression was used to determine the most important
predictors of fatigue levels.
Results: 14 cytokines were significantly higher in
patients with pSS (n=159) compared to non-fatigued
healthy controls (n=28). While serum levels were
elevated in patients with pSS compared to healthy
controls, unexpectedly, the levels of 4 proinflammatory
cytokines—interferon-γ-induced protein-10 (IP-10)
(p=0.019), tumour necrosis factor-α (p=0.046),
lymphotoxin-α (p=0.034) and interferon-γ (IFN-γ)
(p=0.022)—were inversely related to patient-reported
levels of fatigue. A regression model predicting fatigue
levels in pSS based on cytokine levels, disease-specific
and clinical parameters, as well as anxiety, pain and
depression, revealed IP-10, IFN-γ (both inversely), pain
and depression (both positively) as the most important
predictors of fatigue. This model correctly predicts
fatigue levels with reasonable (67%) accuracy.
Conclusions: Cytokines, pain and depression appear
to be the most powerful predictors of fatigue in pSS.
Our data challenge the notion that proinflammatory
cytokines directly mediate fatigue in chronic
immunological conditions. Instead, we hypothesise
that mechanisms regulating inflammatory responses
may be important.

INTRODUCTION
Fatigue is a significant and debilitating
symptom affecting 25% of the general

Key messages

What is already known about this subject?
▸ ‘Sickness behaviour’ describes a range of symp-

toms, characterised by fatigue and mediated by
proinflammatory cytokines, which occur in mice
after injection of lipopolysaccharide, and pro-
vides an animal model of acute fatigue within
the context of infection or a proinflammatory
state.

▸ However, inflammation does not necessarily cor-
relate with fatigue in a number of autoimmune
conditions, suggesting that inflammation may
not be a direct mechanism behind persistent
fatigue within the context of chronic conditions.

What does this study add?
▸ The finding that certain proinflammatory cyto-

kines decrease as patient-reported fatigue
increases in primary Sjögren’s syndrome (pSS)
is a novel finding.

▸ This may improve understanding of biological
basis of fatigue and help to direct future fatigue
research towards investigating dysregulation of
inflammation rather than inflammation itself.

How might this impact on clinical practice?
▸ This may help to explain why levels of inflamma-

tion do not appear to correlate with patient-
reported fatigue levels within the pSS popula-
tion, and why treating inflammation does not
necessarily improve fatigue in patients with
chronic inflammatory conditions such as pSS.
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population resulting in considerable morbidity and eco-
nomic cost.1–3 It is a key feature of numerous chronic
diseases, being particularly prominent in many rheum-
atological conditions including primary Sjögren’s syn-
drome (pSS).4 5

Although the biological basis of fatigue is unclear, it
has been suggested that proinflammatory mechanisms
play a central role, since fatigue is seen in a number of
conditions with underlying immune dysregulation, and
is a well-documented postinfective symptom.6–8 This was
first suggested by a constellation of symptoms, charac-
terised by fatigue and termed ‘sickness behaviour’, seen
in mice after injection of lipopolysaccharide.9 Sickness
behaviour is considered as an evolutionarily adaptive
behavioural response to infection facilitating speedy
recovery, minimising energy-expenditure and reducing
environmental risks when an organism is in a weakened
state during and following an infection. It is mediated by
proinflammatory cytokines, thus supporting inflamma-
tion as a central component in the pathophysiology of
fatigue.8 10 In particular, recent research has focused on
the role of proinflammatory cytokines in mediating
fatigue,11–14 particularly in the context of chronic
fatigue syndrome (CFS). However, levels of inflamma-
tion in some rheumatological diseases, such as rheuma-
toid arthritis (RA), systemic lupus erythematosus (SLE)
and pSS, do not necessarily correlate with fatigue scores,
suggesting that there may be a complex range of positive
and negative feedback loops contributing to fatigue in
autoimmune conditions.15 16

PSS is a useful disease model for research into the bio-
logical basis of fatigue. It has clear diagnostic criteria
providing a well-defined patient group, in whom
immunosuppressive medications—potentially altering
immune and inflammatory processes—are less com-
monly used compared with patients with other auto-
immune diseases. There is also wide variability between
patients with pSS in terms of the fatigue they experi-
ence. In pSS, fatigue does not appear to correlate well
with systemic or glandular disease activity, suggesting
that there may be separate pathophysiological mechan-
isms for fatigue and disease activity.15

Other studies, in pSS as well as in rheumatological dis-
eases such as RA and SLE, have shown that measures of
fatigue are not associated with markers of inflammation
and disease activity scores.17–20 However, such studies
have not examined such a range of cytokines, making
our study unique. In addition to this, patients in such
studies with RA and SLE usually take a number of
disease-modifying or immune-suppressive medications,
which could affect their inflammatory profiles, unlike
patients with pSS who are less-frequently prescribed
potent immune-suppressive medications.
Using gene set enrichment analysis of gene expression

data from 133 patients with pSS discordant for fatigue,
we have recently identified several biological pathways
that are discordant between fatigued and non-fatigued
patients with pSS. Furthermore, using support vector

machine classification, a 55-gene signature was identi-
fied, which is predictive of fatigue level. Interestingly,
none of the biological pathways or the 55 genes were
overtly related to inflammation.21 Other studies have
found that pain and depression were more strongly asso-
ciated with fatigue in RA and SLE than disease activity
scores or inflammatory markers.18 19 22 These observa-
tions indicate that, at least in the setting of a chronic dis-
order, inflammatory molecules may not directly result in
fatigue.
This study examines patients from the United Kingdom

Primary Sjögren’s Syndrome Registry (UKPSSR).23 This
registry consists of a large cohort of clinically well-
characterised patients with pSS and matched controls. We
have used UKPSSR data here to attempt to determine
whether there is a relationship between serum cytokine
levels and patient-reported levels of fatigue. We hypothe-
sise that there will be a significant difference in serum
cytokine levels between cases with pSS and controls, and
between the higher and lower fatigue scores within the
pSS patient group. We also aimed to determine import-
ant predictors of fatigue in pSS to initiate further investi-
gation of these factors.

METHODS
Experimental design
The objective of this study was to analyse cytokine
and fatigue levels in patients with pSS in order to deter-
mine whether there is a relationship between cytokines
and fatigue in pSS. We also used clinical and biological
data to ascertain the most important predictors of
fatigue within this patient group. Cytokine profiles were
compared to healthy non-fatigued controls to examine
differences between these populations. This was a case–
control study using results from analysis of serum
samples from a patient registry along with clinical data
collected contemporaneously at the time of recruitment
onto the patient registry.

Study population
Patients were selected from the UKPSSR (http://www.
sjogrensregistry.org), which holds detailed clinical,
laboratory and demographic data on over 700 patients
with pSS across 30 centres in the UK.23 All patients on
UKPSSR fulfil American European Consensus Group cri-
teria for classification of pSS. This study selected 159
female patients with pSS who displayed a range of differ-
ent fatigue scores. Twenty-eight non-fatigued healthy
controls from the UKPSSR were also selected. The
North West Research Ethics Committee granted research
ethics approval for this study. Clinical and laboratory
data were collected prospectively using a standardised
proforma at the time of recruitment onto the UKPSSR.

Clinical variables and outcomes
Fatigue severity was measured using the Profile of
Fatigue Questionnaire, which is validated for use in
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pSS.24 Physical fatigue was scored on a scale of 0–7 to
classify patients into minimal (0–1), mild (2–3), moder-
ate (4–5) and severe (6–7) fatigue groups based on
quartile scores. People from the healthy control group
were screened for the presence of fatigue using a self-
completed questionnaire. None of the controls reported
the presence of fatigue, sicca symptoms or other auto-
immune conditions. Anxiety and depression were mea-
sured using the Hospital Anxiety and Depression Score.25

Other clinical parameters included systemic disease
activity using the EULAR Sjögren’s Syndrome Disease
Activity Index (ESSDAI) and EULAR Sjögren’s Syndrome
Patient Reported Index (ESSPRI), as well as glandular
manifestations using Schirmer’s test, unstimulated oral sal-
ivary flow test and EULAR Sicca Score—a measure of
overall dryness experienced by the patient.26 27

The UKPSSR holds biobanked serum samples for
each patient with pSS, which were analysed with cyto-
metric bead array-based immunoassay allowing multiple
analyses of a single sample. The following 24 cytokines
were tested: cluster of differentiation 40 ligand (CD40L),
cluster of differentiation 54 (CD54), cluster of differenti-
ation 106 (CD106), E-selectin, interferon-α (IFN-α),
interferon-γ (IFN-γ), interferon-γ-induced protein-10
(IP-10), interleukin-1β (IL-1β), interleukin-4 (IL-4),
interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10
(IL-10), interleukin-12p70 (IL-12p70), interleukin-12–
interleukin-23p40 (IL-12/IL23-p40), interleukin-17
(IL-17), interleukin-21 (IL-21), lymphotoxin-α (LT-α),
macrophage inflammatory protein 1α (MIP1α), macro-
phage inflammatory protein 1β (MIP-1β), monocyte
chemoattractant protein-1 (MCP-1), monokine induced
by γ interferon (MIG), P-selectin, regulated on activation
normal T expressed and secreted (RANTES) and tumour
necrosis factor-α (TNF-α). These analytes represent a
broad spectrum of proinflammatory and anti-
inflammatory soluble molecules with possible links to
fatigue. In addition, white cell count (WCC), lympho-
cytes, neutrophils, haemoglobin, erythrocyte sedimenta-
tion rate (ESR) and C-reactive protein (CRP) were
measured in each sample by the NHS laboratory of the
recruiting centre within a day of sample collection.

Statistical analysis
Patient demographic data are presented using median
and IQR. Clinical data are presented using mean and
SD. Significance was determined using Wilcoxon test.

Cytokine data are presented as box plots using the
median and IQR to report key findings. Since cytokine
levels were not normally distributed, a normalising log
transformation was performed prior to analysis, after
which analysis of variance testing was used to examine
the relationship between the levels of each cytokine
analyte and the corresponding fatigue score. Spearman’s
rank correlation coefficient was also used to measure
correlation between ungrouped (continuous) fatigue
scores and cytokine levels.
Ordinal logistic regression analysis was used to model

predicted fatigue level against observed fatigue level,
using all cytokines. WCC, lymphocytes, neutrophils,
ESR, CRP, ESSDAI scores and dryness scores, were also
incorporated into this model, as well as depression,
anxiety and pain scores.
All statistical tests and graphics were performed using

R version 3.1.1 and SAS JMP (Version 14) Statistical
Data Visualization software.28 29

RESULTS
Study population
Serum samples from 159 female patients with pSS with a
range of fatigue levels and 28 healthy non-fatigued
female controls from the UKPSSR were used in this
study. Patients with pSS were stratified into four groups
according to their fatigue levels. Patients were predomin-
antly Caucasian in both groups; however, the mean age
of healthy controls was younger than the pSS group.
Demographic data of cohort are summarised in table 1.

Clinical differences between pSS fatigue groups
Disease and symptom duration were not significantly dif-
ferent between fatigue groups (table 2). Anti-Ro/La
positivity and the percentage of each group prescribed
potentially immune-altering medications (eg, hydroxy-
chloroquine or prednisolone) did not differ significantly
across groups (table 2). Forty-three per cent of patients
overall were prescribed an immune-altering medication
and this was hydroxychloroquine in the majority of such
patients (table 2). Serum IgG levels decreased with
increasing fatigue (p=0.008) with the mean serum IgG
levels in the groups of patients with pSS with minimal
and mild fatigue being above the normal ranges
(table 2). Lymphocyte counts increased (p=0.002) with
increasing fatigue, but the values were within normal
ranges for all pSS groups (table 2). The remaining

Table 1 Demographic summary for control and pSS fatigue groups

Control Minimal (0–1) Mild (2–3) Moderate (4–5) Severe (6–7) p Value

N 28 24 44 65 26

Mean age±SD 50±13 62±10 58±14 60±12 59±13 0.005

Caucasian (%) 100 100 95.5 95.4 96.2 ns

All participants are female. Mean age was lower in the control group while ethnicity did not vary significantly across groups.
pSS, primary Sjögren’s syndrome.
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haematological parameters did not show significant dif-
ferences between fatigue groups. Anxiety, depression,
pain, dryness and ESSPRI (overall symptom burden)
scores all increased with increasing fatigue levels
(p≤0.0001) (table 2). EULAR Sicca Score, a measure of
ocular and oral dryness, also increased with increasing
fatigue (p=0.004). However, there was no significant
relationship between systemic disease activity (measured
using ESSDAI scores) and fatigue groups (table 2).

Cytokine differences between patients with pSS and
healthy controls
As expected, many proinflammatory molecules were ele-
vated among patients with pSS compared to healthy con-
trols, consistent with the inflammatory nature of the
condition. Specifically, CD106, IP-10, IL-17, IL-21,
MIP1α, TNF-α, LT-α, MIP1β, IFN-γ, MIG, IL-6, IL-10,
IL-12p70 and IL-12/IL23-p40 levels were significantly
higher in patients with pSS compared with controls, with
eight of these cytokines having p values of ≤0.0001
between these participant groups (table 3). None of the
other serum proteins were significantly different
between patients with pSS and controls.
In addition to this, there were statistical differences in

IP-10, IL-6, IL-10, IL-12, IL-17, IL-21, IFN-γ, LT-α, MIG,
MIP1α, MIP1β and TNF-α levels between healthy con-
trols and the minimally fatigued pSS groups. In all cases,
they were higher in the pSS population.

Cytokines and fatigue scores in patients with pSS
Unexpectedly, fatigue levels increased with decreasing
levels of several proinflammatory cytokines: IP-10
(p=0.019), TNF-α (p=0.046), LT-α (p=0.034) and IFN-γ
(p=0.022) (figure 1A–D) within the cases with pSS.
Furthermore, weak negative correlations were shown
between cytokine levels and ungrouped (continuous)
fatigue scores: IP-10—0.2190, TNF-α—0.1273, IFN-γ—
0.1985 and LT-α—0.0808. The remaining cytokines did
not display statistically significant relationships with
fatigue levels within the cases with pSS.

Predictors of fatigue severity in pSS
Ordinal logistic regression (figure 2A, B) predicts mem-
bership of the minimal, mild, moderate and severe
fatigue groups using all 24 cytokines, WCC, lymphocytes,
neutrophils, ESR, CRP, ESSDAI scores and dryness
scores, as well as patient-reported depression, anxiety
and pain. The full model, with all parameters, correctly
predicts fatigue in 67% of cases (figure 2A). This model
with all parameters was robust to the presence or
absence of loose markers of disease activity (such as
WCC, lymphocytes, neutrophils, ESR, CRP, ESSDAI and
dryness scores), but sensitive to the presence or absence
of cytokines, depression, anxiety and pain. The model
predictions are reasonably accurate providing cytokines,
depression and pain are retained. This suggests that
measures of disease activity in pSS appear to be less

Table 2 Clinical summary for pSS fatigue groups showing mean±SD for key demographics, haematological and clinical

variables

Variable Minimal Mild Moderate Severe p Value

Age (years) 62±10 58±14 60±12 59±13 ns

Disease duration (years) 5.5±5.8 6.1±5.2 7.5±6.2 9.1±7.3 ns

Symptom duration (years) 13±10 13±11 14±11 16±13 ns

BMI (kg/m2) 25±4.4 26±4.2 26±6.3 28±7.2 ns

% Anti-Ro/La positive 91.67 95.45 83.08 92.31 ns

% Not taking any immune-altering medications 67 59 52 50 ns

% On hydroxychloroquine 17 34 37 34 ns

% On prednisolone 8 5 6 12 ns

% On ‘other’ immune-altering medications 8 2 5 4 ns

ESSDAI 5.4±5.7 7.6±8.2 5.9±5.2 7.2±6.1 ns

ESSPRI 2.9±1.3 4.3±1.4 6.6±1.4 8.3±1.1 ≤0.0001
ESSPRI pain 1.4±1.5 3.2±2.5 5.4±2.6 8±1.6 ≤0.0001
ESSPRI dryness 5.6±2.7 5.5±2.2 6.9±2.6 8.1±2 ≤0.0001
EULAR SS 5.3±2.5 5.6±2.5 6.8±2.5 7.8±2 0.0004

HADS anxiety (0–21) 3.7±2.4 6.5±3.5 8.6±4.4 12±4.9 ≤0.0001
HADS depression (0–21) 2±1.9 4±2.8 7.4±3.5 11±2.9 ≤0.0001
Hb (g/dL) 12±1.6 13±1.2 13±1.2 13±1.1 ns

WCC (×109/L) 5.5±1.4 5.2±1.5 5.2±2.0 6.3±2.7 ns

Neutrophil (×109/L) 3.5±1.1 3.3±1.3 3.2±1.5 3.7±2 ns

Lymphocyte (×109/L) 1.4±0.6 1.3±0.5 1.4±0.6 1.9±0.9 0.002

ESR (mm/h) 39±26 33±25 27±24 24±20 ns

CRP (mg/L) 6.4±5 5±4.1 5.2±5.9 6.7±5.8 ns

IgG (mg/dL) 20±8.8 18±8 15±6.5 15±4.2 0.008

BMI, body mass index; CRP, C-reactive protein; ESSDAI, EULAR Sjögren’s Syndrome Disease Activity Index; ESR, erythrocyte
sedimentation rate; ESSPRI, EULAR Sjögren’s Syndrome Patient Reported Index; EULAR SS, EULAR Sicca Score; HADS, Hospital Anxiety
and Depression Score; Hb, haemoglobin; pSS, primary Sjögren’s syndrome; WCC, white cell count.
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important than cytokines, depression and pain in accur-
ately predicting fatigue levels.
Refinement of the ordinal logistic regression

model, identified IFN-γ, IP-10, depression and pain are

sufficient to predict fatigue with similar (67%) accuracy
as the full model (figure 2B). This suggests that depres-
sion, pain and cytokines are the most important predic-
tors of fatigue.

Table 3 Cytokine levels in patients with pSS and healthy controls

Cytokine Controls (n=28) Cases with pSS (n=159) p Value

CD54 41882.42

31954.3, 68077.5

47915.84

36203.1, 76537.1

0.2599

RANTES 19117.12

13203.8, 28251.3

21472.56

15722.97, 28255.1

0.1643

CD106 67543.20

51824.4, 75985.4

80921.58

57934.1, 96570.5

0.0042

IL-8 37378.14

11075.6, 311730.2

35623.48

10596.6, 374424.3

0.6929

IP-10 110.24

75.0, 167.4

342.38

226.2, 540.5

<0.0001

IF 1.34

0.8, 2.2

1.48

0.7, 4.5

0.1659

IL-17 1.32

0.4, 2.0

3.28

1.3, 47.0

<0.0001

IL-21 45.33

30.6, 63.4

71.71

40.0, 782.8

0.0006

MIP1α 5.85

1.7, 101.4

99.52

6.9, 219.3

<0.0001

TNF-α 0.08

0.0, 0.1

7.00

0.1, 27.1

<0.0001

LT-α 0.33

0.2, 0.6

2.5

0.5, 13.0

<0.0001

P-selectin 7385.86

5802.8, 8894.1

8212.16

5148.01, 11983.12

0.3287

MCP-1 131.62

95.3, 221.7

170.42

121.8, 318.2

0.1061

E-selectin 2515.06

1691.2, 3588.5

2862.34

1992.0, 4241.0

0.3213

MIP1β 78.96

27.0, 136.5

178.40

97.3, 333.8

<0.0001

IFN-γ 1.90

0.5, 3.2

2.97

1.4, 10.6

0.0018

MIG 125.90

84.5, 244.0

986.32

458.4, 2593.4

<0.0001

CD40 ligand 2838.26

1893.4, 3559.4

2449.40

1825.4, 3239.5

0.1065

IL-6 938.18

506.7, 1537.1

1544.46

836.5, 2931.9

0.0020

IL-1β 126

45.8, 698.7

271.23

47.7, 738.2

0.3767

IL-10 50.68

9.9, 360.0

490.90

129.6, 881.9

<0.0001

IL-12p70 16.63

8.40, 25.0

27.18

13.41, 206.4

0.0024

IL-4 0.00

0.00, 0.00

0.00

0.00. 0.00

0.3322

IL-12.IL-3p40 0.00

0.00, 0.00

0.00

0.00, 0.00

0.0117

Bold typeface indicates significance.
Generally cytokines were significantly higher in patients with pSS compared to controls. Values in table represent median and 25th, 75th
centile (pmol/L).
CD, cluster of differentiation; IFN-γ, interferon-γ; IL, interleukin; IP-10, interferon-γ-induced protein-10; LT-α, lymphotoxin-α; MCP-1, monocyte
chemoattractant protein-1; MIG, monokine induced by γ interferon; MIP, macrophage inflammatory protein; pSS, primary Sjögren’s syndrome;
RANTES, regulated on activation normal T expressed and secreted; TNF-α, tumour necrosis factor-α.
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Figure 1 Box plot showing median cytokine levels and IQRs for (A) IP-10, (B) TNF-α, (C) LT-α and (D) IFN-γ in controls and

pSS fatigue groups. In all four cases, the levels of anti-inflammatory cytokines are significantly higher in patients with pSS. In

addition, all four show an inverse relationship between fatigue severity and cytokine levels. Fatigue levels fall with increasing

levels of the four cytokines. IFN-γ, interferon-γ; IP-10, interferon-γ-induced protein-10; LT-α, lymphotoxin-α; pSS, primary

Sjögren’s syndrome; TNF-α, tumour necrosis factor-α.

Figure 2 (A) Full ordinal logistic regression model with all parameters. This model analyzes observed fatigue values in order to

predict fatigue values based on the following variables: all 24 cytokines, WCC, lymphocytes, neutrophils, ESR, CRP, ESSDAI

scores, dryness scores, depression, pain and anxiety scores. It then compares the predicted with the observed values to

ascertain the accuracy of the model. All of these variables predict fatigue level correctly in 67% of cases. (B) shows that IFN-γ,
IP-10, depression and pain alone predicted fatigue level with 67% accuracy, which was as effective as the full-model.
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DISCUSSION
Our study demonstrates that patients with pSS with
higher levels of fatigue had lower levels of the proin-
flammatory cytokines IP-10, TNF-α, LT-α and IFN-γ than
patients with pSS with low levels of fatigue. It should be
noted, however, that the serum levels of many cytokines
among even the fatigued participants with pSS were still
higher than non-fatigued healthy individuals. Our obser-
vation that the magnitude of inflammatory response
correlated inversely with fatigue levels does not, however,
support a simple concept of higher levels of inflamma-
tion leading to worse fatigue.
One possible explanation is that regulatory mechan-

isms of inflammation may be responsible for sustained
fatigue after an initial inflammatory response. This
hypothesis is illustrated in figure 3, which depicts an anti-
inflammatory negative feedback loop, reducing inflamma-
tory markers, but resulting in persistent fatigue. Thus,
although fatigue is induced by proinflammatory cytokines
as part of an ‘adaptive behaviour response’, which has
evolved as a protective motivational state during and fol-
lowing an infection, a potentially maladaptive immune
response may contribute to the maintenance of persistent
fatigue after clearance of a pathogen or in a chronic
inflammatory state.30 We suggest that immune-modulatory
and anti-inflammatory mechanisms may be inappropri-
ately expressed in patients suffering from fatigue. Further
research into such anti-inflammatory pathways and regu-
latory mechanisms of inflammation might be insightful in
the understanding of the biological basis of persistent
fatigue in chronic diseases.
This hypothesis may be further supported by a recent

study by Hornig et al,31 which demonstrated lower levels
of the proinflammatory cytokines IL-17, IL-8, IP-10, and
TNF-α and soluble Fas ligand in patients with CFS com-
pared with control groups. This study also found inverse
correlations with cytokine levels and illness duration in
patients with CFS. Specifically, the proinflammatory cyto-
kines IFN-γ and IL-12p40 were more markedly elevated
in the short-duration compared to the long-duration
CFS group. This suggests that the immunological
changes seen in CFS are dynamic and may change with
time as illness duration increases. These observations are
consistent with the concept of fatigue being mediated by
negative feedback/homeostatic mechanisms following
an initial or sustained period of inflammation. An
increased anti-inflammatory response has also been
observed in a number of other CFS studies. In 2007, ter
Wolbeek et al found higher levels of anti-inflammatory
cytokines (IL-10 and IFN-γ/IL-10 ratios) and lower levels
of proinflammatory cytokines (IL-6 and TNF-α) in ado-
lescents with CFS compared to healthy controls.32

Reduced phytohemagglutinin-stimulated IFN-γ produc-
tion by CD4+ T cells has been shown in CFS.33 This may
support the idea that anti-inflammatory or regulatory
pathways play some role in mediating persistent fatigue,
after initial inflammatory insults.

It is also noteworthy that IP-10, TNF-α and IFN-γ have
been implicated in the study by Hornig and colleagues
as well as our current study. IFN-γ, produced by natural
killer as well as T cells, helps to initiate a cellular
response to infection. TNF-α is secreted as part of an
acute phase reaction to mediate protective immune
responses to infection. IP-10 is secreted from cells after
stimulation by IFN-γ and is a chemoattractant for acti-
vated T cells to sites of inflammation.34 These cytokines
are linked to an activated Th1 response, raising the intri-
guing possibility that dysregulation of Th1 responses
may be linked to development of fatigue. A bias towards
Th2 responses in CFS has, in fact, been demonstrated in
a number of CFS studies and may be an important com-
ponent in mediating fatigue.35

However, few cytokine abnormalities in CFS and other
fatigue-associated chronic conditions have been consist-
ently demonstrated across different studies. One possible
explanation is the confounding psychosocial factors
present in the patient groups in different studies.
Indeed, depression and pain were important predictors
of fatigue in our study, supporting the concept of a bio-
psychological model of fatigue. The importance of psy-
chological factors in pSS-associated fatigue is supported
by two recent studies. Karageorgas et al36 found that
anxiety, depression and fibromyalgia play a major role in
pSS-associated fatigue, whereas van Leeuwen et al37

demonstrated that distinct psychological profiles are dif-
ferentially associated with fatigue in pSS. However,
removing depression, pain and anxiety did not fully
disrupt the regression model in this study. In contrast,
removing cytokines disrupted the performance of the
model suggesting that while pain and depression appear
to play some role in fatigue, inflammatory/anti-
inflammatory cascades may play a larger role. Further
work is however necessary to understand this likely
complex interplay and overlap between multiple psycho-
social and biological factors, which may influence levels
of fatigue.
Some of the strengths of this study include (1) a large,

clinically well-defined patient group with clear diagnostic
criteria; (2) minimal demographic variation between
fatigue groups within the pSS cohort; (3) a validated
fatigue measure for use in pSS and (4) extensive charac-
terisation of the cytokine profiles.
We aimed to minimise potential gender differences in

cytokine profiles by using a female study population;
however, this may mean that such data may not be
applicable to men with pSS or indeed fatigue. Although
there were significant differences in age between healthy
volunteers and cases with pSS, age differences between
pSS fatigue groups were not statistically significant and it
was within this pSS cohort that the analysis of fatigue
and cytokine levels, and ordinal regression took place. It
is also worth mentioning that pSS fatigue groups were
not significantly different in terms of anti-Ro/La positiv-
ity or immune-altering medications used. This is relevant

Howard Tripp N, et al. RMD Open 2016;2:e000282. doi:10.1136/rmdopen-2016-000282 7

Connective tissue diseases

group.bmj.com on February 14, 2018 - Published by http://rmdopen.bmj.com/Downloaded from 

http://rmdopen.bmj.com/
http://group.bmj.com


as hydroxychloroquine and prednisolone can affect a
cytokine profile and therefore suggests that cytokine dif-
ferences are not due to differential medication prescrib-
ing across groups.38

There are however limitations in this study. First,
unlike a longitudinal study, the cross-sectional nature of
the study does not permit within-patient comparisons.
Second, cytokine levels may vary considerably within a
short space of time and their presence in the blood may
be influenced by multiple factors, including fatigue
itself. While cytokines may indeed affect fatigue, fatigue

may also affect cytokine levels as part of a two-way loop.
Furthermore, there could be other possible contributing
factors of fatigue among patients with pSS, which have
not been taken into consideration.
To conclude, immune dysfunction or dysregulation

may contribute to the development of fatigue in pSS
and other chronic immunological diseases, although
further characterisation of the mechanisms involved is
needed. In particular, evaluation of potential negative
feedback pathways inappropriately activated in patients
experiencing fatigue, as well as studies examining

Figure 3 Hypothetical model of

fatigue in a chronic immunological

condition. This model suggests

that anti-inflammatory

mechanisms may have a part to

play in the persistent fatigue in

chronic inflammatory diseases.

When presented with an immune

infective challenge, the immune

response triggers inflammatory

pathways, which triggers a

cytokine-mediated behavioural

response, which has been called

‘sickness behaviour’. Additionally,

the immune (inflammatory)

response also activates

homeostatic regulatory pathways.

In the healthy patient (A), the

cytokine balance is restored and

the behavioural pathways

inactivated, leading to recovery.

However, if this system is

dysregulated (B) and exposed to

constant immune challenge, as in

the case of pSS, chronic

inflammation results, which

triggers an inappropriate

anti-inflammatory response. We

postulate that this exaggerated

immune regulatory response

turns what was an adaptive

behavioural response into

persistent and pathological

chronic fatigue. This may help to

explain why studies have found

raised levels of anti-inflammatory

cytokines in patients with more

severe fatigue and why

proinflammatory cytokines

decrease as fatigue increases in

this study. The fatigued patient is

caught in a pathological feedback

loop with dysregulation of the

immune system, cytokine. pSS,

primary Sjögren’s syndrome.
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different phenotypes and their corresponding levels of
fatigue within a defined patient population, would be
valuable areas for future research.
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