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Earth Surface Processes and Landforms

ABSTRACT: Recession of high-mountain glaciers in response to climatic change frequently results in the development of moraine-
dammed glacial lakes. Moraine dam failure is often accompanied by the release of large volumes of water and sediment, termed a
Glacial Lake Outburst Flood (GLOF). Chukhung Glacier is a small (~3 Kinreceding valley glacier in Mt. Everest (Sagarmatha)
National Park, Nepal. Unlike many Himalayan glaciers, which possess a thick mantle of supraglacial debris, its surface is relatively
clean. The glacier terminus has receded 1.3 km from its maximum Holocene position, and in doing so provided the space for an ice-
contact moraine-dammed lake to develop. The lake had a maximum volume of 5.5 x £@n® and drained as a result of breaching of
the terminal moraine. An estimated 1.3 x 18m? of material was removed from the terminal moraine during breach development.
Numerical dam-breach modelling, implemented within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, was
used to investigate a range of moraine-dam failure scenarios. Reconstructed outflow peak discharges, including failure via
overtopping and piping mechanisms, are in the range 14@200 m®s™. Results from two-dimensional hydrodynamic GLOF model-
ling indicate that maximum local flow depths may have exceeded 9 m, with maximum flow velocities exceeding 20 niswithin

700 m of the breach. The floodwaters mobilised a significant amount of material, sourced mostly from the expanding breach, forming
a 300 m long and 100 m wide debris fan originating at the breach exit. moraine-dam. These results also suggest that inundation of the
entire floodplain may have been achieved within ten minutes of initial breach development, suggesting that debris fan development
was rapid. We discuss the key glaciological and geomorphological factors that have determined the evolution of a hazardous
moraine-dammed lake complex and the subsequent generation of a GLOF and its geomorphological impact. © 2014 The Authors.
Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

KEYWORDS: Moraine-dam; Glacial Lake Outburst Flood (GLOF); Structure-from-Motion; dam-breach modelling; hydrodynamic modelling

Glacial Lake Outburst Floods (GLOFs) represent a high-
magnitude and low-frequency catastrophic phenomenon, and

Introduction

The recession of high-mountain glaciers in response to climatic
change frequently results in the development of moraine-
dammed glacial lakes (Watanabeet al, 1994; Reynolds,
1998; Richardson and Reynolds, 2000; Quinceyet al., 2007;
Komori, 2008; Dykes et al.,, 2010; Gardelle et al., 2011; Yao
et al., 2012; Carrivick and Tweed, 2013). Given a triggering
event, moraine-breaching may result in a sudden and rapid
release of significant volumes of water and sediment (Lliboutry
et al, 1977; Vuichard and Zimmerman, 1987; Costa and
Schuster, 1988; Evans and Clague, 1994; Walder and Driedger,
1994; Watanabe and Rothacher, 1996; Clague and Evans,
2000; Cenderelli and Wohl, 2001; Kattelmann, 2003; Xin
et al, 2008; Osti et al, 2013; Westoby et al., 2014). Such

are capable of performing significant geomorphological
reworking of moraine, in-channel and overbank environments
(Costa and Schuster, 1988; Cenderelli and Wohl, 2003;
Kershawet al., 2005; Breien et al., 2008; Worni et al., 2012).
GLOFs may also have devastating impacts on downstream
settlements and infrastructure, and result in significant loss of
life (Reynolds, 1998; Richardson and Reynolds, 2000).

The aim of this paper is to quantify GLOF-generating scenar-
ios and the downstream passage of the outburst flood waves
resulting from different dam breach mechanisms using a com-
bination of remote sensing, digital elevation modelling and
dam-breach and hydrodynamic modelling. Specifically, this
approach involved: (i) reconstruction of the post-GLOF
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characteristics (topography and the bathymetry) of a drained
moraine-dammed glacial lake using terrestrial photogramme-
try; (ii) numerical dam-breach and hydrodynamic modelling,
executed within a probabilistic framework, to quantify a spec-
trum of flood generation scenarios and downstream flood path-
ways associated with this event; and (iii) to use the results of (i)
and (ii) in combination with field- and remote sensing-based
investigation to interpret the glaciological, hydrological and gla-
ciological evolution of a drained moraine-dammed glacial lake
complex. A further aim of the article is to place the development
of the GLOF hazard at Chukhung Glacier in its glaciological and
geomorphological context at both the regional and global scale.

Studies using both numerical modelling and geomorphologi-
cal and sedimentological characterisation to reconstruct
sudden-onset outburst floods from glacial sources are rare
(Cenderelliand Wohl, 2001, 2003; Carrivick, 2006, 2007a; Alho
and Aaltonen, 2008; Worni et al., 2012; Dunning et al., 2013).
The research presented in this article is among the first to present
a truly holistic interpretation of the key factors that have deter-
mined the evolution of a hazardous moraine-dammed lake com-
plex, as well as the subsequent generation and geomorphological
impact of a GLOF. The glacial geomorphology of neighbouring
glaciers has already been described in detail (Benn and Owen,
2002; Hambrey et al.,, 2009) but Chukhung Glacier has received
relatively little attention to date.

Study Site
Glaciological and hydrological context

The Himalayan Range comprises the most extensively
glacierised area outside of the polar regions and contains an
estimated 60 000 knf of glacier or perennial surface ice (Kaab
et al, 2012) and widespread mountain permafrost (Jakob,
1992; Ishikawa et al.,, 2001; Fukui et al,, 2007; Regmi, 2008).

Most glaciers, particularly in the eastern and central Himalaya,
are of the summer-accumulation type and gain mass predomi-
nantly through Asian summer-monsoon snowfall (Bolclet al.,

2012). This seasonal distribution of precipitation results in the

486000 488000 490000

492000

coincidence of the maximum accumulation and ablation
periods (Ageta and Higuchi, 1984; Benn and Owen, 1998),
with 80% of the total annual precipitation typically occurring

between June and September (Ageta, 1976).

Many Himalayan glaciers possess heavily debris-covered
tongues (Figure 1); a consequence of oversteepened slopes
and active tectonics which release considerable quantities of
frost-shattered rock through frequent ice- and snow- avalanche
activity (Benn et al., 2003; Hambrey et al, 2009; Quincey
et al, 2009; Bolch et al, 2012). Supraglacial debris affects
glacier response to climate change by altering surface (or sub-
debris) ablation rates (DJstrem, 1959; Nicholson and Benn,
2006, 2012; Mihalcea et al., 2008; Brock et al., 2010; Reid
and Brock, 2010; Bennet al., 2012). The maintenance of a gla-
cier surface gradient of less than 2°, combined with a stagnat-
ing flow regime has been shown previously to be conducive
to the development of a supraglacial pond network (Reynolds,
2000; Quincey et al., 2007). In turn, this may lead to the forma-
tion of a fully-formed moraine-dammed glacial lake. Alterna-
tively, a moraine-dammed lake may develop in the proglacial
area between a terminal moraine and a receding glacier terminus
as glacial meltwater ponds in the newly deglaciated basin. How-
ever, this mode of lake formation requires that the moraine is
stable enough to resist seepage- or piping-induced failure, and
to maintain a spillway on the dam crest (Costa and Schuster,
1988; Clague and Evans, 2000; Korup and Tweed, 2007).

Most Himalayan glaciers have been receding since the mid-
19th century, resulting in widespread mass loss and a reduction
in total glacierised area (Bolchet al., 2008, 2012). K&abet al.
(2012) estimated a Himalayan-wide thinning of 0.26+0.06 m
(w.e.) yrt* (equivalent to a sea-level rise of 0.035+0.01mm
(w.e.) yr'). Glaciers in eastern Nepal and Bhutan are estimated
to have thinned by 0.3+0.09 myf*. The total glacierised area
in the Khumbu Himal in 2005 was estimated as 87.39 krfy of
which 58.1% and 41.9% was ‘clean’ and debris-covered,
respectively.

In recent decades, a number of moraine-dammed lakes have
developed in the Khumbu Himal (Watanabeet al., 1994, 1995;
Thompsonet al., 2012). Nepals largest moraine-dammed gla-
cial lake, Tsho Rolpa, is located in the neighbouring Rolwaling
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Himal, and contained an estimated ~13 m® of water at the turn
of the century, when it was still growing rapidly (Reynolds, 1998;
Rana et al, 2000; Sakai et al, 2000). A rapidly expanding
moraine-dammed lake is developing on the snout of Ngozumpa
Glacier (Bennet al., 2001; Thompsonet al., 2012). If expansion
continues unchecked, this lake has the potential to attain a vol-

Nepal. The park has an area of ~1450 krhand ranges in eleva-
tion from 2800 m to 8848 m at the summit of Mt. Everest. The
glacier is approximately 2.5km long, has an altitudinal range
of approximately 5100 to 6000 m, and is situated in a wide,
north-facing amphitheatre. It is connected to Ama Dablam Gla-
cier in its upper south-western reaches (Hambregt al., 2009).

ume in excess of ~1§ m® within the next two to three decades
(Bennet al., 2012; Thompsonet al., 2012).

A breached latero-terminal moraine-dam complex is located
approximately 1 km in front of the contemporary glacier termi-

nus (Figure 2). The moraine is topographically complex and
contains at least two drained lake beds, additional breaches,
and bedrock outcrops (Figure 3). The moraine dam was
breached prior to the acquisition of the first satellite imagery
of the region in 1962 by the Corona mission, in which the

breach and outburst fan are visible.

Chukhung Glacier and moraine complex

Chukhung Glacier is located in the north-east of Sagarmatha
(Mt. Everest) National Park (Figure 1) in the Khumbu Himal,
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Figure 2. Ground-based views of Chukhung Glacier and its proglacial area. (a) Oblique perspective of the glaeteroraine complex. Black dashes
indicate approximate location of the Chukhung GlacierAma Dablam Glacier catchment divide. (b) View southwards from inside the moraine basin,
overlooking lake L2. Black arrow indicates outburst fan from breach Br_3. (c) The main breach (Br_1), with alluvial debris fan, composed predomi-
nantly of cobble- and boulder-sized material, visible in the foreground. (d) View northwards from the exit of the main breach, showing the extent of
GLOF deposits on the proglacial floodplain. (e) Lake basin2' (foreground) and eastern lateral moraine (background). Dashed white line indicates
location of a palaeo-shoreline. (f) View southwest across L2 (foreground). Annotation indicates key lithofacies, including; (i) sandy bouldeavel;

(i) gravel and pebble stone-fall; (iii) sandy gravel; (iv) cobblgravel and pebble-gravel; (v) silt and sand. (g) The uppermost lake basin (L3). Arrow
indicates location of a bedrock cliff at the head of the basin. (h) Panoramic photograph of the Chukhung floodplain, as viewed from the eastern valley
flank. The terminal moraine breach is visible in the upper-left (black arrow). GLOF flow direction is from left to right. This figure is available inleor
online at wileyonlinelibrary.com/journal/espl
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An alluvial debris fan is located at the exit of the main breach
(Br_1), and extends for a distance of ~200m onto the flood-
plain. A brief description of the fan is provided by Hambrey
et al. (2009). In summary, fan lithofacies are characterised by
a high proportion of subangular and subrounded boulder-
gravel and sandy boulder-gravel, with the latter prevailing
towards the lower extent of the fan. Incision of the fan by an
outflow channel reveals the fan to be moderately well-sorted.

Beyond ~200 m, superficial sediment coverage becomes in-
creasingly sparse towards the confluence with the Imja Khola,
at a distance of ~700m from the breach. The floodplain is
~130 m wide along its length, and is bounded to the east by a
mountainside spur, and to the west by lateral moraines associ-
ated with Ama Dablam Glacier. Outburst flood deposits

© 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

including large boulder-jams are confined to the floodplain,
and deposits further downstream are indistinguishable from
other in-channel and overbank material along the Imja Khola.

Methods

Structure-from-Motion photogrammetry

Structure-from-Motion (SfM) photogrammetry (Snavelgt al.,

2008) was used to generate 3-D digital terrain models (DTM) of
the moraine and floodplain. This innovative photogrammetric
method, which combines multi-view stereo and computer vision
algorithms is capable of producing 3-D point clouds from

Earth Surf. Process. Landforn38, \&75-1692 (2014)
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Figure 3. Contemporary, local-scale geomorphological map of the Chukhung moraine complex. Annotations indicate locations of separate
breaches (Br_1, Br_2, Br_3) and lake basins (L1, L2, L3). Map georeferenced to UTM Zone 45N coordinate system. This figure is available in colour

multiple overlapping images with spatial resolutions, precisions  during breach development, and d) represent (post-GLOF) flood-
and accuracies commensurate with airborne LIiDAR (James and plain topography for two-dimensional hydrodynamic simulation.
Robson, 2012; Westobyet al, 2012; Fonstad et al, 2013;

Javernicket al., 2014). In this study we utilise SfM-derived DTMs

to: (a) reconstruct the pre-GLOF bathymetry of Chukhung Tsho; A total of 2056 photographs of the proglacial area were taken
(b) aid geometric characterisation of the moraine-dam, both re-

quired for input to higher-order numerical dam-breach modeling;

using a consumer-grade 12-Megapixel digital camera (Panasonic
DMC-G10). Automatic focusing and exposure settings were en-
(c) quantify the volume of material removed from the moraine

abled. Photographs were divided into seven batches to improve
© 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

Digital terrain model generation

Earth Surf. Process. Landforn®9, \t&75-1692 (2014)
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the computational efficiency of 3-D reconstruction. SFMToolkit3
(Astre, 2010; Westobyet al,, 2012) was used to produce sparse
and dense point-cloud datasets. Forty-nine 1fmumbered yel-
low targets with a centred red cross were distributed in a quasi-
uniform pattern across the site (34 across the moraine, 15 across
the floodplain) and were used as ground control points (GCP).
GCP locations were surveyed using a Leica GPS1200 and post-

processed using data from a static Trimble R7 GNSS base station

situated at the northern-most extent of the site. Three-dimensional
GPS point qualities averaged 0.478 m and 0.002 m iryz for the
moraine and floodplain GCPs, respectively (Table ).

Following the identification of ground-control points (GCP)
in the dense 3-D point-cloud, these data were georeferenced

Table I.
truth error for the Chukhung moraine and floodplain SfM-DTMs

to an absolute co-ordinate system (UTM Zone 45N) using a
rigid body transformation (Horn, 1987). The Topographic
Point-Cloud Analysis Toolkit (ToPCAT; Brasingtoet al., 2012;
Rychkov et al., 2012) was used to extract detrended minimum
grid-cell elevations at 1nf spatial resolution, in order to
improve the computational efficiency of surface interpolation
in ArcGIS®, while also preserving sub-grid statistics.

Moraine and floodplain topography

The final DTM extends from the ice-distal southern lateral mo-
raine of Lhotse Glacier and the adjacent Imja Khola, to the
breached terminal moraine of Chukhung Glacier (Figure 4).
Topographic features resolved in the DTM include the breach

Summary of Structure-from-Motion input and output data: GCP positional accuracies, georegistration residual errors and vertical ground

GCP positional

3-D georegistration

No. of Sparse Dense accuracy (m; mean) residual error (m) Vertical ground
SfM batch photos points points truth error (m)
x+y Xyz X y z

CK_Moraine_1 350 5.0x1d 7.1%x10° 0.05 0.126 0.478 1.181 0.801 2.178 0.814
CK_Moraine_2 354 49x1d 5.0x10° 0.941 0.533 1.348

CK_Moraine_3 350 5.2x14 4.2x10° 1.008 0.324 2.311

CK_FP_E 538 1.9x1D 2.3x10’ 0.001 0.001 0.002 0.225 0.100 0.009 0.085
CK_FP_W 464 1.4x16  2.1x10 0.539 0.156 0.044

Figure 4. Atwo-dimensional perspective of the final hill-shaded, Structure-from-Motion-derived digital terrain model of the Chukhung moraine dam
complex and floodplain. These data were used to aid geometric characterisation of the moraine dam, to reconstruct the bathymetry of Chukhung Tsho
(inset), and to serve as the topographic domain for hydrodynamic GLOF simulation. Data are georegistered to UTM Zone 45N geographic coordinate
system. This figure is available in colour online at wileyonlinelibrary.com/journal/espl

© 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. Earth Surf. Process. Landforn3§, \I@175-1692 (2014)
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through the terminal moraine, multiple, mostly abandoned,
anabranching channels, and moraine ridges that are likely to
have formed during a Lateglacial advance of Ama Dablam
Glacier.

Reconstruction and georegistration results are shown in
Table I. For the moraine, the dense reconstruction generated
> 16 million points, while 44 million points were recovered to
quantify the floodplain topography. Six of the 15 GCPs that
were surveyed across the floodplain, and 10 of the 34 GCPs
that were surveyed across the moraine prior to photograph
acquisition were used to generate independent SfM-DTM
quality metrics using standard point-in-grid estimates, returning
residual vertical errors of 0.085m and 0.814 m for the flood-
plain and moraine surfaces respectively. The average Euclidean
point spacing of the final merged SfM-DTM was 0.054 m
( =0.068m).

The increased reconstruction density and accuracy of the
floodplain is explained by the acquisition of input photographs
from elevated positions along the margins of the floodplain.
Elevated perspectives, coupled with relatively short camera-
to-feature and camera-to-camera baselines, minimised line-of-
sight losses and facilitated the successful 3-D reconstruction
of floodplain topography, which is supported by typically
higher point densities ¢ 100 points per nf) and improved
accuracies when compared to the moraine model. Following
decimation, the final number of points used as input to
SfM-DTM surface interpolation for the moraine was
~300,000, and for the floodplain numbered ~460 000.

Point densities were highest on ice-proximal faces of the
terminal moraine (Figure 5;>500 per n?), a fact explained by
the increased photographic density in these areas. Increased

point densities on the floodplain are attributed to an abundance
of texturally complex terrain (i.e. cobbles and large boulders)
and dense photographic coverage. Point densities of 7, 38, 144,
313 and 443 points per nf correspond with the 10th, 25th,
50th, 75th, and 90th percentiles of the point density distribution
(Figure 5). Locally, densities commonly exceeded 200 points
per m? on the valley floor, while densities across the lowest
sections of the valley flanks exceeded 500 points per The tex-
tural homogeneity of the distal latero-terminal moraine faces and
a general lack of elevated and oblique photograph perspectives
led to comparatively sparse €30 points per nf) recovery of
3-D point data in these areas; a methodological shortcoming
which also applied to the topographic reconstruction of large
areas of the deglaciated moraine basin floor (Figure 4).

Moraine-dammed lake reconstruction
To calculate the pre-GLOF elevation of the dam crest and recon-
struct pre-GLOF moraine geometry, the breach was artificially
filled in ArcGIS. All 3-D points located within the breach bound-
aries were manually removed, and surface point-interpolation
was used to'fill’ the edited SfM-DTM. The reconstructed spill-
way, or crest elevation for the moraine was 4906 m. Direct ras-
ter-based differencing of pre- and post-GLOF DTMs permitted
the calculation of the volume of material removed from the
moraine dam, which is estimated as ~125 600 Given the
inevitable post-GLOF slumping and reworking of the breach
side-walls, this figure represents a conservative estimate of the
breach volume immediately after its formation.

Methods for quantifying glacial lake bathymetry include the
interpolation of spot depths calculated from manual plumb
line’ surveys (Yamada and Sharma, 1993; Fujitt al., 2009)

Figure 5. Spatial distribution of resampled, per-cell (1f) point densities, underlain by the hillshaded SfM-DTM. Inset histogram shows frequency
distribution of per-cell point densities. This figure is available in colour online at wileyonlinelibrary.com/journal/espl

© 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
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or GPS-integrated SONAR (Lamsat al., 2011; Sawagakiet al.,
2012). Such methods are appropriate for the survey of extant
glacial lakes, but quantification of the bathymetry of drained
lakes necessitated an alternative approach. The bathymetry of
Chukhung Tsho was reconstructed through the interpolation
of SfM-DTM contours spaced at 1m elevation intervals
(Figure 4). Assuming zero freeboard prior to dam failure, the
maximum lake surface area was 65.2 x 1bm?, and is associ-
ated with a maximum lake volume of 5.5 x 16 m*. This volu-
metric estimate is based on the post-GLOF SfM-DTM, which
includes the breach that connects L3 and L2, and that we infer
was formed as water flowed from sub-basin L2, through the
expanding Br_2, before exiting the main breach (Br_1) via L3
(Figure 3). Although we have not calculated the volume of
Br_2, it is assumed that it contributes relatively little to our esti-
mate of the volume of water that comprised Chukhung Tsho.
Accordingly, the reconstructed volume represents an upper
estimate.

The maximum water-depth was calculated as 24 m and
volume-stage relationships (Figure 6) were derived for inputs
to hydraulic simulations using HR BREACH (seéTwo-
dimensional hydrodynamic modeling below). The recon-
structed extent of Chukhung Tsho corresponds well with the
trace of a former lake bed, which is observable on Corona sat-
ellite imagery from 1962 (Figure 7), and with well-defined
palaeo-shorelines that were observed during field investiga-
tion (Figure 2(e); Figure 3).

Geomorphological mapping and sedimentological investigation

Fine-resolution (1 pixel=0.5m), georeferenced GeoEye satel-
lite imagery acquired on 3 November 2009 was used as a base
layer for local-scale geomorphological mapping (Figure 3).
Mapping was augmented with SfM-derived DTMs and field

photographs. The sedimentological characteristics of the mo-
raine and basin-floor sediments were sampled at three loca-
tions; the side walls of the breach through the terminal

moraine (Br_1), a second breach located ~75m south of Br_1
(Br_2), and a third breach (Br_3) which links the upper (L3)
and central (L2) lake basins (Figure 2(f); Figure 3).

Dam-breach modelling

Dam-breach model

The current generation of numerical dam-breach models are
fully physically based, and employ a combination of geo-
mechanical, hydraulic and erosion or sediment-transport equa-
tions to simulate breach development and calculate the breach
hydrograph (Mohamed et al., 2002; Hanson et al., 2005;
Westoby et al, 2014). These models require extensive
parameterisation to define both the initial conditions and mate-
rial characteristics of the dam, many of which are quantifiable
only through rigorous field investigation. Studies linking
advanced numerical dam-breach models to modes of moraine-
dam failure are rare (Worniet al., 2012).

Figure 6. Bathymetric characterisation of Chukhung Tsho. Data extracted from a Structure-from-Motion-derived DTM of the moraine dam complex.

(a) Volume-stage data. (b) Aresstage data.

L2

No/

breach

L1

L2
Br_3

L1

Figure 7. Satellite imagery of the terminus of Chukhung Glacier and drained moraine-dam complex in (a) 1962 (Corona satellite), and; (b) 2009
(GeoEye). The glacier terminus has receded, on average, 400 m in the period between the two images. A number of perched, meltwater-fed proglacial
lakes are visible in front of the contemporary terminus in the 2009 imagery. Drained lake basins L1 and L2, and breaches Br_1 and Br_3 are
highlighted for reference. This figure is available in colour online at wileyonlinelibrary.com/journal/espl
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Here, we employ the numerical dam-breach model, HR
BREACH (Mohamecdket al., 2002) within a Generalised Likeli-
hood Uncertainty (GLUE) simulation framework (Beven and
Binley, 1992; Kuczera and Parent, 1998; Romanowicz and
Beven, 1998; Beven and Freer, 2001; Aronicat al., 2002;
Blazkova and Beven, 2004; Beven, 2005; Hunteet al., 2005)
to explore range of failure mechanisms for the Chukhung
moraine-dam. A novel feature of HR BREACH is an in-built
stochastic parameter sampling module, which enables Monte
Carlo analysis of the parameter space of specified input dam-
material parameters. These parameters include material
density, cohesion, porosity, median diameter§sp), roughness,
and the internal angle of friction (Table Il). A weir coefficient
and an erosion width-to-depth ratio also require specification.
We adopted this probabilistic approach because of the inherent
uncertainty that surrounds the dam-material properties due to
the heterogeneous nature of moraine composition, and the lack
of detailed observations of the breaching process.

Initial dam geometry and lake bathymetry were extracted
from the SfM-DTM (Figure 4). Reconstruction of pre-GLOF
dam geometry facilitated the estimation of dam crest width
(20m) and proximal and distal face slope ratios (1:1.9m/m
and 1:2.8 m/m, respectively), which represent mean values for
five elevation profiles taken across the moraine dam and were
used for geometric characterisation of the moraine dam during
the setup of the numerical dam-breach model. A dam length of
150m was assumed, and a downstream valley slope of
1:0.09 m/m was extracted from the SfM-DTM.

Input parameter ranges (Table Il) were derived through a
combination of field investigation and published values for
moraine dams (Xinet al., 2008; Worni et al., 2012). A uniform
probability distribution for each parameter was assumed in the
absence of anya priori knowledge of the dam-material compo-
sition. HR BREACH employs a one-dimensional hydrodynamic
model to simulate breach water-profiles for an overtopping
failure (Mohamedet al., 2002; Morris et al., 2008) and includes
a broad-crested weir discharge equation to represent flow
through the breach and a simplified version of the Saint-Venant
equations to simulate breach outflow as it descends the distal
face of the dam. The model includes various options for
sediment transport and erosion equations to model the erosion
of the dam material during breach development. In this study,
Chen and Andersors (1986) erosion equation for the calculation

Table Il.  Input geometry, and parameter ranges used for probabilistic
sampling of the Chukhung moraine dam breach modelling using HR
BREACH

Geometric descriptor Value
Crest level (m) 4906
Dam foundation level (m) 4854
Crest length (m) 150
Crest width (m) 20
Distal face slope (1:x) 2.8
Proximal face slope (1:x) 1.9
Downstream valley slope (1:x) 0.09
Downstream Mannings n 0.05
Input parameter Range
Sediment flow factor 0.81.2
Erosion width-to—depth ratio 0.5-2
Dso (mm) 30-200
Porosity (%) 0.030.3
Density (kN m™) 19-24
Manning’'s n 0.02-0.05
Internal angle of friction (°) 2542
Cohesion (kN m'z) 0-100

© 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

of continuous breach erosion through non-cohesive sediments
was used to model sub-aerial breach development, such as that
associated with failure that has been initiated by wave

overtopping. The equation takes the form:

(YaKgde B 1)

where | is the detachment rate per unit area (e.g. s /m™), .is
the flow shear stress (kN) at the breach boundary, is the critical
shear stress required to initiate particle detachment (kN), arg
and a are coefficients based on the sediment properties.

HR BREACH accounts for bending (dtensional) and‘shear
type failures (Mohamedet al., 2002). The former are repre-
sented by a moment of forceMy:

Mo YaWe p Wsesp Wye,p Hzez Hiep 2
where W, is the weight of a dry block of soil (kN),Ws is the
weight of a saturated block of soil (kN)W, is the weight of a
submerged block of soil (kN),H; is the hydrostatic pressure
force in the breach channel (kN)H, is the hydrostatic pressure
force inside the dam structure (kN)g, esand e, are weight force
eccentricities (m), e; and e, are hydrostatic pressure force
eccentricities (m) (Hassan and Morris, 2012).

For non-cohesive material, there is a higher likelihood of shear
failure of the breach walls occurring during breach development.
HR BREACH calculates shear failure through the analysis of
Factor of SafetyFo9 values using the following equation:

cLp Hitan
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where c is soil cohesion (kN/nf), L is the length of the failure
plane (m), and is the soil angle of friction (°).

HR BREACH can also simulate piping-style breach develop-
ment. Piping is initiated when water seeping through a dam
structure removes the finest sediment fractions, eventually
forming a pipe, through which water drains. Flow through the
resulting orifice is calculated as:

S

Q, %A 29H Hp

. @

with:

hi ¥ 1:05p % (5)

where Qy, is discharge (nmis?), g is acceleration due to gravity
(m/S), A is the cross-sectional area of the pipe (i, H is the
water level in the dam (m),H,, is the pipe centre-line elevation
(m), h, represents losses due to friction and contractiorf,is a
friction coefficient determined as a function of the material
Dso (mm), L is the pipe length (m), andD is the pipe diameter
(m) (Mohamedet al., 2002). The initial pipe may then evolve
by erosion which is assumed to occur uniformly along the pipe.
The volume of sediment eroded\(s) per time step is taken to be:

V¥ Qq t (6)

where Qs is the sediment transport rate (fs?), and t the
model time step (s). This represents a highly simplified approx-
imation of pipe expansion mechanisms (Fread, 1988), and fur-
ther progress is necessary to improve the representation of the
processes driving pipe-expansion processes (Morris, 2009;
Westoby et al., 2014). Material from the downstream dam face
that falls into the expanding pipe is removed by the flow. Tran-
sition from breach enlargement through pipe-flow to sub-aerial,
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overtopping-type flow occurs when the force of the water in the
lake overcomes the shear strength of the pipe overburden, or this
material collapses under its own weight (Mohameet al., 2002).

Experimental design

Four breaching scenarios were parameterised to capture a
range of dynamical breach conditions. In the firstCK_control,
breaching is initiated as water overtops the moraine dam
through a predefined notch (I1m wide, 1 m deep). In the
remaining scenarios CK_ 489Q CK_4895 and CK _4900,
breaching is initiated via piping. The numerical value in each
of the scenario IDs denotes the elevation at which the initial
pipe is located. The reconstructed elevation of the dam crest
was 4906 m, while the elevation of the dam toe was set to
4854 m. An initial pipe diameter of 0.3 m was used; this was
the minimum diameter which was found to produce a numeri-
cally stable solution. One thousand Monte Carlo simulations
were executed per scenario. This number of runs was deemed
an appropriate compromise, which satisfied the demands of a
comprehensive search of the model parameter space and prac-
tical limitations of the computational time (each 1000 runs
requiring 8 h of simulation time with a 10 s model timestep.)

In the absence of observed hydrodynamic data describing the
actual breach, the performance of each simulation was evaluated
using two reconstructed morphometric descriptors and classified
using simple geometrical likelihood functions. First, simulations
that reproduced the final upstream breach depths of 20m +1m
were deemed acceptable, or behavioural, and were retained.
This error margin was intended to account for observed errors
in the GCP positional accuracies and transformation residuals
of the SfM data (Table I). A triangular likelihood function was
used to quantify simulation performance on a linear scale of
0-1, centred on an observed final breach depth of 20 m.

Secondly, the residual sum of squared errorRE$ of the
modelled versus the observed final elevation profile of the breach
centreline was calculated for each behavioural simulation:

RSSY  Zops 2

Va1

@)

z pred:

where Z,s is the observed elevation profile andZy.q is the
modelled elevation profile. Here, a linear function was used to
classify the likelihood of each simulation (between O and 1),
scaled to reflect the range between a perfect simulation of the
breach profile and the worst case behavioural simulation. These
two likelihood values were combined using Bayesian updating
(after Lambet al., 1998) to produce a multi-criteria, unified likeli-
hood value. It should be noted that this method assumes that the
elevation profile of the breach floor has undergone no subse-
quent alteration after breaching had ceased. The method also
assumes that Chukhung Tsho was drained in a single, largely
uninterrupted dam-breaching event, and that modelled peak
discharges are representative of such a mode of drainage.

Behavioural breach-hydrograph data were used to construct
cumulative probability distribution functions (CDFs) for each
scenario. For each time step, discharges were sorted by magni-
tude, and weighted by their final likelihood values, to support
the derivation of time step-specific CDF curves quantifying
the potential range of discharge values at each time step.

Two-dimensional hydrodynamic modelling

Hydrodynamic model

Two-dimensional models based on the depth-averaged shallow
water equations (Chanson, 2004; Hervouet, 2007) provide a
proven framework for predictions of distributed flow hydraulics.

© 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

The advantages of using 2-D numerical models for hydrody-
namic simulation of sudden-onset floods include their ability
to simulate multi-directional and multi-channel flow, super-

elevation of flow around channel bends, hydraulic jumps,

transcritical flow regimes, and flow recirculation (see for exam-
ple, Bohorquez and Darby, 2008). A number of two-dimensional
models include sediment transport functionality, making them
ideally suited for quantifying the geomorphological impact of

such flood flows.

For GLOF simulation, we employed a MacCormack-Total
Variation Diminishing (TVD) scheme in ISIS 2D (Halcrow,
2012). This uses predictor and corrector steps to compute flow
depth and discharge across a regular grid. ATVD term is added
at the corrector step to suppress numerical oscillations near
sharp gradients, therefore making it suitable for the simulation
of rapidly evolving, transcritical and supercritical flows (Liang
et al., 2006, 2007; Liao et al., 2007).

GLOF reconstruction

Breach-outflow hydrograph data were used as the upstream
hydraulic boundary condition for two-dimensional hydrody-
namic modelling. A single breach hydrograph (likelihood
value =0.95) was used to provide a representative assessment
of the near-field hydrodynamic characteristics of a GLOF from
Chukhung Tsho. Floodplain topography was represented by a
SfM-derived DTM with a spatial resolution of 4 m, which
encompassed the width (~300 m) and length (~700m) of the
floodplain. A model time step of 0.04 s was specified to satisfy
the standard CourantFriedrich-Levy stability criterion. At the
downstream model boundary, flow was able to exit the model
domain freely, through linkage with an ASTER GDEM-derived
DTM, thereby eliminating artificial backwater effects. Sediment
transport functionality was not available, and so the GLOF was
simulated as a clearwater-type flow.

Results
Dam-breach modelling

Simulation retention statistics revealed that 8.8%, 6.3%, 6.1%
and 1.7% of each set of 1000 Monte Carlo simulations were
retained as behavioural forCK_control CK_4890 CK_4895
and CK_490Q respectively. These results indicate that the
simulation of breach initiation through piping, and decreasing
pipe elevation, leads to a decrease in the number of retained
parameter ensembles. Maximum non-behavioural values @,
ranged from 2006-2200 m* s™, with a correspondingT, range of
12-16 min. The lowest non-behavioural values oQ, were in the
range 146-164 m*s?, within a T, range of 50-65 min.

Model evaluation resulted in a significant refinement ofQ,
and T, across all scenarios. Analysis of the likelihood response
surfaces for each input parameter revealed a high degree of
scatter, and therefore no obvious structural relationships in
the parameter space. The exception is Manning n, which
displayed an underlying linear relationship with increasing
likelihood. The behavioural range of Mannings n for all sce-
narios was 0.0270.049, and is representative of the piping-
style failure scenarios. Behavioural Manning n values for
CK_controlwere 0.042-0.049.

A decrease in maximum and minimum behavioural values of
material roughness is observed following the introduction of
piping, and decreasing pipe-elevation. The lowest values were
attributed to CK_4890(0.021-0.038). This observation is con-
sistent as lower roughness coefficients serve to offset rapid
pipe-development and breach enlargement, which results from
an increasing pressure-head in the pipe with decreasing pipe
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elevation. This feedback was confirmed by a relatively homoge-
neous spread of behavioural Manning n values along the
parameter axis foiICK_4895 Final simulation-specific likelihood
values ranged from 0.030.95 for CK_control CK_4890 and
CK_4900Q The likelihood range forCK_4895was 0.81-0.94.

Behavioural hydrograph envelopes of the breach and per-
centile hydrographs are displayed in Figure 8. Behavioural
hydrographs for CK_4890 and CK_4900 show a tendency
towards a dual-peak form, with a dominant early peak. By
comparison, the form of the behavioural hydrographs for
CK_controland CK 4895 are broadly similar, though the time
to concentration is longer for the control scenario. A rapid
rise-to-peak and increased maximum peak discharges are
associated with piping-style failures (specificallyCK_4890
and CK_4895. These characteristics may be the result of a
large initial pipe diameter (0.3 m), and a rapid transition from
confined to unconfined breach-development. To improve the
physical robustness of the model, stability should be ensured
when specifying extremely small initial pipe diameters, as our
results provide little indication as to the precise breach initia-
tion time associated with piping-style failures.

GLOF modelling

Inundation of the entire floodplain occured within ~10 minutes
(Figure 9). Maximum inundation corresponds with the outburst
hydrograph peak (1915nis?). The relatively short length
(~0.7 km) of the floodplain was conducive to the rapid down-
stream translation of the breach hydrograph. Maximum flow-
depths (16-12 m) occur at ~15min, and are largely confined
to a natural depression located approximately 550 m from the
breach. Upstream, increased flow-depths are concentrated in
a single channel that traces the eastern side of the floodplain.
We reiterate that the underlying topography is a post-GLOF
reproduction of the floodplain, and so the observed

flow-concentration is a reflection of the contemporary channel,
as opposed to a true reflection of the characteristics of the un-
dated GLOF. This caveat applies to interpretations of other flood
characteristics (e.g. flow velocities, clast mobility), and is
unavoidable in the absence of pre-GLOF topographic data. Flow
depths gradually decrease with a decrease in breach-hydrograph
discharge. However, the entire floodplain remains submerged
following the cessation of breach outflow as a consequence of
the restricted exit of the reach (Figure 9). In addition,

The highest flow-velocities (1620 ms™) are generally con-
fined to the eastern edge of the floodplain, but are more equally
distributed than the associated flow-depths (Figure 9), and
occur between ~9 and 12min. Increases in flow-velocity
cease immediately following the breach-hydrograph peak,
and for the remainder of the simulation remain comparatively
low (<4ms?). Increased flow velocities (812ms?) are
observed at the downstream boundary of the model domain,
and are associated with the significant constriction in flow
width as the valley floor narrows between the lateral moraine
of Lhotse Glacier, and the eastern lateral moraine of Ama
Dablam Glacier (Figure 9).

The simulated GLOF represents a clear water modelling
scenario because of the numerical limitations of the hydrody-
namic model used. Simulating GLOFs as clearwater flows is a
questionable practice, as they are widely documented to
entrain significant volumes of morainic material during breach
development and downstream flow propagation, which
induces fundamental changes in their flow rheology and
hydraulic behaviour (O'Connor et al,, 2001; Kershawet al.,
2005; Carrivick et al, 2011; Westoby et al, 2014). The
geomorphology of the valley indicates that the majority of
sediment removed from the breach was deposited within a
few hundred metres of the breach (Figure 2(h)). Comparatively
limited reworking of the distal floodplain environment indi-
cates that the GLOF was unlikely to be heavily sediment laden
at this point.

Figure 8. Percentile hydrographs derived from behavioural darbreach simulations. 5th percentile = small dashes; 50th (median) percentile =long
dashes; 95th percentile = solid black. The behavioural hydrograph envelope for each scenario is displayed in grey. Bottom plot shows the modelled
breach outflow hydrograph used as input to two-dimensional hydrodynamic modelling.

© 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
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Despite the modelling limitations described above, the calcu-
lation of stream power, in combination with the application of
an indicative scale to illustrate the maximum sediment fraction
that would be mobilised as bedload for each grid-cell (after
Carrivick et al., 2010), permitted a first-pass assessment of the po-
tential morphodynamic impact of a GLOF from Chukhung Tsho
(Figure 9). Our results indicate that the inundation of the flood-
plain may be associated with the mobilisation of gravel- and
cobble-sized material. However, the rapid progression of the
breach-hydrograph would result in the mobilisation of boulders
in excess of 2.56 m diameter within a distance of ~500m from
the breach, and across a zone measuring up to 100 m in width.
Hydrograph recession is associated with a decrease in stream
power and an accompanying decrease in sediment mobility.
At 18 minutes, the GLOF remains capable of mobilising
clasts 64 mm at its downstream extent (Figure 9).

Palaeocompetence-based GLOF reconstruction

The results of a palaeocompetence-based reconstruction of at-
a-point GLOF discharges along the length of the floodplain
are displayed in Figure 10. The length of the intermediate axis
of the 10 largest boulders encountered along transects spaced
at 50 m intervals in a down-valley direction across the flood-
plain from the breach to 150 m upstream of the confluence
with the Imja Khola were recorded, and the arithmetic mean
of these data using for input to palaeoGLOF reconstruction.
Our reconstruction is based on equations presented by Costa
(1983), which enable the estimation of flow velocity,
palaeodepth and discharge from particle size data:

v ¥40:18 di0:487 (8)
1,0:030 d; %% 9)

1
DY SV (10)

where v is flow velocity (ms?), d; is intermediate p-axis) boul-
der diameter, is unit stream power (Nm &), D is flow depth
(m), ¢ is the specific weight of water (9800N i) and S is

Figure 10. Reconstructed GLOF peak discharge (solid black) and mean
boulder diameter (white) along transects spaced at 50m intervals in a
down-valley direction across the Chukhung floodplain. A sudden
decrease in peak discharge occurs within 100 m of the breach and is as-
sociated with energy losses associated with lateral flow expansion. These
results are corroborated by geomorphological observation of the GLOF
deposits; the bulk of the large debris fan that originates at the breach
was deposited within 300 m of the moraine, beyond which reconstructed
peak discharges are significantly lower than those closer to the breach.

© 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

channel slope (mm?). Wetted channel perimeter and cross-
sectional area were calculated from the SfM-DTM, and
Manning’s n of 0.05 was assumed.

Reconstructed discharges (Figure 10) largely mirror the
modelled pattern of a down-valley decrease in the sediment
transport capacity of the escaping floodwaters (Figure 9). These
results reflect the dissipation of flow energy with lateral flow
expansion and travel distance and are characteristic of the
sedimentology of outburst flood deposits observed both in the
Himalaya (Cenderelli and Wohl, 2003) and further afield
(Kershawet al., 2005; Carrivick, 2007a, 2007b; Breienet al.,
2008).

The GLOF from Chukhung Tsho was capable of transporting
significant volumes of sediment, and it is assumed that the en-
tire volume of material removed from the breach was deposited
within ~0.5km of the terminal moraine from which it was
mobilised. However, the absence of a pre-GLOF topographic
dataset of the floodplain, and a hydrodynamic model with
morphodynamic capability precludes an in-depth assessment
of the temporal and spatial characteristics of landscape change
in the proglacial area (Breieret al., 2008; Carrivick et al., 2010,
2013; Worni et al., 2012; Dunning et al., 2013).

Discussion and Interpretation
Evolution of the GLOF hazard at Chukhung Glacier

Moraine and basin construction

The lack of glaciotectonic structure in the exposed terminal
moraine indicates a single period of moraine-building, most
likely attributable to glacier re-advance during the Little Ice
Age (LIA). There are no older Holocene or Late Glacial Maxima
moraines associated with Chukhung Glacier in the immediate
vicinity. It is conceivable that Chukhung Glacier overrode
older, smaller moraines during its LIA advance. The tapering
planform of the Chukhung moraine loop is explained as the re-
sult of lateral confinement to the west by the eastern lateral mo-
raine and bulk of Ama Dablam Glacier, and to the east by the
western flanks of a ridge that extends northwards from Amphu
peak (5663 m; Figure 3). The deposition of a continuous
moraine loop, followed by late-Holocene glacier recession
allowed a significant volume of glacial meltwater to pond in
the deglaciated moraine basin.

Character of palaeo-glacial lakes and GLOF trigger mechanisms
The recession of Chukhung Glacier from its maximum LIA
position may have been rapid, since short and steep glaciers
are far more responsive to climatic change than longer glaciers
with shallower surface gradients (Benn and Evans, 1998). In ad-
dition, the expansion of an ice-contact proglacial lake is likely
to have been associated with the development of lake-terminat-
ing ice cliffs. Such cliffs will have accelerated the rate of termi-
nus retreat as discrete subaerial and subaqueous ice-calving
and progressive backwasting became the dominant modes of
terminus retreat (Robertsoet al., 2012; Thompsonet al., 2012).

Three-dimensional reconstruction of the bathymetry of
Chukhung Tsho indicates that the moraine-dammed lake
would have extended as far south as the head of the central
sub-basin L2 (Figure 4). A bedrock outcrop that spans the cen-
tral section of the basin would have limited further expansion.
Volumetric and areal estimates assume zero dam freeboard
prior to failure, and also that the glacier terminus had receded
beyond the head of the reconstructed lake. These estimates
therefore represent an upper limit.

The southern-most breach (Br_3) and the debris fan that
extends from its exit into L2 are absent in the 1962 image
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(Figure 7). As Chukhung Tsho had drained prior to 1962, the
formation of Br_3 is unrelated to the undated GLOF, and was
most likely formed as a result of overspill from the uppermost
lake (L3), and in turn possibly generated amini’ GLOF. Possi-

ble trigger mechanisms might include the generation of a dis-
placement wave from collapsing ice séracs perched on the
bedrock outcrop above L3, or a sudden rise in lake level as
the result of the rapid input of a meltwater pulse from

Chukhung Glacier. Formation of this breach by prolonged
down-cutting through the till drape is discounted because of
the presence of the debris fan, which comprises predominantly
gravel- and cobble-sized material that could only have been
mobilised by significant flows. The cascading of water from
L1 into Chukhung Tsho, with an associated rise in lake level,
and the overtopping of the terminal moraine is therefore
discounted as a trigger mechanism for the initiation of terminal
moraine breaching, and generation of the undated GLOF.

Undated moraine-dam failure

Numerical modelling

Perhaps the most striking finding of the dam-breach modelling
results is the short duration of the piping-failure hydrographs
(Figure 8), of which the longest duration of was 13 min
(CK_4890). In comparison, behavioural overtopping hydrographs
lasted between 12.5 and 18 min. This difference is explained as
the result of a rapid initial transition from confined to unconfined
breach-enlargement during piping simulations. During this transi-
tion the dimensions of the initial pipe increased exponentially
from the beginning of each simulation, with pipes quickly col-
lapsing (typically within ~1 min) under the weight of their over-
burden. Whether or not this is an accurate representation of the
real-world characteristics of pipe expansion is questionable, but
is explained here as the result of the specification of a relatively
large initial pipe diameter, and large pressure-heads in the pipe
at the onset of simulation. Combined, these produced extremely
high rates of sediment evacuation and pipe expansion. The rapid
transition to an overtopping mode of breach development also
accounts for the increased peak discharges which are associated
with the piping-simulation results, as the initial dimensions of the
newly formed unconfined breach were conducive to the evacu-
ation of elevated volumes of water.

The dominance of the roughness coefficient, Mannirign, in
determining peak discharge and time-to-peak is unsurprising.
Increasing the boundary resistance to flow will simultaneously
increase local flow depths, and therefore rates of subaqueous
erosion and side-wall undercutting, thereby accounting for
the positive relationship that was observed between this param-
eter and model output. Given that the input range for Man-
ning’'s n encompassed values characteristic of channels
composed of low-lying vegetation and weeds (0.02), to cobbles
and large boulders (0.05; Chow, 1959), the behavioural param-
eter range for overtopping failure €K_contro) appears to re-
flect the robustness of HR BREACH for the simulation of this
particular mode of breach initiation. The extended range of be-
havioural roughness values observed for the piping scenarios
(0.027-0.049) is unusual, and might suggest that functional
relationships between the remaining input parameters exert
an overriding influence over breach development for this
pipe-initiated breaching.

These hydrodynamic results are broadly consistent with the
simulation of similar high-magnitude outburst floods, whereby
the highest near-field flow-depths, velocities, and shear
stresses are largely confined to a single channel (Alho and
Aaltonen, 2008; Carrivick et al., 2010). Beyond ~0.5km from
the breach, the reducing definition of a single channel,

© 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

combined with a reduction in the gradient of the valley floor
and increasing lateral flow expansion as a result of increased
upstream discharges, produced a widening zone of increased
flow depths (Figure 9).

Comparison with other documented moraine-dam failures
Geomorphological reworking of valley-floors downstream of
moraine-dammed lakes by GLOFs has been widely docu-
mented (Clague and Evans, 2000; Richardson and Reynolds,
2000; Cenderelli and Wohl, 2003; Korup and Tweed, 2007,
Osti and Egashira, 2009; Wornet al., 2012). In many instances,
distinct alluvial debris-fans similar to that observed beneath the
main breach at Chukhung are located immediately down-
stream of moraine (Vuichard and Zimmerman, 1987; Evans
and Clague, 1994; Kershawet al., 2005) and landslide dam-
breaches (Dunninget al., 2006). In both settings, these fans
comprise material predominantly sourced from the dam struc-
tures themselves, as rapid energy losses immediately down-
stream of a dam-breach result in the deposition of the
coarsest sediment fraction. Downstream, reaches variously un-
dergo erosion and deposition both during and following GLOF
passage. The morphodynamic regime is primarily dependent
on the longitudinal distribution of channel expansion and con-
traction (Clague and Evans, 2000; Cenderelli and Wohl, 2003;
Kershawet al., 2005).

The volume of water released by the reconstructed
Chukhung GLOF (56.5x10°m®) is smaller than estimated
for the Dig Tsho; Vuichard and Zimmerman, 1987), Sabai Tsho
(18x10°m? Osti and Egashira, 2009), or Luggye Tsho
(18 x10°m3; Watanabe and Rothacher, 1996) GLOFs, and
is more comparable with estimates for the Nare GLOF
(0.5-5x10°m>; Buchroithner et al, 1982; Fushimi et al,
1985), and for several historical GLOFs in British Columbia
(Clague and Evans, 2000; Kershawt al., 2005). The volume
of impounded water is a direct product of moraine-basin mor-
phology and mode of lake development, and the pre-failure
water surface elevation. In contrast, lakes that originate on the
tongues of long, low-gradient, debris-covered glaciers have
the potential to impound water volumes in excess of 10m?>.
The latter is determined by various factors including dam crest
spillway elevation, or the elevation of intra-moraine seepage
pathways and pipes

Regional and global context

The Chukhung moraine complex is regionally unique, in that it
represents an example of a deglaciated, breached and fully
drained moraine-dammed lake. It provides an indication of
how other glacierised basins might behave as glaciers recede.
Breached moraine-dammed lake complexes are uncommon
in the Khumbu Himal, the most obvious exception being Dig
Tsho, whose moraine-dam was breached on 4 August 1986
(Vuichard and Zimmerman, 1987). A GLOF also originated
from the vicinity of the Nare Glacier on 3 September 1977
(Buchroithneret al., 1982; Cenderelli and Wohl, 2001, 2003),
and has been attributed to the failure of a series of ice-cored
moraine dams. In the neighbouring Hinku valley, a GLOF
was produced by the failure of the Tam Pokhari (Sabai Tsho) mo-
raine-dammed glacial lake (Osti and Egashira, 2009; Ostt al.,
2011). In comparison, extant moraine-dammed glacial lakes in
the Khumbu Himal currently include those found in front of Imja
Glacier (Watanabeet al., 1994, 2009; Reynolds, 2006; Hambrey
et al,, 2009), Ngozumpa Glacier (Bennet al., 2012; Thompson
et al, 2012) and Lumding Glacier (Bajracharya, 2008).
Geomorphologically, the Chukhung Glacier-moraine com-
plex resembles those in British Columbia which are typically
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Figure 11. Elevation profiles of glacier centrelines for neighbouring
Chukhung Glacier and Ama Dablam Glacier. Black arrows indicate
key features.

situated in cirques or the upper reaches of steep-walled valleys
with low width-to-height dam ratios and steep proximal and
distal moraine slopes (Blown and Church, 1985; Evans, 1986;
Clague and Evans, 2000; McKillop and Clague, 2007). These
characteristics are also typical of many glacier-lake systems in
the South American Cordillera Blanca (Lliboutryet al.,, 1977;
Hubbard et al., 2005). The initiation of moraine-dam failure
has been described as the result of wave-overtopping in both
regions (Lliboutry et al., 1977; Reynolds, 1992; Clague and
Evans, 1994; Richardson and Reynolds, 2000), and the devel-
opment of intra-morainal springs and seepage, which may
serve as a precursor to pipe-initiated failure, has also been
documented (Clague and Evans, 2000; Lliboutrgt al., 1977),
although direct observations of piping style moraine-dam
failure are scarce.

The Chukhung moraine-dam complex represents an end-
member in a landform continuum proposed by Clague and
Evans (2000) which begins with the development of
supraglacial ponds and subsequent development of groto’
moraine-dammed lake ¢f. Benn et al, 2012), and ends with
the failure of a moraine dam and the generation of a GLOF
(Benn and Owen, 2002). By comparison, many debris-covered
glacier tongues in the region (Hambret al., 2009; Bennet al.,
2012), and in the wider Himalaya (Sakai and Fujita, 2010) cur-
rently host a network of supraglacial ponds, or are undergoing
a transition to fully-formed moraine-dammed lake develop-
ment. The progression of the Chukhung Glacier-moraine-dam
complex to the end of this continuum is explained by the
nature of its formation; that it proceeded along an alternative
and accelerated pathway associated with comparatively steep
and largely debris-free parent glaciers (Figure 11). Glaciers of
this type typically respond to increased air temperatures
through rapid recession of the glacier terminus. Moraine-
dammed lake development in the proglacial zone of such gla-
ciers is comparatively straightforward and rapid when com-
pared with their heavily debris-mantled counterparts (Clague
and Evans, 2000). When combined, rapid lake development
and impoundment by a moraine-dam with a high width-to-
height ratio, and proximity to slopes which generate frequent
ice- and rock-avalanches are conducive to GLOF generation.

Conclusions

The Chukhung Glacier moraine-dam complex in the Khumbu
Himal, Nepal, comprises multiple breaches and intercon-
nected lake basins. A numerical dam-breach model, executed
within a probabilistic framework, was used to simulate moraine
breaching. The results suggest that breaching scenarios

© 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

associated with both piping and overtopping styles of breach
initiation were capable of reproducing observed contemporary
breach morphology. The maximum lake volume was
5.5x10°m® with modelled peak discharges in the range 146
to 2200 m*s™*. Two-dimensional hydrodynamic simulations in-
dicate that inundation of the entire floodplain was achieved
within 10 min of breach development. The temporal and spa-
tial variability in the sediment transport capacity of the flood-
waters supports the deposition of an alluvial fan, which is
also observed in the field. Although numerous examples of
breached moraine-dam complexes from other regions have
been described in the literature, Chukhung Glacier represents
a rare example of a Khumbu Himal landsystem that has
progressed to the end of a landform continuum which begins
with glacier recession and moraine-dammed lake develop-
ment, and ends with moraine-dam failure and the generation
of a GLOF. In contrast, the majority of glaciers in the Khumbu
Himal, and many similar adjacent catchments, and those
further afield in the Himalaya, currently host fully formed or
‘proto’ moraine supraglacial or proglacial lakes or a network
of supraglacial melt ponds. The uniqueness of Chukhung
Glacier is attributed to topographic controls on glacier surface
gradient, and the lack of a thick mantle of supraglacial debris
that characterises the majority of glaciers in the region. In com-
bination, this means that the glacier is more sensitive to the
effects of climatic change than the majority of other glaciers
in the region, which are largely debris-covered and possess
low surface gradients along most of their length.
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