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ABSTRACT Congestive heart failure (CHF) is a serious pathophysiological condition with high morbidity 

and mortality, which is hard to predict and diagnose in early age. Artificial intelligence and deep learning 

combining with cardiac rhythms and physiological time series provide a potential to help with solving it. In 

this study, we proposed a novel method that combines convolutional neural network (CNN) and distance 

distribution matrix (DDM) in entropy calculation to classify CHF patients from normal subjects, and 

demonstrated the effectiveness of this combination. Specifically, three entropy methods were used to generate 

the distribution matrixes from a 300-point RR interval (i.e., the time interval between the successive cardiac 

cycles) time series, which are Sample entropy (SampEn), fuzzy local measure entropy (FuzzyLMEn) and 

fuzzy global measure entropy (FuzzyGMEn). Then, three high representative CNN models, i.e. AlexNet, 

DenseNet and SE_Inception_v4 were chosen to learn the pattern of the data distributions hidden in the 

generated distribution matrixes. All data used in our experiments were gathered from the MIT-BIH RR 

Interval Databases (http://www.physionet.org). A total of 29 CHF patients and 54 normal sinus rhythm (NSR) 

subjects were included in this study. The results showed that the combination of FuzzyGMEn-generated 

DDM and Inception_v4 model yielded the highest accuracy of 81.85% out of all proposed combinations. 

INDEX TERMS Congestive heart failure (CHF), convolutional neural network (CNN), distance 

distribution matrix (DDM), heart rate variability (HRV), entropy
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I. INTRODUCTION 

Congestive heart failure (CHF) is a serious pathophysiological 

condition, which has become a common cause of 

hospitalization with significant morbidity and mortality [1-4]. 

However, heart failure remains insufficiently diagnosed 

worldwide, especially in early age [5-8]. Precise diagnosis is 

thus vital for heart failure treatment. Previous studies showed 

that heart rate variability (HRV), which is associated with the 

mortality of CHF, is an effective feature for discriminating CHF 

patients from normal subjects [9-11]. Over the past years, 

various machine learning methods were proposed to diagnose 

patients suffering from CHF based on HRV. For example, Isler 

et al. proposed a model based on k-nearest neighbor classifier 

(KNN) and wavelet entropy [12]. Jovic et al. utilized random 

forest and combinations of linear and nonlinear features of 

HRV [13]. Pecchia et al. designed a classifier based on 

regression tree with selected RMSSD, total power, HF, and 

LF/HF as useful classification features [11]. There are also 

researchers who employed SVM and combinations of several 

HRV features and achieved relatively high accuracies [14-16].  

Most existing works employ classifiers with comparatively 

simple structures and trained on small data sets. The input of 

their classifiers is empirically a set of selected features. 

However, the performance of the classifiers is largely based on 

feature selection processes [12, 14]. Thus in most cases, a large 

amount of time and effort is paid to manually find better feature 

subsets and even adopted the so-called exhaustive search 

methods to find the best subsets of features [17]. Additionally, 

the choice of the best feature combination may change with 

different datasets. With the explosion of data and the 

development of smart wearable devices, deep learning is a 

desirable way to overcome the shortage of artificial feature 

extraction and selection. Deep neural networks are designed to 

automatically learn the underlying hidden feature combinations 

without any manual process. As one type of the most successful 

deep neural network, convolutional neural network (CNN) has 

gained significant development and achieves state-of-the-art 

results on various tasks [11]. CNNs are able to accept raw and 

complete images as inputs, so as to avoid the risk of losing 

valuable information. Thus, we decide to employ different 

CNNs to automatically learn effective features from HRV data 

and produce accurate classification results without 

complicating manual feature extraction.  

Entropy is a non-linear HRV analysis method, which 

provided a better understanding for the underlying mechanisms 

of the cardiovascular system [18-20]. In previous study, 

entropy calculation was able to distinguish CHF and normal 

sinus rhythm (NSR) subjects with appropriate parameters. A 

statistical significance for the two groups was obtained [21, 22]. 

Jovic et al. tried to use combinations of entropy calculation 

results as the input of classifiers and acquired a moderate result 

of approximate 73% accuracy [13]. It could be attributed to the 

simple and rough entropy calculation, i.e. there will be only a 

number value result, leading to a potential risk to lose useful 

information for subsequent normal/abnormal classification. 

The construction of distance distribution matrix (DDM) is an 

essential step for entropy calculation. The difference between 

normal and abnormal cardiac conditions can be depicted and 

observed by DDM. This is thus a desirable input for CNN as it 

reveals the features of HRV signals in the manner of entropy 

analysis but contains richer information than a simple single 

entropy value calculation. The RR interval is the time interval 

between the successive cardiac cycles and regarded as an 

important feature of an ECG signal. It is usually quantified by 

the time difference between the occurrence of the maximum 

wave, i.e. the R wave of a cardiogram. Thus RR interval time 

series in the long-term RR Interval Databases from 

http://www.physionet.org [23] are used in this study to generate 

the DDMs. 

In this study, our main aim is to use the DDM as an image 

feature to achieve classification between the NSR and CHF 

subjects by employing these improved representative CNN 

methods. Several stages were included in this study. The first 

stage is to convert RR interval time series into DDMs using 

three kinds of entropy methods: i.e. Sample entropy (SampEn), 

fuzzy local measure entropy (FuzzyLMEn) and fuzzy global 

measure entropy (FuzzyGMEn). The second stage is to train 

classifiers based on three different types of CNN models. 

Experimental study is presented in the last stage, which 

evaluates our models on two schemes. Our contributions are 

summarized as follows: 

1) We improve three different types of classifiers without 

manual feature extraction based on latest state-of-art 

CNN models.  

2) We generate three kinds of DDMs from RR interval time 

series as the input of these classifiers and compare their 

classification results based on the three CNN classifiers. 

All three kinds of DDMs show discriminability for the 

RR interval time series between NSR and CHF groups, 

and the performance of each model has no significant 

difference. This verifies the effectiveness of combination 

of DDM and the CNN model. 

3) We choose the subject-based and segment-based schemes 

as the evaluation schemes and compared their 

performances. In this study, the segment-based scheme 

performs similarly to the subject-based scheme. 

 

II. CNN MODELS 

AlexNet [24], DenseNet [25] and Inception_v4 [26] were used 

in this study. AlexNet is one of the largest CNNs trained on the 

subsets of ImageNet used in the ILSVRC-2010 and ILSVRC-

2012 competitions. DenseNet alleviates the disappearance of 

gradients and enhances feature propagation by encouraging 

feature reuse, and this greatly reduces the amounts of parameters. 

Inception_v4 was one of several follow-up versions to 

GoogLeNet [27], and is the winner of ILSVRC 2014, but became 

deeper and wider by introducing residual connections and has a 

more simplified architecture and more inception modules than 

the previous versions [26]. All these models are representative 

CNN models. The details of the three employed CNNs as 

described as follows: 

http://www.physionet.org/
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A. ALEXNET 

Original AlexNet contains five convolutional and three fully-

connected ones. In our study, we converted those fully-connected 

layers into convolutional layers. This made it possible to 

efficiently run the CNN on 297 × 297  input images. The 

architecture was summarized in Fig. 1. Firstly, we use a 

convolution with 64 output channels and kernel size 11 × 11 to 

input distribution matrix followed by a 3 × 3 max pooling layer. 

After several convolution and max pooling operations, dropout 

layers were also used to enhance the robustness of the model. At 

the end of the network, the global average pooling layer is 

performed. Besides, rectified linear units (ReLUs) were used to 

reduce training time and local normalization scheme was used to 

aid generalization.  

B. DENSENET 

DenseNet consists of alternating transition layers and dense 

blocks. Fig. 2 illustrates the architecture of the DenseNet. 

Firstly, we use a convolution with 48 output channels followed 

by a transition layer. Each transition layer is to change the size 

of feature maps by convolution and pooling between dense 

blocks, which consists of a batch normalization layer, a ReLU 

layer and a 1 × 1 convolutional layer with 24 output channels 

followed by a 2 × 2 average pooling layer. In a dense block, 

each layer obtained additional inputs from all its preceding 

layers and passes on its own feature maps to all its subsequent 

layers. The network is divided into multiple densely connected 

dense blocks.At the end of the DenseNet, a global average 

pooling is used and then a softmax classifier is performed. 

C. INCEPTION-V4 

The main contribution of Inception_v4 was the Inception 

Module that dramatically reduced the number of parameters in 

the network. Additionally, it used average pooling instead of 

fully connected layers at the top of the ConvNet, eliminating a 

large number of parameters without remarkably decrease of 

performance. In our study, we add “Squeeze-and-Excitation” 

(SE) block in each inception block to model channel-wise 

relationships in a computationally efficient manner. It enhance 

the representational power of modules throughout the network. 

Consequently, we term our model as SE_Inception_v4. The 

overview of SE_Inception_v4 is illustrated in the left side of 

Fig. 3. It is composed of “stem”, “inception” and “reduction” 

modules, as shown in Fig. 3 and Fig. 4 in detail. 

 

 

FIGURE 1.  The architecture of AlexNet 

 

FIGURE 2.  The architecture of DenseNet 
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FIGURE 3.  The whole architecture of SE_Inception_v4 and the “stem” 

module in SE_Inception_v4 

 

 

FIGURE 4.  “Reduction” module in SE_Inception_v4 

 III. EXPERIMENT 

A. DATA 

All data used in our experiments were gathered from the long-

term RR Interval Databases (http://www.physionet.org) [23], a 

free-access, on-line archive of physiological signals. The NSR 

RR Interval Database was used as the non-pathological and 

control group data. This database included 54 long-term RR 

interval recordings of subjects in normal sinus rhythm aged 

from 29 to 76. The CHF RR Interval Database was used as the 

pathological group data. This database included 29 long-term 

RR interval recordings of subjects aged from 34 to 79, with 

congestive heart failure (NYHA classes I, II, and III). The 

original ECG signals for both NSR and CHF RR interval 

databases were resampled at 128 Hz, and the beat annotations 

were obtained by automated analysis with manual review and 

correction.  

B. PRE-PROCESS 

RR interval is one of the important features of the ECG signal. 

It is the time interval between the successive cardiac cycles, 

which is usually quantified by the time difference between the 

occurrence of the maximum wave, R, of a cardiogram and is 

often called RR interval. In this section, two steps were used in 

the pre-process procedure for each RR interval recording: 

Step 1: Each beat in the raw ECG signals was annotated as a 

normal or abnormal heartbeat. These abnormal heartbeats, 

usually caused by the ectopic beats such as supra-ventricular 

ectopic beats or ventricular ectopic beats (depending on the 

localization of the ectopic focus), were removed from the raw 

ECG signals, as the RR intervals formed from the abnormal 

heartbeats could confound the entropy analysis of HRV. We 

also remove RR intervals greater than 2 seconds to ignore the 

influence from the artifacts. Table 1 shows the total number of 

RR intervals for both NSR and CHF groups, as well as the 

numbers of RR intervals after the above procedure.  

Step 2: Then we divide these ECG signals into several RR 

segments. The length of each RR segment is recorded as N, 

and we set N = 300, i.e. each RR segment contains 300 RR 

intervals. 

  

FIGURE 3.  “Inception” and “Squeeze-and-Excitation” modules in 

SE_Inception_v4 

http://www.physionet.org)/
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TABLE I 

 STATISTICAL RESULTS OF THE NUMBERS OF RR INTERVAL RECORDINGS, RR 

INTERVALS AND RR SEGMENTS FROM THE 54 NSR AND 29 CHF RR INTERVAL 

DATABASES. 

Variables NSR group CHF group 

Name of RR interval recordings 
NSR001-

NSR054 

CHF201-

CHF229 

No. of RR interval recordings 54 29 

No. of RR intervals 5,790,504 3,312,195 

No. of RR intervals after removing 

greater than 2s 
5,780,148 3,306,394 

No. of RR intervals after removing 

abnormal heartbeats 
5,738,937 3,102,120 

No. of RR segments when setting 

N=300 
19,101 10,324 

   

C. GENERATION OF DDM 

SampEn [28], proposed by Richman and Moorman, can be used 

to analyze physiological time series [29]. SampEn quantifies the 

conditional probability that two sequences of m length similar 

consecutive data points will still be similar for m+1 (given a 

tolerance r). DDM generation is an intermediate step for SampEn 

calculation. DDM consists of similarity degrees which are 

determined by the distance and a decision rule. The distance is 

defined as follows: 

 For the HRV series 𝑥(i), 1 ≤ 𝑖 ≤ 𝑁, given the parameters m, 

form 𝑁 −𝑚 + 1 vectors  

 ( ) ( ) ( ) , 1 , , 1
m

i
X x i x i x i m= + + −  

1 i N m  −  

 

(1)  

The distance between any two vectors 𝑋𝑖
𝑚 and 𝑋𝑗

𝑚 based 

on the maximum absolute difference is defined as: 

( ) ( )
1

,
0

, max
m

m m m

i j i j
k

d d X X x i k x j k
−

=

= = + − +    
 

(2)  

where m denotes the embedding dimension.  

The decision rule for vector similarity is based on the 

Heaviside function in SampEn. If the distance is within the 

threshold parameter r, the similarity degree between the two 

vectors is 1; if the distance is beyond the threshold parameter r, 

the similarity degree is 0. This rigid boundary may induce abrupt 

changes of entropy values when the tolerance threshold r changes 

slightly, and even fail to define the entropy if no vector-matching 

could be found [30-32]. To enhance the statistical stability, a 

fuzzy measure entropy (FuzzyMEn) method was proposed [31, 

33], which used a fuzzy membership function to substitute the 

Heaviside function.  

Unlike the 0 or 1 discrete determination for vector similarity 

degree in SampEn, fuzzy membership function permits the 

FuzzyMEn outputs continuous numerical values between 0 and 

1 for the degree of vector similarity. Since FuzzyMEn not only 

measures the global vector similarity degree, but also refers to the 

local vector similarity degree. Thus, in this study we define 

FuzzyLMEn as the FuzzyMEn that is measured by local vector 

similarity degree. We also use FuzzyGMEn to denote the 

FuzzyMEn that is measured by global vector similarity degree. 

The detailed descriptions of SampEn, FuzzyLMEn and 

FuzzyGMEn were summarized in the Appendix. 

Three types of DDMs are generated firstly at the setting of 

different embedding dimension m and m+1. Then we calculated 

the difference of these two DDMs. In the following classification 

process, the differences of DDMs were used as the input images 

of the CNN classifiers. Figures 6-8 show the DDMs generated by 

SampEn, FuzzyGMEn and FuzzyLMEn. We set embedding 

dimension m as 2 and 3 combined with threshold r = 0.1 and 

segment length N = 300, which has been proved statistical 

significance for SampEn, FuzzyGMEn and FuzzyLMEn [21]. 

Only 1 ≤ 𝑖 ≤ 297  and 1 ≤ 𝑗 ≤ 297  are shown for 

illustrating the details. In each sub-figure, the upper panel shows 

the results from a NSR subject, and the lower panel shows the 

results from a CHF subject. The results are from the embedding 

dimension m = 2, and m = 3 respectively. Their difference is 

showed from left to right respectively and are used as the input 

images of the CNN classifiers in the following classification 

process. Black colored areas indicate the similarity degree = 1 

and vice versa. 

 

 
FIGURE 5.  (A) DDM generated by SampEn for NSR subject under different 

parameter settings: (A1) m = 2, (A2) m = 3, (A3) the difference of (A1) and 

(A2); (B) DDM generated by SampEn for CHF patient under different 

parameter settings: (B1) m = 2, (B2) m = 3, (B3) the difference of (B1) and 

(B2). 

Figure 6 presents the DDMs generated by SampEn. Figures 

7-8 present the DDMs generated by FuzzyGMEn and 

FuzzyLMEn respectively. Unlike the 0 or 1 discrete 

determination for vector similarity degree in SampEn, 

FuzzyGMEn and FuzzyLMEn permit the outputs of continuous 

real values between 0 and 1 for the vector similarity degree, by 

converting the absolute distance of using a fuzzy exponential 

function (see Appendix). Dark-colored areas indicate the higher 

similarity degree and vice versa. 
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FIGURE 6.  (A) DDM generated by FuzzyGMEn for NSR subject under 

different parameter settings: (A1) m = 2, (A2) m = 3, (A3) the difference of (A1) 

and (A2); (B) DDM generated by FuzzyGMEn for CHF patient under different 

parameter settings: (B1) m = 2, (B2) m = 3, (B3) the difference of (B1) and 

(B2). 

 

 

FIGURE 7.  (A) DDM generated by FuzzyLMEn for NSR subject under 

different parameter settings: (A1) m = 2, (A2) m = 3, (A3) the difference of (A1) 

and (A2); (B) DDM generated by FuzzyLMEn for CHF patient under different 

parameter settings: (B1) m = 2, (B2) m = 3, (B3) the difference of (B1) and 

(B2). 

D. MODEL CONFIGURATION 

The details of AlexNet, DenseNet and SE_Inception_v4 are 

illustrated in Fig. 1, Fig. 2 and Fig. 3 respectively. All three 

models were implemented with Tensorflow library [34]. We 

trained the networks from scratch with a Gaussian random 

initializer (μ = 0, σ = 0.01). The Adam optimizer with an initial 

learning rate of 0.0001 was used for parameters updating. The 

dropout was set to 0.5 to avoid overfitting. 

E. EVALUATION SCHEME 

In this study two schemes are considered for the selection of 

training and test sets. The first selecting scheme is based on 

subject (recording). We randomly select subjects into five folds. 

Four folds for training, and the remaining one is for testing. Table 

2 shows the results of selecting. 

 

TABLE II 

FOLD RESULTS FOR ALL RECORDS IN THE TWO GROUPS 

Fold# CHF records NSR records Num

ber 

of 

CHF 

cases  

Num

ber 

of 

NSR 

cases  

Tot

al 

fold1 201,213,215,218

,225,228 

8,12,13,20,22,23,25,3

8,41,44,47 

6 11 17 

fold2 202,205,206,210

,220,227 

4,15,21,24,27,29,31,3

7,39,50,53 

6 11 17 

fold3 204,207,209,219

,223,229 

1,7,9,10,11,16,19,34,

46,48,49 

6 11 17 

fold4 203,216,217,221

,222,226 

5,6,17,26,28,32,35,42

,43,51,52 

6 11 17 

fold5 208,211,212,214

,224 

2,3,14,18,30,33,36,40

,45,54 

5 10 15 

total 29 54 83 

Besides subject-based selecting scheme, we also consider 

segment-based scheme. To evaluate the robustness of the 

proposed models, 5-fold cross-validation strategy is employed. 

Firstly, the first 10% data of each subject are used to train and the 

other 90% of data are used to test without any overlap. Then the 

percent of train data increases by 10% and repeats until the first 

90% data of each subject are used to train and the last 10% are 

used to test. 

F. PERFORMANCE MEASURES 

We evaluate our model performance by combining True/False 

Positives/Negatives to measure Precision, Recall and Accuracy 

(Acc.) [35]. They are often considered to be the most informative 

for characterizing the performance of a classifier and easy to 

calculate. Accuracy (Acc.) is the ratio of the total number of 

positives and negatives correctly made by the recognition system 

to the actual total number of positives and negatives confirmed 

by the recognition system. Precision measures the rate of true 

positives among all detections, while Recall measures the 

percentage of detected ground truth annotations. They are 

defined by: 

Precision =
TP

TP+FP
, Recall =

TP

TP+FN
, Acc.=

TP+TN

TP+TN+FP+FN
 (3) 

where true positives (TP) denotes the number of CHF segments 

correctly classified as CHF group. False positives (FP) refer to 

the number of NSR segments incorrectly classified as CHF group. 

True negatives (TN) associate with the number of NSR segments 

correctly classified as NSR group. False negatives (FN) refer to 

the number of CHF segments incorrectly classified as NSR group. 

IV. RESULTS 

A. SUBJECT-BASED SCHEME 

For the subject-based selecting scheme, Tables 3-5 present the 5-

fold cross-validated Precision, Recall, and Mean Acc. under 

subject-based selecting scheme, resulting from each 3 classifiers 

(AlexNet, DenseNet, SE_Inception_v4) trained by DDMs 

generated from SampEn, FuzzyGMEn and FuzzyLMEn 

respectively. The method that reports the best score is 
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SE_Inception_v4 trained by FuzzyGMEn-generated DDMs, 

resulting in Acc. = 81.85% and Std. = 2.97%. 

 

TABLE Ⅲ 

THE PERFORMANCE SUMMARY USING SAMPEN-GENERATED DDMS BASED ON 

SUBJECT-BASED SCHEME 

DDM 
generatio
n 
method 

CNN 
mode
l 

Fold # Precisi
on (%) 

Recall 
(%) 

Acc. 
(%) 

Mean 
Acc. ± 
Std. (%) 

SampEn Alex
Net 

fold1 72.95 53.97 76.99 79.81±3.
90 fold2 89.04 71.23 85.32 

fold3 81.35 41.88 76.90 

fold4 70.93 50.61 76.08 

fold5 79.29 59.87 83.75 

SampEn Dens
eNet 

fold1 67.92 78.35 79.56 78.43±3.
04 fold2 65.14 86.31 76.59 

fold3 75.48 41.33 75.41 

fold4 78.45 43.86 76.75 

fold5 77.42 71.70 83.86 

SampEn SE_I
ncept
ion_ 

v4 

fold1 76.24 54.25 78.17 80.94±4.
10 fold2 86.67 78.89 87.01 

fold3 77.09 50.08 77.90 

fold4 75.23 48.23 76.93 

fold5 75.69 70.24 84.70 

 

TABLE Ⅳ 

THE PERFORMANCE SUMMARY USING FUZZYGMEN-GENERATED DDMS 

BASED ON SUBJECT-BASED SCHEME 

DDM 
genera
tion 
metho
d 

CNN 
model 

Fold #  Precisi
on (%) 

Recall 
(%) 

Acc. (%) Mean 
Acc. ± 
Std. (%) 

Fuzzy
GMEn 

AlexNe
t 

fold1 80.03 49.88 78.20 80.09±2.
94 fold2 86.96 76.06 85.52 

fold3 85.80 44.95 78.69 

fold4 76.06 48.76 77.29 

fold5 78.09 57.41 80.75 

Fuzzy
GMEn 

Dense
Net 

fold1 81.21 50.54 78.69 77.15±2.
02 fold2 64.99 77.75 74.92 

fold3 77.51 55.81 79.41 

fold4 77.91 50.36 78.20 

fold5 72.87 35.56 74.52 

Fuzzy
GMEn 

SE_Inc
eption
_ 

v4 

fold1 72.32 67.26 79.62 81.85±2.
97 fold2 86.73 79.02 87.07 

fold3 77.05 57.72 79.72 

fold4 81.56 51.77 79.56 

fold5 86.46 49.74 83.27 

 

TABLE Ⅴ 

 THE PERFORMANCE SUMMARY BY FUZZYLMEN-GENERATED DDMS BASED 

ON SUBJECT-BASED SCHEME 

DDM 
generatio
n method 

CNN 
mod
el 

Fold 
# 

Precisi
on (%) 

Recall 
(%) 

Acc. 
(%) 

Mean Acc. 
± Std. (%) 

FuzzyLM
En 

Alex
Net 

fold1 77.13 48.47 77.04 77.83±3.30 
fold2 83.20 73.07 83.70 

fold3 74.93 42.99 75.65 

fold4 67.89 52.06 74.11 

fold5 76.03 50.91 78.63 

FuzzyLM
En  

Dens
eNet 

fold1 78.18 52.51 78.35 74.22±3.41 

fold2 81.85 26.80 69.06 

fold3 72.35 43.94 75.15 

fold4 76.37 46.62 76.88 

fold5 75.84 19.86 71.64 

FuzzyLM
En 

SE_I
ncept
ion_ 

v4 

fold1 80.50 48.47 77.95 79.46±1.98 

fold2 84.43 69.80 83.16 

fold3 80.94 45.05 77.64 

fold4 83.05 47.84 78.88 

fold5 70.94 64.50 79.69 

B. SEGMENT-BASED SCHEME 

Tables 6-8 present the results under segment-based selecting 

scheme. The method that reports the best score is 

SE_Inception_v4, which trained by global type data, resulting in 

Mean Acc. = 80.94% and Std. = 1.71%. Mean accuracies of all 3 

trained models score between 78.05% and 80.94%, except for the 

lowest score of 76.82% generated by SampEn-generated DDMs. 

It is also shown that the performance for these three models 

increase greatly when the percent of data to train varies from 10% 

to 90%. 

It is clear that inception-v4 performs the best with the highest 

mean accuracy for each of the 3 methods and both selecting 

schemes. It can also be seen that FuzzyGMEn-generated 

matrixes tend to show a more profound feature vector for 

distinguishing CHF and NSR subjects, which are classified with 

a higher accuracy compared with those of FuzzyLMEn-

generated DDMs in Tables 5, 8 and SampEn-generated DDMs 

in Tables 3, 6, respectively. 

 

TABLE Ⅵ 

THE PERFORMANCE SUMMARY USING SAMPEN-GENERATED DDMS BASED ON 

SEGMENT-BASED SCHEME 

DDM 
generat
ion 
method 

CNN 
model 

Trai
ning 
Data 
(%)   

Test 
Dat
a 
(%) 

Preci
sion 
(%) 

Recall 
(%) 

Acc. 
(%) 

Mea
n 
Acc. 
± 
Std. 
(%) 

SampE
n 

AlexN
et 

10 90 82.35 46.82 77.82 78.0
5±0.
85 

 

20 80 82.27 45.77 77.51 

30 70 78.42 53.29 78.46 

40 60 78.17 54.88 78.80 

50 50 78.10 55.19 78.85 

60 40 79.59 52.30 78.54 

70 30 80.51 51.27 78.56 

80 20 77.67 52.07 77.93 

90 10 69.35 46.32 75.97 

SampE
n 

Dense
Net 

 

10 90 74.47 48.12 76.01 78.3
5±1.
80 

 

20 80 81.10 41.25 76.01 

30 70 74.68 63.28 79.59 

40 60 83.11 45.29 77.58 

50 50 82.24 41.75 76.40 

60 40 80.42 55.71 79.68 

70 30 82.52 56.35 80.51 

80 20 80.17 60.13 80.78 

90 10 78.12 53.97 78.55 

SampE
n 

SE_In
ceptio
n_ 

v4 

10 90 70.08 61.75 77.33 79.2
8±0.
97 

 

20 80 88.49 44.69 78.55 

30 70 76.21 62.43 79.98 

40 60 82.05 55.64 80.17 

50 50 85.20 51.58 79.87 

60 40 80.83 55.25 79.68 

70 30 78.02 60.18 80.09 
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 80 20 85.03 51.42 79.76 

90 10 83.22 46.99 78.08 

 

TABLE Ⅶ 

 THE PERFORMANCE SUMMARY USING FUZZYGMEN-GENERATED DDMS 

BASED ON SEGMENT-BASED SCHEME 

DDM 
genera
tion 
metho
d 

CN
N 
mod
el 

Trai
ning 
Data 
(%) 

Test 
Data 
(%) 

Precision 
(%) 

Recall 
(%) 

Acc. 
(%) 

Mean 
Acc. ± 
Std. 
(%) 

Fuzzy
GMEn 

Alex
Net 

10 90 84.04 45.67 77.90 79.27±
1.04 20 80 75.33 55.51 78.01 

30 70 84.00 52.86 79.92 

40 60 82.87 51.11 79.13 

50 50 75.40 54.61 77.83 

60 40 76.02 62.94 80.02 

70 30 81.96 55.55 80.13 

80 20 82.42 57.34 80.73 

90 10 79.97 56.56 79.79 

Fuzzy
GMEn 

Den
seNe
t 

10 90 84.91 32.17 74.37 79.63±
2.69 

 

20 80 78.85 42.73 75.88 

30 70 79.04 62.79 81.10 

40 60 80.17 55.14 79.48 

50 50 79.17 54.27 78.95 
60 40 84.27 54.52 80.46 

70 30 79.71 68.74 82.90 

80 20 78.14 68.32 82.16 

90 10 80.99 61.15 81.34 

Fuzzy
GMEn 

SE_I
ncep
tion
_ 

v4 

10 90 72.60 54.54 76.83 80.94±
1.71 

 

20 80 78.28 60.29 80.19 

30 70 80.66 60.65 81.09 

40 60 82.98 55.87 80.50 

50 50 86.34 56.01 81.46 

60 40 75.77 68.88 81.34 

70 30 82.18 66.74 83.26 

80 20 85.51 60.81 82.62 

90 10 79.39 62.68 81.20 

 

TABLE Ⅷ 

THE PERFORMANCE SUMMARY USING FUZZYLMEN-GENERATED DDMS 

BASED ON SEGMENT-BASED SCHEME 

DDM 
genera
tion 
metho
d 

CN
N 
mod
el 

Trai
ning 
Data 
(%) 

Test 
Data 
(%) 

Precisi
on (%) 

Recall 
(%) 

Acc. 
(%) 

Mean 
Acc. ± 
Std. 
(%) 

FuzzyL
MEn 

Alex
Net 

10 90 75.02 39.37 74.13 76.82±
1.30 

 

20 80 74.87 50.85 76.76 

30 70 81.30 47.18 77.66 

40 60 74.73 55.59 77.83 

50 50 81.97 46.62 77.68 

60 40 72.88 58.02 77.68 

70 30 75.19 53.52 77.51 

80 20 71.01 59.80 77.31 

90 10 73.08 44.69 74.82 

FuzzyL
MEn 

Dens
eNet 

 

10 90 73.48 46.76 75.40 78.16±
1.56 

 

20 80 80.34 42.19 76.09 

30 70 89.68 46.22 79.26 

40 60 77.72 52.92 78.16 

50 50 78.68 48.13 77.23 

60 40 83.25 48.08 78.37 

70 30 77.10 61.82 80.17 

80 20 76.15 62.88 80.05 

90 10 74.64 59.43 78.68 

FuzzyL
MEn 

10 90 74.06 49.06 76.10 79.73±
1.59 20 80 72.05 62.85 78.41 

30 70 74.83 63.89 79.79 

SE_I
ncep
tion_ 

v4 

40 60 81.78 56.43 80.31  

50 50 82.59 58.73 81.18 

60 40 75.06 65.50 80.24 

70 30 80.50 62.40 81.52 

80 20 74.57 69.48 80.96 

90 10 79.72 54.16 79.09 

V. DISCUSSION 

In this study, we choose three CNN models for classifying the 

NSR and CHF patients, and compared their performances. The 

result shows that no matter what models we choose, the 

performances of three model have no significant difference. This 

means the result is not an accidental phenomenon based on one 

model. We also choose two different schemes to train models. 

Under the subject-based scheme, training and test data are totally 

independent. Under segment-based scheme, a certain fraction of 

each subject’s segments is randomly selected as the training set 

and the remaining are used as the test set. Previous study has 

proved models trained by dependent data performed much better 

than models trained by independent data [28]. However, in this 

study, the results from the segment-based scheme are similar to 

the results from the subject-based scheme. This is due to the large 

intra-subject variability of DDMs. 

Over the past years, automatic classifiers have been proposed 

in diagnosing patients who are suffering CHF. Isler et al. 

proposed a model based on KNN and wavelet entropy measures 

of HRV indices [12]. When they used all features to train models, 

their accuracy is between 78.31% and 84.34%. However, after 

they used genetic algorithm (GA) for feature selection, they 

obtained an accuracy as high as 96.39%. However, the method is 

too complicated for the daily monitoring. A classifier based on 

classification and regression tree (CART) was proposed by 

Pecchia et al. to distinguish CHF patients from NSR subjects. 

This method is simpler and can be fully understood without 

advanced mathematical skills. They evaluate the result of CART 

to choose feature and discriminate CHF patients. It is worth 

mentioning that they use “tree A” to classify segments and then 

use “tree B” to classify subjects. Therefore, their final result is to 

evaluate the performance of classifying subjects. 

The difference between our study and other studies is that, we 

trained the model for CHF segments classification, not for CHF 

patients classification. In this way, our performance result cannot 

be compared with their result because we are measuring different 

things. This research also allowed us a further research direction: 

seek for the proper ratio of abnormal segments for CHF diagnosis. 

Jovic et al. proposed a model based on random forest and 

combinations of linear and nonlinear features of HRV [13]. They 

achieved an accuracy of 73% when they only used combinations 

of entropy calculation result as the input of the classifier. This 

result can be improved to around 84% by using combinations of 

linear and non-linear HRV features. This unpromising result by 

simply using the combinations of entropy calculation can also 

prove that DDM contains more information than simple entropy 

calculation. There are also researchers who designed classifiers 

based on SVM method and combination of several HRV features 

and reached high accuracy [14-16]. Liu et al. [15] and Wang et 

al. [14] compared the contributions of different combinations of 

HRV features to performance of classifiers. Liu et al. reached a 
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highest accuracy of 91.49% using combination of time domain 

and non-linear features, which is consistent with the conclusion 

of Jovic et al. [13]. 

All these studies are using multiple features as the input of 

classifiers, for the reason that the performance with single feature 

is far poorer. Jovic et al. [13] achieved results between 60% and 

75% which are far lower than other results by using combination 

of the same type of features, such as approximate entropy 

(ApEn1-ApEn4), maximum approximate entropy (MaxApEn), 

multiscale sample entropy (SampEn1-SampEn20), multiscale 

carnap 1D entropy(Carnap1-Carnap20). The above features all 

belong to the entropy method category but their calculation 

methods are different. The result of previous studies depends on 

which feature set is chosen. However, this best choice may 

change when choosing different datasets. Additionally, it is also 

too complex and demanding for the daily activity of clinicians. 

VI. CONCLUSION 

In our study, we only used one feature to train models and 

obtained the highest accuracy of 81.85%. This result is much 

higher compared to the result of using combination of the same 

type of features. However, it is much lower than the previous 

studies which are using combinations of different features. For 

the next step, we plan to add other dimension images to improve 

the completeness of input and we expect the result will be 

improved. Single dimension of input is still too ‘thin or lean’ for 

a model to train, which can be seen in the current result. Adding 

more dimension images does not mean we will increase steps of 

feature selection, since it is CNN itself that extract features. We 

can also train the CNN classifier using larger dataset, for the 

reason that small datasets will cause the deep neural network to 

overfit.  

APPENDIX 

A. SAMPLE ENTROPY METHOD (SAMPEN) 

For RR segment ( )x i  (1 i N  ), form the vector sequences 
m

i
X : 

𝑋𝑖
𝑚 = {𝑥(𝑖), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + 𝑚 − 1)}, 1 ≤ 𝑖 ≤ 𝑁 −𝑚 + 1 

Then the distance between 
m

i
X  and 

m

j
X  based on the 

maximum absolute difference is defined as: 

( ) ( )
1

,
0

, max
m

m m m

i j i j
k

d d X X x i k x j k
−

=
 = = + − +   

In SampEn, if the distance is within the threshold parameter r 

= 0.2, the similarity degree between the two vectors is 1; if the 

distance is beyond the threshold parameter r, the similarity 

degree is 0. There is absolutely a 0 or 1 determination.  

B. FUZZY MEASURE ENTROPY (FUZZYMEN) 

For RR segment ( )x i  (1 i N  ), firstly form the local vector 

sequences m

iXL  and global vector sequences 
m

i
XG  

respectively: 

( ) ( ) ( ) 

( ) ( ) ( ) 

, 1 , , 1 ( )

, 1 , , 1

m

i

m

i

XL x i x i x i m x i

XG x i x i x i m x

= + + − −

= + + − −
 

1 i N m  −  

The vector m

iXL  represents m consecutive ( )x i  values but 

removing the local baseline ( )x i , which is defined as: 

1

0

1
( ) ( )

m

k

x i x i k
m

−

=

= +  1 i N m  −  

The vector m

iXG  also represents m consecutive ( )x i  

values but removing the global mean value x  of the segment 

( )x i , which is defined as: 

1

1
( )

N

i

x x i
N =

=   

Then the distance between the local vector sequences m

iXL  

and 
m

jXL  and the distance between the global vector sequences 
m

iXG  and 
m

jXG  are defined as follows respectively: 

( ) ( )

( ) ( )

1

,
0

1

,
0

, max ( ( )) ( ( ))

, max ( ) ( )

m
m m m

i j i j
k

m
m m m

i j i j
k

dL d XL XL x i k x i x j k x j

dG d XG XG x i k x x j k x

−

=

−

=

 = = + − − + − 

 = = + − − + − 

 

Given the parameters nL, rL, nG and rG, calculate the 

similarity degree , ( , )m

i j L LDL n r  between the local vectors m

iXL  

and 
m

jXL  by the fuzzy function ,( , , )m

i j L LL dL n r , as well as 

calculate the similarity degree , ( , )m

i j G GDG n r  between the 

global vectors m

iXG  and 
m

jXG  by the fuzzy function 

,( , , )m

i j G GG dG n r : 

,

, ,

,

, ,

( )
( , ) ( , , ) exp( )

( )
( , ) ( , , ) exp( )

L

G

nm

i jm m

i j L L i j L L

L

nm

i jm m

i j G G i j G G

G

dL
DL n r L dL n r

r

dG
DG n r G dG n r

r





= = −

= = −

  

In this study, the local similarity weight nL=1 and global vector 

similarity weight nG=2, the local tolerance threshold rL was set 

equal to the global threshold rG, i.e., rL= rG =r.  
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