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A Sampling Approach to Generating Closely
Interacting 3D Pose-pairs from 2D Annotations

Kangxue Yin, Hui Huang*, Member, IEEE, Edmond S. L. Ho,
Hao Wang, Taku Komura, Daniel Cohen-Or, Hao Zhang, Senior Member, IEEE

Abstract —We introduce a data-driven method to generate a large number of plausible, closely interacting 3D human pose-pairs, for a
given motion category, e.g., wrestling or salsa dance. With much dif culty in acquiring close interactions using 3D sensors, our
approach utilizes abundant existing video data which cover many human activities. Instead of treating the data generation problem as
one of reconstruction, either through 3D acquisition or direct 2D-to-3D data lifting from video annotations, we present a solution based
on Markov Chain Monte Carlo (MCMC) sampling. Given a motion category and a set of video frames depicting the motion with the 2D
pose-pair in each frame annotated, we start the sampling with one or few seed 3D pose-pairs which are manually created based on the
target motion category. The initial set is then augmented by MCMC sampling around the seeds, via the Metropolis-Hastings algorithm
and guided by a probability density function (PDF) that is de ned by two terms to bias the sampling towards 3D pose-pairs that are
physically valid and plausible for the motion category. With a focus on ef cient sampling over the space of close interactions, rather
than pose spaces, we develop a novel representation called interaction coordinates (IC) to encode both poses and their interactions in
an integrated manner. Plausibility of a 3D pose-pair is then de ned based on the IC and with respect to the annotated 2D pose-pairs
from video. We show that our sampling-based approach is able to ef ciently synthesize a large volume of plausible, closely interacting
3D pose-pairs which provide a good coverage of the input 2D pose-pairs.

Index Terms —Closely interacting 3D human poses, data generation and augmentation, MCMC sampling.
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through purely geometric analysis; this has motivated the develop- y %
motion synthesis [1], pose estimation [2], biped control [3], and

STudies of human pose geometries and motions are ubiquitous . ?Q\‘ "3’?\5; s«?
chanical and neurophysiological complexities underlying human *1 :
movements and behaviors are not always easy to comprehenc / \
. j H NP P,

ment of many data-driven solutions to model and analyze human 1 % Fz ¥ j\ J&
poses. Human pose or motion data in high volumes and large vari- Pl 2 % / ik »
eties have offered much bene t to numerous applications including /JA ﬁ') ; Ji

2 | LAY
geometry-based analyses of object functionalities [4], [5], [6]. ) “ j E;\) .

8

There has been great progress on acquisition of 3D pose ge-

ometries forsingle or isolated characters, e.g., the CMU motion

capture (MoCap) database, and some of the most succesSfaire 1. Closely interacting 3D wrestling poses automatically generated
reconstruction methods have been data-driven [2], [7]. HowevEY¥,MCMC sampling from a single seed pose (center).

the amount of data and related work which can captlose

interactions between 3D human poses has been conspicuously o
small. With a greater degree of occlusion arising from C|05(é|stort|on and low precision. Moreover, as the sensors are usu-

interactions, the ability of optical markers or view-based sensdidy placed on bulky body suits, the movement freedom of the
(e.g., MS Kinect or video) to acquire quality data is severelerformers is indeed highly compromised.

impaired. Typically, state-of-the-art methods can only handle Iigm this paper, we introduce a method to generate a large volume

interactions under slow motion. Inertial or magnetic MoCap ma . . . . .
f plausible, closely interacting 3D human pose-pairs, for a given

be viable options to remedy the occlusion problem. However, nop- .. . L ; )
; . _motion category, e.g., classical wrestling; see Figure 1. With the
optical systems usually suffer from problems such as drifti

n%reat dif culties in acquiring close interactions in the 3D setting,
one possible solution is to utilize abundant existingeo which

K.¥in and H. Zhang are with Simon Fraser University cover many human activities. However, even with suf cient image
H. Huang and H. Wang are with Shenzhen University . h id liti . .

E. Ho is with Northumbria University annotatlon_ovgr the video, _|t|ng at_ poses into 3D gures is
T. Komura is with University of Edinburgh already quite involved for single or isolated characters [8], [9],
D. Cohen-Or is with Shenzhen University and Tel Aviv University [10]. Most of these works rely on pose priors learned from a 3D

*Corresponding author: Hui Huang (hhzhiyan@gmail.com) MoCap dataset. Applying similar lifting schemes for interacting
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pose-pairs is more dif cult, since occlusions and other issues with
lifting and tracking are greatly ampli ed by close interactions. In
addition, the 3D MoCap dataset from which these methods learn
their pose priors may not even have certain poses that can only-----
exist for interacting people, e.g., wrestling poses. To solve such-....-/
an ill-posed problem, a large volume of 3D pose interaction data

as a prior would have been valuable, but such data, which we are
going after in this work, do not yet exist. o

Instead of treating the data generation problem as one of re-

construction, either through 3D acquisition or direct 2D-to-3D

data lifting, we make the key observation that we can solve the /™

problem through @amplingprocess. If the generated sample 3D

pose-pairs can reproduce input 2D frames, when projected along

appropriate views, then we essentially achieve an indiittictg

by sampling see Figure 2. Our primary sampling criterion is tdrigure 2. Direct 2D-to-3D lifting (second and third rows) vs. our approach

; i ; om) for the wrestling motion. Top row shows the annotated pose-
ensure that the samples are plausible, as dictated by the input &glir% in video, as input to direct 2D-to-3D lifting in second row [10] and

for the mqtion category. However, QWing to the stochastigity _&ﬁird row [11]. Results in the bottom row are retrieved samples generated
the sampling process, we may obtain samples whose projection®ur method, whose projections are close to the respective 2D pose-

deviate suf ciently from all the input frames, offering the potentiapairs in the top row. Quality and plausibility of the close interactions can
to generataovelinteracting poses. Importantly, all of these caR® contrasted by focusing on the circled regions.
be accomplished without resorting to 3D MoCap databases.

Given a motion category and a set of video frames depicting tR€S€ lifting methods require a large 3D MoCap dataset to train
motion with the 2Dskeletalpose-pair in each frame annotatedtheir data-driven models, our method employs only 2D annotations
we start the sampling with one or more manually desigseed OVer video which is much easier to obtain than 3D MoCap or
3D skeletal pose-pairs, each of which is encoded by a vector@inotated data in 3D. In Figure 2, we show a comparison of our
skeletal joint positions. The seed set is augmented via a Markéting-by-sampling scheme to state-of-the-art methods [10], [11]
Chain Monte Carlo (MCMC) sampling over the space of 3pr direct 2D-to-3D lifting of individual poses. To contrast the

skeletal pose-pairs, around the seeds and guided by a probabfiiglity and plausibility of the generated interactions, i.e., how the
density function (PDF) with two terms: hands and arms of the wrestlers are posed and making contacts

with each other, we highlighted some regions in circles.

A physical prior biases the sampling towards producingo the best of our knowledge, our work is the rst to synthesize
physically plausible individual poses in the 3D pose-paira large amount of 3D pose interaction data. We believe such data
A data-drivenplausibility or likelihood measure for a 3D ¢an be bene cial to data-driven solutions for the modeling and
pose-pair with respect to the 2D pose-pair data from vidednalysis of close human interactions. We demonstrate one such
Speci cally, we encode the interaction between a pos&xample in occluded joints inference for pose completion.

pair in 2D using a series of vectors among skeletal joints

of the two poses, which we cailhteraction coordinates

or IC. Then the plausibility measure for a 3D pose-pair i2 RELATED WORK

estimated, via the IC, by how close its various projections

are to the 2D pose-pair for the motion category considere@everal topics relevant to our work, e.g., human motion capture,
2D-to-3D pose lifting, and character animation have been well-

Based on the PDF, the sampling follows the well-establish&ddied in computer graphics and computer vision. In this section,
Metropolis-Hastings scheme. However, to improve sampling qugy_e focus on covering latest works that are most closely related.

ity and further leverage the annotated video data, we introduc@p-to-3D pose lifting. There have been many recent works on
velocity biasto steer Metropolis-Hastings. The velocity bias igecoveringndividual 3D human poses from 2D data. Ramakrishna
applied to 3D pose-pairs, but it is based on velocity informatiog al. [9] learn an over-complete set of basis poses from the CMU
extracted from the motion of 2D pose-pairs in the video. MoCap database and estimate 3D poses from 2D annotated joints
oS a sparse linear combination of the basis poses. Zhou et al. [11]
pLpPose a convex relaxation approach to solve for the sparse
presentation. Fan et al. [12] develop a pose locality constrained

We show that with only a single seed 3D pose-pair, our d
augmentation scheme is able to synthesize a large vqumeé?
plausible, closely interacting poses through MCMC sampling f . s .
various motion categories. Importantly, we show that the sampliﬁ retsr:entgnl\;)lj fl\ar (Z:D-tczj-Bf)bpose gfmtg Wh'ghB\INai allsbo :earned
produces 3D pose-pairs with a good coverage of the input 2D d& [ the of-ap database. eran ack [10] learn a

(via projection) ef ciently. The coverage applies to both annotatdd "t angle_ limit mOdEI from the_lr new MoCap dataset that includes
2D pose-pairs and un-annotated in-betweens. an extensive variety of stretching poses and use the learned model

to constraint 2D-to-3D lifting of single poses. The quality of
Furthermore, with lifting by sampling, there is no need to directlthe lifted 3D poses can be enhanced by physics-based models.
lift any at pose-pair to 3D, we only need to assess the physicalg., [13], [14]. More recently, Bogo et al. [15] estimate 2D joints
validity and interaction plausibility of the (projected) 3D poseautomatically from single images and t the 2D joints with a 3D
pairs resulting from MCMC sampling. While direct 2D-to-3Dstatistical human model [16] to obtain 3D poses and body shapes.
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Figure 3. Overview of our 3D pose-pair generation via lifting-by-sampling.

To the best of our knowledge, there is no existing work yet on 2@f a hand, interacting with a rigid object, to obtain physically
to-3D lifting, which is capable of recovering close interactions. realistic hand manipulation data from multi-view video. Using

S lina-based Kino.S ing is al f th multiple optical sensors alleviates the occlusion problem to some
ampling-based pose tracking.sampling is also part of the extent, but would often reach its limit when human interactions

solution pipeline for several methods for human pose trackingr.e close, e.g., during wrestling. Inertial or magnetic systems

whgre Bayesian distributions are also modeled from_ 2D Ob_s?ﬁhy be free of data occlusion [26], [27], [28], but usually suffer
vations. Del_Jtscher etal [1.7] propose gnneal_ed particle Ite_n m problems such as drifting or pose distortion. Utilizing deep
for stochastic human tracking in high dimensional con gurat'oﬂearning techniques, recent works [29], [30] are able to detect non-

spaces. Sminchisescq et al. [18] present a Sa‘.mple'anq're&ﬁ:luded 2D joints of multiple persons from a single image, yet
searching strategy guided by rescaled cost-function covarianges \ed joints remain a challenge

for 3D human body tracking from monocular video sequences.
In a follow-up, [19] uses a discriminative density propagatioAnimating close human interactions.Animating moving charac-
model for human MoCap from 2D silhouettes. The fundamenttdrs with close interactions is a challenging problem. Past attempts
difference between these methods and our lifting by sampling lieglude synthesizing multi-character motions from pre-captured
in whether the modeled distributionliscal or global. single-character MoCap data [31], [32], combining physical simu-
ation with real-time single-actor MoCap sequences to generate

In ;:.a:tlcle Iterlln 9, ihe .fOCLljst |sthto malntalrtl. a scfat of tW?'gh;.etnteracting motions with a virtual character [33], constructing
particles (samples) to simulate the propagation of posterior dis I'upled motion transition graphs and interaction models [34], and

t_)utlons of a 3D hu_man pose along the time dlm_enS|on. At eaf, kling the synthesis problem via motion patch tiling [35]. Earlier
time step, the particles are re-sampled after taking a new vis tks by Ho et al. [36], [37] introduce topology coordinates to

observation into account. As new observations come in, mem @'present tangled limbs in their synthesis of character motions

of old observations fades out, conforming to the local nature of the .~ <o contact. In a follow-up [38], they employ Laplacian

tr_ackltng tprobleml.l Gengra;l:y, s?r(;l_pltw_\g-?ased ?u_maln pose traﬁ_kg&rdinates to adapt close interacting motions to skeletal con g-
aims fo temporally model local distributions ot SIngle pose WNICH, g gt varying scales. In the realm of interactive animation

respect the 2D observations and preserve temporal coherenceg eration, users have been involved, e.g., to manipulate multi-

the contrary, In our “I|ﬁ|ng by sampling’, we modgl orglobal character motions in both spatial and temporal domains [39], or to
pOSte”OT distribution given a typelof (?Iose interacting 3D hum ovide high-level descriptions and select preferred motions from
pose-pairs. The goal .Of th_e.sarr?plmg IS to convert.the datqset Afdidates generated and ranked by an automated system [40].
wholefrom gD t.o.3D, i.e. lifting, |ns.tead of generating candldateisn a recent work, Hyun et al. [41] prede ne motion grammars
that tto an individual 2D observation. with formal language, and synthesize animation of multi-person
Human interaction capture. Occlusions caused by close interinteractions, e.g., basketball playing, by a multi-level MCMC
actions have been a major challenge for human MoCap or p&npling approach. Most of the above methods rely on pre-
estimation systems. Compared to the amount of literature 6aPtured motion data and are not well suited when the animated
reconstructing or tracking single human motions, e.g., [7], [20[otions are dif cult to capture to start with; this is the case with
[21], [22], there have been considerably less works on capturiftpving characters that are closely interacting.

and estimating human interactions.

Liu et al. [23] propose a method to track multiple interacting

characters, e.g., moving close to each other and hugging, with LIFTING BY SAMPLING

a setup of multiple cameras. In this work, a template of each

person is tracked individually after performing a segmentation @fur goal is to generate a large and diverse set of closely inter-
their silhouettes. In a simpler acquisition setup, Ye et al. [24]cting 3D human pose-pairs, for a given motion category, based
employ three hand-held Microsoft Kinect Sensors to track liglon annotated video representing motions in that category. We
human interactions, again with the help of pre-captured humteat this 2D-to-3D lifting task as a Markov chain Monte Carlo
templates. Wang et al. [25] optimize a composite motion controlleampling problem, which can be solved using the well-established
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Metropolis-Hastings algorithm; see Figure 3. The ensuing chal-
lenge is how to de ne and model the unknown probability density
function (PDF) of3D pose-pairs With the PDF, our Metropolis-
Hastings algorithm starts from a single 3D seed pose-pair, traverse
the space of plausible pose-pairs, and sample valid 3D pose-pairs
with respect to the estimated posterior PDF.

Taking the wrestling motion as an example, where two characters
are often closely interacting, we annotate each character over all
available video frames with a 2D skeleton parameterized by 17

joints; see Figure 4(a). The premise is that we are able to evalu'éi%"e 4. Skeletal annotatiqn on a wrestling video frame is shown in (a)
with the de ned local coordinate system. The plot (b) demonstrates the

the !ikelihOOd of _the 2D poge-pairs for WrEStIir_lg with this typeestima’[ed camera views in 2D spherical coordinate v = ( ; ) for all
of video annotations. To this end, we rst estimate the camesa32 wrestling video frames.

view distribution from the annotated 2D data and based on this

distribution, we lift the 2D likelihood function, via Monte Carlo )
integration, to a 3D likelihood function for 3D pose-pairs. rst apply the technique proposed by Akhter and Black [10] to
reconstruct 3D backbones, i.e., the line segments that connect

Speci cally, we consider 3D pose-pair as a parameter sehich  the chest joint and the hip joint, of the two characters from the
contains two root rotations, two root translations, and rotatioRgme 2D annotation. To be more speci ¢, we use the method to
of 32 non-root joints around their parent joints. Given a S@istimate 3D extended-torso [10] for each single pose of each 2D
D that contains 2D video annotations, a posterior probabilighnotation frame. The 3D backbones are then calculated from the
density functionf ( jD) for 3D pose-pairs is constructed to be3p extended-torsos. As 3D backbones are much easier and more
proportional to the product of a prior function and a likelihoogobust to estimate than full 3D poses, we de ne local coordinate
function of : system with respect to two 3D backbones. Denoting these two
£(iD)/ f L(): backbones aB; andB, with two root pointsr; andr,, we build
(D)7 £() L(): 1) ; _
a local coordinate systeifi; j; k) (shown in red, green and blue

Here the prior functiorf ( ) is de ned with the consideration arrows in Figure 4(a)) for each data frame as:

of 's physical plausibility, and the likelihood functiob( ) =

f (Dj ) takes the séD as input and outputss likelihood value. ' = N2 r);
Jj = N(N(By)+ N(B2); (3)
k =1 [

4 MODELING POSTERIOR PDF ) L
where N denotes the operation of standard normalization, and

In this section, we rst de ne the prior functiofi ( ), the phys- i;];k are column vectors.
ical prior _for pose-pairs, and then desc_rlbe how to _estlmate th the camera coordinate system, the camera view is the direction
camera view distribution, and based on it how to estimate the :%Hhogonal to the plane of 2D annotation, i.€0;0;1)> . To

likelihood functionL ( ) from 2D annotations via lifting. convert the camera view into local coordinate systéinj; k),

we solve a linear systerfi;j;k](a;b;9> = (0;0;1)”, where
(a;b;9” is the camera view in the local coordinate system.

4.1 Physical pose prior For more convenient computation, we convM@tb; 9> into 2D

Thephysical priorin (1) is de ned as: spherical coordinate = ( ; ):
o . c b
0; if isvalid( )=0; =arctan = ; zarccos p—m7 4
f() = KoK+ 2 . ) a aZ+ 2 + 2 @
exp ——5—z— ; otherwise ) o
P where and denote the angles between the view direction and

where is the closest physically valid pose-pair toWe estimate the axisi andj, respectively. Figure 4(b) presents the camera
by applying the joint angle limits model [10] to the twoviews estimated from annotated video frames of wrestling in

single poses of a pair separately. Thalenotes the sum of the Spherical coordinates. We can observe that the views are denser

penetration depths, detected by Open Dynamics Engine (ODE(,)und directions that are orthogonal to bbtindj axes, which

[42]) among bones of the rigged character models. The weigatconsistent with what we would expect in real-life photography.

N ,10 _and _the bandwi'dth p = ,0:05 are 'set bY default. We e can then naturally construct the probability density function
considerisvalid ( ) = 0, i.e., de nitely physically invalid, when for camera views via kernel density estimation (KDE):
the number of invalid joint angles is greater than a prescribed

i : : 1 X :

value, 8 by default in our implementation. f(v)= = g(vjv(pi):; 3| ): (5)
pi2D

4.2 Camera view distribution wherep; is a 2D annotation in the input annotation &2t and

v(p;) is the estimated camera view pf. The number of annota-
Given 2D annotated input data, the distribution of camera viewstions in D is denoted byn, andg(vjv(pi); 21) is the Gaussian
a local coordinate system is estimated rst. The local coordinakernel with the mean(p;) and the bandwidth,, (defaulted to 0.5
system is de ned with respect to two human poses from a singleradians). As we assume that the two variables of camera view
frame of annotation. To de ne the local coordinate system, ware independent, the covariance matr{ is a diagonal matrix.
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To samplef (v), we rst select ap; from D uniformly at random
and then draw the view sample fragvjv(pi); 21).

4.3 Lifting via Interaction Coordinates (IC)

In order to estimatd_( ), we introduce camera view into
the equation. Given the estimated camera view distributipn
in (5), we obtain the 3D likelihood functioh( ) by lifting a 2D
likelihood function de ned over 2D annotations via Monte Carlo

integration over the camera view distribution: Figure 5. With IC illustrated in (a), we show the 2D embedding (b)
7 using the dissimilarity distance de ned in (8) over a small set of photos
. . extracted from videos from which we annotated poses.
L() = f(Dj)= f((Dj);v)dv P
4
= f(Dj( v;Vv)) f(v)dv (6) where the weightl=max( ; jju; ( )jj) balances the impact of
0 long and short Delaunay triangulation edges, with a parameter
1 ) -n- - . .
—  FDOjCv;vi)); Vi F(v); 0:05, by default. The summation of the weights is denoted

by W. In the equation, we compute and compare the ICs twice,
with two sets of Delaunay triangulation edges for the two 2D

where v; is a camera view sample, and, denotes the 2D ,qe nairs; since these two sets of edges are usually different.
projection of 3D pose-pair under the view; . The decomposition

by camera view makes the sampling problem more tractable Fgtimating likelinood using IC. Given the dissimilarity function
allows us to sample pose-pairs in a local coordinate system withutin (8) , the 2D likelihood functiorL ( v, ; vi) is estimated by

i=1

considering about the global coordinates of the pose-pairs. ~ hding a video annotation that is the closest one {p :
To evaluate the likelihood function fdr y, ; vi), that is: L(v;vi)/ m?,%( exp W : (9)
H Pj |
L(viivi)= F(Dj( v;vi)); @)

where we set | = 0:01 by default. In practice, it is expensive
we need to measure the dissimilarity between two 2D pose-pdipsconsider allp; 2 D for each pair of( y, ;vi). We thus only
in both single poses and the interactions between single posesconsider a subset & that possess similar views .

Interaction coordinates. To this end, we propose a novel, inte-To make the dissimilarity measure between two pose-pairs invari-
grated representation of a pair of 2D poses that are interacti@gf to the global rotation and translation, we multiply with a
closely, which we callnteraction CoordinategIC). Speci cally, least-square rigid transformation mathk that aligns , to pj,

IC offer a representation that encodes both poses and their intghereM is obtained via SVD [43].

actions in an integrated manner. Given the Delaunay triangulati
T of a 2D pose-pair , we de ne IC of the triangulated as an
array of vectors on Delaunay edges, which yields:

?8 show the advantage of IC based dissimilarity measure, we
demonstrate the 2D embedding of a set of 2D pose-pairs using
d (; ) as distance metric; see Figukb). The embedding is
IGT) = (snup()=3i() J0) =) ()2 T; obtained with Multi-Dimensional Scaling (MDS).

where(i;j ) is an edge of the Delaunay triangulation, ahd )
denotes-th joint of the pose-pair. 5 METROPOLIS-HASTINGS SAMPLING

IC employ a graph-based global representation to jointly encottg draw 3D pose-pairs from the estimated posterior probability
two single poses and the interactions between them. With ICdansity functionf ( jD), Markov chain Monte Carlo (MCMC)
human pose-pair is considered as a single unit in our sampling @mpling is applied using the Metropolis-Hastings algorithm [44].
gorithm, where single poses and interaction are naturally balancgg.get a 3D seed pose-pair, we casually select a 2D annotation
Delaunay triangulation is a suitable choice for COﬂStrUCting thﬁ']d convert the annotation to a 3D pose_pair by using Sing|e pose
graph, since it maximizes the minimal angle in the triangulation $ing technique [10]. The directly lifted 3D pose-pair is not of
as to avoid parallel vectors in IC. Parallel vectors in triangulatiofigh quality. To allow the sampling algorithm to start from a
give unbalanced high weights to the vertices connected by ffa@ation with high density value and thus reduce the number of
vectors in measuring the difference between pose-pairs, thus thgy-quality samples, we manually edit a lifted example to obtain
are not desirable here. Instead of using static correspondi@gigh-quality 3D pose-pair as the seed. The Metropolis-Hastings
relationships, our Delaunay edges are constructed dynamically §aimpling starts from a 3D seed pose-pair, randomly walks in
every pose-pair, so as to encode the interaction for every pose-p@ parameter space, generates a pose-fdom the proposal

. -« -« X O.
With the de nition of IC, we can now measure the dissimilarityfiStributionQ( 9 i). Here °is accepted as a new sampled pose-

between two 2D pose-pairg and » as: pair ., if
d( 1 2) = 1 X uj (1) U ( 2) A(q‘):;ES‘B; 82'(;0; 1: (10)
| Wi i arcy MG iU (o) | ’ Do
"% Otherwise A( 9 ;) serves as a probability variable to accept
+ 1 uj (1) uj(2) . g) With K seed pose-pairs, we may proceed whth Metropolis-

W2 oty MaxCiiiug (2)ii) Hastings sampling processes simultaneously. When the sampling



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018 6

number increases greatly, the generated 3D new pose-pairs spread
well and tend to cover the closely interacting poses observed from
input video clips ef ciently with novelty; see Figure 2.

5.1 Truncating the density function

Given a seed 3D pose-paip, we denote its density dsg and
truncate the target density function usiigas reference:
8

20 if f(jD)<fo=c;
f(jbD) = >cf0; if f(jD)>cfo; (11)
" f(jD); otherwise

where the constart= 100 by default. Note that ( jD) uses the
density of seed as a reference to set a reasonable range for density
values of samples. We samgl¢ jD) instead off ( jD) to keep Figure 6. Ablation study of different terms in our probability density

away from outliers of very low density' and avoid redundartnction that controls the MCMC sampling for Judo interactions. The 3D
samples of very high density as well pose-pairs shown on the right, for each version of the PDF, represent

the 200-th, 400-th, 600-th, and 800-th samples, respectively. To visually
validate the results in (c), we also show examples of 2D annotations
which contributed to the likelihood term in the bottom row (d).

5.2 Velocity-biased proposal function

Gaussian distribution with preset variances is widely used as

proposal distribution for Metropolis-Hastings algorithm. However,

we notice that Gaussian proposal distribution with preset variance

is not performing well in approximating( 9D), as it violates

the fact that the target density functidn 4D) tends to be

locally constant along the moving velocity of and descends

steeply in the directions orthogonal to moving velocity. To better

approximate the target density function, we propose a velocity-

biased Gaussian proposal distribution, where the parameters with

larger projections on velocity vector are assigned with larger

variances. With the veIOCity-biased Gaussian proposal diStribUtiQﬂgure 7. With an unbiased proposal function, the sampling algorithm
we can better approximate the target density funcfiQn(iD), tends to produce more diverse but less plausible pose-pairs. The rst

; el ; ; ; row shows the 200-th, 400-th, 600-th, and 800-th samples generated
thus the ef ciency of Metropolis-Hastings algorithm is promotedfrom the same seed shown in Figure 6(a). The second row shows

Predicting the velocity of an individual 3D pose-pair is C|ear|)9xamples of 2D annotations that contribute to the likelihood term.
an ill-posed problem. Fortunately, we can again resort to the 2D
annotated video which offers motion velocity data. From suc,
data, we can directly estimate velocity-biased variances and then
“lift"” to 3D. Speci cally, the variance ?(k) of a component
%k) of the proposed parameter s€in velocity-biased Gaussian In this section, we show some results to validate and assess our

RESULTS, EVALUATION, AND APPLICATION

proposal distributioQ( 9 ;) is estimated as: MCMC sampling scheme for the generation of closely interacting
1 X 3D poses. First, we provide the results of an ablation study

2(k)y= Z(k)+ —— i Pk (12) in Figure 6. We show visually the effects of the two terms in

D] p2D our probability density function (PDF) that controls the MCMC

sampling. The motion category is Judo, for which we have
P (K) is the local differential of 2D projection of (k) around coIIt_acted and annotated 7,_282 frames_ of waeo collected from
NS . on-line sources. The sampling starts with a single 3D pose-pair.
a 2D annotatiom in its video sequence. Hepeis a member of the : .
N ..~ We show 3D pose-pairs corresponding to the 200-th, 400-th,
setD . Each 2D annotation i is selected as the most similar .
. o . 600-th, and 800-th samples. As we can observe, the physical
annotation to one projection of, measured in IC space. o . : . .
prior is able to bias the sampling towards producing physically
valid individual poses. Adding the likelihood term improves the
5.3 User control via MCMC restart plausibility of the 3D pose-pairs as performing Judo motions.
Note that when we sample with only the prior term, it is assumed
Although MCMC sampling is able to converge to the target densitiiat the algorithm does not rely on the annotated videos, thus
function after a nite number of sampling steps, we notice that néthe unbiased proposal function is used. When sampling with both
all users are interested in obtaining a huge amount of human posesprior and likelihood terms, we always use the velocity-biased
from one seed. It is desirable to allow users to browse back theposal function. Figure 6(d) shows 2D annotation examples that
samples, choosing one they like, and then restarting MCMC fropnovided evidences to the likelihood of sampled pose-pairs. The
that sample to explore more from a new direction as they wisbose-pairs in Figure 6(c) were rotated to match the views of the 2D
Thus, we provide a playback and restart function at Ul. annotations. With the same seed pose-pair, we show in Figure 7

where (k) is a small initial variance assigned td(k), and
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Figure 9. Plots of the coverage measurements in D,;, D¢, Dg, re-
spectively. We compare the sampling with PDF de ned over Interaction
coordinates (red), Cartesian coordinates (green), shape context (blue),
and PDF with only a prior term (black).

numerical measure of coverage as:

1 X0
aG;S)= —  D(g:s); (13)
Mo
wheres; 2 S has the minimal dissimilarit{D to g;. We observe
that the sampling coverage shown in Figure 8 is measured with

Figure 8. Sampling coverages via MDS embedding: our sampling respect to the space spanned by the GT data and not exclusively
scheme is shown in magenta dots over the space spanned by “ground  to the GT data itself.

truth” data given as blue dots; the green dots are pose-pairs generated

by sampling with only a prior term. The number of samples increases  |n Figure 9, we numerically evaluate the sampling coverage with
from 1k through 10k to 100k. The seed is denoted by a black cross. three different dissimilarity measures. The rst metric is denoted
asD,, which is a 3D version of the dissimilarity function de ned

. . . - . for our interaction coordinates (8). To extend our IC de nition
results of sampling with both the prior and likelihood terms usind oD to 3D. we naturally tfjl’?’] Delaunay triangulations in
an unbiased proposal function. Comlpared to sgmples shoyvntﬁg plane to Delaunay tetrahedralizations in 3D space. Thus, the
Figure 6(c), the samples generated without considering the blasS('encond metric corresponds to Euclidean distance in Cartesian
the direction of velocity are more diverse. However, the sampl

. ) - &3ordinates of the 3D pose-pairs, denoteddy. The third one,
are less constrained with respect to plausibility. denoted aP s, is the matching error in 3D shape contexts [45],

A key validation of our sampling scheme is how well an®ne of the best known and most widely applied shape descriptor.

ef qently it can provide coverage of a space of 3D POSE€- \we plot the three coverage measures as we increase the number of
pairs. For this purpose, we conduct an experiment USIRgchpc samples. The coverages are measured for the samplings
the Salsa dance dataset from the CMU MoCap databaggy, four different versions of PDF. The PDF de ned over IC (red
(http://mocap.cs.cmu.edu/). The Salsa dataset consists of a tEEﬁ{/e) is the default con guration for our method. Figure 9 shows

of 15 sequences and about 31,000 frames of 3D pose-pajis it performs better in covering the GT space than PDFs de ned
performing Salsa dance. For our purpose, we removed pose-pgif§; Cartesian Coordinates (green) and shape contexts (blue),
that are clearly not performing the dance, e.g., initial poses fg{,nks to its ability in encoding both poses and their interactions
registration. Then we uniformly subsampled 6,000 frames to for 4, integrated manner. As a baseline for our comparison, we also

the “ground-truth” (GT) data of 3D pose-pairs. Tapaceof 3D ot the coverage (black) obtained by sampling with only a prior
pose-pairs which surround these GT data would be the target fgf,

our MCMC sampling to ef ciently cover.
To visually demonstrate the in-between poses generated from a

From this set of GT 3D pose-pairs, we randomly select and projeghgle seed by our sampling schema is diverse and plausible, we
along random views to produce 6,000 frames of 2D interactirgow an example in Figure 11, where three closest 2D annotations
pose-pairs, which form the “video” knowledge base for Sals@e provided to the right side of each sampled 3D pose-pair to
dance. We run our MCMC sampling with the PDF de ned by thiglemonstrate the validity of samples.

knowledge base, as described in Section 4. In Figure 8, through ) o ) )
multi-dimensional scaling (MDS) visualization of the 3D pose*0MpParisons to enhanced lifting.We provide comparisons to

pairs, we visually demonstrate how well our samples (in magenf4i® Paseline methods in Figure 10, where the same examples as
are able to progressively “cover” the space of GT data (in blugy?0Wn in Figure 2 are used. The rst method is lifting+IK, for
The embedding is obtained with a 3D version of the dissimilaritynich we take the 2D-to-3D single pose lifting results, as shown
functiond, ( 1; 2). To demonstrate effectiveness of the likelihood’ Figure 2, as initial states of the IK system, and minimize an

term, we also plot the samples (in green) generated by samplfigf"9YE 20 + Eisvaia - while the bone lengths and interpenetration
with the prior term only. resolution are strictly constrained. In the energy functiBap

measured 2 distance from the 2D projection of 3D pose-pair to
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pose completion task. Given an incomplete poseairve search

for a small subset (e.g., 100, as the default in our experiment)
of pose-pairs, which are close #® in metric D|, from the
sample database we generated. We then estimate a median pose-
pair M of the subset. Finally, we defordd to P via Gaussian-
weighted linear blending to obtain the completion result. Noting
that, without any smoothing operation applied in the temporal
domain, the motions that we completed demonstrate suf cient
temporal coherence for the visual perception. Please refer to the
supplementary demo video for a detailed visual demonstration.

Implementation details. We implemented the PDF and sampling
algorithm with C++. The sampling speed is around 10 fps on an
Intel i7 4-core 3.4GHz CPU. During the sampling, the local mo-
tion of each non-root joint has three degrees of freedom, including
two rotations around its parent joint and one translation along its
bone. Ten volunteers participated in the video data annotation.
With a semi-automatic annotation tool that involves simple joint
tracking and interpolation, the average time one volunteer spent
on annotating one single video frame was around 20 seconds.

7 SUMMARY, LIMITATIONS, AND FUTURE WORK

Figure 10. Comparisons to enhanced lifting (b) and a naive sampling We have presented a method to generate closely interacting 3D
(c) around thef3E pose-pairs generateld by s“hanced lifting. FOf(a)C'ea(; pose-pairs, which offers a means to augment few, or even a single,
assessment of the comparisons, we also show 2D annotations (a) an . . . .
our results (d) that are the same as shown in Figure 2. seed pose-pair(s) with a large numbe_r of synthesized pose-pairs
sampled from a PDF model. The main challenge was to model
the PDF. Our idea is to rst estimate the distribution of camera

pose-pair to closest valid poses suggested by the joint angle limiigws from annotated video frames, then with the known view

model. The optimization is solved by the method of Lagrangéstribution we can lift the density estimated from 2D data to

multipliers. The result is provide in Figure 10(b). the density for 3D pose-pairs with Monte Carlo estimation. The
PDF of 3D pose-pairs is modeled as a combination of two density

For each of the 3D pose-pairs shown in Figure 10(b), we randonpctions that consist of a physical validity term and an interaction
sample 1000 new pose-pairs within a local neighborhood arounghiysibility term.

to construct a database. During the sampling, we strictly constrain

the bone lengths and interpenetration resolution. A bias is giventBe close interaction between the two bodies is challenging
pose-pairs that are closer to physically valid poses in terms of thiginly due to inter-pose as well as self-occlusions, but the
joint angle limits model. We retrieve for a closest pose-pair to tHatertwining arms or body parts give rise to the a constrained
2D annotation in Figure 10(a) from the database, and provide th€RRIch space. We developed interaction coordinates to encode the
in Figure 10(c). For comparison, the results of retrieving frorfiteractions between two 2D poses. This representation, while
database generated by our own method are shown in the bot#§#Rroving upon the classical Cartesian coordinates representation,

row, i.e., Figure 10(d). Overall, our method is more plausible iig still quite elementary. Also, there is no strong reason to believe

connect the relevant joints. Other choices including Knn graphs,
The way IK works in the enhanced lifting approach is essentialtgabriel graphs, and minimum weight triangulations could also be
to apply a new prior on single human poses. One of the reas@¥erimented with. Generally, it remains to be further investigated
why our method achieves better results is that it considers b@{hether there are stronger representations of the closely interact-

single human pose priors and a data-driven term de ned ovelirgy body parts that may be more descriptive and effective.

set of 2D pose-pair annotations. Moreover, while the enhanced

lifting approach only works in the space of single human pose&€ key idea oflifting by samplingbypasses the challenges in

our approach also models the interactions between two hunfifectly lifting a 2D pose to 3D. The inherent ambiguity in the
poses with the proposed interaction coordinates (IC). projected image of a pose-pair is signi cantly higher than the
notorious ambiguity in a single body. By applying a Markov Chain

Occluded joint inference. The 3D human pose-pairs generatelonte Carlo (MCMC) method, we alleviate the problem, taking
via liting-by-sampling in this work can effectively facilitate theadvantage of the rather dense space of annotated video frames.
recovery of closely interacting motions. The key challenge affe believe that our technique can be effective also in similar
reconstructing such motions arises from signi cant occlusions. [sroblems including modeling or analyzing two-hand postures. In
Figure 12, we provide an example to show that the 3D pose-paiiis scenario, the amount of self-occlusion can also be extremely
we obtain can lead to better joint inference and completion hfgh, preventing a reliable reconstruction from a single view.

highly occluded poses captured by inexpensive depth sensors.
'ghty . P pt y Inexpensiv P The main limitation of our method is that the plausibility is data-

Speci cally, we employ a simple retrieval-based solution for thdriven, and the generated pose-pairs are sampled around those
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Figure 11. From a single seed, our sampling schema produces diverse pose-pairs of wrestling. Three closest 2D annotations are provided to the
right side of each sampled 3D pose-pair to demonstrate its validity.

Figure 13. Our current pose annotation (left) does not include front-back
or depth information, which may lead to ambiguities (right).

techniques is more acute for 3D data, like the one we are dealing

with, which is hard to acquire and annotate or contains occlusions

and inherent ambiguities. Finally, it is also a compelling prob-
Figure 12. Pose completion results for highly occluded human pose- €M to generalize interaction coordinates to encode interactions

pairs annotated from depth images, which were captured using Kinect among multiple people and explore the potential of our sampling

(the m_iddle row). The bottom row presents the 3D pose-pairs completed approach to generateulti-interaction motions
by a simple retrieval-based solution using our samples.

observed and annotated video frames only. The challenge the#‘gKNOWLEDGMENT
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