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Abstract  

Detection of saccades (fast eye-movements) within raw mobile electrooculography (EOG) data 

involves complex algorithms which typically process data acquired during seated static tasks 

only. Processing of data during dynamic tasks such as walking is relatively rare and complex, 

particularly in older adults or people with Parkinson’s disease (PD). Development of algorithms 

that can be easily implemented to detect saccades is required. This study aimed to develop an 

algorithm for the detection and measurement of saccades in EOG data during static (sitting) and 

dynamic (walking) tasks, in older adults and PD. Eye-tracking via mobile EOG and infra-red (IR) 

eye-tracker (with video) was performed with a group of older adults (n=10) and PD participants 

(n=10) (≥50 years). Horizontal saccades made between targets set 5°, 10° and 15° apart were 

first measured while seated. Horizontal saccades were then measured while a participant 

walked and executed a 40° turn left and right. The EOG algorithm was evaluated by comparing 

the number of correct saccade detections and agreement (ICC2,1) between output from visual 

inspection of eye-tracker videos and IR eye-tracker. The EOG algorithm detected 75-92% of 

saccades compared to video inspection and IR output during static testing, with fair to excellent 

agreement (ICC2,1 .49 to .93). However, during walking EOG saccade detection reduced to 42-

88% compared to video inspection or IR output, with poor to excellent (ICC2,1 .13 to .88) 

agreement between methodologies. The algorithm was robust during seated testing but less so 

during walking, which was likely due to increased measurement and analysis error with a 

dynamic task. Future studies may consider a combination of EOG and IR for comprehensive 

measurement. 

Key Terms: Electrooculography, eye-tracking, Parkinson’s disease, saccades, algorithm 
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I. INTRODUCTION 

Monitoring eye-movements with non-invasive recording devices is becoming increasingly 

popular, likely due to the close relationship between eye-movements and cognition [1]. Eye-

movement measurement is an important part of patient neurological examinations [2], 

particularly saccadic (fast) and fixation movements. Visual and cognitive impairments are 

common in Parkinson’s disease (PD) compared to healthy older adults [3, 4], and are 

associated with reduced mobility and falls [7, 8]. Visual and cognitive processes can be 

measured during dynamic tasks (e.g. walking) by tracking eye-movements [1, 6]. Eye-

movement abnormalities in PD [5] relate to impairment of particular brain areas (i.e. the basal 

ganglia and frontal cortex) and cognitive processes (i.e. attention, visuo-spatial ability etc.). 

Understanding eye-movement abnormalities in PD compared to older adults during walking will 

inform appropriate intervention application and development. 

Eye-tracking technology has progressed from large/expensive/static devices (e.g. EyeLink 

1000, Tobii Pro TX300 etc.) to mobile devices capable of real-time eye-tracking during 

functional tasks (e.g. walking/gait), such as electrooculography (EOG). EOG is an eye-tracking 

technique based on measurement of corneo-retinal standing potentials that exist between the 

front and back of the eye, due to the higher metabolic rate of the retina compared to the cornea 

[2]. The eye acts as a dipole orientated from retina to cornea. EOG is reliant upon the steady 

difference in potential (range ~0.4-1.0mV) that exists between the retina and cornea, producing 

an electrical field [7]. The bi-potential electrical signal can be recorded from the skin near the 

eyes. Eye-movements change potentials generated and provide a signal with which to measure 

saccades (Fig. 1) [8]. EOG is usually recorded in voltage via two bipolar electrodes, which are 

placed either side of the eyes (on the lateral canthus) to measure horizontal eye-movements. 

Some studies also record vertical eye-movements by placing a second set of electrodes above 

and below one eye. However, vertical eye-movements are difficult to record due to substantial 

impact on the signal by blinks and facial muscle movement, which can lead to problems 

differentiating between saccades and other artefacts. Eye-movement can be inferred from 

voltage signals obtained from EOG system with previously reported accuracy of ±1.5-2° [2, 9]. 

EOG is often referred to as an ‘ideal eye-tracking system’, primarily due to its large sampling 

frequency (200-1000Hz), non-invasive methods and relationship between recorded voltages 

and angular displacement of the eyes [8]. There are however problems using EOG, particularly 

during dynamic tasks (e.g. walking). For example; visual field data is not obtained from EOG, as 

unlike video-based eye-tracking there is no method for recording the scene/environment. Other 
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issues such as signal drift have also been reported [10], which would require re-calibration 

during long trials [11]. Due to limitations new eye-tracking technologies (i.e. mobile infra-red (IR) 

eye trackers) have not only been developed, but seem to be the predominant method used in 

research studies. However EOG remains useful due to its high sampling rates, but data 

processing is difficult without in-depth understanding of EOG signal from eye-movement. 

Therefore to derive saccades and fixations from EOG an algorithm is required. Previous studies 

[2, 10, 12, 13] have developed complex algorithms during static seated tasks. However EOG 

eye-movement classification remains challenging, particularly during dynamic tasks due to 

increased subject movement [12]. Hence, there are currently no published algorithms to detect 

eye-movements in EOG signal during dynamic tasks, although algorithms developed within 

static conditions may be applicable. Development and evaluation of easily implementable, yet 

reliable EOG algorithms for use in both static and dynamic tasks is required.   

 

Aims: 

1. Develop an algorithm to detect saccades within EOG data during static (sitting) and dynamic 

(walking) testing. 

2. Compare EOG algorithm output to video-based visual inspection and a previously validated 

infra-red mobile eye tracker algorithm [14]. 

 

 

 

Fig. 1:  A standard electrooculography (EOG) trace during one of the static calibration 
tasks (horizontal eye-movements).  

 Left: the cornea approaches the electrode near the outer canthus of the left eye, resulting 
in a positive to negative change in the recorded potential.  

 Right: the cornea approaches the electrode near the inner canthus of the left eye, resulting 
in a negative to positive change in the recorded potential. 
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II. METHODS 

Participants 

Data were collected within an ongoing study ‘Vision and Gait in Parkinson’s disease’ at 

Newcastle University and had ethical approval (Reference; 13/NE/0128) [15]. Written informed 

consent was gained prior to testing. This study involved recording eye-movements while sitting 

and walking while turning in people with PD and healthy older adult controls (HC). Data from 

twenty participants were chosen at random from the larger study to be analysed. 

Equipment 

EOG: Wireless mobile EOG (Zerowire, Aurion, Italy) recorded horizontal saccades (1000Hz). 

Electrodes (~4mm) were placed bi-temporally as close to the (left and right) lateral canthus as 

possible without blocking the participants vision (Fig. 2). 

IR: Head-mounted Dikablis mobile eye-tracker (Ergoneers, GmbH, Germany) also recorded 

participant saccades simultaneously (50Hz). Participants left pupil was tracked by means of IR 

illumination and provided gaze co-ordinates (x, y). This device (including video) was 

automatically synchronized to EOG by a 3D motion analysis system (Vicon, Oxford, UK). 

Video: IR used a dual camera system, with one monocular infra-red eye camera and one fish-

eye field-camera (50Hz). IR video was calibrated prior to EOG calibration via a four point 

calibration method [16], which overlaid video output from both of the cameras with a cross-hair 

provided on the video to represent pupil location. Co-ordinate data was derived from the cross-

hair position and used to derive eye-movements.  

 
Fig. 2:  System set up. Head mounted Dikablis unit (IR and video 

camera) and EOG electrodes (×2, left/right temporal regions) 



 

6 

 

Procedure 

1) Static: Seated Eye-Movement (Calibration) 

EOG was calibrated for each participant prior to walking trials. Participants were seated ~6m 

from a wall and a marker was placed straight in front of them. We asked participants to blink for 

a period of 30 seconds (s) in time with a 60bpm metronome. Next, participants moved their eyes 

between two markers placed at set distances (5°, 10°, 15°), again in time with the metronome 

for 30s [16]. A maximum distance of 15° was used as most naturally occurring saccades occur 

within this threshold [17]. Horizontal eye-movements (5°, 10°, 15°) were recorded via EOG 

(1000Hz), video and IR (both 50Hz) simultaneously during this procedure and later compared. 

2) Dynamic: Walking Trials 

Participants walked straight for 2.5m and then made a right or left 40° turn once they had 

walked through a doorway. Tasks were repeated three times and the average of the six trials 

were calculated. EOG, IR and video data were recorded during these walks from which 

saccades could be measured [15].  

Feature Selection and Evaluation 

Video Inspection: Videos were analysed similar to previous work [14]. All IR videos (eye/field-

camera) for each participant (n=20) during static and dynamic trials were visually inspected by a 

single examiner (AH) frame-by-frame, in order to compare algorithm results (180 videos in 

total). Video inspection of the dynamic tasks was calibrated by the examiner viewing the static 

seated videos and measuring participant 5° eye-movements prior to the walking videos in order 

to provide a reference for saccade distance (i.e. ≥5°).  

Number of saccades detected via video inspection during static and dynamic tasks was 

recorded and compared to number measured via EOG algorithm. EOG algorithm saccade 

detection performance was also compared to our previously validated IR algorithm [14]. Finally, 

more specific characteristics of the horizontal eye-movements (e.g. velocity and distance) 

recorded by EOG were compared to IR.  

III. EOG signal processing Algorithm 

An EOG algorithm was developed to analyse data collected during static and dynamic tasks. 

The algorithm was based upon a previously developed EOG algorithm used within seated 

testing [13] and our previous IR algorithm used within walking [14]. These studies guided 
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algorithm development, which we evaluated within both static and dynamic conditions. Full 

algorithm representation is presented in Fig. 3. 

STAGE 1: pre-processing 

a) Baseline offset removal 

Mean EOG signal was calculated and then removed in order to account for baseline offset. 

b) Filtering 

EOG signal was filtered to remove noise introduced by artifacts, such as facial muscle activity, 

using a band-pass filter (0.1-20Hz). This filter was chosen to preserve the edge steepness of 

the saccades, retain signal amplitudes and not introduce any artificial signal changes [18]. 

STAGE 2: Detection of EOG signal characteristics 

a) Create a conversion factor 

Eye-movements are typically measured and reported in degrees but EOG provides data in 

voltage (Table 1). Therefore, to determine the ratio of volts to degrees of eye-movement it is 

necessary to construct a conversion factor (i.e. amount of volts when the eyes move to set-

distance targets; -15°, -10°, -5°, 0°, 5°, 10°, 15° [13].  

Table 1 - Conversion Factor Example From One Participants Data 

Known Saccade Distance Mean Voltage (mV) Conversion Factor (volts/°) 

5° 0.0075 0.0015 

10° 0.015 0.0015 

15° 0.019 0.0013 

Conversion value (mean of 5°, 10°, 15°) 0.0014 

 

A conversion factor was calculated for each participant before further processing. The 

conversion factor is the average voltage generated at each set-distance of eye-movement 

divided by the known degree value (i.e. 5°, 10°, and 15°). Final conversion value is the average 

of the three conversion factors. Table 1 shows an example from one participants data, which 

provides reference for voltage to degrees of eye-movement (e.g. 1° = 0.0014mV).  

b) Peak detection 

After filtering, peak detection was used to locate the peaks (positive and negative) of eye-

movement within EOG signal (Fig. 1.). These peaks were identified using a minimum peak 
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voltage threshold identified within the calibration procedure (e.g. 5° = peaks > or < 0.0075mV). 

The algorithm then classified the detected peaks as either left or right eye-movements based on 

whether a positive or negative peak occurred first or second, within a particular duration 

(100ms). Velocity and acceleration thresholds were then used to further classify eye-

movements. 

STAGE 3: Detection of EOG visual events 

a) Velocity and Acceleration based thresholds 

Similar to a previous EOG algorithm for static tasks [13], velocity (1) and acceleration (2) values 

(V and A, respectively) were used to discriminate between different types of eye-movements. 

Moment-to-moment change (D) in EOG signal (X) was calculated and divided by change (D) in 

time (T) [13, 14].  

Thresholds were adaptable (i.e. could be changed depending upon the task), but within this 

study they were fixed to the same settings as below during both static and dynamic tasks. 

𝑉 = 𝐷(𝑋) 𝐷(𝑇)⁄ × Sample Frequency       (1) 

𝐴 = 𝐷2(𝑉) 𝐷(𝑇)⁄ × Sample Frequency       (2) 

b) Saccade Detection 

A velocity-threshold of ≥240°/s (~5° eye-movement) and acceleration-threshold of ≥3,000°/s² 

were used to detect saccades, which were also screened for duration set at ≤100ms [19]. 

Duration screening was used to eliminate inclusion of facial muscle activity, blinks or smooth 

pursuit eye-movements.  

c) Fixation Detection 

Once saccades had been detected, fixations were classified as data which was not a saccade 

or artefact. In order to prevent other artefacts being picked up as a fixation, each fixation had to 

be ≥100ms in duration, as well as meeting non-saccade criteria (i.e. <240°/s velocity and 

<3000°/s² acceleration). There is no consensus for fixation duration criteria (with some as short 

as 50ms), but most studies use a minimum duration of 100-200ms [20, 21]. Fixation duration 

criteria are based on an estimation of the minimum time required for appropriate visual intake 

[19].  
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d) Blink and artefact removal 

Raw EOG data was further filtered using the same threshold criteria for blinks and other 

artefacts as used within our previous IR algorithm [14], as horizontal signal from blinks closely 

resembles that of eye-movements [22, 23]. The filtering involved the removal of data which met 

criteria as being an un-physiological eye-movement (i.e. a human would be unable to move their 

eye at a certain speed) and therefore were most likely a blink. Removal was based upon 

thresholding the raw signal, velocities and accelerations of the detected peaks [24, 25]. If an 

eye-movement had a velocity of >1,000°/s or an acceleration of >100,000°/s², these data 

represented blinks/artefacts and were removed.  

STAGE 4: Feature Extraction 

The final algorithm stage was to calculate and output various saccade and fixation 

characteristics. Characteristics included saccade number, frequency, distance, duration, 

direction (horizontal) and timing. Fixation characteristics included number, duration and timing.  

 

Fig. 3:  Flow chart of electrooculography (EOG) algorithm 
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IV. Data Analysis 

The EOG algorithm was implemented using MATLAB
® (2012a, Mathworks, Natick, MA, USA). 

EOG was compared to video and our previously validated IR algorithm [14]. Between group 

(PD, HC) comparison was not performed as this was not the focus of the study. Saccade 

detection (horizontal only) was evaluated during static (seated; 5°, 10° and 15°) and dynamic 

(walking) tasks. Detection performance was performed with respect to the following criteria: 

• Correct detection: Algorithm saccade detection was marked as correct if it was found in 

the corresponding video or IR algorithm output. 

• Undetected: Algorithm saccade detection was marked as undetected if the saccade was 

found in the corresponding video or IR algorithm output, but not in the algorithm output. 

• Spurious: Algorithm saccade detection was marked as spurious if it was in the EOG 

algorithm output but not in the corresponding video or IR algorithm output. 

Average values obtained for several saccade characteristics (i.e. number, duration, peak 

velocity, distance) were tabulated. Intra-class correlations (ICC2,1) were quantified using SPSS 

V21 (SPSS Inc., IL) to assess the absolute agreement between methodologies (EOG, video 

inspection and IR). ICC2,1 was interpreted as; poor <0.39, fair >0.40-0.59, good 0.60-0.75 and 

excellent >0.75 [26]. Histogram comparisons of overall saccade measurements (number, 

velocity, distance and duration) from each method (video, IR, EOG) are also presented. 

V. Results 

Static: Eye-Movement Calibration 

Table 2 shows that compared to video, a similar number of horizontal saccades (5°, 10°, 15°) 

were detected within EOG and IR output during static calibration. Saccade peak velocity and 

distance tended to increase with increasing target distance for both EOG and IR, and within 

both groups (HC and PD). Table 3 demonstrates saccade detection performance of the EOG 

algorithm compared to video inspection and IR. Results showed that during static testing EOG 

detected 86-92% of saccades found within video inspection and 75-83% of saccades detected 

by IR. On average there were more spurious detections than undetected (Undetected; video: 

9%, IR: 14% and Spurious; video: 0.4%, IR: 7%). Agreement between output from video and the 

two eye-tracking systems (EOG, IR) during static eye-movement calibration is shown in Table 4 

and graphically depicted in Fig. 4. Results indicated that the EOG algorithm can detect 

saccades (number) with fair (ICC2,1
 .49) to excellent (ICC2,1

 .93) agreement to video inspection 
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and IR for both PD and HC groups, with better agreement with video inspection. However, the 

majority of the saccade number results showed good to excellent agreement for both groups. 

There was inconsistent agreement between EOG and IR output within either group for saccade 

duration, peak velocity or distance (ICC2,1
  range; .02 to .40). 

Dynamic: Walking Trials 

Results for video inspection and EOG and IR algorithm output during walking trials (LT, RT) are 

displayed in Table 2 and 3. Overall EOG detected approximately 76% of the saccades detected 

via video inspection, and 52% of the saccades detected via IR, which was lower than static 

testing. There were also higher levels of undetected and spurious saccade detections within the 

EOG data during dynamic testing compared to static (Undetected; video: 20% and IR: 27% and 

Spurious; video: 5% and IR: 23%). 

Agreement results shown in Table 4 and graphically depicted in Fig. 5, indicated that the EOG 

algorithm detected saccades while walking with good to excellent (ICC2,1 .60 to .88) agreement 

to video, and poor to fair agreement to IR (ICC2,1 .13 to .55). However, agreement between EOG 

and video and IR was reduced while walking compared to the static testing (e.g. ICC2,1
 .76 

during calibration but .58 when walking, Table 4). Other saccade characteristics of duration, 

peak velocity and distance had variable agreement during walking (ICC2,1
 range; .06 to .50). 
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TABLE 2 -  AVERAGE SACCADE CHARACTERISTICS 
 

  Video 
(50Hz) 

 
IR (50 Hz)  

 
EOG (1000 Hz)  

Group  Number Number 
Duration 

(sec) 
Peak Velocity 

(°/sec) 
Distance 

(°) 
Number 

Duration 
(sec) 

Peak Velocity 
(°/sec) 

Distance 
(°) 

HC 
(n=10) 

5° 24 (4) 23 (8) 0.03 (0.01) 289.6 (47.1) 5.7 (0.7) 22 (4) 0.05 (0.01) 456.2 (33.9) 6.6 (1.4) 

10° 23 (3) 22 (5) 0.03 (0.01) 451.9 (114.8) 9.0 (2.5) 21 (3) 0.05 (0.00) 634.8 (124.3) 10.8 (2.4) 

15° 29 (12) 31 (17) 0.04 (0.01) 583.2 (103.8) 10.4 (1.8) 25 (10) 0.06 (0.01) 572.3 (98.8) 11.0 (2.1) 

LT 4 (0) 3 (1) 0.03 (0.00) 428.0 (20.9) 10.8 (0.9) 3 (0) 0.05 (0.01) 469.2 (7.72) 8.2 (1.8) 

RT 3 (0) 3 (0) 0.03 (0.01) 432.4 (53.2) 10.6 (1.4) 3 (0) 0.05 (0.01) 427.0 (15.74) 6.4 (0.7) 

PD 
(n=10) 

5° 29 (6) 27 (5) 0.03 (0.01) 314.7 (126.0) 5.7 (1.2) 28 (7) 0.05 (0.00) 521.6 (62.3) 6.6 (2.5) 

10° 32 (9) 31 (10) 0.03 (0.01) 398.0 (120.3) 7.9 (2.1) 29 (10) 0.05 (0.00) 606.1 (160.3) 9.7 (2.8) 

15° 25 (6) 30 (8) 0.03 (0.01) 462.8 (144.4) 9.0 (2.3) 23 (5) 0.05 (0.00) 612.3 (116.6) 10.7 (2.7) 

LT 3 (0) 2 (0) 0.03 (0.00) 400.8 (43.5) 10.3 (2.5) 2 (0) 0.05 (0.01) 510.3 (45.4) 8.1 (1.4) 

RT 3 (0) 3 (0) 0.03 (0.00) 382.3 (11.9) 9.5 (0.5) 2 (1) 0.05 (0.01) 490.0 (75.3) 9.5 (0.9) 

[RT = Right turns, LT = Left turns, Mean (SD) reported for horizontal saccades only] 
 
 

 

 

TABLE 3 -  OVERALL EOG ALGORTIHM SACCADE (NUMBER) DETECTION PERFORMANCE        

  Video (50Hz) vs EOG (1000Hz) IR (50 Hz) vs EOG (1000Hz) 
  Static Dynamic Static Dynamic 

Group  5° 10° 15° LT RT 5° 10° 15° LT RT 

HC 
(n=10) 

Correct Detection: n 
(%) 

221 (91.7) 212 (91.8) 247 (86.4) 98 (80.2) 85 (88.0) 225 (78.7) 216 (83.1) 266 (76.9)  61 (49.3) 50 (58.0) 

Undetected: n (%) 19 (7.9) 19 (8.2) 38 (13.3) 19 (15.5) 9 (9.3) 32 (11.2) 24 (9.2) 71 (20.5) 33 (25.6) 16 (16.1) 

Spurious: n (%) 1 (0.4) 0 (0.0) 1 (0.3) 5 (4.3) 3 (3.3) 29 (10.1) 29 (7.7) 9 (2.6) 31 (25.1) 30 (31.9) 

PD 
(n=10) 

Correct Detection: n 
(%) 

272 (91.9) 291 (92.4) 225 (88.9) 58 (75.9) 58 (58.0) 242 (82.3) 272 (81.4) 233 (74.9) 48 (58.8) 42 (42.2) 

Undetected: n (%) 21 (7.1) 24 (7.6) 26 (10.3) 18 (21.4) 35 (34.1) 19 (6.5) 38 (11.4) 74 (23.8) 24 (27.7) 41 (37.6) 

Spurious: n (%) 3 (1.0) 0 (0.0) 2 (0.8) 2 (2.7) 9 (8.0) 33 (11.2) 24 (7.2) 4 (1.3) 11 (13.5) 24 (20.2) 

[Horizontal saccade detection performance, n = sum of saccades made over all trials in all participants] 
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Fig. 4:  Histogram comparisons across methods for static saccade measurements 
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Fig. 5:  Histogram comparisons across methods for dynamic saccade measurements 
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  TABLE 4 -  ALGORITHM & SYSTEM AGREEMENT: ICC2,1 
 

  
EOG vs Video 

vs IR 
EOG vs 
Video 

EOG vs IR 

Group  Number Number Number 
Duration 

(sec) 
Peak Velocity 

(°/sec) 
Distance 

(°) 

HC 
(n=10) 

5° 0.76 0.87 0.59 0.02 0.29 0.41 

10° 0.74 0.87 0.57 0.02 0.26 0.37 
 15° 0.73 0.87 0.56 0.07 0.18 0.37 

 LT 0.58 0.82 0.30 0.14 0.08 0.23 
 RT 0.67 0.88 0.45 0.35 0.49 0.24 

PD 
(n=10) 

5° 0.68 0.92 0.49 0.10 0.36 0.35 

10° 0.69 0.92 0.51 0.16 0.28 0.27 
 15° 0.71 0.93 0.53 0.03 0.40 0.34 

 LT 0.73 0.75 0.55 0.46 0.50 0.35 
 RT 0.43 0.60 0.13 0.20 0.18 0.06 

[RT = Right turns, LT = Left turns, Horizontal saccade characteristics displayed] 
 
 

VI. DISCUSSION 

This study developed and evaluated an algorithm to detect saccades within EOG data collected 

during static and dynamic testing in older adults and people with PD. To our knowledge no 

previous studies have developed or tested EOG algorithms within dynamic tasks such as 

walking, instead algorithms developed within static conditions are often used. Similar to 

previous work [14, 27], we compared the developed algorithm to frame-by-frame video 

inspection and also compared to a previously validated IR algorithm [14].  

Robust evaluation of automated algorithms for the analysis of eye-movement (saccade) data is 

vital to ensure confidence in outputs on which clinical decisions may be made. Similar to our 

previous IR algorithm [14] and a previous static EOG algorithm [13], a velocity-based method 

was used to detect horizontal saccades within an EOG signal. Although velocity-based 

algorithms may not have the accuracy of dispersion-based approaches [20, 21] we believe that 

the easy implementation [21, 28] of our developed velocity-based algorithm gives it an 

advantage, as it allows implementation by those with limited algorithmic experience (e.g. 

clinicians or novice researchers). However this study suggests that developed EOG algorithms 

which are relatively robust within static testing may not be as consistent within dynamic testing. 

Results highlight the need for further development of EOG algorithms or methodologies to 

derive saccadic data during dynamic tasks. 

EOG algorithm robustness 

To determine robustness, participants performed two separate procedures and data were 

analysed using the same fixed algorithm settings for both procedures. The two separate 
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procedures were: (i) static testing, eye-movements to set distances while sitting, and (ii) 

dynamic testing, several repeated walking trials (left and right turns).  

i. Static testing: Saccades to set distances during sitting 

To calibrate the EOG system all participants made eye-movements (saccades) between two 

horizontal targets placed 5°, 10° and 15° apart, which derived a conversion factor and 

completed Stages 1-2 of the algorithm. After initial calibration the same eye-movement data (5°, 

10° and 15°) was used to assess the algorithm for detection and measurement of saccades in 

EOG data (algorithm Stage 3 onwards). Under these conditions, the algorithm proved relatively 

robust at detecting saccades (number) during static testing. It detected 75-92% of the saccades 

detected via video inspection or IR, with primarily excellent agreement with video inspection 

(Table 4). However, agreement between EOG and IR was not as consistent, and reduced for 

saccade number, duration, peak velocity and distance.  

Inconsistency between EOG and IR for saccade detection and measurement, particularly 

characteristics of velocity and distance, likely related to device sampling frequencies (i.e. EOG 

1000Hz vs IR 50Hz). The EOGs larger sampling frequency meant that more frequent eye-

movement data was collected and therefore saccade measurement may have been more 

accurate [19, 29], hence not similar to data collected from IR. Despite this, output from both 

systems/algorithms demonstrated increased saccade peak velocity and distance with increased 

target distance (5°, 10° and 15°, Table 2). 

ii. Dynamic testing: Horizontal saccades during walking 

The main advantage of this study is the novel comparison of EOG with video inspection and IR 

during walking. While walking mobile EOG detected ~63% of the saccades detected via video 

or IR methodologies, with greater undetected (average of 30%) and spurious (average of 11%) 

saccades than static testing. Similarly, agreement between EOG and video inspection, as well 

as IR for saccade number was reduced compared to static testing. Agreement ranged from poor 

to excellent for saccade number for both groups (Table 4). This demonstrated that the 

developed EOG algorithm was capable of detecting saccades during walking but with reduced 

consistency compared to video or IR.  

Reduction in saccade detection in comparison to video inspection and IR when walking likely 

related to increased error caused by the dynamic task. For example; walking increases number 

of artefacts which could infiltrate EOG signals (e.g. facial muscle activity). Similarly, the EOG 

device only measured horizontal saccades (largely due to difficulties with vertical EOG signal 
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analysis), whereas video inspection and IR can detect saccades in all directions which may 

have led to inconsistencies between devices. To capture multi-directional mobile EOG signal 

future studies may consider simultaneous measurement of vertical mobile EOG signal, but must 

ensure robust data collection and analysis (i.e. blink detection and EOG electrode placement 

may be an issue if concurrently recording IR; Fig. 2) before reporting results. 

Alternatively, video inspection or IR may have also missed saccades that the EOG system 

captured (spurious saccades). For example; issues such as incorrect or absent pupil tracking 

caused by eye-lashes or eye-lids may be more frequent when walking. Such issues would lead 

to saccades not being detected by IR [30], but would not affect EOG. Similarly, the majority of 

the participants (HC = 8/10, PD = 6/10) wore vision correction (i.e. glasses or contact lenses). 

Vision correction can interfere with IR pupil tracking due to infra-red refraction [19, 30, 31], 

which worsens during dynamic movement. This may be one explanation as to the lower 

saccade detection agreement and increased spurious saccades during walking compared to 

during static testing. 

Despite similar average values for saccade duration, velocity and distance measured via EOG 

and IR, agreement for these features during static and dynamic testing was inconsistent. It is 

likely that difference in device sampling frequency (1000Hz vs 50Hz) led to EOG algorithm 

output providing more accurate data compared to IR output [19, 29]. Head-mounted IR eye-

trackers have a mobility-resolution trade-off (i.e. more mobile devices tend to have lower 

sampling frequency than that of static devices; 50Hz compared to 1000Hz). The lower 

resolution means that researchers investigating saccades characteristics are limited (i.e. 

devices ≥50Hz are capable of detecting a saccade accurately but not specific characteristic; 

peak velocity, duration etc.). Until mobile IR devices with high sampling frequency (>200Hz [6]) 

are available, a combination of EOG and IR may be useful during dynamic tasks to provide 

comprehensive measurement. 

Limitations 

One limitation was that a velocity threshold of ≥240°/sec (~5° distance) may rule out smaller but 

detectable saccades within EOG signal [32]. This threshold was used for comparison to the 

previously validated mobile eye-tracker algorithm [14], as during walking other artefacts such as 

vestibular ocular-reflex may infiltrate eye-movement data. The ≥240°/sec velocity-threshold was 

chosen to avoid such infiltration. However, this threshold can be adapted depending upon the 

task being undertaken (i.e. lower threshold for static tasks) and could be changed for future 

studies. 
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VII. Conclusion 

We developed and assessed an algorithm for saccade detection and measurement in EOG 

signal obtained from static and dynamic tasks in older adults and people with PD. The algorithm 

can detect saccades in EOG data and agreed well with video inspection and IR algorithm output 

during static testing. However agreement reduced during dynamic testing, as this introduces 

numerous sources of error. Future studies should consider a combination of EOG and IR for 

comprehensive measurement. 
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