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Abstract 

As the first endeavor, the influence of a pulsatile flow on the large-amplitude bifurcation 

behaviour of viscoelastic microtubes subject to longitudinal pretention is studied with special 

consideration to chaos. The viscoelastic microtube is surrounded by a nonlinear spring bed. A 

modified size-dependent nonlinear tube model is developed based on a combination of the 

couple stress theory and the Euler-Bernoulli theory. Hamilton’s principle, as an equation 

derivation technique, and Galerkin’s procedure, as a discretisation technique, are used. 

Finally, the discretised differential equations of the pulsatile-fluid-conveying viscoelastic 

microscale tube are solved using a time-integration approach. It is investigated that how the 

bifurcation response for both motions along the axial and transverse axes is highly dependent 

of the mean value and the amplitude of the speed of the pulsatile flow. 
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1. Introduction 

In some microelectromechanical systems (MEMS) such as microfluidic devices [1] and 

integrated pressure sensors [2], the fluid and the solid building blocks of the system interact 

with each other at the microscale level. Increasing the level of knowledge of these 

interactions is of great importance in order to properly design and manufacture these 

valuable MEMS-based devices. 

In recent years, some continuum-based models for microscale structures have been 

developed in the literature since these models pave the path for better understanding and 

formulating of the experimental results and Molecular Dynamics simulations. Nonetheless, 

the mechanical characteristics of small-scale structures such as microscale beams and plates 

as well as nanoscale beams and plates are size-dependent [3-7]. Applying theoretical models 

based on the classical continuum mechanics (CLCM) to these structures might be not 

sufficiently accurate to describe their mechanical and physical behaviours as these models 

are scale free, and thus cannot capture the effects of the small size. A number of modified 

theoretical models such as the nonlocal elasticity and the modified couple stress theory 

(MCST) have been employed recently so as to capture size effects on the mechanical response 

of small-scale structures. Generally, the nonlocal elasticity is applied to structures at the 

nanoscale level whereas the MCST is employed for microscale structures. In the present 

paper, the size effects are modelled within the context of the MCST.  

A modified continuum model was proposed by Wang [8] for the vibration analysis of 

microscale tubes containing flowing fluid; he obtained the linear natural frequencies of the 

fluid-conveying microsystem using the differential quadrature method; he compared the 

frequencies obtained by the MCST-based model with those predicted by the CLCM, and found 
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that the CLCM underestimates the linear natural frequencies. The fluid-induced vibration of 

beams embedded in an elastic medium was also investigated by Kural and Özkaya [9]; they 

studied the effects of scale parameter, spring constant and the fluid velocity on the vibration 

of the elastic microsystem. Furthermore, Hosseini and Bahaadini [10] used a modified strain 

gradient continuum model to explore the linear stability of cantilever microscale tubes 

containing fluid flow with a constant speed. A nonlinear MCST-based mathematical 

framework was also proposed by Dehrouyeh-Semnani et al. [11] so as to study the large-

amplitude vibration of a fluid-conveying pipe at microscale levels. The scale-dependent linear 

and nonlinear mechanics of carbon nanotubes conveying fluid flow of constant speed have 

been also studied in the literature mainly using the nonlocal continuum-based models [12-

14]. Thermal effects on the forced linear and nonlinear vibrations of carbon nanotubes 

containing flowing fluid were also investigated on the basis of a nonlocal theoretical model 

by Askari and Esmailzadeh [15]; they reported that the speed of the flowing fluid and the 

temperature can be used to control the vibration of carbon nanotubes. Furthermore, 

Dehrouyeh-Semnani et al. [16] explored the influences of being microsized on the nonlinear 

stability of fluid-conveying pipes with geometric imperfections; they also investigated the 

influences of the flow velocity as well as the geometrical properties of the microsystem on 

the nonlinear stability. A nonlinear continuum model was also proposed by Setoodeh and 

Afrahim [17] in order to study the dynamic response of a functionally graded (FG) microscale 

tube containing fluid flow with the help of a strain gradient model. Moreover, Tang et al. [18] 

used the MCST to explore the influence of being microsized on the nonlinear fluid-induced 

vibration of curved microscale tubes. A non-classical beam model [19] and a nonlocal strain 

gradient model [20] for fluid-conveying micropipes as well as a flexoelectric couple stress 

model [21] for smart FG micropipes conveying fluid have been also developed. 
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In a practical situation, the speed of the flowing fluid in a MEMS device including fluid-

structure interactions may not be constant; in general, it is a function of time. All of the above-

stated valuable studies on the mechanical behaviour of fluid-conveying small-scale tubes are 

limited to constant fluid speeds. In this article, the bifurcation behaviour of viscoelastic 

microscale tubes containing fluid flow with time-dependent speed is constructed and 

analysed. The whole microsystem is assumed to be embedded in a nonlinear spring bed with 

two elastic coefficients. Two coupled time-dependent nonlinear differential equations are 

derived for the viscoelastic tube at microscale levels applying Hamilton’s principle. Galerkin’s 

technique and an integration scheme are then used in order to find a precise numerical 

solution for the derived equations. The effects of the mean value of the time-dependent fluid 

velocity as well as the amplitude of the variations of the microfluid velocity on the bifurcation 

behaviour of viscoelastic microscale tubes are explored, with special consideration to chaos. 

 

2. Size-dependent continuum-based formulation and solution procedure 

A viscoelastic microscale tube containing pulsatile flowing fluid is depicted in Fig. 1. As 

can be seen from the figure, the microtube is surrounded by a nonlinear elastic medium with 

two spring constants: 1) k1 the linear spring constant, and 2) k2 the nonlinear spring 

constant. It is also assumed that the viscoelastic microtube is subject to a longitudinal 

pretention (T0). The internal and external radii of the microscale tube are denoted by Ri and 

Ro, respectively, while its length and cross-sectional area are denoted by L and A, respectively. 

Moreover, the material properties of the viscoelastic microscale tube are indicated by E,   

and visc  which are the elasticity modulus, Poisson’s ratio and the viscosity constant, 

respectively. To describe the influence of being microsized on the bifurcation behaviour, a 
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scale parameter ( l ) is also taken into account in the continuum-based formulation using the 

MCST. 

The Kelvin-Voigt model is utilised to incorporate the effect of internal friction on the 

bifurcation behaviour. Using this model, the relation between the total axial stress ( xx ) and 

the strain ( xx ) can be expressed as 

   ( ) ( ) ,   xx xx el xx vis  with  
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Here  ( )xx el  and  ( )xx vis  are respectively the elastic and viscous axial stresses. Let us denote the 

axial displacement and the transverse deflection of the mid-plane of the viscoelastic 

microscale tube by u and v, respectively. The nonlinear strain component of an Euler-Bernoulli 

microtube can be written as  
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where  ( , )x t  represents the rotation of the cross section of the microtube. Similarly, applying 

the Kelvin-Voigt model to the deviatoric couple stress tensor (DCST), one obtains 
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where xym  and yzm  are the symmetric components of the DCST; also, ( )ij elm  and ( )ij vism  are 

respectively the elastic and viscous parts of the symmetric DCST which are given by 
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In the above relation (i.e. Eq. (5)),   ij  describes the symmetric rotation gradient of the 

microtube which is obtained as  
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The variation of the elastic energy due to the longitudinal pretention as well as the elastic 

axial stress and the elastic symmetric DCST can be expressed as  
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In the same way, the work performed by the viscous stress and the viscous symmetric DCST 

are obtained as 
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The motion energy of a microscale tube containing fluid flow with a time-dependent speed 

can be formulated as  
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Here meT , U(t), m and M are the motion energy, the fluid speed, the mass of the microtube 

and the microfluid per unit length, respectively.  The subscript “me” stands for the motion 

energy. The energy variation induced by the nonlinear elastic medium can be written as 
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in which the subscript “em” stands for the elastic medium. The above-mentioned energy and 

work terms are related to each other by   
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Substituting Eqs. (7)-(10) into Eq. (11) and integrating by parts, one obtains the following 

coupled time-dependent nonlinear differential equations for pulsatile-fluid-conveying 

viscoelastic tubes at microscale levels 
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in which    M M m . Now let us consider the following time-dependent profile for the 

fluid velocity  

  0 1 cos ,fU U U t    (14)  

where U0 and Uf indicate the mean value of the microfluid velocity and the amplitude of the 

variations of the microfluid velocity, respectively;  f  represents the frequency of the flow 

pulsation. In order to rewrite Eqs. (12) and (13) in a dimensionless form, the following 

parameters are given for the viscoelastic microsystem 
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Substituting Eq. (14) into eqs. (12) and (13), and then using Eq. (15), we have 
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To accurately approximate the axial displacement and the transverse deflection of the 

pulsatile fluid-conveying viscoelastic microtube, the following expressions are used 
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in which ( mq , mr ) and (m ,m ) indicate the mth generalised coordinates and shape functions 

of the microtube, respectively. Inserting Eq. (18) into Eqs. (16) and (17), and then employing 

Galerkin’s approach, one can obtain the following equations 
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Assuming a viscoelastic microscale tube with clamped-clamped boundary conditions, and 

using the appropriate shape functions for this type of boundary conditions, the bifurcation 

characteristics can be determined on the basis of a continuation approach. In the present 

paper, 16 shape functions (8 for axial and 8 for transverse displacements) are taken into 

consideration in all numerical calculations for the displacements along both x and z directions.   

 

3. Numerical results 

A viscoelastic microscale tube with internal radius Ri=17.5 µm, external radius Ro=25 

µm, and length-to-radius L/Ro = 280 is considered in this section for numerical results. The 

microtube Poisson’s ratio and Young’s modulus are as ν=0.38 and E=1.44 GPa, respectively. 
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In addition, the mass density of the microstructure and the microfluid are taken as ρp=1220 

kg/m3, and ρf =1000 kg/m3, respectively. The non-dimensional parameters of the microscale 

fluid-structure system are obtained as g =2.1047×105, β=0.4406,  =140, and  =0.4821. For 

all cases, the non-dimensional longitudinal pretention, viscosity constant and spring 

constants are set to  =6.0, visc =0.0003, and (K1,K2)=( 80.0,80.0), respectively. The ratio of the 

frequency of the fluid speed to the first natural frequency is assumed as  f /ω1=2.0. The 

dimensionless critical fluid speed of the above-described microsystem associated with 

divergence is determined as 8.4001. It should be noted that in this section bifurcation 

diagrams are plotted for transverse and longitudinal motions at  =0.45, instead of 0.5, to 

ensure all modes (symmetric and asymmetric) have non-zero value and contribute to the 

response of the system. 

Figure 2 indicates the bifurcation diagrams of Poincaré sections (BDPS) of the 

viscoelastic microtube conveying pulsatile flow for displacements along both x and z 

directions. The dimensionless mean value of the fluid speed is assumed as uf0=8.0 which 

means that the viscoelastic microsystem is in the subcritical regime. The dimensionless first 

natural frequency of the viscoelastic microscale fluid-structure system is determined as ω1= 

7.67. It is observed that when the amplitude of fluid speed variations is very small (uf1<0.02), 

the nonlinear transverse motion of the viscoelastic microtube is of a period-1 type. Beyond 

that a period-2 motion is observed for the microtube until point uf1=0.81 where the motion 

type is period-6. Then the nonlinear dynamic behaviour fluctuates between period-2 and 

period-6 motions until uf1=0.89 where only a period-2 motion is observed. Beyond this point, 

various motion types in the form of period-k (k=1, 2, 3, 4, 6 and 9) are found for the transverse 

deflection of the viscoelastic fluid-structure microsystem. It is worth mentioning that no 
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complex behaviour such as chaos is found for the transverse motion in the subcritical regime. 

From Fig. 2, it is also found that the axial motion is of a period-1 type until uf1=0.81 in which 

it begins to fluctuate between a period-3 and period-1 type. From uf1=0.89 to uf1=1.12, a 

period-1 axial motion is observed, except point uf1=0.915 where the system experiences a 

period-9 axial motion. From uf1=1.13 to uf1=2, various simple motion types such as period-1, 

period-2 and period-3 are found for the axial displacement. However, there is no sign of a 

complex behaviour such as chaos for the axial motion. More details of the periodic motion of 

the pulsatile-fluid-conveying microtube of Fig. 2 at uf1=1.200 in the subcritical regime is given 

in Figure 3. The time histories of motions along both x and z directions, fast Fourier transforms 

(FFTs) and the phase-plane portraits are illustrated in the figure. At this point (uf1=1.200), both 

longitudinal and transverse motions are of a period-1 type.  

The BDPS for the viscoelastic microtube conveying pulsatile fluid with mean speed of 

uf0=8.3 (i.e. in the subcritical regime) for both motions along the transverse and axial 

directions is plotted in Fig. 4; compared to the case of Fig. 2, this mean speed is closer to the 

critical one. The fundamental natural frequency is calculated as ω1= 3.78. For the small values 

of the speed amplitude, the transverse motion is of a perid-2 type while the microscale tube 

experiences a period-1 motion along the axial axes. As the amplitude of the fluid speed 

variations increases, the microtube undergoes various types of transverse motions including 

period-6, period-4, period-3, period-1 and chaos. Moreover, different motion types such as 

period-2, priod-3, period-4 and chaos are observed for the axial displacements. From Fig. 4, 

eight different chaotic regions are seen for both the longitudinal and transverse motions of 

the microtube. The first chaotic region begins at uf1=0.562 and ends at uf1=0.658 while the 

last one starts at uf1=1.822 and ends at uf1=2.022. By comparing the BDPS of Fig. 2 with that 
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of Fig. 4, it is found that a small increase in the mean speed of the pulsatile flow in the vicinity 

of the critical speed in the subcritical regime notably increases the complexity of the nonlinear 

dynamic behaviour. More details of the motion of the microtube of Fig. 4 at uf1=1.190 and 

uf1=1.138 are given in Figs. 5 and 6, respectively. It is found that the motion of the microtube 

is of a period-4 type at uf1=1.190 while a complex chaotic motion is observed at uf1=1.138 for 

the microtube. 

Figure 7 illustrates the BDPS for the viscoelastic microtube conveying pulsatile fluid with 

mean speed of uf0=8.5 which belongs to the supercritical regime. The fundamental natural 

frequency of the viscoelastic microtube is determined as ω1= 5.29. It is observed that the type 

of both transverse and axial motions is period-2 for small values of the velocity amplitude. By 

further increasing the fluctuation amplitude of the pulsatile flow, a variety of different 

motions such as period-1, period-2, period-6 and chaos is observed for the microsystem. For 

instance, the details of the motion of the viscoelastic microscale tube of Fig. 7 at uf1=1.106 

are shown in Fig. 8. It can be seen that the nonlinear bifurcation behaviour is highly chaotic 

at this point. For comparison purposes, the BDPS for the viscoelastic microtube conveying 

pulsatile flow for uf0=9.0 is indicated in Fig. 9, but this time a bit more farther from the critical 

speed (compared to the case of Fig. 7). The first non-dimensional natural frequency of the 

microscale fluid-structure system is obtained as ω1= 12.71 for this case. The motion type 

along each axis varies significantly with increasing the amplitude of the variations of the fluid 

speed from uf0=0 to uf0=2.022. However, no sign of chaos is observed for the viscoelastic 

microtube in this region. Furthermore, by comparing Fig. 9 with Fig. 7, it can be concluded 

that a slight increase in the mean speed of the pulsatile flow in the supercritical regime can 

eliminate the chaotic motion.     



17 
 

4. Conclusions 

The large-amplitude oscillations of a viscoelastic microtube conveying pulsatile flow has 

been investigated. The microscale tube was embedded in a nonlinear spring bed. The coupled 

time-dependent nonlinear equations were derived via the assistance of the MCST in 

conjunction with the Euler-Bernoulli and Kelvin-Voigt models as well as Hamilton’s principle. 

Galerkin’s approach, as a discretisation method, and a direct time-integration approach, as a 

solution technique, were also employed to construct the BDPS for the microfluid-structure 

microscale system.  

It was concluded that both the mean value and the amplitude of the speed of the 

pulsatile flow have a vital role to play in the bifurcation response. When the mean speed of 

the pulsatile fluid is sufficiently lower than the critical speed in the subcritical regime and the 

speed amplitude is very small, the nonlinear motion of the microtube is of a period-1 type 

and there is no chaos in the motion of the viscoelastic microtube. For a larger mean speed 

close to the critical speed, but still in the subcritical regime, the microtube experiences various 

types of motions including period-6, period-4, period-3, period-1 and chaos. In fact, a slight 

increase in the mean fluid speed even in the subcritical regime can cause a huge difference in 

the bifurcation response of viscoelastic microscale tubes containing pulsatile flow. The type 

of both motions along the axial and transverse directions is period-2 when the fluctuation 

amplitude of the pulsatile flow is very small and the mean speed is a bit larger than the critical 

one. By further increasing the fluctuation amplitude, different motions such as period-1, 

period-2, period-6 and chaos were observed for the microtube. However, a sufficient increase 

in the mean speed can completely remove the chaotic behaviour in the supercritical regime.   
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Figures 
 

  
 

Figure 1: A pulsatile-fluid-conveying viscoelastic microtube embedded in an elastic medium. 
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(a) 

 

(b) 

 

Figure 2: BDPS for the viscoelastic microtube conveying pulsatile flow: (a, b) the transverse motion and 
longitudinal motions for uf0=8.0. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 3: Details of the periodic motion of the system of Fig. 2 at uf1=1.200: (a, b) the time histories of 
transverse and longitudinal motions, respectively; (c, d) the phase-plane portrait of transverse and longitudinal 

motions, respectively; (e, f) FFTs of transverse and longitudinal motions, respectively. 
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(a) 

 

(b) 

 

Figure 4: BDPS for the viscoelastic microtube conveying pulsatile flow: (a, b) the transverse motion and 
longitudinal motions for uf0=8.3. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5: Details of the period-4 motion of the system of Fig. 4 at uf1=1.190: (a, b) the time histories of 
transverse and longitudinal motions, respectively; (c, d) the phase-plane portrait of transverse and longitudinal 

motions, respectively. 
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(g) 

 

(h) 

 

Figure 6: Details of the chaotic motion of the system of Fig. 4 at uf1=1.138: (a, b) the time histories of 
transverse and longitudinal motions, respectively; (c, d) the phase-plane portrait of transverse and longitudinal 
motions, respectively; (e, f) Poincaré sections of transverse and longitudinal motions, respectively; (g, h) FFTs 

of transverse and longitudinal motions, respectively. 
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(a) 

 
(b) 

 

Figure 7: BDPS for the viscoelastic microtube conveying pulsatile flow: (a, b) the transverse motion and 
longitudinal motions for uf0=8.5. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 8: Details of the chaotic motion of the system of Fig. 7 at uf1=1.106: (a, b) the time histories of 
transverse and longitudinal motions, respectively; (c, d) the phase-plane portrait of transverse and longitudinal 

motions, respectively; (e, f) Poincaré sections of transverse and longitudinal motions, respectively. 
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(a) 

 

(b) 

 

Figure 9: BDPS for the viscoelastic microtube conveying pulsatile flow: (a, b) the transverse motion and 
longitudinal motions for uf0=9.0. 

 


