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ABSTRACT Congestive heart failure (CHF) is a serious pathophysiological condition with high morbidity
and mortality, which is hard to predict and diagnose in early age. Artificial intelligence and deep learning
combining with cardiac rhythms and physiological time series provide a potential to help with solving it. In
this study, we proposed a novel method that combines convolutional neural network (CNN) and distance
distribution matrix (DDM) in entropy calculation to classify CHF patients from normal subjects, and
demonstrated the effectiveness of this combination. Specifically, three entropy methods were used to generate
the distribution matrixes from a 300-point RR interval (i.e., the time interval between the successive cardiac
cycles) time series, which are Sample entropy (SampEn), fuzzy local measure entropy (FuzzyLMEn) and
fuzzy global measure entropy (FuzzyGMENR). Then, three high representative CNN models, i.e. AlexNet,
DenseNet and SE_Inception_v4 were chosen to learn the pattern of the data distributions hidden in the
generated distribution matrixes. All data used in our experiments were gathered from the MIT-BIH RR
Interval Databases (http://www.physionet.org). A total of 29 CHF patients and 54 normal sinus rhythm (NSR)
subjects were included in this study. The results showed that the combination of FuzzyGMEn-generated
DDM and Inception_v4 model yielded the highest accuracy of 81.85% out of all proposed combinations.

INDEX TERMS Congestive heart failure (CHF), convolutional neural network (CNN), distance
distribution matrix (DDM), heart rate variability (HRV), entropy
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I. INTRODUCTION

Congestive heart failure (CHF) is a serious pathophysiological
condition, which has become a common cause of
hospitalization with significant morbidity and mortality [1-4].
However, heart failure remains insufficiently diagnosed
worldwide, especially in early age [5-8]. Precise diagnosis is
thus vital for heart failure treatment. Previous studies showed
that heart rate variability (HRV), which is associated with the
mortality of CHF, is an effective feature for discriminating CHF
patients from normal subjects [9-11]. Over the past years,
various machine learning methods were proposed to diagnose
patients suffering from CHF based on HRV. For example, Isler
et al. proposed a model based on k-nearest neighbor classifier
(KNN) and wavelet entropy [12]. Jovic et al. utilized random
forest and combinations of linear and nonlinear features of
HRV [13]. Pecchia et al. designed a classifier based on
regression tree with selected RMSSD, total power, HF, and
LF/HF as useful classification features [11]. There are also
researchers who employed SVM and combinations of several
HRV features and achieved relatively high accuracies [14-16].

Most existing works employ classifiers with comparatively
simple structures and trained on small data sets. The input of
their classifiers is empirically a set of selected features.
However, the performance of the classifiers is largely based on
feature selection processes [12, 14]. Thus in most cases, a large
amount of time and effort is paid to manually find better feature
subsets and even adopted the so-called exhaustive search
methods to find the best subsets of features [17]. Additionally,
the choice of the best feature combination may change with
different datasets. With the explosion of data and the
development of smart wearable devices, deep learning is a
desirable way to overcome the shortage of artificial feature
extraction and selection. Deep neural networks are designed to
automatically learn the underlying hidden feature combinations
without any manual process. As one type of the most successful
deep neural network, convolutional neural network (CNN) has
gained significant development and achieves state-of-the-art
results on various tasks [11]. CNNs are able to accept raw and
complete images as inputs, so as to avoid the risk of losing
valuable information. Thus, we decide to employ different
CNNs to automatically learn effective features from HRV data
and produce accurate classification results without
complicating manual feature extraction.

Entropy is a non-linear HRV analysis method, which
provided a better understanding for the underlying mechanisms
of the cardiovascular system [18-20]. In previous study,
entropy calculation was able to distinguish CHF and normal
sinus rhythm (NSR) subjects with appropriate parameters. A
statistical significance for the two groups was obtained [21, 22].
Jovic et al. tried to use combinations of entropy calculation
results as the input of classifiers and acquired a moderate result
of approximate 73% accuracy [13]. It could be attributed to the
simple and rough entropy calculation, i.e. there will be only a
number value result, leading to a potential risk to lose useful
information for subsequent normal/abnormal classification.
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The construction of distance distribution matrix (DDM) is an
essential step for entropy calculation. The difference between
normal and abnormal cardiac conditions can be depicted and
observed by DDM. This is thus a desirable input for CNN as it
reveals the features of HRV signals in the manner of entropy
analysis but contains richer information than a simple single
entropy value calculation. The RR interval is the time interval
between the successive cardiac cycles and regarded as an
important feature of an ECG signal. It is usually quantified by
the time difference between the occurrence of the maximum
wave, i.e. the R wave of a cardiogram. Thus RR interval time
series in the long-term RR Interval Databases from
http://www.physionet.org [23] are used in this study to generate
the DDMs.

In this study, our main aim is to use the DDM as an image
feature to achieve classification between the NSR and CHF
subjects by employing these improved representative CNN
methods. Several stages were included in this study. The first
stage is to convert RR interval time series into DDMs using
three kinds of entropy methods: i.e. Sample entropy (SampEn),
fuzzy local measure entropy (FuzzyLMEnN) and fuzzy global
measure entropy (FuzzyGMER). The second stage is to train
classifiers based on three different types of CNN models.
Experimental study is presented in the last stage, which
evaluates our models on two schemes. Our contributions are
summarized as follows:

1)  We improve three different types of classifiers without
manual feature extraction based on latest state-of-art
CNN models.

We generate three kinds of DDMs from RR interval time
series as the input of these classifiers and compare their
classification results based on the three CNN classifiers.
All three kinds of DDMs show discriminability for the
RR interval time series between NSR and CHF groups,
and the performance of each model has no significant
difference. This verifies the effectiveness of combination
of DDM and the CNN model.

We choose the subject-based and segment-based schemes
as the evaluation schemes and compared their
performances. In this study, the segment-based scheme
performs similarly to the subject-based scheme.

2)

3)

II. CNN MODELS

AlexNet [24], DenseNet [25] and Inception_v4 [26] were used
in this study. AlexNet is one of the largest CNNs trained on the
subsets of ImageNet used in the ILSVRC-2010 and ILSVRC-
2012 competitions. DenseNet alleviates the disappearance of
gradients and enhances feature propagation by encouraging
feature reuse, and this greatly reduces the amounts of parameters.
Inception_v4 was one of several follow-up versions to
GoogLeNet [27], and is the winner of ILSVRC 2014, but became
deeper and wider by introducing residual connections and has a
more simplified architecture and more inception modules than
the previous versions [26]. All these models are representative
CNN models. The details of the three employed CNNs as
described as follows:
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A. ALEXNET

Original AlexNet contains five convolutional and three fully-
connected ones. In our study, we converted those fully-connected
layers into convolutional layers. This made it possible to
efficiently run the CNN on 297 x 297 input images. The
architecture was summarized in Fig. 1. Firstly, we use a
convolution with 64 output channels and kernel size 11 x 11 to

input distribution matrix followed by a 3 x 3 max pooling layer.

After several convolution and max pooling operations, dropout
layers were also used to enhance the robustness of the model. At
the end of the network, the global average pooling layer is
performed. Besides, rectified linear units (ReLUs) were used to
reduce training time and local normalization scheme was used to
aid generalization.

B. DENSENET

DenseNet consists of alternating transition layers and dense
blocks. Fig. 2 illustrates the architecture of the DenseNet.
Firstly, we use a convolution with 48 output channels followed
by a transition layer. Each transition layer is to change the size
of feature maps by convolution and pooling between dense
blocks, which consists of a batch normalization layer, a ReLU
layeranda 1 x 1 convolutional layer with 24 output channels
followed by a 2 x 2 average pooling layer. In a dense block,
each layer obtained additional inputs from all its preceding
layers and passes on its own feature maps to all its subsequent
layers. The network is divided into multiple densely connected
dense blocks.At the end of the DenseNet, a global average
pooling is used and then a softmax classifier is performed.

C. INCEPTION-V4

The main contribution of Inception_v4 was the Inception
Module that dramatically reduced the number of parameters in
the network. Additionally, it used average pooling instead of
fully connected layers at the top of the ConvNet, eliminating a
large number of parameters without remarkably decrease of
performance. In our study, we add “Squeeze-and-Excitation”
(SE) block in each inception block to model channel-wise
relationships in a computationally efficient manner. It enhance
the representational power of modules throughout the network.
Consequently, we term our model as SE_Inception_v4. The
overview of SE_Inception_v4 is illustrated in the left side of
Fig. 3. It is composed of “stem”, “inception” and “reduction”
modules, as shown in Fig. 3 and Fig. 4 in detail.
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AlexNet

Input 297*297
Conv 64@11*11 stride 4
64@72'72
Max_pooling 3*3 stride 2
64@35*35
Conv 192@5*5
192@35*35
Max_pooling 3*3 stride 2
192@17*17
Conv 384@3*3
384@17*17

Conv 384@3*3
384@17*17

Conv 256@3*3

256@17*17
Max_pooling 3*3 stride 2
256@8*8
Conv 4096@5*5
4096@4*4
Dropout
4096@4*4
Conv 4096@1*1
4096@4*4
Global_avg_pool
4096@1*1
Dropout
4096@1*1
Conv 2@1*1
2@1*1

FIGURE 1. The architecture of AlexNet

DenseNet

Input 297*297
Input

Conv 48@7*7 stride 2
48@149*149 Batch_norm
Transition Rel
24@74*74 o
12@Denseblock Conv 24@1*1
24@74*74
Avg_pooling 2*2 stride 2
Transition
24@37*37

48@Denseblock
24@37*37

Transition

Batch_norm
24@18*18 -

32@Denseblock Relu
24@18*18

Conv 96@1*1
Batch_norm @

24@18*18
e Batch_norm
Relu
24@18*18 Ren
Global_avg_pooling
24@1*1 Conv 24@3*3
FC
2@1*1

FIGURE 2. The architecture of DenseNet
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SE_Inception_v4

Input 297*297

Input
Padding =
361°361 Conv 32@3*3
stride 2

Stem Conv 32@3"3
384@42°42
4* SE_Inception_A S
384@42%42 Max_pooling 3*3 Conv 96@3"3
stride 2 stride 2

Reduction_A

1152@20"20

7 * SE_Inception_B Conv 64@1*1 Conv 64@1*1
1024@20%20
Conv 96@3*3 Conv 64@7*1
Reduction_B
2016@9*9 Conv 64@1*7
3* SE_lnception_C
1536@9*9

Conv 96@3*3

Global_avg_poolin;
15?59%1-1 J Max_pooling 3*3 Conv 192@3"3
stride 2 sride 2

FC

2@1*1

FIGURE 3. The whole architecture of SE_Inception_v4 and the “stem”

module in SE_Inception_v4

Input

Max_pooling 3*3 Conv 384@3*3

stride 2 stride 2 Convitee@iil

Conv 224@3"3

Conv 256@3*3
stride 2

Input

Max_pooling 3*3
stride 2

Conv 192@1*1

Conv 192@3*3 e
stride 2 Conv 256@1*7
Conv 320@7*1

Conv 320@3'3
stride 2

FIGURE 4. “Reduction” module in SE_Inception_v4

. EXPERIMENT

A. DATA

All data used in our experiments were gathered from the long-
term RR Interval Databases (http://www.physionet.org) [23], a
free-access, on-line archive of physiological signals. The NSR
RR Interval Database was used as the non-pathological and
control group data. This database included 54 long-term RR
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Input Input
.y Avg_pooling . -
= Conv 384@1°1 : w182@11  Co @
Conv 86@1*1 Ng_ﬁr%»hﬂg ConvB4@11  Gonv 64@1°1 an @ 343 Conv 192@1 Conv 182@1*1
= Conv 128@1"1  Conv 224@1°7
Conv86@1°1  Conv 96@3°3  Conv96@3"3
Conv 256@7*1
Conv 86@3°3

Conv 256@7"1

Concat
Concat

Squeeze_excit
quoszE. Squeeze_excita

Input
D Input

Conv 256@1*1 A"“{:’f“"g Conv 384@1°1

Conv 384@1*1
Global_avg_pocling
Conv256@1*1 Conv256@1°3 Conv256@3*1 Conv 448@1°3
FC
Conv 512@3"

Conv 266@1*3 Conv 256@3"1
FC

Concat Sigmoid

Channel-wise

Squeaze_excita
tion mutiply

FIGURE 3. “Inception” and “Squeeze-and-Excitation” modules in

SE_Inception_v4

interval recordings of subjects in normal sinus rhythm aged
from 29 to 76. The CHF RR Interval Database was used as the
pathological group data. This database included 29 long-term
RR interval recordings of subjects aged from 34 to 79, with
congestive heart failure (NYHA classes I, Il, and Ill). The
original ECG signals for both NSR and CHF RR interval
databases were resampled at 128 Hz, and the beat annotations
were obtained by automated analysis with manual review and
correction.

B. PRE-PROCESS

RR interval is one of the important features of the ECG signal.
It is the time interval between the successive cardiac cycles,
which is usually quantified by the time difference between the
occurrence of the maximum wave, R, of a cardiogram and is
often called RR interval. In this section, two steps were used in
the pre-process procedure for each RR interval recording:

Step 1: Each beat in the raw ECG signals was annotated as a
normal or abnormal heartbeat. These abnormal heartbeats,
usually caused by the ectopic beats such as supra-ventricular
ectopic beats or ventricular ectopic beats (depending on the
localization of the ectopic focus), were removed from the raw
ECG signals, as the RR intervals formed from the abnormal
heartbeats could confound the entropy analysis of HRV. We
also remove RR intervals greater than 2 seconds to ignore the
influence from the artifacts. Table 1 shows the total number of
RR intervals for both NSR and CHF groups, as well as the
numbers of RR intervals after the above procedure.

Step 2: Then we divide these ECG signals into several RR
segments. The length of each RR segment is recorded as N,
and we set N = 300, i.e. each RR segment contains 300 RR
intervals.
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TABLE I
STATISTICAL RESULTS OF THE NUMBERS OF RR INTERVAL RECORDINGS, RR

INTERVALS AND RR SEGMENTS FROM THE 54 NSR AND 29 CHF RR INTERVAL

DATABASES.

Variables NSR group CHF group

. . NSR001- CHF201-
Name of RR interval recordings NSR054 CHE229
No. of RR interval recordings 54 29
No. of RR intervals 5,790,504 3,312,195
No. of RR intervals after removing 5,780,148 3,306,394
greater than 2s
No. of RR intervals after removing
abnormal heartbeats 5,738,937 3,102,120
No. of RR segments when setting 19,101 10,324

N=300

C. GENERATION OF DDM

SampEn [28], proposed by Richman and Moorman, can be used
to analyze physiological time series [29]. SampEn quantifies the
conditional probability that two sequences of m length similar
consecutive data points will still be similar for m+1 (given a
tolerance r). DDM generation is an intermediate step for SampEn
calculation. DDM consists of similarity degrees which are
determined by the distance and a decision rule. The distance is
defined as follows:

For the HRV series x(i),1 < i < N, given the parameters m,
form N —m + 1 vectors

X" ={x(i),x(i+1),-,x(i+m-1)}
o))

1<i<N-m
The distance between any two vectors X;™ and X;™ based
on the maximum absolute difference is defined as:

ar, = [ X7 X] ] = maxfx(i+ k) —x(j +K)
@

where m denotes the embedding dimension.

The decision rule for vector similarity is based on the
Heaviside function in SampEn. If the distance is within the
threshold parameter r, the similarity degree between the two
vectors is 1; if the distance is beyond the threshold parameter r,
the similarity degree is 0. This rigid boundary may induce abrupt
changes of entropy values when the tolerance threshold r changes
slightly, and even fail to define the entropy if no vector-matching
could be found [30-32]. To enhance the statistical stability, a
fuzzy measure entropy (FuzzyMEnN) method was proposed [31,
33], which used a fuzzy membership function to substitute the
Heaviside function.

Unlike the 0 or 1 discrete determination for vector similarity
degree in SampEn, fuzzy membership function permits the
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FuzzyMEn outputs continuous numerical values between 0 and
1 for the degree of vector similarity. Since FuzzyMEn not only
measures the global vector similarity degree, but also refers to the
local vector similarity degree. Thus, in this study we define
FuzzyL MEn as the FuzzyMEn that is measured by local vector
similarity degree. We also use FuzzyGMEn to denote the
FuzzyMEn that is measured by global vector similarity degree.
The detailed descriptions of SampEn, FuzzyLMEn and
FuzzyGMEnN were summarized in the Appendix.

Three types of DDMs are generated firstly at the setting of
different embedding dimension m and m+1. Then we calculated
the difference of these two DDMs. In the following classification
process, the differences of DDMs were used as the input images
of the CNN classifiers. Figures 6-8 show the DDMs generated by
SampEn, FuzzyGMEn and FuzzyLMEn. We set embedding
dimension m as 2 and 3 combined with threshold r = 0.1 and
segment length N = 300, which has been proved statistical
significance for SampEn, FuzzyGMEn and FuzzyLMEn [21].
Only 1<i<297 and 1<j<297 are shown for
illustrating the details. In each sub-figure, the upper panel shows
the results from a NSR subject, and the lower panel shows the
results from a CHF subject. The results are from the embedding
dimension m = 2, and m = 3 respectively. Their difference is
showed from left to right respectively and are used as the input
images of the CNN classifiers in the following classification
process. Black colored areas indicate the similarity degree = 1
and vice versa.

(A1) Vector X (A2) Vector X ; (A3) Vector X |
60 120 180 240 60 120 180 240 60 120 180 240

~ 120 AN L~ 120 L~ 120
. P > s

2 180 PN \ 2 10 : o 12 sl

240 B \\ 240 \ 240

(B1) Vector X (B2) Vector X, (B3) Veetor X,
60 120 180 240 60 120 180 240 180 240

FIGURE 5. (A) DDM generated by SampEn for NSR subject under different
parameter settings: (A1) m = 2, (A2) m = 3, (A3) the difference of (A1) and
(A2); (B) DDM generated by SampEn for CHF patient under different
parameter settings: (B1) m = 2, (B2) m = 3, (B3) the difference of (B1) and
(B2).

Figure 6 presents the DDMs generated by SampEn. Figures
7-8 present the DDMs generated by FuzzyGMEn and
FuzzyLMEn respectively. Unlike the 0 or 1 discrete
determination for vector similarity degree in SampEn,
FuzzyGMEn and FuzzyL MEn permit the outputs of continuous
real values between 0 and 1 for the vector similarity degree, by
converting the absolute distance of using a fuzzy exponential
function (see Appendix). Dark-colored areas indicate the higher
similarity degree and vice versa.
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FIGURE 6. (A) DDM generated by FuzzyGMEn for NSR subject under
different parameter settings: (A1) m = 2, (A2) m = 3, (A3) the difference of (A1)
and (A2); (B) DDM generated by FuzzyGMEn for CHF patient under different
parameter settings: (B1) m = 2, (B2) m = 3, (B3) the difference of (B1) and
(B2).

Vector X

120 180

Vector X,
120

(A1) Vector X,
60 240 60 180 240 120 180 240

-

Veetor X |
120

Vector Y

Vector X,

60 120 180 240

60

180 240

Vector Y
Vector Y

180

FIGURE 7. (A) DDM generated by FuzzyLMEn for NSR subject under
different parameter settings: (A1) m = 2, (A2) m = 3, (A3) the difference of (A1)
and (A2); (B) DDM generated by FuzzyLMEn for CHF patient under different
parameter settings: (B1) m = 2, (B2) m = 3, (B3) the difference of (B1) and
(B2).

D. MODEL CONFIGURATION

The details of AlexNet, DenseNet and SE_Inception_v4 are
illustrated in Fig. 1, Fig. 2 and Fig. 3 respectively. All three
models were implemented with Tensorflow library [34]. We
trained the networks from scratch with a Gaussian random
initializer (1 = 0, 6 = 0.01). The Adam optimizer with an initial
learning rate of 0.0001 was used for parameters updating. The
dropout was set to 0.5 to avoid overfitting.

E. EVALUATION SCHEME

In this study two schemes are considered for the selection of
training and test sets. The first selecting scheme is based on
subject (recording). We randomly select subjects into five folds.
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Four folds for training, and the remaining one is for testing. Table
2 shows the results of selecting.

TABLE Il

FOLD RESULTS FOR ALL RECORDS IN THE TWO GROUPS

Fold#  CHF records NSR records Num  Num  Tot
ber ber al
foldl  201,213,215,218  8,12,13,20,22,23,253 6 11 17
fold2  202,205,206,210  4,15,21,24,27,29,31,3 6 11 17
fold3  204,207,209,219  1,7,9,10,11,16,19,34, 6 11 17
fold4  203,216,217,221  5,6,17,26,28,32,3542 6 11 17
fold5  208,211,212,214  2,3,14,18,30,33,36,40 5 10 15
total 29 54 83

Besides subject-based selecting scheme, we also consider
segment-based scheme. To evaluate the robustness of the
proposed models, 5-fold cross-validation strategy is employed.
Firstly, the first 10% data of each subject are used to train and the
other 90% of data are used to test without any overlap. Then the
percent of train data increases by 10% and repeats until the first
90% data of each subject are used to train and the last 10% are
used to test.

F. PERFORMANCE MEASURES

We evaluate our model performance by combining True/False
Positives/Negatives to measure Precision, Recall and Accuracy
(Acc.) [35]. They are often considered to be the most informative
for characterizing the performance of a classifier and easy to
calculate. Accuracy (Acc.) is the ratio of the total humber of
positives and negatives correctly made by the recognition system
to the actual total number of positives and negatives confirmed
by the recognition system. Precision measures the rate of true
positives among all detections, while Recall measures the
percentage of detected ground truth annotations. They are
defined by:

TP+TN
(O O ——
TP+TN+FP+FN

3)

where true positives (TP) denotes the number of CHF segments
correctly classified as CHF group. False positives (FP) refer to
the number of NSR segments incorrectly classified as CHF group.
True negatives (TN) associate with the number of NSR segments
correctly classified as NSR group. False negatives (FN) refer to
the number of CHF segments incorrectly classified as NSR group.

.. TP
Precision = ,
TP+FP

IV. RESULTS

A. SUBJECT-BASED SCHEME

For the subject-based selecting scheme, Tables 3-5 present the 5-
fold cross-validated Precision, Recall, and Mean Acc. under
subject-based selecting scheme, resulting from each 3 classifiers
(AlexNet, DenseNet, SE_Inception_v4) trained by DDMs
generated from SampEn, FuzzyGMEn and FuzzylL MEn
respectively. The method that reports the best score is
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SE_Inception_v4 trained by FuzzyGMEn-generated DDMs, EﬂzzyLM Eﬁgf ?’lgi ;{flég gélgé gg.gg el
. . (0] 0 0 d
resulting in Acc. = 81.85% and Std. = 2.97%. fold3 7235 4394 7515
foldd 7637 4662  76.88
FuzzyLM  SE_I  foldl 8050 4847  77.95  79.46+1.98
THE PERFORMANCE SUMMARY USING SAMPEN-GENERATED DDMS BASED ON En ncept  fold2 84.43 69.80 83.16
0N_  fold3 80.94 4505  77.64
SUBJECT-BASED SCHEME fold4 8305 4784  78.88
DDM CNN Fold#  Precisi  Recall  Acc. Mean v4 fold5  70.94 64.50 79.69
generatio  mode on (%) (%) (%) Acc. =
n I Std. (%)
method B. SEGMENT-BASED SCHEME
SampEn  Alex  foldl 7295 5397 7699  79.813. .
Net  fold2 89.04 7123 8532 90 Tables 6-8 present the results under segment-based selecting
fold3 ~ 8135 4188  76.90 scheme. The method that reports the best score is
Ig:gg ;g'gg gg'g% ;g'gg SE_Inception_v4, which trained by global type data, resulting in
SampEn Dens foldl 67:92 78:35 79:56 78.4343. Mgan Acc. = 80.94% and Std. = 1.71%. Mean accuracies of all 3
eNet  fold2 65.14 8631 7659 04 trained models score between 78.05% and 80.94%, except for the
;g:gj ;g-jﬁ j‘é-gg ;2‘7‘; lowest score of 76.82% generated by SampEn-generated DDMs.
folds 7742 7170 8386 _It is also shown that the performance for these t_hree models
SampEn  SE_I  foldl 7624 5425 7817  80.944. increase greatly when the percent of data to train varies from 10%
ncept  fold2 86.67 78.89 g701 10 to 90%.

10n_ fold3 77.09 50.08 77.90

fold4 75.23 48.23 76.93
v fold5 75.69 70.24 84.70

It is clear that inception-v4 performs the best with the highest
mean accuracy for each of the 3 methods and both selecting
schemes. It can also be seen that FuzzyGMEn-generated
matrixes tend to show a more profound feature vector for
distinguishing CHF and NSR subjects, which are classified with
TABLEIV a higher accuracy compared with those of FuzzyLMEn-
generated DDMs in Tables 5, 8 and SampEn-generated DDMs
in Tables 3, 6, respectively.

THE PERFORMANCE SUMMARY USING FUzZZYGMEN-GENERATED DDMS

BASED ON SUBJECT-BASED SCHEME
DDM  CNN Fold# Precisi Recall Acc.(%) Mean

genera  model on (%) (%) Acc. + TABLE VI
tion Std. (%)
metho THE PERFORMANCE SUMMARY USING SAMPEN-GENERATED DDMS BASED ON
d
Fuzzy AlexNe foldl 8003 4988  78.20 80.0942. SEGMENT-BASED SCHEME
GMEn t fold2 86.96 76.06 85.52 94 DDM CNN T_I'al Test P_reCI Recall Acc. Mea
fold3 8580 4495  78.69 generat  model  ning - Dat - sion (%) o n
foldd 7606  48.76  77.29 thod o) (%) 06) A
folds 7809 5741  80.75 Std.
Fuzzy  Dense  foldl 81.21 50.54 78.69 77.15%2. (%)
GMEn  Net fold2  64.99 7775  74.92 02
N ot n et 20 80 8227 4577 7751 540
folds 7287 3556 7452 30 70 7842 5329 7846 85
Fuzzy SE.Inc foldl 7232 6726  79.62 81.8542. 40 60 7817 5488  78.80
GMEn epfion  fold2 8673  79.02 8707 97 50 50 7810 5519  78.85
B folds 7705 5772 7972 60 40 7959 5230 7854
folds 8156 5177  79.56 7030 8051 5127 78.56
v4 folds 8646 4974  83.27 8 20 7767 5207 7793
90 10 6935 4632  75.97
SampE  Dense 10 90 7447 4812 7601 783
n Net 20 80 8110 4125 7601  5H.
30 70 7468 6328 7959 80
TABLE V 40 60 8311 4529 7758
50 50 8224 4175  76.40
THE PERFORMANCE SUMMARY BY FUzzZYLMEN-GENERATED DDMS BASED 60 40 80.42 55.71 79.68

70 30 8252 56.35 80.51

ON SUBJECT-BASED SCHEME 80 20 80.17 60.13 80.78

DDM ) CNN Fold Precisi Recall Acc. Mean Acc. 90 10 78.12 53.97 78.55

generatio  mod  # on®) (%) (%)  +5d.(%) SampE SE_In 10 90 7008 6175 7733 792

nmethod el n ceptio 20 80 8849 4469 7855 B0,
n

FuzzyLM  Alex foldl 7743 4847 7704  77.83%3.30 - ig gg ;ggé gggi ;gig

En Net  fold2 8320 7307 8370 w P T

fold3  74.93 42.99 75.65
fold4  67.89 52.06 74.11
fold5  76.03 50.91 78.63

60 40 80.83 55.25 79.68
70 30 78.02 60.18 80.09
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80 20 8503 5142  79.76 SE_I 40 60 81.78 5643  80.31
90 10 8322 4699  78.08 ncep 50 50 8259 5873  81.18
tion_ g0 40 7506 6550  80.24

70 30 80.50 6240 8152

TABLE VII v4 80 20 7457  69.48  80.96

90 10 79.72 54.16 79.09
THE PERFORMANCE SUMMARY USING FUzzYGMEN-GENERATED DDMs

BASED ON SEGMENT-BASED SCHEME V. DISCUSSION
DDM CN Trai  Test  Precision Recall Acc. Mean ; e
genera N ning Data (%) %) (%) Ace. + In this study, We.choose three CNN modgls for classifying the
tion mod Data (%) Std. NSR and CHF patients, and compared their performances. The
0, 0,
metho el (%) (%) result shows that no matter what models we choose, the
Fuzzy  Alex 10 90 84.04 4567 7790 79.27% performances of three model have no significant difference. This
GMEn  Net 20 8 7533 5551 7801 104 means the result is not an accidental phenomenon based on one
30 70 84.00 52.86  79.92 - .
0 60 8287 5111 79413 model. We also choose two different schemes to train models.
50 50 75.40 5461  77.83 Under the subject-based scheme, training and test data are totally
60 40 76.02 62.94  80.02 independent. Under segment-based scheme, a certain fraction of
;g 28 g;'ig g‘;gi gg'g each subject’s segments is randomly selected as the training set
0 10 7997 5656 7979 and the remaining are used as the test set. Previous study has
Fuzzy Den 10 90 84.91 3217 7437  79.63% proved models trained by dependent data performed much better
GMEn SeNe  IZONNE0ITESES 4273 7588 269 than models trained by independent data [28]. However, in this
30 70 79.04 62.79 8110 -
40 60 80.17 5514 79.48 study, the results from the segment-based scheme are similar to
50 50 79.17 5427  78.95 the results from the subject-based scheme. This is due to the large
‘738 gg %‘-% gg-?i gg-gg intra-subject variability of DDMs.
80 20 7814 6832 8216 Over the past years, automatic classifiers have been proposed
90 10 80.99 6115 8134 in diagnosing patients who are suffering CHF. Isler et al.
Fuzzy ~ SE_I 10 0 72.60 5454 7683  80.94% proposed a model based on KNN and wavelet entropy measures
GMEn ncep 20 g0 7828 6029 8019 171 of HRV indices [12]. When they used all features to train models,
30 70 80.66 60.65  81.09 . . o 0
- 40 60 8298 5587 8050 their accuracy is between 78.31% and 84.34%. However, after
50 50 86.34 56.01  81.46 they used genetic algorithm (GA) for feature selection, they
va 60 40 75.77 68.88  81.34 obtained an accuracy as high as 96.39%. However, the method is
;8 ;’8 gééi gg';‘ll gg'gg too complicated for the daily monitoring. A classifier based on
90 10 79.39 62.68  81.20 classification and regression tree (CART) was proposed by
Pecchia et al. to distinguish CHF patients from NSR subjects.
This method is simpler and can be fully understood without
TABLE VIII

advanced mathematical skills. They evaluate the result of CART
THE PERFORMANCE SUMMARY USING FUZZYL MEN-GENERATED DDMSs to choose feature and discriminate CHF patients. It is worth
mentioning that they use “tree A” to classify segments and then

BASED ON SEGMENT-BASED SCHEME . . 4 ; -9 X
use “tree B” to classify subjects. Therefore, their final result is to

DDM CN Trai Test  Precisi Recall  Acc. Mean

genera N ning Data on (%) (%) (%) Acc. + evaluate the performance of classifying subjects.
tion  Mod ‘(Do/iga (%) ﬁ)};’) The difference between our study and other studies is that, we
d trained the model for CHF segments classification, not for CHF
FuzzyL Alex 10 90 7502 3937 7413  76.87% patients classification. In this way, our performance result cannot
MEn  Net 20 8 7487 508 7676 130 be compared with their result because we are measuring different
LS I TN things. This research also allowed us a further research direction:
40 60 7473 5559  77.83 K for th tio of ab | s for CHF di .
50 50 8197 4662 7768 seek for the proper ratio of abnormal segments for iagnosis.
60 40 7288 5802  77.68 Jovic et al. proposed a model based on random forest and
70 30 7519 5352 7751 combinations of linear and nonlinear features of HRV [13]. They
gg ig %8; 22'28 ;4712; achieved an accuracy of 73% when they only used combinations
Fuzzyl Dens 10 90 7348 4676 7540  78.16+ of entropy ca]culation result as the input of_ the class:ifier. This
MEn  eNet 20 80 8034 4219 7609 156 result can be improved to around 84% by using combinations of
30 70 8968 4622  79.26 linear and non-linear HRV features. This unpromising result by
40 60 7772 5292 7816 imolv using th binati £ ent lculati |
50 50 7868 4813 7723 simply using the combinations of entropy calculation can also
60 40 8325 4808 7837 prove that DDM contains more information than simple entropy
70 30 7710 6182  80.17 calculation. There are also researchers who designed classifiers
98,8 ig ;iéi gg'ig gg'gg based on SVM method and combination of several HRV features
Fuzzyl 10 90 7406 4906 7610  79.73+ and reached high accuracy _[14j16]. Liu_et al. [15] anq Wang et
MEn 20 80 7205 6285 7841 159 al. [14] compared the contributions of different combinations of
3 70 7483 6389 7979 HRYV features to performance of classifiers. Liu et al. reached a
VoLUt 17 8
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highest accuracy of 91.49% using combination of time domain
and non-linear features, which is consistent with the conclusion
of Jovic et al. [13].

All these studies are using multiple features as the input of
classifiers, for the reason that the performance with single feature
is far poorer. Jovic et al. [13] achieved results between 60% and
75% which are far lower than other results by using combination
of the same type of features, such as approximate entropy
(ApENn1-ApEn4), maximum approximate entropy (MaxApEn),
multiscale sample entropy (SampEnl-SampEn20), multiscale
carnap 1D entropy(Carnapl-Carnap20). The above features all
belong to the entropy method category but their calculation
methods are different. The result of previous studies depends on
which feature set is chosen. However, this best choice may
change when choosing different datasets. Additionally, it is also
too complex and demanding for the daily activity of clinicians.

VI. CONCLUSION

In our study, we only used one feature to train models and
obtained the highest accuracy of 81.85%. This result is much
higher compared to the result of using combination of the same
type of features. However, it is much lower than the previous
studies which are using combinations of different features. For
the next step, we plan to add other dimension images to improve
the completeness of input and we expect the result will be
improved. Single dimension of input is still too ‘thin or lean’ for
a model to train, which can be seen in the current result. Adding
more dimension images does not mean we will increase steps of
feature selection, since it is CNN itself that extract features. We
can also train the CNN classifier using larger dataset, for the
reason that small datasets will cause the deep neural network to
overfit.

APPENDIX

A. SAMPLE ENTROPY METHOD (SAMPEN)

For RR segment x(i) (1<i<N), form the vector sequences

X"
m={x(),x(i+1),.,.x(+m—-1}1<i<N-m+1
Then the distance between X" and X[ based on the

maximum absolute difference is defined as:

X(j+k)|

7, =d[ X7, X7 = max|x(i +k) -

In SampEn, if the distance is within the threshold parameter r
= 0.2, the similarity degree between the two vectors is 1; if the
distance is beyond the threshold parameter r, the similarity
degree is 0. There is absolutely a 0 or 1 determination.

B. FUZZY MEASURE ENTROPY (FUZZYMEN)

For RR segment x(i) (1<i<N), firstly form the local vector
sequences XL and global vector sequences XG"
respectively:

VOLUME XX, 2017

XU = {x (i), x(i+1),, x(i+m-1)} - X(i)
XG" ={x(i),x(i+1),--, x(i+m-1)} -X

1<i<N-m

The vector XL represents m consecutive x(i) values but
removing the local baseline X(i), which is defined as:

K@) =25 x(i+k) 1<i<N-m
m k=0

The vector XG™ also represents m consecutive X(i)
values but removing the global mean value X of the segment
X(i) , which is defined as:

R=~3x(0)

D Mz

Then the distance between the local vector sequences XL
and XL] and the distance between the global vector sequences
XG" and XG[' are defined as follows respectively:

dLyy =d [ XL, XL] | = rﬁ:éé(|(x(i+k)—7(i))—(x(j+k)—7(j))|
4G, = d [ XG{", XG} | = max|(x(i-+k)~ %)~ (x(j +k)~%)|

Given the parameters nL, rL, nG and rG, calculate the
similarity degree DL}, (n_,r,) between the local vectors XL
and XL| by the fuzzy function xL(dL;,n.,r), as well as
calculate the similarity degree DG,'](nG,r) between the
global vectors XG" and XG[ by the fuzzy function
#G(dG,,ng,15)

DLY,(n_,r) = puL(dLy;,n_, 1) =exp(- M)

L

_ (dG7)"
DGIJ(nG’r ) IUG(dGlj’ G’rG)_eXp(_r—)

G

In this study, the local similarity weight n.=1 and global vector
similarity weight ng=2, the local tolerance threshold r_ was set
equal to the global threshold rg, i.e., r.=rg =r.
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