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Abstract

The concept of Transactive energy (TE) been adapted in the regulation of electric-

ity market within the context of economic planning and control for grid reliability

enhancement. The objective is to improve productivity and participation of the

players in the market that is composed of distributed energy resources (DER). The

main goal of implementing a market structure based on TE is to secure permission

for the market players so that they could attain a higher payoff. In this study, an

optimization-based algorithm in which an objective function premised on economic

strategies, distribution limitations and the overall demand in the market structure is

proposed. The objective function is solved for near global optima using four heuris-

tically guided optimization algorithms. The proposed algorithm which ensures that

none of the independent players has priority and/or advantage over others, em-

phasizes optimum use of electrical/thermal energy distribution resources, while

maximizing profit for the owners of the home Microgrids (H-MGs). Reduction in
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the market clearing price (MCP) for further participation and the response of the

consumers′ responsive loads are also considered in the study. The feasibility of the

proposed algorithm is validated in a coalition formation scenario among the existing

H-MGs. Results show an increase in the profit attained, enhanced system reliability

and a reduction in the electricity cost of the consumers.

Keywords: Transactive energy, home microgrids, coalition formation, responsive

load, electricity market
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Nomenclature1

Acronyms

AEL aggregated electrical load

ATL aggregated thermal load

CHP combined heat and power

DR demand response

DR+, DR- amount of responsive load demand (RLD) that goes/come from/to other time pe-

riod to/from t

DW dish washer

DER distributed energy resources

DSO distributed system operator

EES electrical energy storage

ESP electrical solar panel

EV electrical vehicle

GB gas boiler

HHW heat and hot water

H-MG home microgrid

MCP market clearing price

MO-TE market operator based on transactive energy

MG Microgrid

NG natural gas

PV photovoltaic

REF refrigerator

2
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RET retailer

RET+/RET- buying/ selling power from/to H-MG i/ the retailer

SBP system buy price

SSP system sell price

SOC state-of-charge

TD thermal dump

TES thermal energy storage

TSP thermal solar panel

TE transactive energy

Indices

E/ h/ t/i, i∈ {1, 2, · · · , n} electricity/ heat/ time steps/ H-MG number

j∈ {CHP, GB, TSP} thermal DERs

k∈ {ESP, CHP} electrical DERs

m∈ {DW, EV, REF, AEL} electrical consumers

3

p∈ {HHW, ATL, TD} thermal consumers

Constant values

SOCx, SOC
x
, P
x

e/h, Pxe/h minimum values/ maximum SOC/ power during X charging and discharg-

ing mode

x∈ {ES+, ES-, EV+, EV-, TES+, TES-}

ExTot total value of X capacity

4
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Ty, T
y

maximum/ minimum value of y temperature

y ∈ {REF, HHW}

P
j

e/h, Pje/h minimum values/ maximum electrical thermal power j

TyINI, TRED, TINC initial temperature/ the amount of temperature reduction each time the

REF compressor is turned on/ the amount of temperature increase each

time HHW is turned on

ζje/h electrical and thermal efficiencies j

THHW, T
HHW

maximum and minimum values of temperature

E
x
, Ex maximum and minimum values of energy in x

E
x
, Ex maximum and minimum values of z price bids

z∈ {j,k,m,l}

πNG
t natural gas price

Constant values

λ̃MCP
t MCP prediction value during each time interval t (£/kWh)

Decision variables

XRet
t , XES

t , XTES
t , XDR

t binary variable of retailer, electrical energy storage, thermal energy storage,

demand response

Pmt,e , Ppt,h Consumed electrical/ thermal power by l/ m at time t

Pjt,e, Pkt,h Electrical/ thermal power generated by k/ j at time t

πzt,e, π
z
t,h Electrical/ thermal price bids by z at time t

P
Ret+,j
t,e , PRet-,j

t,e The electric power sold/ bought by H-MG i to/from the retailer

λMCP
t,s Market clearing price by using the S optimization method (£/kWh)

S=1: particle swarm optimization (PSO)

S=2: harmony search (HS)

S=3: differential evolution (DE) algorithm

S=4: bat algorithm (BAT)

5

1. Introduction6

The ever-increasing global demand for electricity, coupled with the fast deple-7

tion of the fossil fuels, as well as the environmental impact of burning these fuels8
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has led to the present restructured electricity industry [1]. The aforementioned fac-9

tors have led to emergence of new technologies for generation, distribution, energy10

transfer and consumption as well as the need for optimum energy management11

and energy efficiency improvements [2–5]. To this end, smart grids, evolved from12

upgrading of the existing electricity grids with these new technologies and services13

which make them more reliable, optimal and environmentally friendly, have been14

proposed [6–9]. In contrast to the traditional power grids, smart grids are develop-15

ing rapidly with a structure based on home microgrids (H-MG) with certain desir-16

able features such as self troubleshooting and self repair, as well as comprehensive17

control [10, 11].18

In developing smart grids, the concept of Transactive energy (TE) has become19

indispensable to enable further participation of different players in the power indus-20

try. This concept ensures the security of supply and reduces the need for exchange21

of personal information among the players [10–22]. Furthermore, TE is a combi-22

nation of economic and control techniques with the aim of increasing the system23

efficiency and reliability.24

The TE concept is also executable in non-concentrated electrical energy compet-25

itive markets [19]. One of the advantages of TE is that it allows the consumers to be26

supplied from any resource of their choice. The framework of the market structure27

includes drivers such as: 1) advancement in technology and customer knowledge,28

2) need to enhance system productivity 3) depletion of the fossil fuels, 4) quest for29

more reliable and flexible systems, 5) need for a reduction in air pollution and, 6)30

further participation of the players in the market [10, 19, 23].31

With the energy transfer concept, TE systems help grid reliability and improve32

both efficiency and interaction among system stakeholders [24]. The consumers’33

participation in the demand response (DR) load program has a significant role in the34

market structure based on TE since DR is one of the possible strategies to maintain a35

balance between the supply and demand in H-MGs. The DR program is designed to36

shift load demands away from system peak demand towards non-peak intervals. In37

[22], the effect of DR planning was investigated over the market dynamics based on38

price. The efficiency of the electricity market and the power grid was demonstrated39
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in the study.40

It was shown in [24, 25] that implementing DR also removes the problem of41

predicting flexible loads and the probability of the customer’s response to price42

in the retail market. In the market structure based on TE, the retailers act as a43

bridge between wholesalers and small customers. On the other hand, the H-MGs44

are a part of the smart grid on the side of the consumer. H-MGs are considered as45

another active player in the market structure [26–32]. In the presence of electric46

vehicles (EV), the studies presented a non-concentrated control method in a bid to47

minimise the cost of the DERs in the H-MG to reduce the distribution power loss.48

In this method, a price coordinator was presented to assess the mutual effect of the49

distribution system operator (DSO) and the collectors in a smart grid.50

In [33, 34], an H-MG incorporating a photovoltaic (PV) system showed the re-51

sponsiveness of strategies to price for charging EV. While it increases the strength52

of short-term demand, it significantly reduces the costs of energy for the customers.53

A solution for the coordinated execution of DR in H-MG by learning the predic-54

tion of power demand based on life style and social-environmental factors was pre-55

sented in [33]. The other important issue in a market based on the TE structure is56

the possibility of one player forming a coalition with other players. In [35] the H-57

MGs, both grid-connected and off grid configurations, participated in coalition with58

each other in a market structure. Simulation results showed significant reduction59

in power losses and a cost reduction in both modes. In [36], it was demonstrated60

that cooperative algorithms are approximately one hundred percent more profitable61

than non-cooperative algorithms. In the same vein, using coalition game theory to62

reduce the power loss in transfer lines, could lead to a reduction in the cost.63

The following deficiencies regarding creation of an energy management system64

for multiple H-MGs based on TE concept have been identified from previous work65

and highlighted in this paper:66

• Lack of an algorithm for exchange of energy and the impossibility of supplying67

the consumer load demand through the generating resources of other H-MGs68

[10, 11, 36–41];69

7



• Non-availability of a demand response program to calculate the MCP [10, 11,70

17–22, 35, 42–46].71

• Non-existence of optimization algorithms for solving and implementing the72

optimum clearance of the market process and obtaining pay-off for all market73

players [18, 20, 34, 47, 48].74

• Inability to determine the strategy and behaviour of residential customers as75

prosumer for participating in the market [21, 49–52].76

• Lack of an algorithm to achieve the overall profit of the players and address77

the stochastic behaviour of the players in the optimization process [19, 33,78

53–55].79

In this paper, improved versions of the popular optimization techniques, includ-80

ing particle swarm optimization (PSO), harmony search (HS), differential evolution81

(DE) and the bat algorithm (BAT) are used to solve the non-linear and non-convex82

Market Operator Transactive Energy (MO-TE) structure problem. It is common83

knowledge that a simple optimization problem may not provide the level of ro-84

bustness required for multiple H-MGs. In other words, the intricacy of tuning the85

parameters in optimization algorithms may not give the expected results in such86

cases. Since the proposed problem in this paper deals with a very large number87

of combinations and a wider search space, it demands a robust heuristic algorithm.88

The proposed optimization algorithm exploits the stochastic weight trade-off mech-89

anism amongst previous velocity momentum, cognitive and social components us-90

ing dynamic acceleration coefficients trade-off. This is done to maintain the balance91

between global and local exploitation, and results in an improved search capability92

of the algorithm. The incorporation of mechanisms to increase swarm members di-93

versity through lethargy and freak factors could avoid swarm members from being94

trapped in local minima, thereby alleviating premature convergence which is as-95

sociated with the conventional optimization algorithms in problems with multiple96

local optima.97

A more accurate modeling of the MO-TE problem is carried out by considering98
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the uncertainty in the inputs and network interaction. Appropriate coalition forma-99

tion functions are incorporated in the fitness function to handle different equality100

and inequality constraints. The convergence and the solution quality of the pro-101

posed algorithms are affected by the selected acceleration coefficients; relatively102

high value of these components leads the particles to a local optimum, while rel-103

atively high values of cognitive components leads to wander of the particles over104

the search space. To improve the solution quality, these coefficients will be updated105

in a way that the cognitive component is reduced as the social component is in-106

creased with each iteration. The proposed optimization method has the flexibility107

to enhance both global and local exploration abilities. The results obtained are com-108

pared with one another and the outcome evaluations substantiate the applicability109

of the proposed optimization techniques for solving constrained electrical/thermal110

economic dispatch problems with non-smooth cost functions. The efficiency of the111

proposed algorithm is evaluated using a benchmark test-bed.112

The contributions of this paper can be summarized as follows:113

• Inclusion of neighbourhood grids for the players participating in the mar-114

ket pool. This model is a non-linear one capable of determining the opti-115

mum price bid for the power, generation and consumption resources when116

the players are inclined to form a coalition. For this purpose, a comprehen-117

sive mathematical model which can easily be generalized to other structures,118

is presented.119

• A new formulation of the specific demand side management strategy for max-120

imizing the total profit of the grid under study is carried out with the load121

demand and market clearing prices.122

• An increase in pay-off resulting from the participation of the consumers in the123

TE structure due to their inclination to participate in the DR program.124

• Proposition of a day-ahead scheduling model for a multiple smart H-MG sys-125

tem with the possibility of coalition formation. The problem is formulated to126

minimize the sum value of the overall generation cost while satisfying various127
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constraints.128

• Development of several hybrid optimization search algorithms with differen-129

tial evolution to solve the complicated constrained optimization problems.130

The mutation and selection operations for differential evolution algorithms131

are also modified.132

To verify the proposed day-ahead scheduling model and the solution technique,133

several test H-MG systems are employed on a real test under different fault scenar-134

ios.135

The rest part of this paper is organized as follows:136

Section 2 presents the structure of the proposed market while Section 3 gives137

an overview of the structure which includes the uncertainty unit, TE unit and MCP138

unit. The description of the power network under study, the objective function139

formulation as well as the problem constraints are presented in Section 5. While140

simulation results of the case study system are presented and discussed in Section 6,141

Section 7 concludes the paper.142

2. Market Operator Transactive Energy (MO-TE) structure143

The exchange of information and communication among different players in-144

volved in the MO-TE structure is shown in Figure 1. As observed in this figure, each145

H-MG contains dispatchable generation units (DGU) (such as diesel generator) and146

non-dispatchable units (NDU) (such as solar photovoltaic (PV) systems and wind147

turbine (WT)), energy storage resources (ES) such as battery, non-responsive loads148

(NRL) and responsive load demand (RLD). The RLD is a composite load which con-149

sists of domestic and commercial types of load, and which can be fully curtailed150

in accordance with the bilateral contracts signed by the H-MG owner/operator and151

the customers. Due to the presence of these classes of consumers, MO-TE gives an152

opportunity for the consumers to participate in the DR program to reduce cost.153

As depicted in Figure 1, retailers sell electrical energy to the customers through154

the MO-TE structure. MO-TE encourages investors and DER owners to participate155
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in the market by increasing the profit that results from forming a coalition in order156

to share the energy generated in each H-MG. It also encourages the consumers to157

follow the DR program.158

3. Implementation of the MO-TE structure159

A framework of an algorithm designed to increase the participation of the DERs160

in MO-TE in order to reduce electricity price, to increase the generator′s profit as161

well as to reduce consumer′s cost is presented in Figure 2. This framework is pre-162

sented with a view to reducing the power in the equilibrium, managing the demand163

side optimally considering the possibility of forming coalition among the generators,164

and reducing the market clearing price. The MO-TE structure consists of three main165

units: the Taguchi orthogonal test (TOAT) unit, the TE unit and the MCP unit. As166

observed in Figure 2, the sunlight radiation data and the resulting generated PV167

power, the load demand, MCP, SBP and SSP are all considered as uncertainty pa-168

rameters for each hour. The TOAT ensures that the testing scenarios provide good169

statistical information with a minimum number of tests, and significantly reduces170

the number of the testing burden. TOAT has been proven to have the ability to opti-171

mally select representative scenarios for testing all possible combinations. The MCP172

unit is presented to calculate the MCP value during each time period in a two-way173

tender system.174

3.1. TOAT unit175

The Taguchi orthogonal array test (TOAT) unit generates uncertainty scenarios176

along with the related probability of occurrence which considers the weather con-177

ditions of each NDU in the H-MG, as well as their power demands. This unit first178

performs the computation of the probability of the scenario created by selecting an179

orthogonal matrix for the existing uncertainties in the system and then creates n180

values for the load demand, MCP, SBP and SSP using a normal distribution and the181

radiation equation for the PV system.182

TOAT approach has been used in a number of previous works. For example,183

references [56] and [57] employed it to obtain robust solutions in the production184
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design of experimental problems. Further, the approach, with minimum number185

of scenarios insures that the experimental scenarios present good statistical infor-186

mation and reduces significantly the number of tests [58]. It has been proven that187

among all possible scenarios, TOAT has the capability to attain optimum result [59].188

Compared with Monte Carlo method, TOAT provides far fewer test scenarios and189

H-MG1

DGU1
ES1 NDU1

RLD1

NRL1

...

H-MGn

DGUn
ESn NDUn

RLDn

NRLn

MO-TE

Retailer n

...

Retailer 1

Excess/ shortage power
Selling/ buying offer prices

Figure 1: Exchange of information among the players in the TE structure

t >24 h

Input data

TOAT unit

MO-TE unit

t=t+1

MCP unit

No
Yes

Solar irridiation

Load demand

MCP

SBP

SSP

 
MCP
tl

PSO method
HS method
DE method
BAT method

Figure 2: The proposed algorithm structure
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leads to shorter computing time [60]. The method has be also employed in solv-190

ing the load distribution and economic power dispatch problems in power systems191

[61].192

The uncertainties in the problem and their associated scenarios implemented193

in the flowchart of Figure 3. This paper takes into account, the stochastic nature194

of renewable energy (solar power, wind power) penetration and load demand. An195

increase in the number of sources of uncertainty leads to an increase in the number196

of sensitivity analyses that need to be carried out, and hence extra terms will appear197

in the affine variables. If the uncertainty in the grid power is to be considered, then198

the sensitivity of nodal power injections to variations grid/slack bus power injection199

would be included in the noise terms of affine power-flow variables. However, the200

principle remains the same.201

In addition, constraints are set by the retailer for limiting the grid trade. These202

constraints could be adjusted by the retailer during peak and off-peak hours, ac-203

cording to his discretion. It indirectly represents the extent to which the upstream204

grid can be relied on for power balance of the H-MG. In fact, the methodology does205

consider uncertainties, since: (a) it outputs flexible rules/schedules- not specific206

set-points for each actor of the H-MG and (b) it comes up with a merit-order dis-207

patch list offering a fall-back, if the most profitable solution cannot be deployed.208

The uncertainty was accounted for by the forecast for each stochastic actor of the209

H-MG and covered by the multiple profitability levels. Further explanation regard-210

ing this unit can be found in [33] for interested readers.211

3.2. TE unit212

Methods for implementing the Transactive energy (TE) unit, such as particle213

swarm optimization (PSO), harmony search (HS), differential evolution (DE) and214

the bat algorithm (BAT) have been proposed by various researchers. For example,215

PSO is a population based evolutionary computational technique inspired by the216

social behaviour of flocking birds, where the velocity and position of the particles217

are updated to have additional components directed towards its own best position,218

and the overall best position [38]. PSO makes use of stochastic weight trade-off219
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mechanism to maintain a balance between the global and local exploitation which220

improves the search capability. The diversity of swarm members is increased by221

using lethargy and freak factors to avoid avoid being trapped in local minima and222

thus premature convergence. In addition, the stochastic trade-off momentum con-223

trol factor serves to adjust the quality of a candidate solution during the late search224

process [38].225

The authors wish to stress that the stop criterion used in this work is not the max-226

imum number of iterations, but rather an assessment of the information obtained227

from splitting any of the terminal nodes of the proposed optimization algorithms228

any further at that point. The proposed optimization algorithms do indeed replace229

the “bad quality” solutions with the “best” ones they find, and new solutions are230

generated using operators such as mutations and crossover. The infeasibility of in-231

feasible solutions is determined by the unit commitment algorithm. If the unit com-232

mitment problem with the candidate optimal operation solutions cannot be solved,233

then new candidate values are generated. It is worth mentioning that there is no234

loss in performance when employing the de-centralized approach, as the method-235

ology is platform independent. The iteration process is terminated if the best objec-236

tive value is not improved for a certain number of iterations to avoid unnecessarily237

long iterations. To avoid premature stopping (while the objective function is still238

evolving when the maximum number of iterations occurs), the iteration count is239

increased until the objective value is no longer improved.240

Figure 4 shows the flowchart for the TE unit. Each algorithm, which comprises241

electrical and thermal parts for the initial values of the variables as presented in Fig-242

ures 4(a)- 4(c). As observed from Figure 4(a), should there be a power shortage in243

the electrical section, the CHP quickly swings into action to satisfy part of electrical244

power demand. In the event that the system suffers from further power shortage,245

then, there is the possibility of discharging the ES. It is worth mentioning that as the246

modelling of the ES and TES is very complex due to its specific nature, the authors247

have decided to solve it using four heuristic methods. The reason for this is to carry248

out a comparative analysis of the results from each one. The information system for249

the on-line dispatch can be prepared before obtaining the measured data. That is,250
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the optimal power dispatch set points for all possible reserve requirements (corre-251

sponding to all possible uncertainties) can be made available in the database. This252

data which corresponds to the actual measured data (uncertainty/discrepancy) is253

selected and communicated to the local controllers in the second stage. In case254

the possibility of supplying part of the electrical charge demand does not exist, the255

unsupplied load demand is checked and shifted to another time period in which256

the value of MCP is much lower. Finally, if there is a power shortage, it is mostly257

compensated for by buying power through the retailers.258

At some period, the excess generated electrical power is available in the H-MG259

under the conditions that the DR constraints are determined at the beginning of260

DR load demand; the ES is therefore exploited in charging mode. In case there is261

a shortage of thermal power, first the H-MG is brought into service and, if TES has262

the capability to discharge, it is discharged; otherwise it is bought from other H-263

MGs. However, if during each time interval, excess thermal power is available for264

each H-MG, TES is exploited in the charging mode while excess power generation265

continues The excess power is expended to supply a part of thermal power required266

by the other H-MGs.267

The proposed algorithm does not necessarily use the lower, mean and upper268

values of each input variables. The lower and upper bounds are used to limit the269

decision variables to reasonable values. The algorithms each generate a set of candi-270

date solutions, each containing a sizing value for each component. Each candidate271

solution is then evaluated using a fitness function, where the fitness is determined272

by a unit commitment based on mixed-integer linear programming that returns the273

operation cost. New solutions are generated by the proposed algorithms (based on274

the previous solutions, as for classical algorithms) until one of the stopping criteria275

is met. At the end of the process, the best solution is returned by the algorithm.276

This solution is the set of component sizes that returns the lowest total operation277

costs.278
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3.3. The MCP unit279

In the electricity market, the generated/ consumed power of each generation280

and consumption resource and their proposed price are declared to the market op-281

erator. The energy generated in form of a stepwise function is sorted in ascending282

order while the amount of energy consumed is sorted in the shape of descending283

order. In this unit, as with the generators and consumers, the retailers also declare284

their offer price to buy and sell power. The final value of MCP is determined for285

the objective functions of each one of the market players in this unit. MCP will be286

the interaction between consumption and generation curves. Further explanations287

regarding this unit is presented by the authors in [33].288

4. The advantages and disadvantages of each implemented optimization method289

In this section, the advantages and disadvantages of each of the optimization290

methods implemented in this study are examined briefly.291

• PSO Method [62–64]292

– Advantages293

∗ It has no overlapping and mutation calculation.294

∗ It is a zero order method which does not require complex mathe-295

matical operations such as taking partial derivatives.296

∗ Its rate of convergence is fast.297

∗ In contrast to other optimization methods, none of the particles (re-298

sponses) are eliminated and only the value of each particle changes.299

∗ The elements have memory and each element maintains the effect300

of the best previous position.301

∗ It has a few parameters to handle.302

– Disadvantages303

∗ The efficiency of the algorithm reduces with increase in dimension304

∗ The method easily suffers from the partial optimism.305
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∗ It requires more memory and this may cause it to slow down.306

∗ It cannot work out the problems of non-coordinate system.307

• DE Method [65–67]308

– Advantages309

∗ It is capable of finding the true global minimum of a multimodal310

search space regardless of the initial parameter values.311

∗ It has fewer control parameters which makes it very powerful.312

∗ It is very easy to use.313

∗ Fast convergence.314

– Disadvantages315

∗ It is easy to drop into regional optimum.316

∗ It requires great ability to determine the optimal scale coefficient in317

order to reduce the search time.318

∗ Unstable convergence in the last period.319

• HS Method [68, 69]320

– Advantages321

∗ In the genetic algorithm two chromosomes are used to generate a322

new chromosome or solution vector. In HS method all the exiting323

solution vectors are used in the memory to improvise new solution.324

∗ Its rate of convergence is fast.325

∗ It shows exceptional problem-solving ability.326

– Disadvantages327

∗ It can fall into local optima.328

∗ It is not efficient enough for solving large-scale problems, which has329

a slow convergence speed and low-precision solution [70].330

• BAT method [71, 72]331
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– Advantages332

∗ it is much superior to other algorithms in terms of accuracy and333

efficiency [71].334

∗ It is relatively straightforward to implement in any programming335

language.336

∗ It can provide very quick convergence at a very initial stage by337

switching from exploration to exploitation.338

∗ It has flexible control parameters.339

– Disadvantage340

∗ Implementation is more complicated than many other meta-heuristic341

algorithms [22]342

∗ It can fall in local optima.343

∗ it may lead to stagnation after some initial stage.344

5. Problem formulation345

The schematic of the grid under study is shown in Figure 5. The grid has n346

H-MGs of which the electrical and thermal DERs installed in them as well as their347

consumers are similar. In each one of the H-MGs, there exists the electrical and348

thermal stores and a set of generation resources such as GB, TSP, ESP, CHP as well349

as consumers comprising NRL and RLD. In this section, the problem formulation350

using the key components in the market structure based on Transactive Energy is351

presented. This framework is easily expandable for other electricity distribution352

systems with high levels of consumer participation.353

5.1. Objective functions of the participants in MO-TE354

The objective function based on maximization of the generator and retailers′355

profits as well as the minimization of the consumers costs are formulated in Eq. 1,356

Eq. 2 and Eq. 3, respectively. The objective functions are non-linear in nature which357
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can be solved for near global optima using four different heuristically guided algo-358

rithms. The effect of the large number of combinations of uncertainties on the359

computational speed does not matter since the first stage is for planning.360361

max
∑
∀t

∑
∀i

∑
∀j

∑
∀k

(Rk,i
t,e + RES−,i

t,e + Rj,it,h + RTES−,i
t,h

−Cj,it,h − CTES+,i
t,h − CES+,i

t,e − Ck,i
t,e )× ∆t

(1)

362

max
∑
∀t

∑
∀i

(RRet-,i
t,e − CRet-,i

t,h )× ∆t (2)

363

min
∑
∀t

∑
∀i

∑
∀l

∑
∀m

(Cp,i
t,h + Cm,i

t,e )× ∆t (3)

where Rk,i
t,e and Rj,it,h are respectively the electrical and thermal revenue resulting364

from DERs k and j in H-MG i. RES-,i
t,e andRTES-,i

t,h are respectively the revenue resulting365

from the ES and TES electrical and thermal discharge related to H-MG i at time t.366

Also, RRet-,i
t,e andRRet+,i

t,e are respectively the revenue/ cost resulting from selling/367

buying electrical power from/ to retailer H-MG i. Cp,i
t,h and Cm,i

t,e are respectively368

electricity costs related to p and m consumers at H-MG i.369

5.2. Technical and economic constraints370

5.2.1. Total electrical and thermal equilibrium371

Deterministic constraints are imposed on the available and forecasted data of372

each DER unit, which are considered as inputs to the proposed technique. Further-373

more, the inductive character of the rules of the proposed algorithm allows for flex-374

ibility when some probabilistic constraints (due to RES stochasticity) are reached.375

There is no need to train the system from actual data, which is one of the merits of376

the proposed optimization tool, provided that the forecasts and estimations for the377

data are realistic enough. The authors’ previous work, which focused specifically378

on the tool ([34, 39, 73]) has clearly addressed this concern.379380 ∑
∀i

∑
∀k

(Pk,i
t,e + PES-,i

t,e + (1 − XRet
t ) · PRet-,i

t,e )

=
∑
∀i

∑
∀m

(Pm,i
t,e + PES+,i

t,e + XRet
t · P

Ret+,i
t,e )

(4)

381 ∑
∀i

∑
∀j

(Pj,it,h + PTES-,i
t,h =

∑
∀i

∑
∀l

(Pp,i
t,h + PTES+,i

t,h ) (5)
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Eqs. (4) and (5) state that the total power generated by electrical/ thermal382

generators during each time interval, must be equal to the total demand of the383

electrical/ thermal consumers.384

5.2.2. Retailer constraints385

Eq. (6) shows the cost resulting from buying electrical power from the retailer386

into the H-MG i while Eq. (7) presents the retailer’s offer price range for buying387

power into the H-MG i.388389

CRet-,i
t,e = πRet-,i

t,e × PRet-,i
t,e (6)

390

0 6 πRet-,i
t,e 6 λSBP

t (7)

Also presented in Eq. (8) is the revenue resulting from selling electrical power391

from the H-MG i to the retailer, whereas Eq. (9) shows the price bid range for sales392

of power by the retailer to H-MG i.393394

RRet+,i
t,e = πRet+,i

t × PRet+,i
t,e (8)

395

0 6 πRet+,i
t 6 λSSP

t,e (9)

Eqs. (10) and (11) show the exchanged power constraints between H-MG i and396

retailer.397398

PRet+,i
t,e 6 XRet

t × P
Ret

(10)
399

PRet-,i
t,e 6 (1 − XRet

t )× PRet
(11)

400

P
Ret

6 (PESP,i
t,e + PCHP,i

t,e + PES-,i
t,e ) (12)

5.2.3. H-MG i constraints401

ES and TES constraints in H-MG i402403

CES+,i
t,e = πES+,i

t,e × PES+,i
t,e (13)

404

0 6 πES+,i
t,e 6 λMCP

t,e (14)
405

RES-,i
t,e = πES-,i

t × PES-,i
t,e (15)

406

0 6 πES-
t,e 6 λMCP

t,e (16)
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where CES+,i
t,e , RES-,i

t,e , πES+,i
t,e and πES-,i

t,e respectively show the cost, revenue, and price407

bid resulting from buying/ selling electrical power by ES in H-MG i. Eqs. (17) to408

(19) present ES maximum and minimum charge/ discharge in H-MG i.409410

EES,i 6 EES,i
t,e 6 E

ES,i
(17)

411

PES-,i
t,e 6 P

ES-,i × XES,i
t , PES-,i

t,e > 0 (18)
412

PES+,i
t,e 6 P

ES+,i × XES,i
t , PES+,i

t,e > 0 (19)

Eqs. (20) and (21) are the charge/ discharge maximum limits for the energy in413

Eq. (22).414415

PES-,i
t,e × ∆t 6 (EES,i

t−1 − E
ES,i) (20)

416

PES+,i
t,e × ∆t 6 (E

ES,i
− EES,i

t−1) (21)
417

EES,i
t,e = EES,i

t−1,e + (PES+,i
t−1 − PES-,i

t−1 )× ∆t (22)

Eq. (23) depicts the cost resulting from buying thermal power by TES in the418

charging mode while Eq. (24) is the price bid interval for buying thermal power by419

TES.420421

CTES+,i
t,h = πTES+,i

t,h × PTES+,i
t,h (23)

422

0 6 πTES+,i
t,e 6 max(πHHW,i

t,h ,πTD,i
t,h ) (24)

RTES-,i
t,h in Eq. (25) is the revenue resulting from sales of thermal power generated423

by TES in the discharging mode and πTES-,i
t,h in Eq. (26) is the price bid variations424

range for selling thermal power by TES.425426

RTES-,i
t,h = πTES-,i

t,h × PTES-,i
t,h (25)

427

0 6 πTES-,i
t,h 6 min(max(πCHP,i

t,h ,πGB,i
t,h ),πTSP,i

t,h ) (26)

In Eqs. (27) to (29), TES maximum and minimum charge/ discharge limitations428

are shown.429430

ETES,i 6 ETES,i
t,h 6 E

TES,i
(27)

431

PTES-,i
t,h 6 P

TES-,i × XTES,i
t , PTES-,i

t,h > 0 (28)
432

PTES+,i
t,h 6 P

TES+,i
, PTES+,i

t,h > 0 (29)
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Eqs. (30) and (31) show the discharge/ charge maximum limits for the energy433

in TES while Eq. (32) presents the energy equilibrium in TES.434435

PTES-,i
t,h × ∆t 6 (ETES,i

t−1 − ETES,i) (30)
436

PTES+,i
t,h × ∆t 6 (E

TES,i
− ETES,i

t−1 ) (31)
437

ETES,i
t,h = ETES,i

t−1,h + (PTES+,i
t−1,h − PTES-,i

t−1,h)× ∆t (32)

EV constraints in H-MG i438439

if XEV,i
t = 1 =⇒ PEV+,i 6 PEV+,i

t,e 6 P
EV+,i

(33)

Eq. (34) states that the SOCEV,i
t of the automobile battery during each time440

interval related to H-MG i, must be less than its maximum value. It should be noted441

that Eq. (35) is the automobile battery power balance constraint. If EV is plugged442

out or once SOCEV,i
t is reached to SOC

EV,i
, then the charging process will be finished443444

SOCEV,i
t 6 SOC

EV,i
(34)

445

SOCEV,i
t = SOCEV,i

t−1 −
PEV+,i

t,e × XEV,i
t × ∆t

EEV,i
Tot

(35)

446

if XEV,i
t = 0 & SOCEV,i

t = SOC
EV,i

=⇒ PEV+,i
t,e = 0 (36)

Eq. (37) is the cost of buying electrical power while Eq. (38) presents the offer447

price range for buying power by EV.448449

CEV+,i
t,e = πEV+,i

t,e × PEV+,i
t,e (37)

450

0 6 πEV+,i
t,e 6 λMCP

t,e (38)

ESP constraints in H-MG i451

The ESP generated power limitation is as shown in Eq. (39).452453

PESP,i 6 PESP,i
t,e 6 ESP, i (39)

Eq. (40) shows the revenue resulting from generating electrical power by ESP454

whereas Eq. (41) shows the price bid range for selling power by ESP.455456

RESP,i
t,e = πESP,i

t,e × PESP,i
t,e (40)

457

0 6 πESP,i
t,e × λMCP,i

t,e (41)

TSP constraints in H-MG i458
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Eq. (42) shows the generated thermal power income of TSP, and Eq. (43) shows459

the range of price bid for selling power by TSP.460461

RTSP,i
t,h = πTSP,i

t,h × PTSP,i
t,h (42)

462

0 6 πTSP,i
t,h 6 (πTES-,i

t,e ,πCHP,i
t,h ,πGB,i

t,h , ) (43)

CHP constraints in H-MG i463

Eqs. (44)-(46) presents the power generation limitation for the CHP; where464

FUCHP,i
t , ζCHP,i

e1 and ζhCHP,i are respectively the fuel, electrical efficiency and thermal465

efficiency of the CHP.466467

PCHP,i 6 PCHP,i
t,e 6 P

CHP,i
(44)

468

PCHP,i
t,e = FUCHP,i

t × ζCHP,i
e1 + ζCHP,i

e2 (45)
469

PCHP,i
t,e = ζCHP,i

e1 ×
PCHP,i

t,h

ζhCHP,i + ζ
CHP,i
e2 (46)

Eq. (47) is the cost resulting from power generation using CHP. Eq. (48) shows470

the price bid range for generating power by CHP. Also, Eqs. (49) and (50) state the471

revenue resulting from selling electrical and thermal powers generated using the472

CHP.473474

CCHP,i
t = πNG

t × FUCHP,i
t (47)

475

CCHP,i
t 6 πCHP,i

t 6 2× CCHP,i
t (48)

476

RCHP,i
t,e = πCHP,i

t,e × PCHP,i
t,e (49)

477

RCHP,i
t,h = πCHP,i

t,h × PCHP,i
t,h (50)

GB constraints in H-MG i478

The limit of the power generated by GB is shown in Eq. (51).479480

0 6 PGB,i
t,h 6 P

GB,i
t,h (51)

Eq. (52) shows the cost resulting from generating thermal power by GB while481

Eq. (53) presents the amount of fuel consumed using GB and Eq. (54) shows the482

price bid range for selling power through GB.483484

CGB,i
t,h = πNG

t,h × FUGB,i
t (52)

485

FUGB,i
t =

PGB,i
t

ζGB
h

(53)
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486

CGB,i
t,h 6 πGB,i

t,h 6 2× CGB,i
t,h (54)

The revenue resulting from selling thermal power by GB is shown in Eq. (55).487488

RGB,i
t,h = πGB,i

t,h × P
GB,i
t,h (55)

5.2.4. Consumer constraints489

DR constraints490

Eq. (56) shows that the value of shiftable power must be less than or equal to491

the difference of the total consumed power and the total generated power. Eq. (58)492

and Eq. (59) show that the DR limit between two consecutive intervals must not493

exceed a certain limit.494495

PDR-,i
t 6 (PTCP,i

t − PTGP,i
t ) · XDR-,i

t (56)
496

PDR+,i
t 6 (PTGP,i

t − PTCP,i
t ) · (1 − XDR-,i

t ) (57)
497

PDR+,i
t 6 kε × PNRL,i

t × (1 − XDR-,i
t ) (58)

498

−kt 6 (PDR+,i
t − PDR+,i

t−1 ) 6 kt (59)

ATL and AEL constraints499

Eqs. (60) and (61) are the costs resulting from buying electric and thermal500

power by AEL and ATL. Also, Eqs. (62) and (63) present the price bid interval for501

buying power by AEL and ATL.502503

CAEL,i
t,e = πAEL,i

t,e × PAEL,i
t,e (60)

504

CATL,i
t,e = πATL,i

t,e × PATL,i
t,e (61)

505

λMCP
t,e 6 πAEL,i

t,e 6 2× λMCP
t,e (62)

506

max(πTES-,i
t,h ,πCHP,i

t,h ,πGB,i
t,h ,πTSP,i

t,h ) 6 πATL,i
t,h 6 2×max(πTES-,i

t,h ,πCHP,i
t,h ,πGB,i

t,h ,πTSP,i
t,h )

(63)

TD constraints507

Eq. (64) is the cost of buying thermal power by TD while Eq. (65) states the508

offer price range for buying power by TD.509510

CTD,i
t,h = πTD,i

t,h × P
TD,i
t,h (64)

511

0 6 πTD,i
t,h 6 min(πTES-,i

t,h ,πCHP,i
t,h ,πGB,i

t,h ,πTSP,i
t,h , ) (65)
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REF constraints512

Eqs. (66)-(70) state the modeling of REF. CREF,i
t,e is the cost resulting from buying513

power by REF and πREF,i
t,e represent the offer price interval for buying power.514515 

if TREF,i 6 TRET
t 6 T

REF,i
XREF,i
t = 1

Otherwise XREF,i
t = 0

(66)

516

XREF,i
t = 1 =⇒ PREF,i

t,e = P
REF,i

& TREF,i
t = TREF,i

t−1 − TRED,i (67)
517

XREF,i
t = 0 =⇒ PREF,i

t,e = 0 & TREF,i
t = TREF,i

t−1 + TRED,i (68)
518

CREF,i
t,e = πREF,i

t,e × PREF,i
t,e (69)

519

0 6 πREF,i
t,e 6 λMCP

t,e (70)

DW constraints520

The modeling of DW are presented in Eqs. (71)-(74). Eqs. (73) and (74) respec-521

tively show the cost resulting from buying power by DW and the price bid interval522

for buying power.523524

if XDW,i
t = 1 =⇒ PDW,i

t,e = P
DW,i

, DTDW,i
t = DTDW,i

t−1 + 1 (71)
525

if DTDW,i
t = DT

DW,i
=⇒ PDW,i

t,e = 0, XDW,i
t (72)

526

CDW,i
t,e = πDW,i

t,e × PDW,i
t,e (73)

527

0 6 πDW,i
t,e 6 λMCP

t,e (74)

HHW constraints528

The modeling of HHW are presented in Eqs. (75)-(79).529530 
if THHW,i 6 THHW

t 6 T
HHW,i

XHHW,i
t = 0

Otherwise XHHW,i
t = 1

(75)

531

XHHW,i
t = 1 =⇒


PHHW,i

t,e = P
HHW,i

THHW,i
t = THHW,i

t−1 + T INC,i
(76)

532

XHHW,i
t = 0 =⇒


PHHW,i

t,e = 0

THHW,i
t = THHW,i

t−1 − T INC,i
(77)
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533

CHHW,i
t,h = πHHW,i

t,h × PHHW,i
t,h (78)

534

0 6 πHHW,i
t,h 6 max(πTES-,i

t,h ,πCHP,i
t,h ,πGB,i

t,h ,πTSP,i
t,h , ) (79)

5.3. Mathematical modelling of PV, WT and load demand uncertainty535

Since the market is based on predicted data and generation units are variable,536

uncertainty must be considered. In order that the predicted data mimics reality,537

probabilistic models are used.538

5.3.1. Modelling of load demand uncertainty539

Load uncertainty can be modelled using a normal distribution curve. The mean540

value in the load normal curve distribution is equal to the predicted load for each541

time interval. The standard deviation is obtained from the load prediction method542

based on experience and previous electricity consumption patterns. To simplify our543

analysis, the normal distribution can be divided into several sections showing the544

load occurrence probability with the value equal to the mean value of that section.545

In this study the normal probability distribution curve shown in Figure 6 is used546

[74, 75].547

5.3.2. WT uncertainty modelling548

Bearing in mind that wind supply is stochastic in nature, the calculation of wind549

speed variability was carried out using the Weibull distribution. The mean value of550

this distribution is the wind speed prediction datum. The Weibull distribution curve551

can also be divided into several separate sections. The possibility of occurrence of552

each interval is determined from the corresponding wind speed and the mode of553

each section. The wind speed probability distribution curve in this study is divided554

in the five pieces distribution density function as shown in Figure 7 [76, 77].555

Wind output power is determined from the power function based on wind speed556

according to the following relation.557

26



PWTt (v) =


( Pr
Vr−Vci

)(v− Vci) if Vci 6 v 6 Vr

Pr if Vr 6 v 6 Vco

0 others

(80)

where PWTt (v) is total wind power output at wind speed v, v is the wind speed,558

Pr is total rated power of wind turbines, Vr is the rated wind speed and Vci turbine559

cut-in wind speed and Vco is the cut-out wind speed. If the turbine generation starts560

at the speed Vci; the output power will increase proportionally to speed increase561

from Vci to Vr and the nominal power Pr is generated when the wind speed is562

varied between Vr and Vco. For security reasons, the turbine will turn off at speed563

Vco and the output power will be zero at a speed outside the mentioned limits.564

5.3.3. Modelling of uncertainty in PV system565

The amount of solar radiation that reaches the earth, in addition to the external566

daily and annual rotation of the sun, depends on the geographical position (length,567

width and height) and climatic conditions (for example cloud cover). The PV output568

power is dependent on the amount of solar radiation on the PV panel surface. The569

hourly distribution for solar radiation can be divided into five sections similar to570

the Weibull distribution model for wind speed, as illustrated in Figure 8 [78]. PV571

system power distribution is obtained based on the radiation distribution. The PV572

system output power is calculated as follows:573

PPVt = AC · η · Iβt (81)

where AC is the area of array surface [m2], Iβt is the amount of solar radiation574

over a surface with β slope to the horizon surface [kWm−2], η is the efficiency of575

PV system at the realistic reporting conditions.576

6. Results and discussion577

In this section, the results of simulation of the four methods are presented and578

discussed. The grid under study has three H-MGs called A, B and C which include579
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different DER and consuming resources. The specifications of these resources are580

listed in the appendix. A fault on a H-MG will cause serious consequences to the sys-581

tem and customers’ equipment. It requires not only concentrated attention to avoid582

the fault but also recovery measures to reduce the impact once the fault has oc-583

curred. Constructing a re-configurable scheme for different fault modes will greatly584

reduce losses and inconvenience. Hence, the proposed optimization algorithm is585

employed to solve the optimal day-ahead scheduling problem under different fault586

scenarios, to help verify the robustness of the algorithm.587

The proposed methodologies provide a number of possible dispatch combina-588

tions. Hence, there is a large number of fallback positions that the optimization589

algorithm can revert to in the case of any imbalance. When an intra-period im-590

balance occurs, the next most suitable dispatch is applied immediately. A 1-hour591

resolution rolling-horizon simulation is used to verify the validity of the obtained592

scheduling solutions. It also helps to adjust the operation scheduling values if re-593

quired, especially as the proposed optimization algorithm input data use a 1-day594

resolution to improve computation speed. Simulations were carried out on an Intel595

R© CoreTM: 5-3320M CPU @2.6GHz computer with 4:00GB RAM. The MATLAB596

software was used to solve the optimization problems.597

It is worth mentioning that there are no infeasible dispatches in the problem.598

A solution/dispatch is considered infeasible if it cannot be realized in real time.599

The proposed optimization methodologies will produce a number of profitable dis-600

patches at various profitability levels when it is executed in the hour-ahead horizon.601

However, in real time, it is possible that due to considerable deviations from the602

forecast, the schedule of the highest profitability may prove to be infeasible; hence603

the next best profitable schedule will be applied. This method outperforms previous604

approaches specifically in terms of outputting flexible schedules that cater for the605

mitigation of deviations of a H-MG. It also takes into account the risk of infeasible606

solutions through a merit order list of alternative dispatches.607

The values of all the powers generated by electrical and thermal DERs in each608

H-MG as well as the total value of electrical powers sold/ bought to/ from H-MGs609

from/ to retailer are shown in Figure 9. As observed in Figure 9(a), the maximum610
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power generated by the electrical DERs in H-MG #A is obtained by the HS method.611

This is why no power is sold from this H-MG to the retailer. For any uncertainty612

less than or equal to the maximum uncertainty, the corresponding reserve can be613

directly fetched from the uncertainty versus reserve information. This reduces the614

computational time of dynamic dispatch to approximately zero (around 0.1ms) due615

to the absence of recalculation of optimal power-flow for the measured data. The616

execution time will be the time taken for data selection, fetching and communica-617

tion only.618

In the proposed method, the sum of the power allocated to DR+ has the least619

value relative to other methods. The reason for the increase in the amount of gener-620

ated power in this H-MG is to allow it to sell the generated power to other H-MGs. In621

this manner, the amount of H-MG #A revenue increases. As for H-MG #B, the con-622

ditions are completely different because the power generated using the DE method623

is higher than that for other methods. The reason for this is basically due to the624

power purchased from the retailer.625

Overall, by comparing Figure 9(b) and 9(c), it is observed that H-MG #B in626

the PSO optimization method has a better interaction with the retailer compared627

to other methods. Bearing in mind that the average value of electrical MCP using628

the PSO method is lower than for other methods, H-MG #B supplies the number of629

consumers with lower MCP using the power purchased from the retailer. Further-630

more, it is worth noting that the value of the DR+ power sum using this method631

is 27% of the total consumed DR+ power using other optimization methods. This632

means that in the MO-TE structure, the HS method attempts to buy more power633

from the retailer in order to supply more RLD loads. As observed in Figure 9(a)634

in H-MG #C the value of total power generated using the BAT method is highest635

compared to other optimization methods.636

Similarly, from Figures 9(b) and 9(c), the power exchange value of the H-MG637

with the retailer has its highest limit in this method. The main reason for this is638

that the value of sum DR- has reached its lowest possible limit compared to other639

methods which is only 6%. On the other hand, about 26% of the total DR+ power640

was obtained with the BAT method. This figure is very significant when compared641
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to the other methods. Knowing that the average value of electrical MCP in the BAT642

method is lower than the HS and DE methods, provides positive opportunities for643

supplying the consumers of this H-MG at lower price.644

The total power generated by the thermal DER for each H-MG is shown in Fig-645

ure 9(d). As observed in H-MGs #A and #C, the highest thermal power is generated646

by the HS method, whereas H-MG #B power is generated using the BAT method. In647

essence, the average value of thermal MCP using HS and BAT methods is lower than648

those for other methods. This information is very important to select further power649

generation by thermal DER resources. In other words, while the minimum value650

of thermal MCP is obtained in these methods, the maximum value of thermal MCP651

is obtained in the DE and PSO methods which could lead to a significant increase652

in the value of thermal power cost generated by these methods. As a result, less653

thermal power generated by the DE and PSO methods leads to a profit increase for654

the H-MG owner. Meanwhile the consumer that required maximum total thermal655

power has also been fulfilled.656

Figure 10 presents the consumed load demand profile in each H-MG. It can be657

seen Figure 10(a) that the consumption peak value using the PSO and BAT methods658

in H-MG #A was shifted to non-peak intervals. Using the fact that the average MCP659

value during peak intervals is high in all the implemented optimization methods,660

then the participation of consumers in DR program incurs more expenses to H-MGs661

owners and/ or retailers in exchange for the supply of its required power. However,662

the total value of DR+ in the BAT method is about 28% of the total value of DR+, it663

is expected that the PSO method follows a similar pattern regarding participation664

of consuming resources to increase the DR+ value. After evaluation, it is observed665

that about 26% of the DR+ generation among the methods was obtained with PSO.666

Despite this fact, it is observed that the total values of DR- in the DE and BAT667

methods are equal to each other, which is about 28% of the total DR- proposed668

by all the methods. The minimum value of total DR- was obtained from the HS669

method. This shows the reluctance of this method to shift the load demand from670

one time period with high price to another with lower price. The main reason671

for this occurrence is that the value of electricity generation cost by the H-MGs672
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altogether has the highest value for all the methods. This is about a 28% reduction673

relative to the DE method that is providing the lowest cost of generating electricity.674

Using the HS method, H-MG #B has the maximum value of DR+ while DR- shows675

a significant reduction in its value.676

As for the maximum electricity generation cost, the proposed algorithm shows677

a greater desire to reduce the value of the consumed load demand in the H-MG. An678

important point to make here is that although the electricity generation value in the679

BAT method was the highest after HS, the total value of DR- has become the lowest680

relative to other methods. For this reason, the BAT method has increased the DR+681

value. In H-MG #C, DR+ and DR- values are maximum relative to other methods682

using the PSO method. The performance of this method is justified with its lowest683

cost of electricity after the DE method.684

In H-MG #C, it is highly desirable that more DR+ be supplied using the BAT685

method while bringing DR- value to the minimum as was pointed out before. The686

electricity generation cost in the BAT method is high, as also is the average electrical687

MCP value compared to other methods during the 24h performance of the grid688

under study; by supplying the DRs at suitable times, the method therefore tries to689

reduce the cost paid by the consumers.690

The percentage of the electrical power generated by the H-MGs for each opti-691

mization technique adopted in this study is shown in Figure 11 while that of thermal692

power is shown in Figure 12.693

The thermal power supply required by the consumer is similar to that of elec-694

trical power. Therefore, the thermal power equilibrium for each H-MGs can be695

attained by implementing the optimization algorithms. Because supply of thermal696

power makes the thermal power GB resource to participate in each one the H-MGs.697

It should be noted that part of the thermal power is supplied by the GB which is698

brought in operation during the period 16:00-20:00. The pricing strategy by each699

of presented optimization methods somehow determines the suitable price offer for700

the GB during the period in which the CHP thermal power value is proportional to701

the electrical power. As a result, the thermal load requirement difference is satisfied702

by the GB.703
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The values of electrical and thermal MCPs obtained from simulation using each704

of the optimization methods are shown in Figures 13(a) and 13(b), respectively. As705

observed from Figure 13(a), all the methods for reducing electrical MCP relative to706

thermal MCP have very good performance over the complete time period. At the707

start of the system’s daily performance, the PSO method has a better performance708

in reducing the MCP relative to the BAT method which during this time interval has709

the poorest performance. In the morning, the PSO method is the most successful for710

reducing the MCP. During this time interval the worst is related to the HS method711

for which the electrical MCP increases for about 83%.712

HS performance over this latter time period is the worst among all the methods,713

so much so that it has out-weighed its very good performance at the beginning of714

the day. The PSO method in this interval obtains less MCP value relative to DE715

with about 34% of the time during the DERs and consumers proper management.716

Although PSO has shown the best performance during this time interval, it has the717

worst performance in the period from afternoon to sunset. The best performance to718

reduce MCP in this period from afternoon to sunset HS method which has obtained719

the minimum value of electrical MCP at about 78% of the time when compared720

with PSO.721

During the day′s last hours, the HS method imposes a higher value of MCP722

on the consumers for 22% of the time. Altogether, the best method over the 24h723

performance of the MO-TE structure is obtained for electrical MCP using the HS724

method relative to the PSO method. This is about 6%, relative to BA, about 9%725

relative to the DE method; about 62% of the time a reduced MCP is obtained. As726

observed from Figure 13(b), at the beginning, from midnight until morning, the727

PSO method has a significant share in reducing the value of the thermal MCP. For728

this reason, its value is always obtained relative to other optimization methods at729

minimum value.730

The worst result during this time interval is related to BAT where for about 77%731

of the time, a higher thermal MCP value results from using the PSO method. In732

the morning, the best performance is given by DE but the PSO′s performance has733

reduced so much that there is a reduction in the thermal MCP for about 45% of734
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the time. In the time interval 12:00 to 18:00 the DE method gave the best perfor-735

mance. In contrast to DE, BAT had a poor performance whose operation is related736

to DE that was 70% weaker. During the last hours of the day in contrast to the737

previous intervals, BAT had the best performance relative to others. Altogether, for738

the powers consumed in all the H-MGs, the DE algorithm with less than 2% had739

better performance relative to BAT, 28% better relative to HS and PSO in reducing740

the MCP.741

The convergence characteristic of the proposed algorithms is compared with742

each other and depicted in Figure 14. This figure implies that the proposed algo-743

rithm based on the DE method outperforms the other optimization techniques in744

convergence speed; however the proposed algorithm based on BAT method achieved745

a better performance from an optimality of objective function point of view. The746

obtained maximum profit for DE and BAT methods are £8.5 and £9.7, with the cor-747

responding CPU-time of 8.085s and 9.705s (as shown in Table 1), respectively. It748

can be observed that the PSO method converges to the optimal solution in a greater749

number of iterations. It is observed from this figure that HS has a better convergence750

characteristic, in comparison with PSO and BAT. By comparing the convergence751

properties of the proposed algorithms, both the speed and ability of the proposed752

approaches to find better solutions can be observed in Figure 14. These imply the753

capability of the proposed methods for solving such complicated economic dispatch754

problems. The maximum iteration number for this case is set to 100 iterations.755

In order to compare the computation, it should be mentioned that both CPU756

speed and simulation times for all methods are provided in Table 1. Computation757

time has a direct relation with CPU speed. Relative simulation time is calculated by758

multiplying relative CPU speed by the reported simulation time. Although the ob-759

tained profit by PSO is £7.9 (i.e., 22.6%) less than the profit obtained by BAT, but the760

corresponding CPU-time is much less in comparison with the very high CPU-time761

of BAT. The negligible reduction of profit at the expense of a significant increase762

of CPU-time may not be desirable from the real-time operation perspective. In it763

important to mention that in real-time applications, the optimal DER schedule is764

needed for the next few minutes, subject to the unpredicted uncertainty parame-765
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ters in the order of minutes (e.g., 5-min intervals). The results presented in Table 1766

substantiate the fact that the proposed methods are well capable of attaining the767

optimal solution of offer prices and quantities in a very short time. Hence, the768

proposed methods are efficient for solution of economic dispatch in real-time envi-769

ronment.770

Table 1: Comparison of the absolute and relative CPU time for test system

Method CPU speed (GHz) Absolute time (s) Relative CPU time (s)

DE 3 5.39 8.085

HS 3 5.33 7.995

PSO 3 5.26 7.89

BAT 3 6.47 9.705

Table 2 show the minimum, average, maximum and standard deviation of the771

objective function for different numbers of trial runs. The maximum iteration num-772

ber for this simulation is selected to be 100. The results justify the applicability of773

the proposed methods for solving the constrained economic dispatch problem with774

non-smooth cost functions.775

Table 2: Analysis of objective function for different number of trial runs

Method Number of runs Minimum profit (£) Average profit (£) Maximum profit (£) Standard deviation (£)

DE

50

4.87 6.16 7.5 0.98

HS 3.6 7.14 7.64 1.23

PSO 4.66 6.15 6.98 0.93

BAT 4.83 6.81 8.4 1.34

DE

100

5.87 8.16 8.5 0.78

HS 4.6 8.34 8.84 1.03

PSO 5.66 7.15 7.9 0.56

BAT 5.93 7.93 9.7 1.23

7. Conclusion776

This paper has proposed an algorithm for the optimum use of the existing elec-777

trical/ thermal resources in home Microgrids. The proposed framework provided an778

optimum timing for power exchange among the H-MGs while satisfying the objec-779

tive functions and technical constraints. Establishing a coalition among the H-MGs,780
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the method when tested, considered power balancing, demand side management,781

market clearing price reduction and profit increase of the players in the market. The782

optimality of the obtained results and the ability of the proposed structure to change783

the input parameters were compared with each other using several methods. With784

technical and economic constraints, the timing of connection of appliances and elec-785

trical machines were included. The optimum control of ES resources and demand786

side management led to a reduction in the exploitation cost of each H-MG which re-787

sulted in profit increase. The proposed algorithm could be exploited to fix different788

structures with different objective functions.789
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Appendix800

H-MG resources specifications and constant parameter values is listed in Table 3.801
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moiagă, Experimental evaluation of a real time energy management system914

for stand-alone microgrids in day-ahead markets, Applied Energy 106 (0)915

(2013) 365–76.916

[36] M. Marzband, M. Ghadimi, A. Sumper, J. L. Domínguez-García, Experimental917

validation of a real-time energy management system using multi-period grav-918

itational search algorithm for microgrids in islanded mode, Applied Energy,919

128 (0) (2014) 164–74.920

[37] G. Vyas, K. Jha, Benchmarking green building attributes to achieve cost ef-921

fectiveness using a data envelopment analysis, Sustainable Cities and Society922

28 (Supplement C) (2017) 127–34.923

[38] M. Marzband, Experimental validation of optimal real-time energy manage-924

ment system for microgrids, Phd thesis, Departament d’Enginyeria Elèctrica,925

40



EU d’Enginyeria Tècnica Industrial de Barcelona, Universitat Politècnica de926

Catalunya (2013).927

[39] M. Marzband, H. Alavi, S. S. Ghazimirsaeid, H. Uppal, T. Fernando, Optimal928

energy management system based on stochastic approach for a home micro-929

grid with integrated responsive load demand and energy storage, Sustainable930

Cities and Society, 28 (2017) 256–64.931

[40] M. Marzband, F. Azarinejadian, M. Savaghebi, J. M. Guerrero, An optimal932

energy management system for islanded microgrids based on multiperiod ar-933

tificial bee colony combined with markov chain, IEEE systems journal, PP (99)934

(2015) 1–11.935

[41] M. Marzband, S. S. Ghazimirsaeid, H. Uppal, T. Fernando, A real-time evalua-936

tion of energy management systems for smart hybrid home microgrids, Elec-937

tric Power Systems Research, 143 (2017) 624–33.938

[42] J. Valinejad, M. Marzband, M. F. Akorede, T. Barforoshi, M. Jovanović, Gener-939
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tem of hybrid microgrid with energy storage, The International Word Energy978

System Conference (WESC), Suceava, Romania, 2012.979

42



[53] B. gang Hwang, M. Shan, N. N. B. Supaat, Green commercial building projects980

in singapore: Critical risk factors and mitigation measures, Sustainable Cities981

and Society 30 (2017) 237–47.982

[54] M. Marzband, A. Sumper, J. L. Domínguez-García, R. Gumara-Ferret, Experi-983

mental validation of a real time energy management system for microgrids in984

islanded mode using a local day-ahead electricity market and MINLP, Energy985

Conversion and Management 76 (0) (2013) 314–22.986

[55] M. Moafi, M. Marzband, M. Savaghebi, J. M. Guerrero, Energy management987

system based on fuzzy fractional order PID controller for transient stability988

improvement in microgrids with energy storage, International Transactions989

on Electrical Energy Systems (2016) 1–20.990

[56] B. S. Y. Jin, Trade-off between performance and robustness: An evolutionary991

multiobjective approach, Springer Berlin Heidelberg (2003) 237–51.992

[57] N. Parhizi, M. Marzband, S. M. M. Moghaddam, F. Azarinajadian,993

B. Mohamadi-Ivatlo, Optimal energy management system implementation in994

power networks with multiple microgrids by using multi-period imperialist995

competition, Comput. Intell. Electr. Eng.Accepted.996

[58] R. Chatthaworn, S. Chaitusaney, Transmission network expansion planning997

considering renewable energy target with taguchi’s orthogonal array testing,998

IEEJ Trans. Electr. Electron. Eng. 9 (2014) 588–99.999

[59] H. Yu, C. Chung, K. Wong, Robust transmission network expansion planning1000

method with taguchi’s orthogonal array testing, IEEE Transactions on Power1001

Systems, 26 (3) (2011) 1573–80.1002

[60] M. Bounou, S. Lefebvre, X. Do, Improving the quality of an optimal power1003

flow solution by taguchi method, International Journal of Electrical Power &1004

Energy Systems 17 (2) (1995) 113–18.1005

[61] M. Klusch, A. Gerber, Dynamic coalition formation among rational agents,1006

Intelligent Systems, 17 (3) (2002) 42–7.1007

43



[62] E. Bonabeau, M. Dorigo, G. Theraulaz, in: Swarm Intelligence: From Natural1008

to Artificial Systems, 1999, p. 320.1009

[63] J. J. Liang, A. K. Qin, P. N. Suganthan, S. Baskar, Comprehensive learning par-1010

ticle swarm optimizer for global optimization of multimodal functions, IEEE1011

Transactions on Evolutionary Computation 10 (3) (2006) 281–295.1012

[64] W. feng Gao, S. yang Liu, L. ling Huang, Particle swarm optimization with1013

chaotic opposition-based population initialization and stochastic search tech-1014

nique, Communications in Nonlinear Science and Numerical Simulation1015

17 (11) (2012) 4316–327.1016

[65] T. Robic, B. Filipi, in: DEMO: Differential Evolution for Multiobjective Opti-1017

mization, 2005, pp. 520–33.1018

[66] S. Das, A. Abraham, A. Konar, Automatic clustering using an improved1019

differential evolution algorithm, IEEE Transactions on Systems, Man, and1020

Cybernetics- Part A: Systems and Humans 38 (1) (2008) 218–237.1021

[67] R. Storn, K. Price, Differential evolutio- a simple and efficient heuristic for1022

global optimization over continuous spaces, J. of Global Optimization 11 (4)1023

(1997) 341–359.1024

[68] A. Khazali, M. Kalantar, Optimal reactive power dispatch based on harmony1025

search algorithm, International Journal of Electrical Power Energy Systems1026

33 (3) (2011) 684–92.1027

[69] Z. W. Geem, J. H. Kim, G. Loganathan, Optimal reactive power dispatch based1028

on harmony search algorithm, SAGE Publications Ltd STM 76 (2) (2001) 60–1029

68.1030

[70] S. Tuo, L. Yong, T. Zhou, An improved harmony search based on teaching-1031

learning strategy for unconstrained optimization problems, Mathematical1032

Problems in Engineering 2013 (2013) 1–30.1033

44



[71] X. S. Yang, A new metaheuristic bat-inspired algorithm, Stud. Comput. Intell.1034

76 (2) (2005) 65–74.1035

[72] Y. Zhou, L. Li, M. Ma, A complex-valued encoding bat algorithm for solving1036
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Figure 10: The consumed load demand profile in the H-MGs

51



25 50 75 100

00:0017
34

51
68

01:00

23

46

69

92

02:00

20

40

60

80

03:00

25

50

75

100

04:00

22

43

65

86

05:00

22

43

65

86

06:00

14

28

41

55
07:00

20

40

59

79
08:00

22

44

65

8709:00

20

41

61

81
10:00

19
37

56
74

11:00

255075100

12:00 25
50

75
100

13:00

15

30

44

59

14:00

15

29

44

58

15:00

20

39

59

78

16:00

20

40

60

80

17:00

14

27

41

54

18:00

24

48

72

96
19:00

25

50

75

100
20:00

25

50

75

100 21:00

25

50

75

100
22:00

25
50

75
100

23:00

P
t
ESP P

t
ES- P

t,e
CHP P

t
GR-

(a) BAT method

24 49 73 97

00:0024
48

71
95

01:00

14

29

43

57

02:00

25

50

75

100

03:00

25

50

75

100

04:00

21

41

62

82

05:00

21

42

62

83

06:00

25

50

75

100
07:00

20

41

61

81
08:00

21

42

63

8409:00

19

39

58

77
10:00

18
36

53
71

11:00

25507499

12:00 17
33

50
66

13:00

10

21

31

41

14:00

12

24

35

47

15:00

18

35

53

70

16:00

15

30

44

59

17:00

25

50

75

100

18:00

25

50

75

100
19:00

25

50

75

100
20:00

25

50

75

100 21:00

25

50

75

100
22:00

25
50

75
100

23:00

P
t
ESP P

t
ES- P

t,e
CHP P

t
GR-

(b) DE method

24 48 72 96

00:0023
47

70
93

01:00

20

40

59

79

02:00

25

49

74

98

03:00

25

50

75

100

04:00

19

38

57

76

05:00

23

46

68

91

06:00

19

37

56

74
07:00

21

42

63

84
08:00

18

35

53

7009:00

21

43

64

85
10:00

17
33

50
66

11:00

255075100

12:00 25
50

75
100

13:00

18

35

53

70

14:00

22

44

65

87

15:00

18

35

53

70

16:00

18

36

54

72

17:00

24

48

72

96

18:00

20

39

59

78
19:00

17

35

52

69
20:00

23

46

69

92 21:00

25

50

75

100
22:00

25
50

74
99

23:00

P
t
ESP P

t
ES- P

t,e
CHP P

t
GR-

(c) HS method

24 48 72 96

00:0013
26

38
51

01:00

22

43

65

86

02:00

23

45

68

90

03:00

21

43

64

85

04:00

21

42

63

84

05:00

21

43

64

85

06:00

14

28

41

55
07:00

21

41

62

82
08:00

22

44

66

8809:00

20

40

59

79
10:00

16
31

47
62

11:00

255075100

12:00 25
50

75
100

13:00

19

37

56

74

14:00

17

35

52

69

15:00

18

37

55

73

16:00

20

41

61

81

17:00

25

50

75

100

18:00

25

50

75

100
19:00

25

50

75

100
20:00

25

50

75

100 21:00

25

50

75

100
22:00

25
50

75
100

23:00

P
t
ESP P

t
ES- P

t,e
CHP P

t
GR-

(d) PSO method

Figure 11: Electrical power percentage generated by the generation resources existing in the H-MGs

based on BAT, DE, HS and PSO algorithms
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Figure 12: Thermal power percentage generated by generation resources based on BAT, DE, HS and PSO
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Figure 13: MCP profile for the 24h performance of the system under study using different optimization

methods
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