The far reach of ice-shelf thinning in Antarctica

Reese, Ronja, Gudmundsson, Hilmar, Levermann, Anders and Winkelmann, Ricarda (2018) The far reach of ice-shelf thinning in Antarctica. Nature Climate Change, 8 (1). pp. 53-57. ISSN 1758-678X

Full text not available from this repository. (Request a copy)
Official URL:


Floating ice shelves, which fringe most of Antarctica’s coastline, regulate ice flow into the Southern Ocean1,2,3. Their thinning4,5,6,7 or disintegration8,9 can cause upstream acceleration of grounded ice and raise global sea levels. So far the effect has not been quantified in a comprehensive and spatially explicit manner. Here, using a finite-element model, we diagnose the immediate, continent-wide flux response to different spatial patterns of ice-shelf mass loss. We show that highly localized ice-shelf thinning can reach across the entire shelf and accelerate ice flow in regions far from the initial perturbation. As an example, this ‘tele-buttressing’ enhances outflow from Bindschadler Ice Stream in response to thinning near Ross Island more than 900 km away. We further find that the integrated flux response across all grounding lines is highly dependent on the location of imposed changes: the strongest response is caused not only near ice streams and ice rises, but also by thinning, for instance, well-within the Filchner–Ronne and Ross Ice Shelves. The most critical regions in all major ice shelves are often located in regions easily accessible to the intrusion of warm ocean waters10,11,12, stressing Antarctica’s vulnerability to changes in its surrounding ocean.

Item Type: Article
Additional Information: Funding information: This research has received funding from the Deutsche Forschungsgemeinschaft (DFG) grant number LE 1448/8-1, from COMNAP Antarctic Research Fellowship 2016, the German Academic National Foundation, Evangelisches Studienwerk Villigst and from the NERC NE/L013770 Large Grant ‘Ice shelves in a warming world: Filchner Ice Shelf system, Antarctica’.
Uncontrolled Keywords: Climate and Earth system modelling, Climate change, Cryospheric science
Subjects: F800 Physical and Terrestrial Geographical and Environmental Sciences
Department: Faculties > Engineering and Environment > Geography and Environmental Sciences
Depositing User: Becky Skoyles
Date Deposited: 01 Jun 2018 14:32
Last Modified: 18 Nov 2021 15:08

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics