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Abstract— Frontal view gait recognition for people 

identification has been carried out using single RGB, stereo RGB, 

Kinect 1.0 and Doppler radar. However, existing methods based 

on these camera technologies suffer from several problems. 

Therefore, we propose a four-part method for frontal view gait 

recognition based on fusion of multiple features acquired from a 

Time of Flight (ToF) camera. We have developed a gait data set 

captured by a ToF camera. The data set includes two sessions 

recorded seven months apart, with 46 and 33 subjects respectively, 

each with six walks with five covariates. The four-part method 

includes: a new human silhouette extraction algorithm that 

reduces the multiple reflection problem experienced by ToF 

cameras; a frame selection method based on a new gait cycle 

detection algorithm; four new gait image representations; and a 

novel fusion classifier. Rigorous experiments are carried out to 

compare the proposed method with state-of-the-art methods. The 

results show distinct improvements over recognition rates for all 

covariates. The proposed method outperforms all major existing 

approaches for all covariates and results in 66.1% and 81.0% 

Rank 1 and Rank 5 recognition rates respectively in overall 

covariates, compared with a best state-of-the-art method 

performance of 35.7% and 57.7%.   

 
Index Terms—Gait recognition, frontal view, Time of Flight 

camera, fusion of features, depth gait data set. 

 

I. INTRODUCTION 

AIT is the combination of posture and the way we move 

our whole body during the walking process [1]. It has been 

used as a discriminating feature in much recent research 

related to clinical analysis, gender classification, age 

estimation, forensics tools, and biometrics.  

One interesting application in which gait features are used is 

biometrics. Among the earliest evidence for using gait as a 

biometric was the work of Murray et al. [2] and Johansson [3]. 

From a human anatomical point of view, Murray et al. 

suggested that gait is unique to an individual. Based on the 

experiments conducted by Johannson [3] and Stevenage et al. 

[4], they concluded that humans have the ability to identify 

individuals based on their gait. Unlike other biometrics such as 

fingerprint, finger veins, palmprint and palm veins, gait 

recognition can be used without direct contact with the sensing 

device. Unlike face and iris recognition, gait recognition does 

not require any specific postures or positions. It does not require 

the cooperation or even awareness of the individual under 

observation. Also, the gait is hard to conceal and difficult to 

disguise [1]. Gait features are perceivable at a distance, and only 

low resolution is required [5] - [7].  

Although several approaches have been presented for gait 

recognition, most limit their attention to the lateral view, since 

this is considered to provide much more spatial and temporal 

information [8], [9]. However, this approach requires the 

camera to be placed at a certain height and distance, to capture 

full gait sequences. However, this is only applicable in outdoor 

or wide indoor spaces, and not in applications such as a secure 

narrow corridor. In such situations, frontal view gait 

recognition can be applied. Frontal view gait patterns can also 

be integrated with facial patterns to enhance biometric 

identification.  

Early attempts at using frontal view gait recognition used a 

single RGB camera. Barnich and Droogenbroeck [10] proposed 

gait features derived from a set of rectangles fitting any closed 

silhouette in RGB video frames. However, the size of the 

rectangles has to be changed if a subject wears bigger clothes 

or high heel shoes. They managed to produce good results but 

tests were not carried out on the clothing and shoes covariates. 

Soriano et al. [8] and Balista et al. [11] applied Freeman Chain 

Code to the silhouette edge image. The method depends on high 

quality silhouette segmentation which is very difficult to 

achieve in a complex background. The frontal view gait 

recognition algorithm in [12] employs the 3D gait volume by 

placing the edge points of the silhouettes in a 3D space. 

Silhouette alignment is obtained by stacking the normalized 

bounding boxes over time. The major drawbacks of this method 

are that the edge points and stacking methods are very 

dependent on clothing, shoes, and carrying conditions. Soriano 

et al. [8] achieved 100% accuracy but the experiment only 

involved normal walk, with only 4 subjects who had to wear a 

special suit. Balista et al. [11] performed analysis on the gait 

irregularities only, and no gait recognition results were 

presented.  Matovski et al. [1] applied Gait Energy Image (GEI) 

[13] and Gait Entropy Image (GEnI) [14] methods to frontal 

view based gait recognition. The GEI is generated by averaging 

the binary silhouettes in one gait cycle. This reduces the 

silhouette noise, so GEI is less sensitive to noise. However, 

according to Bashir et al. [14], the presence of shadow (through 

lighting effects) can affect the accuracy of the GEI algorithm. 
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Overall GEI produces good results in the experiments 

conducted in [1]; this is because the environment (background, 

lighting, walking surface and location) remains the same, 

eliminating the different types of shadow that would affect the 

accuracy of GEI. The GEnI, based on Shannon Entropy, 

produces high intensities in the dynamic areas such as legs and 

hands and low or zero intensities in the static areas. Unlike the 

GEI, GEnI is less affected by the presence of shadows. 

However, GEnI may only be effective if the subjects walk with 

constant or almost constant speed at all times, which may not 

be true in all conditions. If a test subject (or probe) walks slower 

than the subject in the gallery (the training set), the Shannon 

Entropy produces lower intensities especially in the dynamic 

areas. Likewise, when walking faster than normal speed, GEnI 

produces higher intensities especially in the dynamic areas. The 

speed covariate experiment in [1] showed that GEnI 

experienced only a slight drop in performance; however, the 

speed variations were only 25% or less. Higher speed variations 

will decrease the performance of GEnI.  

RGB cameras are widely used in lateral view gait recognition. 

Recently, Aggarwal and Vishwakarma [15] applied Zernike 

moment on a gait image representation called Average Energy 

Silhouette Image (AESI) to detect the presence of an object 

carried by an individual. Also, the features called Mean of 

Directional Pixels (MDP) and Spatial Distribution of Gradients 

(SDOG) are applied. MDP only considers the horizontal body 

motion, which is more suitable for lateral view gait recognition. 

It is not suitable for frontal view because the motion of the 

lower part of the body and hands are not horizontal. On the 

other hand, SDOG takes into account gradient information 

based on local orientation. Hence, it only considers the spatial 

features of gait. SDOG features are not suitable for gait 

recognition if there are changes of features caused by the 

temporal motion such as different walking speeds. Also, the 

experiments conducted did not involve speed covariates. The 

overall performance for this method was 91.47% for all CASIA 

datasets, 72.7% and 84.67% for OU-ISIR Treadmill Dataset B 

and USF datasets respectively. The method in [16] uses spatial-

temporal and kinematic features from gait silhouettes and 

applied a deterministic learning method to produce dynamic 

gait features. For the spatio-temporal method, the silhouette is 

divided into several regions and the median of all widths is 

computed. However, the widths of the leg and hand regions 

change with different walking speeds. The widths of the head 

area may also change if a person moves his/her head position. 

The kinematic features are generated from moving body parts. 

If the positions of body parts are measured relative to the height 

of an individual, this will change if the individual uses different 

types of shoes. The accuracies of this methods are 94%, 99%, 

90%, 98% and 94.4% on CASIA B, CASIA C, TUM-GAID, 

OU-ISIR, Treadmill Dataset A and USF-Human ID 

respectively. Castro et al. [17] combined the optical flow 

method and a Convolutional Neural Network (CNN) to produce 

new gait features. The optical flow method is sensitive to 

illumination changes. Another disadvantage of the GFI is that 

walking slower or faster than the gallery walking speed may 

produce different horizontal and vertical components of the 

optical flow, so this may affect the accuracy of the gait 

recognition. The method only achieved 59.4% average 

accuracy on the TUM-GAID dataset. Both methods in [18] and 

[19] combined GEI and a CNN to produce features for gait 

recognition. The problem with CNN is the computational 

complexity of the algorithm. Hence, the gait image size has to 

be small and in some cases the GEI image resolution needs to 

be reduced, thereby reducing the significant features in GEI and 

optical flow images [17]-[19]. The overall performance of the 

method in [18] and [19] on the CASIA B dataset was 86.70% 

and 95.88% respectively. Castro et al. [20] combined optical 

flow and a people detection algorithm that detects whether the 

moving object is human or not. This produces motion features 

called Tracklets. The people detection is based on a 

predetermined model of the human body. However, the 

detection and the optical flow algorithms used in this work are 

not robust against different illumination conditions or similarity 

between the clothing colors of an individual and the background 

colors of the given image. These degradations generate 

incorrect Tracklet features. In addition, the Tracklets based 

optical flow is not robust to walking speed variation. Overall 

performance of the method on the lateral view CASIA B dataset 

is 95.2%. 
A single RGB camera may not be able to provide enough 

information in a frontal view gait image sequence. Hence, Ryu 

and Kamata [9] used a stereo RGB camera system which 

generates a human point cloud using spherical coordinates. The 

method in [9] is scale invariant. However, it ignores the vertical 

axis change of direction which is important for features in the 

shoes covariate. The experiment involved 20 subjects with 

normal walk, fast walk, slow walk and walk with a bag. It 

achieved overall performance of 98.7%. However, the 

experiments were not conducted under rigorous gait recognition 

conditions. This was because the Curve Spread method [8] 

which uses Freeman Chain Code features which are also 

susceptible to noise, achieved only 82.5% overall accuracy.    

The main disadvantage of the single and stereo RGB camera 

systems is that performance drops dramatically if the 

underlying human silhouette segmentation algorithm fails. 

RGB systems are sensitive to color differences between 

clothing or footwear (foreground color) and the environment 

(background color). Even if the actual foreground and 

background colors are different, illumination, shade and 

shadow may change the colors. Also, using a stereo RGB 

camera system is compute-intensive because of the stereo 

matching process in the post production of the 3D images. 

In order to overcome this problem, Sivapalan et al. [21] and 

Chattopadhyay et al. [22] used the infrared based Kinect 1.0 

camera system to produce depth measurement of the object in 

its scene. The human silhouette segmentation based depth is not 

affected by the illumination problems of RGB camera systems. 

They produced features known as Gait Energy Volume (GEV) 

and Pose Depth Volume (PDV). These two features are based 

on binary voxel. The construction of the binary voxel is highly 

sensitive to outliers which affect its accuracy [23]. 

Chattopadhyay et al. [23] proposed another method using front 

and back views from two Kinect 1.0 cameras. Due to the 

limitation of the Kinect 1.0 camera’s range, the proposed 

method only captured an incomplete gait cycle. Therefore, the 

features in this method were based on only a few frames from 

the time interval, so the accuracy is affected by different 

walking speeds and different lengths of the first step. The 
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lighting conditions were also controlled because this can affect 

the depth measurement of the Kinect 1.0 camera. This 

requirement was supported by research in [24] - [27] which 

found that the Kinect 1.0 camera is highly sensitive not only to 

lighting conditions but also to types of surfaces and colors. The 

Kinect 1.0 also produces noise on different body parts [22]. In 

Chattopadhyay et al. [22] the Kinect camera is able to capture 

full depth variation in limbs only but not the whole body over 

one gait cycle. Also, in [23], the Kinect cameras were not able 

to record complete gait cycles. The good algorithm such as 

frontal view GEI [1] requires features from both lower and 

upper body parts in a complete gait cycle. In [1], the frontal 

view gave more than 90% accuracy. However, the rank 1 

accuracy of the frontal view GEI in [22] and [23] were as low 

as 33.33% and 37.93% respectively. This is because the frontal 

view GEI features of the whole body over one gait cycle are not 

completely constructed. The problems experienced in [22] and 

[23] are caused by the sensor range limitation of the Kinect 

camera. The maximum sensor range for the Kinect 1.0 and 2.0 

cameras is only 4.0m [28]. Recently, Zou et al. [29] combined 

features from a tri-axial accelerometer sensor in a smart phone 

and a Kinect camera to identify individuals based on their gait 

patterns. From the color and depth images of the Kinect camera, 

features called Eigengait and TrajGait are produced. The 

Eigengait is based on the EigenFace [30] features that are 

sensitive to lighting conditions [31]. Furthermore, Trajgait is 

sensitive to motion and can be affected by walking speed 

covariates. Also, for the accelerometer sensor, users may forget 

to bring their smart phones.   

Geisheimer et al. [32] and Tahmoush and Silvious [33] 

proposed a method using both micro Doppler radar and infrared 

sensors to obtain a gait signature from a frontal view. 

Simultaneous infrared and radar measurements were taken with 

the goal of eventually correlating radar features to their 

biomechanical source. However, both methods in [32] and [33] 

are not suitable for a real application because the subjects need 

to wear infrared reflective markers.  

Balazia and Sojka [34] use features extracted from the motion 

of joint angles through the Maximum Margin Criterion method. 

This method used the CMU-MoCap dataset that recorded the 

motion of joint angles with an optical marker-based Vicon 

system [35]. Similar to [32] and [33], this method is not suitable 

for real applications because the subjects are required to wear a 

black jumpsuit which has 41 markers taped to it. 

Given the problems experienced by the above methods and 

sensor technologies, we propose a frontal view gait recognition 

method based on using a 3D Time of Flight (ToF) camera, 

which can generate more accurate depth images. Unlike single 

or multiple RGB camera systems, a ToF camera produces gait 

images which are based on the depth, so it is not affected by 

color problems, or by illumination, shadows and shade. ToF 

technology does not require compute-intensive depth 

reconstruction. Also, unlike a RGB stereo based camera, a ToF 

camera delivers reliable depth information in low or repetitively 

texturized areas [25].  

However, if we use ToF technology, a novel method is 

required because of the nature and interpretation of ToF images. 

New algorithms are required at all stages in the recognition 

process.         

In comparison with existing studies in this area, the 

contributions of the research presented in this paper are: 

• New human silhouette extraction algorithm – This new 

algorithm not only extracts the human silhouette but also 

reduces the multiple reflections problem experienced by a 

ToF camera.  

• Gait cycle frames selection algorithm – To select the frames 

for one gait cycle, a new gait cycle detection algorithm 

based on depth information is developed. 

• Novel gait image representations – Four gait image 

representations are developed. Each representation 

performs better than the others on certain covariates. This 

suggests that the gait image representations can be fused, to 

make the algorithm more robust overall. 

• Adaptive Multi-Stage Fusion Classifier – Our algorithm is a 

hierarchical classifier that fuses the novel gait image 

representations. It identifies the covariates and applies a 

specialized classifier for that specific covariate.  

These four algorithms are an extended version of our work in 

[36]. Compared to the previous paper, this paper explains the 

proposed algorithms thoroughly. Also, the gait image 

representations have been improved with removal of the area 

below the shin, using an α parameter. In addition, this paper 

introduces the new Adaptive Multi-Stage Fusion Classifier.    

The remainder of this paper is organized as follows: Section 

II describes the development of the proposed data set. Section 

III introduces the proposed gait recognition method that 

includes: the new human silhouette extraction algorithm; the 

gait cycle frame selection algorithm; the development of the 

new gait image representations; and the novel fusion classifier. 

Experimental results are presented and analyzed in Section IV. 
Section V concludes the paper.   

II. THE DEVELOPMENT OF THE PROPOSED DATA SET  

In this research, a Fotonic B series ToF camera [37] is used to 

capture frontal view gait sequences. It measures the distances 

between the camera and objects based on the travel time of the 

emitted light from the camera to the objects and back again. The 

Kinect 1.0 and 2.0 cameras’ sensor range is 4.0 meters [28], 

while the ToF camera can sense accurately the depth of objects 

up to 7m [37]. This difference is significant because, unlike the 

Kinect cameras, the proposed ToF camera is able to capture 

images of the whole body over one complete gait cycle as 

explained in the previous section. Both Kinect 1.0 and 2.0 

cameras have depth sensors and an RGB camera. The cameras 

produce colored point clouds that suffer from a non-accurate 

association between depth and RGB data, due to a non-perfect 

alignment between the camera and the depth sensor. Moreover, 

depth images suffer from a geometric distortion; this requires 

calibrations that relate the 3D coordinates to 2D image 

coordinates [38], [39]. The proposed camera ToF does not need 

to be calibrated to produce 3D measurements  

Our ToF camera has two disadvantages over the Kinect. The 

ToF camera has lower spatial resolution than the Kinect 1.0 

[26]. The Kinect 1.0 and 2.0 have 320 x 480 and 512 x 424 

spatial resolutions respectively [28], while our ToF camera has 

only 160 x 120 spatial resolution. However, it has been shown 
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that gait recognition can be carried out using low resolution 

human silhouette images [5] - [7]. The second disadvantage is 

that the cost of a ToF camera is greater than either Kinect 

camera. However, it is expected that the cost of ToF cameras 

will decrease significantly in the future [40], [41]. Therefore, 

this disadvantage is not critical in the long term for frontal gait 

recognition applications. We capture gait image sequences at 

50 frames per second (fps). We set the predefined filter to Multi 

Frequency Spatio Temporal, which improves the sensing 

accuracy by taking four captures before producing one frame of 

the depth image. The ToF camera used in the tests generates 

four files which store horizontal distance, vertical distance, 

depth distance and brightness images. The 16-bit Portable Gray 

Map (PGM) file format is used to store all the images. In this 

research, only horizontal distance (X), vertical distance (Y) and 

depth distance (Z) images are used for gait recognition. The 

depth distance is the perpendicular distance from a target point 

to the origin of the coordinates. All the distance measurements 

are in millimeters (mm).  

The aerial view of the experimental setup is illustrated in Fig. 

1. The height of the ToF camera is 0.7m using a tripod in area 

C. Referring to Fig. 1, a subject was asked to stand in area A 

and walk towards the camera through Area B until he or she 

crossed line B1-B2. After crossing line B1-B2, the subject was 

asked to turn left and enter area D. Then the same procedure is 

repeated for different covariates. The distance between lines 

A1-A2 and B1-B2 is 4.7m and the distance from lines B1 and 

B2 to the camera is 1.2m. The two parallel dotted lines illustrate 

the walking direction. The subjects were not controlled to walk 

strictly with respect to the center/vertical axis of the camera. 

Hence the subjects were allowed to walk freely as they were 

approaching the camera. This produces frontal or nearly frontal 

view gait sequences.   

Based on the setup in Fig. 1, two sessions, repeated seven 

months apart, were conducted. The first and second sessions 

were conducted in May 2013 and December 2013 respectively. 

This is because the gait of a person can vary over time (time 

covariate). The first session involved 46 people, and each 

subject was asked to do 6 walks which involved 5 different 

covariates: 2 normal walks, 1 slow walk, 1 fast walk, 1 carrying 

two bags with one bag in each hand, and 1 carrying a ball with 

both hands. The walking speed was normal for both carrying 

cases. In the second session, only 33 subjects who were 

involved in the first session participated. In this session, the 

subjects were asked to do 5 walks, one for each of the 5 

covariates. In the second session, we did not require the subjects 

to wear the same types of footwear and clothing as in the first 

session. This was to make the tests for time covariate more 

realistic. Before the start of each data collection session, a 

subject was also briefed about the covariates and most 

importantly about the walking speeds: normal walk, slow walk 

and fast walk. Since the exact walking speed is not controlled, 

briefing is vital, so that the subjects bore their natural variations 

of walking speeds in mind before capturing their gait image 

sequences with those covariates. The following metadata were 

also collected: gender (57 percent male), age (19 to 59 years 

old), height (1.50 m – 1.88m), and weight (42 - 114 kg). Of 46 

subjects, 44 were right foot dominant and only one was left foot 

dominant. This information can be used for analyzing the 

performance of gait recognition in different categories. This 

 
 

Fig. 1.  Aerial view of the gait image sequence capture setup of the proposed 

frontal view gait data set using the ToF camera. 

metadata can also be used in future research such as gender 

classification, age and height estimation, based on gait.   

III. THE PROPOSED METHOD 

The proposed method consists of four stages: human 

silhouette extraction based on multilevel segmentation, frames 

selection based on the gait cycle detection, feature extraction 

through different gait image representations, and classification 

based on an Adaptive Multi-Stage Fusion Classifier (AMSFC). 

A. Human Silhouette Extraction 

The first stage is the extraction of the human silhouette from 

the depth image (Z-image). The algorithm starts by applying a 

simple background subtraction technique and then converting 

the subtracted image to a black and white image using Rosin’s 

threshold method [42]. Experiments in [42] show that this 

method produces better results on the difference images than 

other thresholding methods such as Tsai’s  [43], Otsu’s [44], 

Kapur’s [45] and Ridler and Calvard’s [46]. After that, the 

initial human silhouette filled with depth distances, Zinit, is 

obtained by multiplying the current foreground image with the 

black and white image. 
One of the main problems when using a TOF-camera is that 

the emitted light from the camera is reflected in many directions 

by the objects. Thus, a fraction of the detected light signal is not 

related to the distance [47]. To reduce this problem, a depth 

image enhancement algorithm is proposed. First, the Zinit noisy 

pixels with values greater than upper and lower thresholds are 

removed. The thresholds are the permitted fluctuations from the 

average of Zinit (x,y) >  0. Next, the algorithm cleans up the 

image by removing small connected blobs below the maximum 

area. This will speed up the removal of remaining noisy pixels 

in the next step.  

In the third step, the problem of remaining noisy pixels in Zinit 

is tackled by using the X and Y images (the actual horizontal 

and vertical coordinates of the human silhouette) using the 

linear least square fitting (LSF) method. LSF was chosen 

because both the horizontal and vertical coordinates have a 
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linear relationship to their sequence positions, as shown in Fig. 

2. The pixels in red circles are the noisy pixels which will be 

eliminated by the proposed algorithm. A horizontal vector Ԋ of 

any row, y, is produced using:  

 

                 Ԋ(𝑛)𝑦 = 𝑋𝑓(ӿ𝑛, 𝑦)   for ӿ1 < ӿ2 < ⋯ < ӿ𝑁                     (1) 

 

where 𝑋𝑓 denotes the horizontal image at current frame f and ӿ𝑛  

is the column in  𝑋𝑓 with ӿ1 being the leftmost and ӿ𝑁  the 

rightmost columns of a row, y in Zedge. Similarly, a vertical 

vector Ѵ can be generated. Before applying the Least Square 

Fitting (LSF) method in [46], the number of elements in Ԋy 

(#Ԋy) and Ѵ (#Ѵx) for each y and x are inspected using the 

following: 
 

             𝐷𝑒𝑐𝑖𝑑𝑒 = {

𝐴𝑝𝑝𝑙𝑦 LSF 𝑖𝑓 #Ԋ𝑦  ≥  Ɣ

𝐴𝑝𝑝𝑙𝑦 LSF 𝑖𝑓 #Ѵ𝑥 ≥ Ɣ
𝐷𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                         (2) 

Equation (2) avoids the incorrect generation of LSF lines due to 

noisy pixels in a short sequence of Ԋy and Ѵx with the empirical 

value for Ɣ is 10. Other criteria that need to be met before 

applying LSF to Ԋy and Ѵx are as follow: 
 

 𝐷𝑒𝑐𝑖𝑑𝑒 = {

𝐴𝑝𝑝𝑙𝑦 LSF 𝑖𝑓  (#Ԋ𝑦 ≠ 0) > (𝔨 × #Ԋ𝑦) 

𝐴𝑝𝑝𝑙𝑦 LSF 𝑖𝑓  (#Ѵ𝑥 ≠ 0) > (𝔨 × #Ѵ𝑥)

𝐷𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

             (3) 

 

Equation (3) avoids the incorrect generation of LSF lines due to 

the presence of too many background pixels in Ԋy and Ѵx. The 

empirical value for 𝔨 is 0.9. LSF uses a grouping strategy to 

isolate the noisy pixels from the noise-free ones. The group is 

decided based on the difference between one pixel in one group 

and the next pixel in another group exceeding a certain 

threshold (in this case, 50). Next, the group which has the most 

members is used for plotting the LSF line. If the conditions in 

(2) and (3) are fulfilled, then the LSF method in [48] is applied 

by using the data in the group with the maximum number of 

elements. After this, the algorithm retains the blob with 

maximum area and deletes the smaller blobs. In certain cases, 

noisy pixels still exist near the feet and connect to the silhouette. 

Such noise is reduced by identifying the leftmost and rightmost 

columns of the upper body. Here the upper body is defined as 

silhouette above the knees position which is 0.715 × h [49], and 

h is the height of the silhouette. Finally, all the parts of the 

columns below the knee positions that are outside the leftmost 

and rightmost columns of the upper body are deleted. Figs. 3(a), 

(b), (c) and (d) show examples of the background image, the 

foreground image, the image produced by Rosin’s 

segmentation method and the image enhanced by the proposed 

algorithm respectively. 

B. Gait Cycle Frames Selection 

The gait cycle frames selection is the second stage of the 

proposed method. The video frames selection involves a gait 

cycle detection algorithm which uses the mean difference 

between two legs as the feature. To compute the mean 

difference between the two legs in the depth dimension of each 

frame, the center between the two legs needs to be determined. 

This is based on the midpoint of the abdomen, rather than the 

 

  
Fig 2. Example of one row of Human Silhouette (Horizontal Coordinates). 

legs, because the image of the leg closer to the camera is bigger 

than the one further away. The midpoint of the abdomen is the 

area between 0.2×h and 0.5×h. The algorithm then divides the 

legs area into left and right. The legs area is the area below 

0.65×h which empirically is between knees and thigh. Then, the 

means of depth for both left and right are computed.  After that, 

the difference between the means of the left and right areas is 

measured. An example of the mean depth difference between 

the non-zero-pixel values for the two legs in each frame of a 

gait sequence is shown in Fig. 4. The local minimum is detected 

at frame d, if the mean difference between the two legs is less 

than at frames d – 1 and d + 1. After that the mean of all minima 

are computed and shown as the horizontal line in Fig. 4. All the 

local minima higher than the mean of all minima are removed. 

If a frame is too close to the frontal view camera, the camera 

may not be able to capture the whole-body silhouette. This is 

because the person is too close to the camera. Therefore, for the 

development of the gait image representations, only frames 

whose average of non-zero pixels ≥ ɭ are selected. The ɭ value 

is set to 2400 which is identified experimentally. This value is 

identified based on the average of the last frame that contains 

the complete silhouette from top of the head to the feet of a 

subject. Since the image of a subject is bigger and more accurate 

if he or she is closer to the camera, it was decided to use images 

of the gait sequence within the last three local minima for the 

development of the gait image representations.  

C. Development of Gait Image Representations 

We propose four gait image representations, namely Gait 

Depth Energy (GDE), Partial Gait Depth Energy (PGDE), 

Discrete Cosine Transform GDE (DGDE) and Partial DGDE 

(PDGDE). GDE is similar to Depth Energy Image (DEI) [50]. 

The DEI is based on the average distances in one gait cycle. If 

DEI is applied directly, the absolute depth distances between 

the camera and a person in the gallery may differ from the 

absolute depth distances in a probe of the same individual. This 

would affect the performance. To overcome this, we normalize 

the DEI, giving GDE.  Hence, the different sizes of silhouettes 

arising from different distances between the camera and the 

subject are allowed for.   
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(a)                                                                                                         (b) 

 
(c)                                                                                                        (d) 

Fig. 3 (a) Background image (b) Foreground image (c) Image produced by Rosin’s segmentation (d) Image enhanced by NRLSF. 

 
 

  Fig 4.  Gait cycle produced from the mean difference between the two legs. 

The normalized depth image 𝓩𝜂 is produced using the 

following equations: 

                   𝒵𝑐𝑟
𝑛𝑧(𝑘) =  𝒵𝑐𝑟(𝑥, 𝑦)  > 0                                          (4)   

 

                                 𝒵𝜂 =  
𝒵𝑐𝑟(𝑥,𝑦) 

𝒵𝑐𝑟
𝑛𝑧

                                                (5) 

𝒵cn
nz is the mean of the non-zero elements in 𝓩cn.  From 𝓩𝜂 the 

GDE is produced by averaging the frames which contain 𝓩𝜂 in 

one gait cycle. The formula to produce the GDE image, 𝓩GDE 

is as follows: 

                      𝒵GDE(𝑥, 𝑦) =
1

𝑇𝑓

∑ 𝒵𝜂(𝑗)(𝑥, 𝑦)
𝑇𝑓

𝑗=1                           (6) 

where Tf is the total number of frames in one gait cycle. 

For the DGDE gait image representation, 𝓩DGDE is produced 

by applying Discrete Cosine Transform (DCT) [51] to K by L 

blocks of 𝓩GDE. The top left corner of the K by L block is the 
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zero-frequency (or DC) coefficient. The DC coefficient holds 

most of the image energy and represents the proportional 

average of the K by L block. The total energy remains the same 

in the K by L blocks but the energy distribution changes, with 

most energy concentrated in the DC and low frequency 

coefficients.  In static areas of the gait, like the abdomen, the 

DC and low frequency coefficients are more significant than the 

high frequency coefficients. However, in dynamic areas, like 

hands and lower legs, the high frequency coefficients contribute 

more to the gait signature based on the 𝓩DGDE. Hence, this 

makes DGDE more robust to noise, to variations in walking and 

to other inherent factors of gait.  Figs. 5(a) and 5(b) show the 

𝓩GDE and 𝓩DGDE respectively.  

The PGDE gait image representation is produced by deleting 

the left and right sides of 𝓩cr. This will eliminate the 

indiscriminate (or non-discriminating) features in the gait 

image representations due to the different swing of both hands. 

This is caused by different speeds of walking, carrying objects, 

mood and other inherent variations of gait. 𝓩PGDE is produced 

by identifying the rightmost and leftmost columns of the 

silhouettes in 𝓩cr at the shoulder row (about 0.2 × h) [49]. Then 

all the columns outside these boundaries are deleted.  After 

resizing 𝓩nr in all the selected frames in one gait cycle, Equation 

(6) is adapted to produce 𝓩PGDE. The 𝓩PDGDE is produced by 

applying DCT to K by L blocks of 𝓩PGDE (see Fig. 6(a) and (b)). 

In addition to all these four gait image representations, we 

also enhance each gait image representation by removing the 

indiscriminative area below the shin. The indiscriminative 

features in this area are caused by the different heights of the 

feet lifted because of speed variations, types of shoe and other 

inherent factors of gait. The percentage height of the 

indiscriminative leg area with respect to the height of each gait 

image representation is named α. Each gait image 

representation has a different α which is empirically identified. 

Fig. 7 shows the GDE image representation after applying the 

removal based on α. 

D. Adaptive Multi-Stage Fusion Classifier  

Robustness is one of the most important aspects of a gait 

recognition method. The method developed must be robust 

against any motion of pixels or features due to walking speed 

variation. Another factor that needs to be taken into account is 

carrying objects. Due to the presence of carried objects, the 

structure of the body and limited swing of arms/hands would 

reduce the accuracy of the gait recognition. Therefore, a method 

is also required to reduce the impact of carrying objects in gait 

recognition. 

Therefore, our adaptive multi-stage fusion classifier is 

divided into two main parts: an algorithm for the case when the 

subject is carrying an object, and another for when they are not. 

There are two cases of carrying an object: the upper body case 

(e.g. carrying a ball with both hands) and the lower body case 

(e.g. carrying a bag in each hand). The flow chart of the 

algorithm when carrying an object (the first part of the adaptive 

multi stage fusion classifier) is presented in Fig. 8. 

The algorithm starts by detecting the presence of an object 

around the lower body. Using GDE, the algorithm identifies  

whether the person is carrying objects around his/her lower 

body (LC) based on the following equations:  

                                 

                     𝑂𝐿 = 𝑚𝑎𝑥 ([
1

𝑛
∑ 𝒵GDE(𝑥, 𝑦)𝑛

𝑥=1 ]
𝑦 ∈ 𝑟𝑙

)                     (7) 

 

         𝐿𝐶 𝑖𝑠 𝑇𝑅𝑈𝐸 if 𝑂𝐿 + 𝐶𝐿 > ( 
1

𝑛
 ∑ 𝒵GDE(𝑥, 𝑦))𝑛

𝑥=1
 𝑦 ∈ 𝑟𝑙

            (8) 

 

where x and y are row and column pixel coordinates, rl = { 
𝑚

2
+

1 … 𝑚 }.  𝒵GDE(𝑥, 𝑦) is GDE pixel value at (x, y), n and m are 

the width and height of the GDE and CL is a constant value 

identified empirically as 0.1. CL and OL are identified by using 

the GDE in the gallery. If a person is not carrying an object 

around his/her lower body, the algorithm checks whether the 

person is carrying an object around the upper body. If a person 

is carrying an object around the upper body using both hands, 

the area which is normally occupied by the hands will have 

fewer pixels because both hands are nearer to the body center. 

Based on this, a person is identified as carrying an object around 

the upper body, UC, using: 

 

              𝑂𝐶 = arg 𝑚𝑖𝑛 ([
1

𝑛
∑ 𝒵GDE(𝑥, 𝑦)𝑛

𝑥=1 ]
𝑦 ∈ 𝑟𝑢 

)                     (9) 

 

   𝑈𝐶  𝑖𝑠 TRUE if 𝑂𝐶 − 𝐶𝑈 > (
1

𝑛
∑ 𝒵GDE(𝑥, 𝑦)𝑛

𝑥=1 )
 𝑦 ∈ 𝑟𝑢

              (10) 

where ru =  {0.4 × 𝑚 … 0.42 × 𝑚} are the estimated rows where 

the hands are absent because of carrying an object. The 

empirically determined value of Cu is 0.02. If LC and UC are 

true then the proposed algorithm divides the PDGDE into two 

halves – upper PDGDE and lower PDGDE. Then pixel by pixel 

matching is carried out for both halves. The matching score for 

each half is then multiplied by predetermined weights βu1 and 

βu2 (for upper and lower halves) if an object is detected around 

the upper body. If an object is detected around the lower body, 

the weights for upper and lower halves of PDGDE are βl1 and 

βl2 respectively. The empirical values for βu1, βu2, βl1 and βl2 for 

 
Fig. 5 Proposed gait full image representations: (a) GDE (b) DGDE. 
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                  Fig. 6 Proposed gait partial image representations: (a) PGDE (b) PDGDE.           Fig. 7 The GDE removed by the α parameter. 
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Fig. 8: Recognition algorithms for carrying objects. 

our dataset are 0.7, 0.3, 0.8 and 0.2 respectively. The weights 

for the upper halves are higher than the weights for the lower 

halves for both LC and UC. 

In this work, we consider a secure corridor application. 

Therefore, only small objects are typically carried. For our 

dataset, a small object (a football) was used. βu1 is greater than 

βu2 because the ball used is small and the object does not have 

impact on the upper part of the PDGDE. Also, in a secure 

corridor application, small objects are typically carried around 

the upper body. For the lower body case, βl1 is greater than βl2 

because the presence of the bags affects the shape and gait of 

the lower body when the bags are too close to the legs. The K-

by-L DCT block size of the PDGDE is 10-by-10 for both LC 

and UC. Finally, a minimum distance classifier is employed to 

find the identity of a person in the gallery. If the algorithm 

identifies that no object is being carried, the subject’s identity 

will be determined by the recognition algorithm for the non-

carrying object case. The recognition algorithm for non-

carrying object uses DGDE and PDGDE. Both DCT based gait 

image representations are used because of their robustness 

against noise and other gait invariant factors as discussed 

earlier. The difference between DGDE and PDGDE is DGDE 

includes the swing of hands but PDGDE removes them. The 

swing of both hands can sometimes be a useful feature, but it 

can also disturb the accuracy of the gait recognition. Therefore, 

we decide to fuse both gait image representations for the non-

carrying object recognition algorithm.  

The five features applied for DGDE and PDGDE for the 

proposed non-carrying object recognition algorithm are: each 

pixel, mean of each row, mean of each column, standard 

deviation of each row and standard deviation of each column. 

For each feature, a minimum distance classifier is applied to 

identify the correct match. Therefore, ten matches of subjects 

in the gallery are generated using both DGDE and PDGDE gait 

image representations. Hence, the algorithm creates two sets, 

ϺDGDE and ϺPDGDE, each consisting of five matches from the 

five features which generated from DGDE and PDGDE. Next 

the following equations are applied: 

 
ᵯDGDE = arg 𝑚𝑜𝑑𝑒[ϺDGDE] 

                    ᵯPDGDE = arg 𝑚𝑜𝑑𝑒[ϺPDGDE]                         (11) 
ɱDGDE = 𝑚𝑜𝑑𝑒[ϺDGDE] 

ɱPDGDE = 𝑚𝑜𝑑𝑒[ϺPDGDE] 

The decision on which classifier to use (probability 

distribution (PD) or Hidden Markov Model (HMM)) is based 

on the following:   

 

    

Ḿ𝑆 = ᵯDGDE, 𝑖𝑓 ᵯDGDE = ᵯPDGDE 𝑜𝑟 ɱDGDE = 5    

Ḿ𝑆 = ᵯPDGDE, 𝑖𝑓  ɱPDGDE = 5  
𝑈𝑠𝑒 PD, 𝑖𝑓 ɱDGDE  >  ɱPDGDE

𝑈𝑠𝑒 HMM, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (12) 

  

If ɱDGDE > ɱPDGDE, it shows that there is little motion of the 

body; otherwise it indicates large motion of body. The relative 

motion of the body is with respect to the gait image 

representation in the gallery. The reasons for selecting PD and 

HMM in (12) are: (i) PD is based on the similarity of the 

probability distribution between the respective columns in the 

gallery and probe; (ii) the HMM classifier observes the 

similarity of probability distribution not only in the respective 

columns, but also in the adjacent columns in the gallery and the 

probe.  

The PD uses Gaussian density distribution to estimate the 

similarity between gallery and probe of each column of GDE. 

First the following probabilities are calculated: 

             𝑃( 𝐶𝑘,𝑥 ∣∣ 𝒵GDE(𝑥, 𝑦)𝑗 ) =
𝑃( 𝒵GDE(𝑥, 𝑦)𝑗∣∣

∣Ć𝑘,𝑥 )×ώ1

𝑃(𝒵GDE(𝑥,𝑦)𝑗)
         (13) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

9 

 

                 

             𝑃( ¬𝐶𝑘,𝑥  ∣∣ 𝒵GDE(𝑥, 𝑦)𝑗 ) =
𝑃( 𝒵GDE(𝑥, 𝑦)𝑗∣∣

∣Ć𝑗,𝑥 )×ώ2

𝑃(𝒵GDE(𝑥,𝑦)𝑗)
      (14) 

 

where y = (0.1905 × h… 0.3714 × h). The range of y is the area 

approximately starting from the shoulders to the end of the 

chest or elbow. This area is chosen because it has been 

identified as the least dynamic area in gait motion. 

𝑃( 𝐶𝑘,𝑥 ∣∣ 𝒵GDE(𝑥, 𝑦)𝑗 ) is the probability of a class for column 

x in the kth subject in the gallery given the pixel value 𝓩GDE (x,y) 

of the GDE image of the probe j. 𝑃( ¬𝐶𝑘,𝑥 ∣∣ 𝒵GDE(𝑥, 𝑦)𝑗 ) is 

the probability of 𝒵GDE(𝑥, 𝑦)𝑗 not being in the Ć𝑘,𝑥 column 

class. Equations (13) and (14) are based on the Bayes Decision 

Theory, ώ1 and ώ2 are the prior probabilities which are 

empirically identified, and ώ1 + ώ2 = 1. Another condition is ώ1 

>> ώ2; this condition is helpful when noise occurs on any pixel 

in a column of GDE. 𝑃(𝒵GDE(𝑥, 𝑦)𝑗) is the sum of numerators in 

(13) and (14). Equations (13) and (14) are computed based on 

the Gaussian probability distribution. Next, the number of 

pixels belonging to each subject in the gallery is counted, 

determined by the following equation: 

 
Ȼ(𝑥, 𝑦)𝑘 = 1; 

𝑖𝑓 𝑃( 𝐶𝑘,𝑥  ∣∣ 𝒵GDE(𝑥, 𝑦)𝑗 ) > 𝑃( ¬𝐶𝑘,𝑥  ∣∣ 𝒵GDE(𝑥, 𝑦)𝑗 )                (15) 

else   Ȼ(𝑥, 𝑦)𝑘 = 0                                                                             
 

The matched subject Ḿ𝑆 in the gallery is based on the 

following formula:  

 

             Ḿ𝑆 =  arg 𝑚𝑎𝑥

𝑘∊{1…₦} 
[∑ ∑ Ȼ(𝑥, 𝑦)𝑘

0.3714 × ℎ
𝑦=0.1905 × ℎ

𝑛
𝑥=1 ]                (16) 

 

where ₦ is the last subject in the gallery.  

On the other hand, if ɱDGDE ≤ ɱPDGDE, HMM is used to find 

the Ḿ𝑆 in the gallery. The HMM is characterized as the finite set 

of hidden states, S = {s1, s2…sN} and a set of parameters Θ = 

{A, B, 𝜋} [52]. The transition matrix A = {aij, 1 ≤ i, j ≤ Ns} 

represents the transition probability of going from state i to state 

j with aij ≥ 0 and ∑ 𝑎𝑖𝑗 = 1
𝑁𝑠
𝑗=1  where Ns is the number of states. 

The emission parameter B = {b(o|sj)} indicates the probability 

of observation o, when the system state is sj. In this paper the 

continuous HMM with Gaussian density is used. Hence b(o|sj) 

is represented as [52]:  

 

                            𝑏(𝑜|𝑠𝑗) = 𝒩(𝑜|μ𝑗 , 𝜎𝑗)                               (17) 

 

where 𝒩(𝑜|μ𝑗 , 𝜎𝑗) denotes the Gaussian density at o. 

𝜋 = {𝜋i}, the initial state probability distribution, represents the 

probabilities of initial states with 𝜋i ≥ 0 and ∑ 𝜋𝑖 = 1𝑁
𝑖=1 .  

In our problem, the HMM is implemented based on the idea 

that a depth pixel value in any position of a column can 

sometimes stray/shift into neighboring columns.  This is due to 

misalignment of the gait image representation, noise, motion of 

the body and clothes, and other inherent factors of gait. Hence, 

the states are a column and its neighboring columns. Therefore, 

there are 2 states for the pixels at the first and last columns and 

3 states for those at the columns between the first and last 

columns. Hence, the shift of a depth value between one column 

to the neighboring columns can occur horizontally within the  

S1 S2

a11 a22

a12

a21

 
(a)  

S1 S2 S3

a11 a22 a33

a12

a13

a31

a21 a32

a13

(b) 

Fig. 9 The proposed ergodic HMM model (a) 2-state (b) 3-state. 

 

same row or in different rows. The shift of a depth value may 

occur vertically within a column. In this case, it does not change 

the probability of the state of a state or column. Hence this does 

not affect the accuracy of the gait recognition.  

Fig. 9 shows the proposed ergodic 2-state and 3-state HMM 

models applied in this work. Since we have limited training 

data, the transition probabilities aij were identified using the two 

normal walks that produce the best accuracies. 

 The transition matrix A for both the 2-state model and 3-state 

model are as follows:    

 

                     𝑨𝟐𝒔 = [
𝑎11 = 0.97 𝑎12 = 0.03
𝑎21 = 0.97 𝑎22 = 0.03

]                           (18) 

 

𝑨𝟑𝒔 = [

𝑎11 = 0.97 𝑎12 = 0.015 𝑎13 = 0.015
𝑎21 = 0.97 𝑎22 = 0.015 𝑎23 = 0.015
𝑎31 = 0.97 𝑎32 = 0.015 𝑎33 = 0.015

]                 (19) 

 

where A2s and A3s are the transition matrices of the 2- and 3- 

state models respectively. For A2s, the transition probabilities 

from state 1 are higher than in A3s because of the dynamic 

attribute of the leftmost and rightmost columns of GDE.  In this 

work, S1 is always the column in which pixels are being 

observed. The initial state probabilities 𝜋i are the elements of 

the vector 𝜋 and the probabilities are identified empirically 

based on the two normal walks which produce the best gait 

recognition accuracy. The initial state probabilities are stated in 

the following equations: 

                         𝝅𝟐𝒔 = {𝜋1 = 0.97, 𝜋2 = 0.03}                            (20) 

              𝝅𝟑𝒔 = {𝜋1 = 0.97, 𝜋2 = 0.015, 𝜋3 = 0.015}                (21) 
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where 𝜋2s and 𝜋3s are the 𝜋 for 2- and 3-states respectively. 

In this work, the recursive Viterbi algorithm is applied to find 

the optimal state sequence and its Viterbi probability score for 

each observed column. The total Viterbi probability score of the 

optimal state sequences in all columns, 𝑃𝑘
∗ is computed as 

follows: 

                                     𝑃𝑘
∗ =  ∑ 𝑝𝑇

∗𝑊
𝑥=1 (𝑥)                               (22) 

where  𝑝𝑇 
∗ (𝑥) is the Viterbi probability score of the optimal 

state sequence in a column x. Therefore, the matched subject 

𝔐 is computed as follows:  

                               𝔐 =  arg max
𝑘∊{ᵯEDGDE ,   ᵯEPDGDE}

(𝑃𝑘
∗)                      (23) 

IV. EXPERIMENTAL RESULTS & DISCUSSION 

In this section, we first discuss the parameters used in the 

proposed methods and how they can be applied with different 

ToF camera settings. Then the experimental results for the 

proposed algorithm are presented and discussed. 

A. Parameters Settings 

The first stage of the proposed method involves silhouette 

extraction. The Ɣ value is proportional to the size of the 

silhouette. Hence, bigger silhouettes require bigger Ɣ values. 

Other parameters for this algorithm can be tuned based on the 

quality of images in the gallery.  

In the gait cycle frames selection, the τ value is used to 

identify the last frame (where the subject is closest to the 

camera) so that the camera can capture the entire body 

silhouette. This value is identified based on the average of the 

last frame that contains the complete silhouette from top of the 

head to the feet of the tallest subject in the gallery. 

The K-by-L block size for applying DCT to GDE and PGDE 

is 10×10. This is not application-dependent. The sizes of GDE 

and PGDE are 105×54 and 105×32 respectively. The K and L 

values are proportional to the sizes of GDE and PGDE. 

Another parameter called α is used to identify the starting 

position of the indiscriminate features around the shin area. In 

this experiment, the α values applied are identified by using two 

normal walks. This is carried out because of the limited training 

data available. Hence at least two sets of galleries are required. 

The best K, L and α values are the ones producing the highest 

matching accuracy between the two galleries. A simple direct 

matching algorithm such as in (24) and (25) can be used [53].  

 

𝐷(𝑘)(𝑥, 𝑦)  =  |𝐼𝐺∗
1 (𝑥, 𝑦) − 𝐼𝐺∗

2 (𝑘)(𝑥, 𝑦)| 𝑓𝑜𝑟 𝑘 = 1 … ₦              (24) 
 

𝑅 = arg 𝑚𝑖𝑛 (∑ ∑ 𝐷(𝑘)(𝑥, 𝑦) 𝐺1
𝑦=1

𝑤𝐺1
𝑥=1 ) 𝑓𝑜𝑟 𝑘 = 1 … ₦                (25)  

    

where  𝐼𝐺∗
1  is a gait depth image representation from the first 

gallery, 𝐼𝐺∗
1 (𝑘) is the gait depth image representation of the kth 

subject in the second gallery, wG and ℎ𝐺  are the width and height 

of the gait image representation and R is the matched subject in 

the first gallery.  

 The identification of carrying objects for the upper and 

lower body cases involves two experimental parameters, CL and 

CU. These are identified based on small objects carried by 

individuals. The small objects are selected for secure corridor 

applications. βu1, βu2, βl1 and βl2 can be identified based on the 

training data.  

Similarly, A2s, A3s, 𝜋2s and 𝜋3s can be identified by means of 

HMM training with data related to the non-carrying object 

covariates. These parameters can be tuned based on subjects’ 

walking speed. In the environments where people walk much 

faster or slower than their normal walk, the values of these 

parameters can be increased.    

As discussed, in different environments and subjects, the 

values of the parameters may differ, but if the same 

aforementioned procedures are carried out based on the training 

data, it will produce similar results as presented in part B of 

Section IV 

B. Experimental Results 

In this work, ten experiments were carried on the proposed 

method and compared with four existing methods: Frontal 

View Gait Energy Image (FVGEI) [1], Frontal View Gait 

Entropy Image (FVGEnI) [1], Gait Energy Volume (GEV) [21] 

and Robust Frontal Gait Recognition (RFGR) [54]. All the 

methods are evaluated using Rank 1 and Rank 5 which are the 

key performance indicators that measure the accuracy and 

robustness of the algorithms. The gallery is one of the normal 

walks captured in the earlier of the two recording sessions. The 

silhouettes used to generate FVGEI and FVGEnI are produced 

by converting depth silhouettes to binary silhouettes.  

Table I summarizes the results of the proposed methods and 

the four existing methods. As seen in Table I, our proposed 

method outperforms all the other methods in Rank 1 and Rank 

5 for all covariates. The proposed method achieves perfect 

recognition (100%) for the normal walk experiment. All the 

other methods also produce good results on normal walk, 

except GEV and RFGR. GEV, which is based on binary voxel 

volume, also produces poor results on other covariates. This is 

because the construction of the binary voxel volume is highly 

sensitive to depth information, so noise causes severe 

misalignment of the voxel volume over one gait cycle. In [23] 

GEV achieved similar results (20% Rank 1 accuracy) for 

normal walk. On the other hand, RFGR which is based on 

Histogram of Oriented Gradient (HOG) produces slightly better 

result than GEV. However, the HOG reduces the depth features 

without considering whether they are discriminating or non-

discriminating features, hence reducing the overall accuracy of 

RFGR.    

The methods proposed in [1], FVGEI and FVGEnI, use the 

average of binary silhouettes over one gait cycle. These 

representations only contain information on the 2D shape and 

2D contour motion of the body. However, our proposed 

representations use frontal depth information as the feature. 

This produces the 3D shape and 3D contour motion which are 

important features for gait recognition especially when a person 

is walking perpendicular to the optical axis of the ToF camera. 

Another reason for the poorer performance of FVGEI and 

FVGEnI is the PCA-MDA classifier used by both methods. The 

problem with the PCA-MDA method is that the 

dimensionalities of the feature space of all the gait image 

representations in this experiment are much larger than the class 

or size of the gallery (which is 46). The feature space is the total 

number of pixels in the gait image (5670) for both FVGEI and 

FVGEnI. MDA fails when faced with this problem.   
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TABLE I COMPARISON OF PERCENTAGE OF RECOGNITION PERFORMANCES OF THE PROPOSED METHOD AGAINST THE PREVIOUS METHODS 

 

To overcome this problem, PCA is applied first before MDA, 

reducing the dimension to class-1 which is 45 for these 

experiments. This process removes the discriminant 

information in the feature space especially when the dimension 

reduction is enormous and/or the discriminant information is 

compacted within a small feature space. This fact is proved by 

replacing PCA-MDA with a pixel by pixel matching classifier 

in [53] (as shown in (24) and (25)) which does not reduce the 

feature space. The pixel by pixel matching classifier computes 

the sum of differences between each pixel in the probe and 

gallery images. Then a minimum distance classifier is used to 

identify the match in the gallery. The overall Rank 1 results for 

FVGEI and FVGEnI using pixel matching are 40.0% and 

38.6% respectively. These are slightly higher than the Rank 1 

PCA-MDA versions of FVGEI and FVGEnI which are 35.7% 

and 33.8% respectively. 

None of the gait image representations produce good results 

on the time-based covariate. This may be due to the change of 

clothing and footwear worn by the subjects between the two 

sessions. This suggestion is supported by the findings in [1] 

which shows that when the subjects wear consistent clothing 

and do not wear footwear, this produces significant 

improvement in the recognition results. However, in most cases 

people wear different types of clothes and shoes over a period 

of time (for example, in summer versus winter), and in most 

places people use footwear. Therefore, it is better not to restrict 

the clothing and footwear for the time covariate experiment. 

Other factors might be subjects’ weight change or 

psychological state (eg. mood). We also note that the lateral 

view methods in [13], [14], [53], [55] - [62] yielded significant 

drops in the time covariate experiments.  

A further evaluation of the impact of the covariates on our 

method uses the Cumulative Mean Score (CMS). CMS for the 

overall and each experiment for up to Rank 10 is presented in 

Fig. 10. The measurement is only made up to Rank 10 which 

reflects the not too difficult gait patterns where the proposed 

method can be improved in future. As can be observed, all the 

time covariate experiments produced lower accuracies than the 

overall accuracy. Based on the graph in Fig. 10, the bag & time 

covariates are the most challenging experiments. This may be 

caused by the weights of both bags that change the walking 

patterns. Another factor is the presence of both bags that closed 

or touched the legs of the subjects which can alter the shape of 

 
Fig. 10: The recognition rate of overall and each experiment based on 

Cumulative Mean Score (CMS) from Rank 1 to Rank 10. 
 

the silhouette and can also produce false depth information. For 

the non-carrying object covariates the normal walk has the least 

impact on the proposed algorithm followed by the fast and slow 

walks for both time and non-time-based covariate experiments. 

Normal and fast walk covariates achieve almost the same 

accuracy with 100% score at Rank 1 and Rank 2 respectively. 

The slow walk covariate achieved 100% accuracy only at Rank 

6. Similar trends are also shown by the time-based covariates.  

For the time-based covariates, the overall patterns show that the 

normal walk is the best, followed by the fast and slow walks. 

The table also shows the matching accuracy of gait image 

representations after the indiscriminate area below the shin is 

removed by the α parameter. Different α values are shown in 

Table II. For almost all covariates, all the gait image 

representations show an improvement after the removal of 

disturbing features below the shin.  

From Table II, it can be observed that PDGDE with features 

removed by α is the best gait image representation followed by 

PGDE with features removed for all four carrying object 

covariates. It shows that removing the left and right side of the 

silhouettes in one gait cycle can reduce the effect of carrying 

 

FVGEI [1] FVGEnI [1] GEV[21] RFGR[54] Proposed Method 

Rank 1 
(%) 

Rank 5 
(%) 

Rank 1 
(%) 

Rank 5 
(%) 

Rank 1 
     (%) 

Rank 5 
(%) 

Rank 1 
(%) 

Rank 5 
(%) 

Rank 1 
(%) 

Rank 5 
(%) 

Normal 87.0 95.7 78.3 95.7 19.6 30.4 43.5 54.3 100 100 

Slow 71.7 93.5 65.2 87.0 19.6 32.6 43.5 54.3 84.8 97.8 

Fast 65.2 80.4 60.9 78.3 17.4 30.4 43.5 50.0 91.3 100 

Carrying Bags 2.2 19.6 8.7 26.1 2.2 10.9 4.3 15.2 80.4 84.8 

Carrying  Ball 21.7 43.5 33.3 54.3 4.3 13.0 2.2 17.4 78.3 95.7 

Normal  & Time 24.2 51.5 33.3 51.5 12.1 32.6 21.2 45.5 48.5 72.7 

Slow & Time 18.2 57.6 33.3 60.6 9.1 32.6 18.2 30.3 36.4 63.6 

Fast & Time 27.3 48.5 18.2 39.4 12.1 34.8 24.2 42.4 45.5 66.7 

Carrying Bags & Time 3.0 24.2 3.0 18.2 3.0 15.2 9.1 18.2 24.2 45.5 

Carrying Ball & Time 9.1 45.5 18.2 30.3 3.0 17.4 3.0 21.2 30.3 54.6 

Overall 35.7 57.7 33.8 56.5 10.7 24.7 22.3 35.4 66.1 81.0 
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TABLE II COMPARISON OF % RECOGNITION PERFORMANCE OF THE PROPOSED GAIT 3D DEPTH IMAGE REPRESENTATIONS USING PIXEL BY PIXEL MATCHING 

objects on gait recognition. Table II also shows that GDE with 

the area below the shin removed is the best feature for normal, 

slow and fast walks. PDGDE with features removed by α is the 

best in Rank 5 and achieved 100% accuracy. This is the reason 

for the selection of these 3 gait image representations for the 

fusion part of the non-carrying object algorithm. 

In addition to the analyses that have been presented, we also 

analysed the impact of gender, age and parameters. Since the 

proposed method is more suitable and significant for non-time 

based covariates, the analysis focused on those five covariates 

only. Fig. 11 shows the comparison of accuracies between male 

and female individuals on the proposed method. In this study, 

walking sequences for 26 males and 20 females were recorded. 

Overall, the proposed algorithm identifies female individuals 

with 89% accuracy, which was slightly better than the 

recognition rate for males of 85.4%. The female individuals are 

easier to be identified than male individuals on slow walk, 

carrying bags and carrying ball covariates. On the fast 

covariate, the proposed method performs better on male 

individuals than female individuals. However, for normal walk 

the proposed method produces the same accuracy (100%) for 

both genders.  

Table III shows the impact of age on the accuracy of the 

algorithm. Overall, the ranges of ages between 30-34 and 35-39 

show the lowest gait recognition accuracy with both of them 

scoring only 80%. Hence, it shows that people in these age 

ranges are more difficult to identify. On the other hand, people  

in the younger age range (19-29 years) have more consistent 

gait patterns and are easier to be recognized.  

Table IV presents the influence of weight on the proposed 

algorithm. Overall, the people with medium weight have the 

most reliable gait pattern followed by light and heavy people. 

From Table V, we can conclude that short individuals are least 

affected by carrying object covariates. However, for non-

carrying object covariate, the group of medium height people 

are easier to be recognized.  

 

 
 

Fig. 11: The impact of gender on the proposed method. 
 

TABLE III THE IMPACT OF AGE ON THE PROPOSED METHOD  

 Rank 1 Accuracy (%) 
Age 

(Years) 
19-24 25-29 30-34 35-39 40-44 45-49 50-59 

Normal 100 100 100 100 100 100 100 

Slow 100 88.9 80 80 71.4 75 100 

Fast 87.5 100 80.0 100 85.7 100 10 

Bags 87.5 88.9 70.0 60 100 75 66.7 

Ball 100 77.8 70.0 60 85.7 75 66.7 

Overall 95.0 91.1 80.0 80.0 88.6 85 86.7 

 
TABLE IV THE IMPACT OF  WEIGHT ON THE PROPOSED METHOD  
 Rank 1 Accuracy (%) 
Weight (kg) 40-59 60-79 80-114 

Normal 100 100 100 

Slow 88.9 88.5 72.7 

Fast 77.8 96.2 90.9 

Bags 88.9 84.6 63.6 

Ball 88.9 80.8 63.6 

Overall 88.9 90.0 78.2 
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Male
Female

 GDE 
GDE  with  

α = 0.19 × h 
DGDE 

DGDE with  

α = 0.11 × h PGDE 
PGDE with  

α = 0.2 × h PDGDE 
PDGDE with  

α = 0.22 x h 

 
Rank 

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Rank

1 

Rank

5 

Normal 91.3 95.7 93.5 95.7 93.5 93.5 93.5 93.5 82.6 93.5 89.1 95.7 87.0 95.7 89.1 100 

Slow 76.1 93.5 80.4 97.8 82.6 93.5 82.6 93.5 56.5 84.8 60.9 89.1 69.6 93.5 73.9 95.7 

Fast 69.6 87.0 76.1 95.7 71.7 89.1 76.1 89.1 58.7 84.8 69.6 89.1 76.1 91.3 87.0 93.5 

Carrying 

Bags 
8.7 30.4 8.7 34.8 15.2 34.8 8.7 34.8 30.4 54.3 30.4 60.9 54.3 82.6 58.7 89.1 

Carrying 

Ball 
34.8 65.2 32.6 58.7 39.1 65.2 32.6 65.2 58.7 84.8 63.0 84.8 73.9 91.3 73.9 95.7 

Normal 

& Time 
27.3 60.6 36.4 69.7 33.3 63.6 39.4 63.6 24.2 54.5 24.2 63.6 27.3 66.7 27.3 63.6 

Slow & 

Time 
30.3 51.5 33.3 60.6 24.2 63.6 30.3 63.6 9.1 36.4 15.2 33.3 18.2 42.4 21.2 54.6 

Fast & 

Time 
27.3 51.5 33.3 60.6 33.3 57.6 39.4 57.6 18.2 48.5 27.3 54.5 15.2 57.6 24.2 54.6 

Carrying 
Bags & 

Time 

6.1 33.3 12.1 36.4 6.1 21.2 6.1 21.2 3.0 36.4 9.1 45.5 24.2 51.5 24.2 48.5 

Carrying 

Ball & 
Time 

9.1 27.3 15.2 27.3 15.2 30.3 12.1 30.3 12.1 45.5 24.2 51.5 27.3 54.5 18.2 57.6 

Overall 41.0 62.0 44.8 65.8 44.6 63.8 44.8 63.5 39.0 65.3 44.8 69.6 51.4 75.7 54.1 78.5 
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TABLE V THE IMPACT OF HEIGHT ON THE PROPOSED METHOD  
 Rank 1 Accuracy (%) 

Height (m) 1.50-1.64 1.65-1.74 1.75-1.89 

Normal 100 100 100 

Slow 92.3 93.3 72.2 

Fast 76.9 100.0 94.4 

Bags 92.3 80.0 72.2 

Ball 92.3 80.0 66.7 

Overall 90.8 90.7 81.1 

 

 
 

Fig. 12 The impact of using a different gallery on the proposed method. 

 

In order to examine the impact of a different gallery on the 

proposed algorithm, we swapped the normal walk gallery with 

normal walk probe. Fig. 12 shows the results. In this 

experiment, all the parameters remain the same. For all 

covariates, the proposed algorithm performs slightly better 

when using gallery 1 compared to gallery 2. However, for 

carrying ball covariate, the accuracy improves from 78.3% to 

82.6%. Hence, the proposed algorithm can be improved in the 

future to overcome this problem. However, overall, the 

proposed algorithm achieved 87.0% and 82.2% when using 

galleries 1 and 2 respectively. This shows that using different 

gallery does have an impact on the proposed algorithm.  

In this experiment, the gait image sequences were captured 

in two session, May 2013 (S1) and December 2013 (S2). Both 

sessions were conducted in the same room. However, the 

settings were not strictly the same: there were slight differences 

in the position and angle of the camera, the position of areas A, 

B, C and D, and the positions of items such as tables and chairs. 

Also, in S2, the subjects were not restricted to wear the same 

types of clothes and shoes. Furthermore, some of the subjects 

had lost or gained weight and the mood of the subjects might 

not be the same. Hence, to test the effect of the α parameter on 

the slight change of environment and subjects’ physiological 

and psychological factors, we compared the results of non-time 

covariate experiment in both sessions. The results are shown in 

Table VI.  Although the α parameters were identified based on 

the dataset captured in S1, when they are used on non-time 

covariate experiment using S2 dataset, they produced better 

results on GDE, DGDE and PDGDE. Only the results for 

PDGDE for S2 is slightly lower (74.6%) than S1 (76.5%). 

Therefore, there is no significant impact of the α on the change 

of the environment and individuals’ physiological and 

psychological factors.  

 

In addition to the accuracies of the proposed and previous 

methods, a comparison of the computational cost of the 

proposed algorithm and the previous methods was also carried 

out. The results are presented in Table VII. The analysis was 

carried out using Matlab 2013a software with the following 

computer specifications: 

• Computer System: Laptop Computer, Toshiba Satellite C640 

• Microprocessor: Intel Pentium CPU 8940  

• Microprocessor Clock Speed: 2.00GHz 

• Random Access Memory (RAM): 4.00GB 

• Operating System: Microsoft Windows 7 Ultimate (64-bit) 

The computational cost analysis of the algorithms is based on 

the evaluation made by Guan et al. [62]. The algorithms are run 

10 times and their maxima, minima, standard deviations and 

means are recorded. The running time of all the algorithms in 

Table VII are based on the Rank 1 accuracy. The proposed 

method has two main stages: the carrying objects and non-

carrying object recognitions. The carrying objects, around both 

upper and lower, takes about 0.526s to recognise an individual 

if he/she carries an object. If the recognition process goes up to 

fusion of 10 features of DGDE and PDGDE, the proposed 

method takes about 0.82s. The next stage in the proposed 

method is either to apply PD or HMM to recognise individuals 

and this take about 13.47s and 28.01s respectively. Both of 

them are slow because they require probability-based 

computational methods. The average computational time for 

FVGEI and FVGEnI are 0.55s and 0.67s respectively. FVGEnI 

is a little slower than FVGEI because FVGEnI requires the 

mathematical operation of Shannon entropy. For RFGR, each 

silhouette needs to be segmented into three separate images 

before applying the HoG to these images. Hence, it takes longer 

than FVGEI and FVGEnI. GEV applies the binary voxel 

volume which requires high memory space. Hence, it takes 

more time for PCA-MDA to perform its operations. Therefore, 

the recognition process for GEV takes about 57.90s making it 

the slowest algorithm. 

V. CONCLUSION  

This paper presents a new framework for gait recognition 

using a 3D Time of Flight (ToF) camera. A new data set was 

developed by capturing gait image sequences in two separate 

sessions with seven months between them. This enables 

experiments based on ten covariates: normal walk, slow walk, 

fast walk, carrying bag, carrying ball, normal walk & time, slow 

walk & time, fast walk & time, carrying bag & time, carrying 

ball & time. The paper also presents a four-part algorithm. The 

first part is a new human silhouette extraction algorithm which 

reduces the multiple reflection problem experienced by ToF 

cameras. The second part uses a new gait cycle algorithm to 

identify the gait cycle frames. For the third part, we developed 

four new 3D gait image representations: GDE, DGDE, PGDE 

and PDGDE. To improve performance, the features below the 

shin were removed. The final stage of the four-part algorithm is 

a novel Adaptive Multi-Stage Fusion Classifier. In experiments 

comparing the proposed method with four existing methods, the 

proposed method outperforms the previous methods overall and 

on all covariates for both Rank 1 and Rank 5 evaluation 

techniques. PDGDE contains the most suitable features for 

carrying objects covariates. This may be due to the removal of
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TABLE VI COMPARISON ON THE EFFECT OF α PARAMETER FOR SESSION 1 (S1) AND SESSION 2 (S2) 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

TABLE VII COMPUTATIONAL COST ANALYSIS OF THE   PROPOSED METHOD VERSUS THE PREVIOUS METHODS

1  The  actual measurement is  0.5321s before rounded  up to the nearest hundredth  
2  The  actual measurement is  0.5261s before rounded  up to the nearest hundredth 

the left and right side of the silhouettes which reduces the 

impact of feature deviations caused by carrying an object. 

Although GDE is the best overall gait image representation for 

non-carrying object covariates, DGDE and PDGDE also 

produced similar or better accuracies than GDE on several non-

carrying object covariates. This proves the significance of the 

fusion of features in the non-carrying object case. The time-

based covariate affects the proposed algorithm significantly, 

just as it does existing methods. It is possible that the impact of 

changes over time may be more severe on 3D depth features 

than on 2D features. Therefore, future work could focus on 

combining both 2D and 3D features. However, our proposed 

method produced excellent results on the non-time based 

covariates.  

Therefore, at this stage, we believe that the proposed 

approach is well suited to applications such as secure corridors 

in airport and train terminals. Finally, our gait data set may be 

suitable for research into gender classification and age and 

height estimation based on gait using a ToF camera. 
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GDE with  

α = 0.19 × h 

DGDE with  

α = 0.11 × h 

PGDE with  

α = 0.2 × h 

PDGDE with  
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 S1 S2 S1 S2 S1 S2 S1 S2 
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Mean 58.3 63.6 58.7 66.1 62.6 68.5 76.5 74.6 

 Algorithms 
 

Maximum (s) 
Minimum 

(s) 
Standard Deviation 

(s) 
Average (s) 

Previous 
Methods 

FVGEI [1]  0.61 0.53 0.023 0.55 
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GEV [21]  60.48 52.47 2.328 57.90 

 RFGR [54]  9.61 9.47 0.042 9.50 

Proposed 

Method 

Carrying Objects  0.531 0.52 0.003   0.532 

Non-

Carrying  
Object  

Fusion of 10 features of DGDE & 

PDGDE 

 0.88 0.79 0.020 0.82 

Apply PD  13.54 13.39 0.050 13.47 

Apply HMM  28.21 27.90 0.070 28.01 
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