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Abstract 

For a toroid-shaped end milling cutter to have multi-structure features of tooth offset 

center and introversion of bottom edge, this paper proposes a generalized parametric 

modeling method of the bottom edge, including a straight edge segment and a circular 

arc edge segment. And based on the parametric model this paper also deduces the 

corresponding tool path for grinding of the bottom edge’s rake and flank faces. The 

parametric modeling method is based on the geometric analytic equations while the 

grinding method is driven by the proposed parametric model and the parameters of 

rake and flank faces. The two methods can be applied to a bottom edge of a cutter 

with multi-structure features to guarantee G1 continuity at the two joints for 

connecting a circular arc edge with a straight edge and a conical helix edge 

respectively. In order to verify the accuracy of proposed methods, experiments were 

carried out. The modeling and grinding experimental results verified the accuracy and 

utility of the methods. 
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1 Introduction 

Toroid-shaped end milling cutter (TEMC) is widely used in manufacturing of 

complicated parts with free-form surfaces[1]. The main parts of cutting edges 

participated in milling are a straight edge, a circular arc edge and a conical helix edge 

shown in Fig. 1. TEMC has the advantages of high adaptability and machining 

efficiency compared with ball-end milling cutter under constant scallop-height 

cutting[2]. And it has the ability to produce the periphery of parts meeting with the 

bottom floor with fillets[3]. Also, this type of cutter has higher material removal rate 

and lower flank wear rate because bottom edge is more solid[4][5] and thus, the 

machining quality is much more stable[6] compared with flat-end milling cutter.  

Generally, the straight edge on TEMC having a tooth offset to the bottom center 

can improve its strength, and introversion to reduce friction between bottom edge and 

machined surface. As shown in Fig. 1, h is the tooth offset distance and η is the dish 

angle. Meanwhile TEMC has smooth cutting edges to ensure the cutting continuity 

during machining. However, the multi-structure features lead to difficulties in 

parametric modeling and grinding. Although there is a complete set of theory that can 

be used to design and manufacture TEMC without multi-structure features at present, 

it cannot be applied directly to TEMC with multi-structure features. Therefore the 

research on parametric modeling and grinding methods of this kind of TEMC is of 

great significance. 



   
Fig. 1  Main parts of cutting edges (Straight edge has multi-structure features) 

Precise parametric modeling of a bottom edge which determines the structure of 

end milling cutter is an essential for grinding of TEMC. Furthermore, the edge curve 

is also the guideline of the grinding wheel movement during grinding. Therefore 

parametric modeling of a bottom edge must be studied first. Many scholars have done 

much research about it. Chen adopted a supplementary cutting edge with a constant 

pitch to supply a general reference for TEMC with a constant angle between the 

cutting edge and the cutter axis[6]. Chen presented a precise mathematical modeling 

procedure for the design of cutters with a circular arc edge, the cutting edge forms a 

constant angle with the longitude curve[7], and presented a systematically design 

model of the involute end-milling cutter which cutting edge curves forms a constant 

angle with the cutter axis[8]. Chen presented a design model of TEMC, the cutting 

edge forms an approximately constant angle with the cutter axis[9]. Lin proposed a 

geometrical model of the cutting edge on TEMC with a constant angle between the 

cutting edge and the cutter axis[10]. Hsieh derived a mathematical model of the ideal 

conical helix edge which formed a constant angle to the longitudinal line at the toroid 

surface[11]. Tang studied the design models of the cutting edge with the convex curve 

generatrix, and put forward three mathematical models, i.e., planar cutting edges, 

helical cutting edges with a constant angle to the meridian and helical cutting edges 

with a constant pitch to avoid the problem of the inexistence of the cutting edge in the 

area near the end face of a cutter and the cutting edges are smoothly connected[12][13]. 

Yang introduced the design of a cutting edge with equal pitch, and the edge was 

continuous at the joint of the circular torus and the cylindrical surface[14]. Han gave 

the design method of the cutting edge which was defined as an approximate equal 



pitch curve with a concave arc as generator[15]. Lv established a mathematic model 

using infinitesimal geometry for the cutting edge design which used equal lead 

helix[16][17]. Although references [1], [18] and [19] used the generalized mathematical 

model proposed by Engin and Altintas[3][20][21], and seven geometric parameters were 

defined, if the circular torus is not a full quarter, there will be a discontinuity on the 

bottom edge. Cheng used the orthogonal helix edge curve as the S-shaped edge curve 

of ball-end milling cutter, the edge curve acquired based on the mathematical model 

proposed has a good S-shape and can connect with the circumferential edge curve 

smoothly. Furthermore, the model can be used easily to establish the S-shaped edge 

curve with tooth offset center or without tooth offset center[22]. 

Until now, several kinds of curves are used as a bottom edge on TEMC, such as 

an equal pitch edge curve, an equal helix angle edge curve with the longitude line, an 

equal helix angle edge curve with the cutter axis, a planar edge curve and an 

orthogonal helix edge curve. They have good edge curve shapes and can be used in 

series types of TEMC. However, present modeling methods using these kinds of 

curves are not concerned with a straight edge, not to mention the straight edge with 

multi-structure features, thus leading to complexity and difficulty of the grinding 

method. The grinding methods of TEMC are also studied by many scholars. Liu 

proposed a grinding process of the rake and flank faces and calculated the tool path 

and direction vector of grinding wheel[4]. Chen obtained the sectional profile of the 

grinding wheel by using an inverse problem-solving technique and the manufacturing 

model presented can be used on a two-axis NC machine[7]. Lin provided grinding 

models of a section design, feeding speeds and relative position of the grinding 

wheel[10]. Hsieh developed a systematic method for the grinding of the helical flute 

and the cutting edge, and considered the section profile and relative feeding velocities 

of the grinding wheel[11]. Bao studied a virtual two-axis grinding model of TEMC 

with an equal helix lead cutting edge and an equal helix angle cutting edge 

respectively[23].  

In the above studies, many scholars focused on the parametric modeling and 

grinding methods of TEMC without multi-structure features of tooth offset to the 



center and introversion of the bottom edge. And thus the existing research results are 

just in a limited scope of application of the methods presented and no unified model is 

formed. In order to meet the requirements of the design and manufacturing of a 

toroid-shaped end milling cutter especially its bottom edge has multi-structure 

features, this article presents a generalized parametric modeling method of a bottom 

edge, and based on this, a grinding method for the rake and flank faces of the bottom 

edge can make the cutting edges with G1 continuity, that is (1) the cutting edge curves 

meet at the joint points and (2) their tangent directions at the joints are the same. The 

G1 continuity makes the composite cutting edge smooth. The modeling and grinding 

experiments indicates that the proposed cutter modelling and grinding methods can 

shorten the production cycle and improve the success rate of the design of a 

toroid-shaped end milling cutter, thus reduce the cost of cutter production. 

Furthermore, the proposed general and parametric modelling of a TEMC has a great 

potential to support optimal cutter design for different machining applications and the 

corresponding grinding method can easily realize the cutter design into tool 

manufacturing. This provides an integrated cutting design and manufacturing solution 

for wider applications.      

This article is organized as follows: Section 2 describes the mathematical model 

of a bottom edge with multi-structure features of tooth offset center and introversion. 

Section 3 presents a grinding method of a bottom edge based on its 3D mathematical 

model. The experiments and results are described in section 4, and finally conclusions 

are drawn in section 5.  

2 Parametric modeling method of bottom edge 

Among many kinds of curves mentioned above, the planar edge curve has a good 

curve shape and more simple mathematical computation compared with others. This 

type of edge curve can reach G1 continuity at the two joints of a circular arc edge with 

a straight edge and a conical helix edge respectively, and the straight edge can have 



multi-structure features whether or not. So planar edge curve is adopted, i.e., the 

circular arc edge is the intersecting planar curve of the circular torus and the plane 

composed of an extended line of straight edge and a tangential line at the end of the 

conical helix edge.  

As shown in Fig. 2, the revolving surfaces of the cutting edges on TEMC are 

defined as three parts: a circular truncated conical surface A where the conical helix 

edge a lies, a circular torus B where the circular arc edge b lies, and a concave conical 

surface C. Their relationship is that B is tangent with A and C. Straight edge c has the 

multi-structure features of tooth offset center and introversion. 

Define I as the intersection of a and b, J as the intersection of b and c. Define L1 

as the extended line of c, L2 as the tangential line of a at I, L3 as the intersecting line 

of B and C, L4 as the intersecting line of A and B. Define P as the intersection of L1 

and L2. Plane M is composed of L1 and L2. The bottom edge consists of b and c. 

 
Fig. 2  Relevant geometrical elements of bottom edge 

2.1 Parametric model of edge c 

To reduce the complexity of mathematical modeling, define the coordinate 

system [O1-X1Y1Z1] as the first coordinate system, and the origin O1 as center of B. Z1 

is the cutter axis and the positive direction is from the cutter shank to the tip. X1 is 

parallel to the projection of c on the plane X1Y1. The point coordinates in the first 

coordinate system are identified by subscript _1.  



Let γ be the angle between X1-axis and the projection of IO1 on the plane X1Y1. 

Rotate the first coordinate system on Z1-axis by angle γ negatively, and the coordinate 

system [O2-X2Y2Z2] is obtained as the second coordinate system. The point 

coordinates in the second coordinate system are identified by subscript _2. Then, the 

parametric models of c and b can be described in the second coordinate system.  

As shown in Fig. 3, define L as the intersection of L3 and the plane X1Z1, Q as the 

tip of C, K as the endpoint of c, Or as the center of the cross section of B on the plane 

X1Z1. Let re be the section radius of B, R be the distance between I and the cutter axis, 

κ be the half cone angle of A, β be the helix angle of a at I (angle between the helix 

edge on the revolving surface and the generator curve). 

 
Fig. 3  Schematic diagram for the design of edge c 

On the basis of cutter geometry relationship, the coordinates of J and K in the 

first coordinate system are as follows 
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According to the direction of the coordinate system, the rotation transformation 

matrix from the first coordinate system to the second coordinate system can be 



expressed as follows 
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Obviously, the coordinates of I can be described as 

2

2 2

2

0 ,
sin

I_

_ I_

I_ e

x R
y
z r κ

   
   = =   
  ⋅   

I

 

(4) 

where: _1 cosOr eR x r κ= + ⋅ . 

Let τL1_2, τL2_2 be the unit direction vector of L1 and L2 respectively. Then τL1_2 

and the parametric equation L1_2(t1) of L1 can be obtained by Eqs. (5) and (6) 

respectively 
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(6) 

where t1 is the independent variable. 

Similarly, τL2_2 and the parametric equation L2_2(t2) of L2 can be obtained by Eqs. 

(7) and (8) respectively 
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where t2 is the independent variable. 

For L1 and L2 intersect at P, then 
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So t1, t2 and γ can be obtained by Eqs. (5) to (9), shown as follows 
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where:  
2

2 2 1 3
1

1

4
2

T T T T
t

T
− + − ⋅

= ； 

_1 _ 2 1
2

2 _ 2

sinJ I

L z

z z t
t

η
τ

− − ⋅
= ； 

( )2 2 2 2 2
1 2 _ 2 2 _ 2 2 _ 2sin cosL x L y L zT τ τ η τ η= + − ⋅ ； 

( )
( )

2
_1 2 _ 2 2 _ 2 _ 2 2 _ 2 _ 2 2 _ 2 _1 2 _ 2

2

2 _ 2 _ 2 2 _ 2 _ 2 2 _ 2 _1 2 _ 2

cos
2

sin

J L z L x I L z I L x J L x

L y I L z I L y J L y

x x z z
T

y z z

τ η τ τ τ τ

τ τ τ τ η

 ⋅ ⋅ − ⋅ − ⋅ + ⋅ +  =  
⋅ − ⋅ + ⋅  

； 

( )
( ) ( )

2

3 _ 2 2 _ 2 _ 2 2 _ 2 _1 2 _ 2

2 2 2 2
_ 2 2 _ 2 _ 2 2 _ 2 _1 2 _ 2 _1 _1 2 _ 2

I L z I L x J L x

I L z I L y J L y J J L z

T x z z

y z z x y

τ τ τ

τ τ τ τ

= ⋅ − ⋅ + ⋅ +

⋅ − ⋅ + ⋅ − +
. 

For c and L1 are collinear, the unit direction vector τc_2 and parametric equation 

c_2(t1) of edge c can be obtained by Eqs. (5) and (6) respectively, and the range of t1 is 

[0, _ 2 1 _ 2J L xx τ ]. 

2.2 Parametric model of edge b 

As shown in Fig. 4, define E as an arbitrary point on B, E′ as the rotating 

projection of E on the plane X1Z1, N as an arbitrary point on bottom edge. Let θ be the 

angle between E′Or and X1-axis (counter clockwise direction is positive), φ be the 

angle between the projection of EO2 on the plane X2Y2 and X2-axis (clockwise 



direction is positive). 

 

Fig. 4  Schematic diagram for the design of edge b 

The normal vector nM_2 of M is determined by the vector cross-product of τL1_2 

and τL2_2 as follows 
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Hence, the equation of M can be obtained by Eq. (12) 
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By the definition of the circular torus[26], the parametric equation of B can be 

written as 
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Since b is defined as a planar curve, then b is the intersecting line of M and B and 

angle φ can be determined by Eqs. (12) and (13) 
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where: 4 _ 2 _ 2 _ 2 _ 2 _ 2 _ 2I Mx I My I MzT x n y n z n= ⋅ + ⋅ + ⋅ . 

Substituting Eq. (14) into Eq. (13) gives the parametric equation b_2(θ) of edge b 

( ) ( )( ) ( )
( )

( ) ( )( ) ( )
( )

2 22 2
_ 2 4 _ 2 _ 2 _ 2 _ 2 _1 4 _ 2

2 2
_ 2 _ 2

2 22 2
_ 2 4 _ 2 _ 2 _ 2 _ 2 _1 4 _ 2

_ 2 2 2
_ 2 _ 2

sin cos sin
,

sin cos sin
( ) ,

sin ,

Mx Mz e My Mx My Or e Mz e

Mx My

My Mz e Mx Mx My Or e Mz e

Mx My

e

n T n r n n n x r T n r
x

n n

n T n r n n n x r T n r
b y

n n

z r

θ θ θ

θ θ θ
θ

θ

 − ⋅ ⋅ + + + ⋅ − − ⋅ ⋅ = +


− ⋅ ⋅ − + + ⋅ − − ⋅ ⋅
= =

+

= ⋅

  .
2
πκ θ η ≤ ≤ + 

 






 

(15) 

Take the derivative of Eq. (15) with respect to θ, the unit direction vector τb_2(θ) 

of edge b can be expressed as 
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2.3 The generalized helix angle of edge b 

The parametric model of edge b is already obtained. Although edge b is a planar 

edge curve, it can be also regarded as a curve with a variable helix angle. At present, 

the generalized helix angle on the revolving surface has two definitions[24]: one is the 

angle between the helix edge on the revolving surface and the generator curve[22], the 

other is the angle between the helix edge on the revolving surface and the cutter 

axis[25]. The first definition is considered in this paper. The unit tangent vector of the 

generator curve of B at E can be expressed in the following form 



( )_ 2

sin cos
sin sin

cos
BE

θ φ
θ θ φ

θ

− 
 =  
  

τ

 

(17) 

Hence the generalized helix angle at N can be given by 
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2.4 Parametric model of edge a 

As shown in Fig. 5, define F as an arbitrary point on a. Let ϕ be the angle 

between the projection of FO2 on the plane X2Y2 and X2-axis (clockwise direction is 

positive). 

 
Fig. 5  Schematic diagram for the design of edge a 

By the definition of the generalized helix, the parametric equation a_2(ϕ) of edge 

a can be written as 
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Take the derivative of Eq. (19) with respect to ϕ, the unit direction vector τa_2(ϕ) 

of edge a can be expressed as 
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where: 8 sin cot cos sinT κ β ϕ ϕ= − ⋅ ⋅ + ； 

   9 sin cot sin cosT κ β ϕ ϕ= ⋅ ⋅ + ； 

   10 cos cotT κ β= ⋅ . 

 

3 Grinding method of bottom edge 

Parametric model of the bottom edge is the base of the tool path of the grinding 

wheel. Bottom edge is the intersection curve of rake face and flank face, and its 

structural parameters are guaranteed by the grinding process of the two faces. For 

TEMC has a complex structure and lots of parameters and the purpose of the grinding 

method in this paper is to guarantee the precision of parameters related to bottom edge, 

the detailed method of the section profile formation was not presented here for 

simplification purpose. For convenience, the tool path calculation is deduced in the 

first coordinate system thus the origin of programming is O1 and grinding wheel wear 



is not considered. 

3.1 Parameters of the grinding wheel 

The profile of V-shaped grinding wheel and Cup-shaped grinding wheel can both 

be defined by three parameters. Let Rg (the radius of the big-end of the grinding 

wheel), Hg (the thickness of the grinding wheel) and αg (the taper angle of the 

grinding wheel) be three given geometric parameters of the grinding wheel profile, 

shown in Fig. 6. 

Define the coordinate system [Og-XgYgZg] as the grinding wheel coordinate 

system, and the origin Og as the center of the big-end of the grinding wheel, Zg as the 

grinding wheel axis. Let n_1 (the unit direction vector of Zg-axis) and P_1 (the 

coordinates of the origin Og) be two parameters of tool path in the first coordinate 

system. Define ν as the inclined angle in grinding process. Let ν be ν′ in rake face 

grinding and let ν be ν′′ in flank face grinding. 

 

Fig. 6  Geometric parameters of the profile of grinding wheel 

3.2 Grinding tool path for rake face 

The grinding of the rake face of bottom edge is to form the chip-breaker-groove 

of the end cutting edge and the normal rake angle of TEMC. 

Define the coordinate system [On-XnYnZn] as the movable normal-section local 

coordinate system, the origin On coincides with N, Zn-axis is tangent to the bottom 

edge and Xn-axis and the cutter axis lies in the same plane. In the grinding process, ν′ 

(the inclined angle restrained by the depth of chip-breaker-groove in rake face 

grinding) and γn (the normal rake angle of bottom edge) are pre-designed. 

In a rake face grinding process, the coordinate system [O′g-X′gY′gZ′g] can be 



obtained from the coordinate system [On-XnYnZn] by the following steps: rotate the 

coordinate system [On-XnYnZn] around Zn-axis by angle γn positively, then around 

Yn-axis by angle ν′ negatively, around Xn-axis by 90° negatively, at last translate the 

rotated coordinate system from On to O′g to get the grinding wheel coordinate system. 

Let N_1=[xN_1, yN_1, zN_1]T be the coordinates of N in the first coordinate system. 

Define T1-n and R1-n as translation and rotation homogeneous transformation 

matrix(HTM) from the coordinate system [O1-X1Y1Z1] to [On-XnYnZn] respectively, 

T′n-g and R′n-g as translation and rotation HTM from the coordinate system [On-XnYnZn] 

to [O′g-X′gY′gZ′g] in rake face grinding process respectively as shown in Fig. 7. They 

can be obtained by Eqs. (19) to (22) 
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Fig. 7  Schematic diagram for rake face grinding  

(1) The vector of the grinding wheel axis 

According to the HTM theory, the vector of the grinding wheel axis in rake face 

grinding can be expressed as follows 

[ ]_1 1 0 0 1 0 T
n n g' '− −=n R R  (25) 

(2) The position of CL point 

According to the HTM theory, the position of CL point in rake face grinding can 

be expressed in the following form 

[ ]_1 1 1 0 0 0 1 T
n n n g n g' ' '− − − −=P T R R T  (26) 

3.3 Grinding tool path for flank face 

The grinding of the flank face of bottom edge is to form the normal relief angle 

of TEMC.  

In the grinding process, ν′′ (the inclined angle to avoid interference between 

grinding wheel and other tooth in flank face grinding) and αn (the normal relief angle 

of bottom edge) are pre-designed.  

In a flank face grinding process, the coordinate system [O′′g-X′′gY′′gZ′′g] can be 

obtained from the coordinate system [On-XnYnZn] by the following steps: rotate the 

coordinate system [On-XnYnZn] around Zn-axis by angle αn negatively, then around 



Xn-axis by angle ν′′ positively, around Yn-axis by 90° negatively, at last translate the 

rotated coordinate system from On to O′′g to get the grinding wheel coordinate system 

for flank face grinding. 

Define T′′n-g and R′′n-g as translation and rotation HTM from coordinate system 

[On-XnYnZn] to [O′′g-X′′gY′′gZ′′g] in flank face grinding process respectively as shown 

in Fig. 8. They can be obtained by Eqs. (25) and (26) 
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Fig. 8  Schematic diagram for flank face grinding 

(1) The vector of the grinding wheel axis 

According to the HTM theory, the vector of the grinding wheel axis in flank face 

grinding can be expressed as follows 

[ ]_1 1 0 0 1 0 T
n n g'' ''− −=n R R  (29) 

(2) The position of CL point 



According to the HTM theory, the position of CL point in flank face grinding can 

be expressed in the following form 

[ ]_1 1 1 0 0 0 1 T
n n n g n g'' '' ''− − − −=P T R R T  (30) 

4 Experiments and results 

4.1 Modeling experiment 

To verify the validity of the proposed parametric modeling method, modeling 

experiment was carried out in MATLAB. To validate the G1 continuity at the two 

joints of a circular arc edge with the connected straight edge and conical helix edge, 

one TEMC with multi-structure features of tooth offset center and introversion of its 

straight edge was taken for example. The design values related to parametric 

modeling of the cutting edge are shown in Table 1. 

Table 1  Design values related to parametric modeling of the cutting edge 

Parameters 2R (mm) re (mm) h (mm) η (°) κ (°) β (°) 
Design values 20 1.5 0.2 4 4.5 39 

 

The calculated coordinates of J on c by substituting t1=0 into Eq. (6) is set as J_2c. 

The calculated coordinates of J on b by substituting θ=π/2+η into Eq. (15) is set as 

J_2b. The calculated coordinates of I on b by substituting θ=κ into Eq. (15) is set as 

I_2b. The calculated coordinates of I on a by substituting ϕ=0 into Eq. (19) is set as 

I_2a. The calculated unit tangential vector of c at J by Eq. (5) is set as τJ_2c. The 

calculated unit tangential vector of b at J by substituting θ=π/2+η into Eq. (16) is set 

as τJ_2b. The calculated unit tangential vector of b at I by substituting θ=κ into Eq. (16) 

is set as τI_2b. The calculated unit tangential vector of a at I by substituting ϕ=0 into 

Eq. (20) is set as τI_2a. The modeling parameters of one tooth are shown in Table 2 and 

the result in MATLAB is shown in Fig. 9.  

Table 2  Modeling parameters 



Equations Conditions Parameters  Calculated values 

Eq. (6) t1=0 J_2c (mm) [8.3341, 1.0504, 1.4963]T 

Eq. (15) θ=π/2+η J_2b (mm) [8.3341, 1.0504, 1.4963]T 

Eq. (15) θ=κ I_2b (mm) [10.0000, 0.0000, 0.1177]T 

Eq. (19) ϕ=0 I_2a (mm) [10.0000, 0.0000, 0.1177]T 

Eq. (5) \ τJ_2c [-0.9924, -0.1014, -0.0698]T 

Eq. (16) θ=π/2+η τJ_2b [-0.9924, -0.1014, -0.0697]T 

Eq. (16) θ=κ τI_2b [-0.0610, 0.6293, 0.7748]T 

Eq. (20) ϕ=0 τI_2a [-0.0610, 0.6293, 0.7748]T 

 

Fig. 9  Modeling result of the bottom edge and the conical helix edge in MATLAB 

The calculated and modeling results validate the G1 continuity at the two joints 

and prove the accuracy of the parametric modeling method. 

4.2 Grinding experiment 

The machining accuracy of the grinding tool path was verified by the grinding 

experiment. The parameters of the grinding wheel profile and grinding process are 

shown in Table 3. The allowable absolute errors of machining are 0.1mm/0.5°. 

Table 3  Parameters of the grinding wheel profile and grinding process 



Grinding process Parameters of grinding wheel 
Shape Type Rg (mm) Hg (mm) αg (°) ν(°) 

Rake face grinding V-shape 12V9 50 25 45 75 
Flank face grinding Cup-shape 11V9 50 32 30 60 

 

Based on the mathematical models of TEMC, the grinding tool path in grinding 

of the tested TEMC was calculated by the grinding method put forward. Part of the 

grinding tool path file obtained by the grinding method put forward is shown below  

“...... 

GOTO/34.687784, -1.083085, -3.482481, -0.089849, 0.769583, -0.632194 

GOTO/34.688929, -1.095449, -3.472860, -0.089220, 0.769622, -0.632236 

GOTO/34.690062, -1.107808, -3.463239, -0.088592, 0.769661, -0.632276 

GOTO/34.691183, -1.120164, -3.453619, -0.087964, 0.769700, -0.632316 

GOTO/34.692292, -1.132515, -3.444000, -0.087335, 0.769740, -0.632355 

GOTO/34.693389, -1.144862, -3.434381, -0.086707, 0.769780, -0.632393 

GOTO/34.694474, -1.157205, -3.424763, -0.086079, 0.769820, -0.632430 

GOTO/34.695548, -1.169544, -3.415145, -0.085450, 0.769860, -0.632466 

GOTO/34.696610, -1.181879, -3.405528, -0.084822, 0.769901, -0.632502 

GOTO/34.697659, -1.194210, -3.395911, -0.084194, 0.769941, -0.632536 

GOTO/34.698697, -1.206536, -3.386296, -0.083566, 0.769982, -0.632570 

......” 

The NC codes were generated by post-process from the grinding tool path and 

were verified in a grinding process. The material of TEMC was cemented carbide. 

The trial product grinded by ANCA FastGrind CNC cutter grinding machine tool is 

shown in Fig. 10.  



 
Fig. 10  Trial product of TEMC 

(1) Measurement of the major parameters 

The major parameters of the trial product were measured by Zoller genius-3 tool 

measuring instrument using the principle of non-contact light perception scanning in 

no vibration environment and at room temperature. In the “ELEPHANT” module of 

the instrument, choose the parameters which require measurement and then the 

instrument can automatically measure the parameters within the accuracy of 

0.001mm/0.01°. Measured the values three times over all different parameters and 

took the average as the final measured values to reduce measurement errors. The 

major design values and the corresponding trial product measured values are shown in 

Table 4. 

Table 4  Comparison of major design and measured values 

Parameters 2R (mm) re (mm) h (mm) η (°) γn (°) αn (°) 
Major design values 20 1.5 0.2 4 8 14 
Trial product measured values 19.991 1.483 0.215 4.23 8.31 13.73 

 

(2) Measurement of the bottom edge 

The point cloud of the trial product was measured and obtained by Solutionix 

Rexcan Ⅲ 3D optical scanner within the accuracy of 0.007mm. The 3D optical 

scanning and the point cloud of the trial product are shown in Fig. 11. 



       

(a) 3D optical scanning                (b) Point cloud 

Fig. 11  3D optical scanning and point cloud of the trial product 

In total, 31 points on edge c and 12 points on edge b were extracted from the 

point cloud (see Fig.11). The extracted points and the theoretical bottom edge are built 

up in MATLAB as shown in Fig. 12.  

 
Fig. 12  The theoretical bottom edge and the extracted points 

The coordinates of the extracted points were obtained and the distances between 

the extracted points and the theoretical bottom edge were calculated. The maximum 

distances for edge c and b are 0.021mm and 0.055mm separately. 

According to the measurement results of the major parameters on the bottom 

edge, the maximum absolute errors of the trial product grinded by the proposed 

grinding method are 0.055mm/0.31°. And they are both within the allowable tolerance 

range. The precision of the major parameters and the edge position meets the 

requirement of machining, and the effectiveness of the tool path for grinding of the 



rake and flank faces of bottom edge is illustrated.  

5 Conclusions 

In this study, a generalized and accurate parametric modeling method and the 

corresponding grinding methods of a bottom edge of TEMC are presented. The 

bottom edge acquired based on this parametric modeling method can possess 

multi-structure features of tooth offset center or introversion. Furthermore, the 

parametric equations of the bottom edge are put forward, and the bottom edge can 

meet G1 continuity at the two joints of a circular arc edge with a straight edge and a 

conical helix edge, respectively. The grinding method is driven by the parametric 

model of the bottom edge and the design values of its rake and flank faces. And it can 

realize the accurate calculation of the tool path for grinding. Finally, the utility and 

accuracy of the parametric modeling and grinding methods are verified through a 

serious of experiments. 

It is believed that the proposed general and parametric modelling of the cutting 

edges of a TEMC with multi-features can be used to optimize cutter design for 

different application scenarios by setting up a proper set of parameters. Upon 

achieving the optimal cutter design, its corresponding grinding method is also ready 

to be applied effectively in the cutter (tool) manufacturing. Therefore, the integration 

of the cutter design modelling and the associated grinding method provide an integral 

solution for optimal cutter design and manufacturing.    
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Appendix 

Notation 
a conical helix edge 

a_2(ϕ) parametric equation of edge a in the second coordinate system 

A circular truncated conical surface 

b circular arc edge 

b_2(θ) parametric equation of edge b in the second coordinate system 

B circular torus 

B_2(θ, φ) parametric equation of B in the second coordinate system 

c  Straight edge 

c_2(t1) parametric equation of edge c in the second coordinate system 



C concave conical surface 

E an arbitrary point on B 

E′ rotating projection of E on the plane X1Z1 

h distance of tooth offset the center 

Hg thickness of the grinding wheel 

I intersection of a and b 

I_2 coordinates of I in the second coordinate system 

I_2a calculated coordinates of I on a by substituting ϕ=0 into Eq. (19) 

I_2b calculated coordinates of I on b by substituting θ=κ into Eq. (15) 

J intersection of b and c 

J_1 coordinates of J in the first coordinate system 

J_2 coordinates of J in the second coordinate system 

J_2b calculated coordinates of J on b by substituting θ=π/2+η into Eq. (15) 

J_2c calculated coordinates of J on c by substituting t1=0 into Eq. (6) 

K endpoint of c 

K_1 coordinates of K in the first coordinate system 

L intersection of L3 and the plane X1Z1 

L1 extended line of c 

L1_2(t1) parametric equation of L1 in the second coordinate system 

L2 tangential line of a at I 

L2_2(t2) parametric equation of L2 in the second coordinate system 

L3 intersecting line of B and C 

L4 intersecting line of A and B 

M plane composed of L1 and L2 

N arbitrary point on bottom edge 

n_1 unit direction vector of axis Zg in the first coordinate system 

n′_1 
vector of the grinding wheel axis in rake face grinding in the first coordinate 

system 

n′′_1 vector of the grinding wheel axis in flank face grinding in the first coordinate 



system 

nM_2 normal vector of M in the second coordinate system 

N an arbitrary point on bottom edge 

N_1 coordinates of N in the first coordinate system 

Og center of the big-end of the grinding wheel 

Or center of the cross section of B on the plane X1Z1 

[O1-X1Y1Z1] first coordinate system 

[O2-X2Y2Z2] second coordinate system 

[Og-XgYgZg] grinding wheel coordinate system 

[O′g-X′gY′gZ′g] grinding wheel coordinate system in rake face grinding  

[O′′g-X′′gY′′gZ′′g] grinding wheel coordinate system in flank face grinding  

[On-XnYnZn] normal-section local coordinate system 

P intersection of L1 and L2 

P_1 coordinates of the origin Og in the first coordinate system 

P′_1 position of CL point in rake face grinding in the first coordinate system 

P′′_1 position of CL point in flank face grinding in the first coordinate system 

Q tip of C 

re section radius of B 

R distance between I and the cutter axis 

R1-n rotation HTM from coordinate system [O1-X1Y1Z1] to [On-XnYnZn] 

Rg radius of the big-end of the grinding wheel 

R′n-g rotation HTM from coordinate system [On-XnYnZn] to [O′g-X′gY′gZ′g] 

R′′n-g rotation HTM from coordinate system [On-XnYnZn] to [O′′g-X′′gY′′gZ′′g] 

T1-2 
translation HTM from the first coordinate system to the second coordinate 

system 

T1-n translation HTM from coordinate system [O1-X1Y1Z1] to [On-XnYnZn] 

T′n-g translation HTM from coordinate system [On-XnYnZn] to [O′g-X′gY′gZ′g] 

T′′n-g translation HTM from coordinate system [On-XnYnZn] to [O′′g-X′′gY′′gZ′′g] 

αg taper angle of the grinding wheel 



αn normal relief angle of bottom edge 

β helix angle of a at I 

βr generalized helix angle at N 

γ angle between the positive direction of X1 and X2 

γn normal rake angle of bottom edge 

η dish angle 

θ angle between E′Or and X1-axis 

κ half cone angle of A 

ν the inclined angle in grinding process 

ν′ the inclined angle in rake face grinding 

ν′′ the inclined angle in flank face grinding 

τa_2(ϕ) unit direction vector of edge a in the second coordinate system 

τb_2(θ) unit direction vector of edge b in the second coordinate system 

τBE_2(θ) 
unit tangent vector of the generator curve of B at E in the second coordinate 

system 

τc_2 unit direction vector of edge c in the second coordinate system 

τI_2a calculated unit tangential vector of a at I by substituting ϕ=0 into Eq. (20) 

τI_2b calculated unit tangential vector of b at I by substituting θ=κ into Eq. (16) 

τJ_2b calculated unit tangential vector of b at J by substituting θ=π/2+η into Eq. (16) 

τJ_2c calculated unit tangential vector of c at J by Eq. (5) 

τL1_2 unit direction vector of L1 in the second coordinate system 

τL2_2 unit direction vector of L2 in the second coordinate system 

ϕ angle between the projection of FO2 on the plane X2Y2 and X2-axis 

φ angle between the projection of EO2 on the plane X2Y2 and X2-axis 
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