
Published by: World Academy of Science, Engineering and Technology


This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/35654/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.)
Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector

Amalka Nawarathna, Nirodha Fernando, Zaid Alwan

Abstract—Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.

Keywords—Embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector.

I. INTRODUCTION

The building sector is considered as a major energy consumer as well as a major culprit for the high presence of atmospheric carbon. At the global level, buildings account for 40% of energy use and 30% of energy based GHG emissions [1]. It has been estimated that these emissions will continue to rise further under a business-as-usual scenario [2].

A building, within its whole life cycle emits two types of carbon; namely, operational and embodied [3]. In a typical building, carbon in operation accounts about 70-80% of total life cycle while the difference remains as EC [3]. Owing to the larger share of OC, traditionally considerable efforts have been put forth to reduce the operational emissions [4]. However, the present evidences prove that the successful reductions of OC (due to improved operational performance) have tended to increase the share of EC in whole life cycle [5], [6]. As a result of that, EC emission estimation and reduction have become a great interest in sustainable and green building construction at present [7].

EC estimation is an initial step towards reducing EC of buildings. In view of that, many standards, assessment methods, tools and databases have been developed worldwide [8]. However, unlike the OC estimation, estimating EC is challenging.

Sri Lanka is a developing country which has initiated promoting sustainable/green buildings within the country in order to achieve its local and global carbon reduction targets [9]. However, most of its strategies have focused on reducing operational energy (and thus OC reduction) and the focus on EC reduction found very little in the existing literature. Other than few strategies introduced by Green Building Council [9] for EC reduction, no researches or any initiation found on EC estimation of buildings. The research conducted by Pooliyadda [10] on estimating EC values of few building materials is also not up-to-date and no further researches were conducted on it. Therefore, this study attempts to identify the reasons for this slow uptake of EC estimation, so that the necessary actions can be taken to mitigate them and increase the attention on EC reduction in Sri Lankan building sector.

This paper is organised into six main sections. Section I briefly introduces the aim of this paper. Section II presents the findings of literature review; mainly the challenges for/barriers to estimating EC in buildings. The methodology adopted to conduct the research is presented in Section III, while Section IV discusses the findings. Section V draws the conclusions, study limitations and future research, and eventually Section VI provides the list of references.

II. LITERATURE REVIEW

A. EC in Buildings

In the existing literature, EC has been subjected to various definitions and interpretations. According to RICS [3], EC is “the emissions associated with energy consumption (embodied energy) and chemical processes during the extraction, manufacture, transportation, assembly, replacement and deconstruction of construction materials or products are identified as embodied carbon”. Moreover, WRAP [12] defines EC as “the carbon dioxide emissions associated with making a building, more precisely the greenhouse gas emissions that arise from the energy and industrial processes used in the processing, manufacture, and delivery of the materials, products and components required to construct a
building”. In addition, there are many other interpretations derived from many studies. Reference [6] has reviewed some of them and the review demonstrates that all these definitions represent the differences of opinion about the system boundaries used in the EC assessment.

Unlike the OC generation during the operational phase of a building, EC generates in all four phases of a building (product, construction, operation and end of life). Therefore, in estimating the EC of a building, measurement boundaries need to be defined. That is called system boundary of EC calculations and they are; cradle (earth)-to-gate (factory gate), cradle-to-site, cradle-to-end of construction, cradle-to-grave, or even cradle-to-cradle (includes recycle, reuse etc.) [3].

The literature presents wide range of studies carried out to assess the present-day proportion of EC content of various types of buildings in many countries. A study conducted by RICS [3] to the UK context reveals that typical buildings such as supermarkets, offices and semi-detached houses are associated with 20-30% of EC of the total life cycle emissions. Further, researches conducted by [13], [14] also mention that about 20-30% of carbon emissions of typical residential and office buildings are from embodied emissions.

Accordingly, it is proved that OC emissions are much higher than embodied emissions in typical buildings. Contrary to typical buildings, RICS [3] mentions that the low energy incentive facilities such as warehouses accounts for 80% of EC emissions. Reference [13] further confirms this, stating that the low carbon buildings accounts for 9-46% of EC where the OC remains in a lesser value. Unlike both typical and low carbon buildings, zero carbon buildings emit zero OC in which the total carbon emits as EC [3].

B. EC Estimation: Existing Methodologies, Tools and Databases

Subsequent to the development of Inventory of Carbon and Energy (ICE) in 2008 and the initial information paper of Royal Institution of Chartered Surveyors (RICS) on EC calculation methodology in 2012, various methodologies, tools, data and databases in relation to EC estimation have been gradually developed [15].

<table>
<thead>
<tr>
<th>Tools</th>
<th>Access</th>
<th>System Boundary</th>
<th>Method</th>
<th>Countries</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athena Eco Calculator and Athena Impact Estimator</td>
<td>Open</td>
<td>Cradle to Gate/Cradle to Grave</td>
<td>Process based</td>
<td>USA, Canada</td>
<td>[16]</td>
</tr>
<tr>
<td>Building for Environmental and Economic Sustainability (BEES)</td>
<td>Open</td>
<td>Cradle to Gate</td>
<td>Process based</td>
<td>USA</td>
<td>[17]</td>
</tr>
<tr>
<td>Environment Agency Carbon Calculator</td>
<td>Open</td>
<td>Cradle to Gate</td>
<td>Input-Output based</td>
<td>UK</td>
<td>[18]</td>
</tr>
<tr>
<td>Global Emissions Model for integrated Systems (GEMIS)</td>
<td>Licensed</td>
<td>Cradle to Gate</td>
<td>Process based</td>
<td>Germany</td>
<td>[19]</td>
</tr>
<tr>
<td>EQUER</td>
<td>Licensed</td>
<td>Cradle to Grave</td>
<td>Process based</td>
<td>France</td>
<td>[20]</td>
</tr>
<tr>
<td>SimaPro</td>
<td>Licensed</td>
<td>Cradle to Grave</td>
<td>Process based</td>
<td>Netherlands</td>
<td>[21]</td>
</tr>
<tr>
<td>Bath Inventory of Carbon and Energy</td>
<td>Open</td>
<td>Cradle to Gate</td>
<td>Process based</td>
<td>UK</td>
<td>[22]</td>
</tr>
<tr>
<td>Athena Life Cycle Inventory Product Databases</td>
<td>Licensed</td>
<td>Cradle to Gate</td>
<td>Process based</td>
<td>USA, Canada</td>
<td>[23]</td>
</tr>
<tr>
<td>New Zealand Building Materials Embodied Energy Database</td>
<td>Open</td>
<td>Cradle to Gate</td>
<td>Process based</td>
<td>New Zealand</td>
<td>[24]</td>
</tr>
<tr>
<td>Hutchins UK Building Black book</td>
<td>Licensed</td>
<td>Cradle to Gate</td>
<td>Input-Output based</td>
<td>UK</td>
<td>[25]</td>
</tr>
<tr>
<td>European Life Cycle Database (ELCDB)</td>
<td>Open</td>
<td>Cradle to Gate</td>
<td>Process based</td>
<td>Europe</td>
<td>[26]</td>
</tr>
<tr>
<td>EcoInvent 3.3</td>
<td>Licensed</td>
<td>Cradle to Gate</td>
<td>Process based</td>
<td>Switzerland</td>
<td>[27]</td>
</tr>
<tr>
<td>ÖKOBAUDAT (German National Database)</td>
<td>Open</td>
<td>Cradle to Gate</td>
<td>Process based</td>
<td>Germany</td>
<td>[28]</td>
</tr>
<tr>
<td>AusLCI</td>
<td>Open</td>
<td>Cradle to Gate</td>
<td>Process based</td>
<td>Australia</td>
<td>[29]</td>
</tr>
</tbody>
</table>

According to Moncaster and Song [30], there are three common methods available to estimate EC in whole life cycle of a building namely;

- Process based method
- input- output method and
- hybrid method

Process based analysis is one of the most widely used methods in the literature as it delivers more accurate and reliable data [31]. Some of the studies done by [32]-[34] have adopted this method. However, this method is impractical and incomplete due to the exclusion of many upstream processes [7].

Input-output life cycle assessment is an alternative to process based method which calculates the total impact of construction, including the areas omitted by the process method [30]. Therefore, this method is assumed to be comprehensive and complete [7]. The studies done by [35], [36] are two examples for the input-output analysis method adopted in EC estimation. However, this method also suffers from issues such as assumption of homogeneity and proportionality, errors and uncertainty of data which ultimately lead to the unreliable and erroneous outcomes [37].

As a result of that, hybrid method has been evolved. Reference [38] discusses on two hybrid methods; namely, process based hybrid analysis and input-output based hybrid analysis which have been designed to eliminate fundamental errors of and limitations of other two methods. However, the same authors further mention that no method available is fully efficient and errors are unavoidable in all methods.

In association with these methods, many EC assessment tools and supportive databases/inventories have been developed to facilitate the process of EC estimation. The Table I provides few examples for EC assessment tools and databases/inventories available worldwide. Although there are
many tools and the databases as such, the literature reveals that most of them are not transparent, up-to-date and not freely available [8].

C. Challenges for/Barriers to Estimating EC

Despite the various methodologies, tools, data and databases available in the practice, the built environment professionals yet confront many challenges and barriers to estimating EC [33]. In view of this, the authors were able to identify 16 different challenges and barriers from the existing literature and summarised them as in Table II.

TABLE II
CHALLENGES FOR/BARRIERS TO ESTIMATING EC

<table>
<thead>
<tr>
<th>No</th>
<th>Challenges/Barriers</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>no regulations mandating the EC estimation in buildings</td>
<td>There are no regulations yet announced to estimate and reduce EC</td>
<td>[30], [33]</td>
</tr>
<tr>
<td>2</td>
<td>inconsistencies in the EC estimation methods</td>
<td>Multiple calculation methods are available in the practice, but they are lack in consistency and transparency</td>
<td>[30], [39]-[41]</td>
</tr>
<tr>
<td>3</td>
<td>difficulty in choosing an estimation boundary</td>
<td>The existing literature identifies five system boundaries namely: cradle to gate, cradle to site, cradle to end of construction, cradle to grave and cradle to cradle. Among them, it is quite challenging to choose an appropriate boundary for an assessment.</td>
<td>[33], [39], [40], [42]</td>
</tr>
<tr>
<td>4</td>
<td>unavailability of a standard data collection and maintenance procedure</td>
<td>High level of uncertainty is inevitable in collection and maintenance of data due to unavailability of a standard data collection and maintenance.</td>
<td>[39], [42]</td>
</tr>
<tr>
<td>5</td>
<td>unavailability of national databases for carbon emission factors</td>
<td>Despite the IPCC Emission Factor Database for global practice and EMEP/EEA Guidebook 2016 for European countries etc., it is hard to find out national specific carbon emission factor databases.</td>
<td>[12]</td>
</tr>
<tr>
<td>6</td>
<td>limited knowledge</td>
<td>Lack of national specific databases possibly will reduce the accuracy of final outcome.</td>
<td>[39], [43]</td>
</tr>
<tr>
<td>7</td>
<td>dissemination</td>
<td>Despite the increasing research and development on reducing the EC impact of buildings in developed countries, it is very little in developing countries.</td>
<td>[39], [43]</td>
</tr>
<tr>
<td>8</td>
<td>out of date assessment tools</td>
<td>Most of the available assessment tools have not been updated after its first introduction</td>
<td>[8]</td>
</tr>
<tr>
<td>9</td>
<td>lack of open source assessment tools and software</td>
<td>The majority of the assessment tools and software available for calculating EC in the industry practice are either country or region specific, as well as not freely available.</td>
<td>[8]</td>
</tr>
<tr>
<td>10</td>
<td>lack of benchmarks</td>
<td>Once the EC emissions are calculated, benchmarks should be available, enabling the comparisons to be drawn. However, there are no widely accepted benchmarks.</td>
<td>[8], [40]</td>
</tr>
<tr>
<td>11</td>
<td>high data demands</td>
<td>Lack of and/or unavailability of published data on the embodied impact of components or materials, and Environment Product Declaration databases, unreliable, aged and incomplete data followed by access restrictions and geographic variations is another major challenge estimating EC.</td>
<td>[13], [30], [40], [44]-[47]</td>
</tr>
<tr>
<td>12</td>
<td>complex and work intensive nature of estimation procedure</td>
<td>Data collection and analysis of a large quantity of data is complex and work intensive. Therefore, it requires more labour.</td>
<td>[48]</td>
</tr>
<tr>
<td>13</td>
<td>time consuming nature of EC estimation</td>
<td>It is apparent that when the procedure is complex and work intensive, it consumes more time</td>
<td>[40], [45], [49]</td>
</tr>
<tr>
<td>14</td>
<td>limited environmental awareness</td>
<td>This is a major challenge, mainly in developing countries where the technology and the knowledge has not been disseminated or shared.</td>
<td>[43]</td>
</tr>
<tr>
<td>15</td>
<td>lack of skilled personnel</td>
<td>Limited awareness on climate change and its impacts in developing countries has overlooked the significance of estimating EC emissions and implementing reduction strategies.</td>
<td>[48]</td>
</tr>
<tr>
<td>16</td>
<td>lack of interest in the embodied impacts by the public and the industry stakeholders</td>
<td>Lack of interest on the EC reduction among both internal (i.e. engineers, architects, facility managers) and external (i.e. public, government) stakeholders of the construction sector.</td>
<td>[6]</td>
</tr>
</tbody>
</table>

III. RESEARCH METHODOLOGY

This paper is based on a pilot survey which was supported by a literature review and a questionnaire. Conducting a pilot survey prior to the actual survey using a smaller sample of respondents enables to obtain some assessment of the questions’ validity and the likely reliability of the data that will be collected in large scale [50]. The literature review enabled the identification of 16 challenges for/barriers to estimating EC in building sectors in many countries. The questionnaire then supported in identifying the relevant reasons among them for slow uptake in EC estimation in Sri Lankan building sector. Seven experts who were purposively selected based on the experience and the involvement in sustainable/green construction related activities were used to conduct the survey. The questionnaire included two main sections. In the first section, the respondents were asked to provide background information of them that included current designation, academic qualifications, industry experience and involvement in sustainable construction related activities. The second section was designed in line with the purpose of the study. The identified challenges/barriers were put into a three point Likert scale (1 = low relevant, 2 = moderately relevant, 3 = high relevant) and the respondents were asked to rate them. The collected data were subsequently analysed using descriptive statistics and due to the small-scale of this survey, the method of Mode was used. The mode is the value that occurs most frequently in a distribution [51]. Pertaining to that the relevance level of each challenge/barrier to the Sri Lankan context was identified.

IV. FINDINGS

A. Overview of Respondents

All the selected respondents were contacted, indicating the contact and the respond rate of 100%. Out of seven respondents, three were academics and four were industrial practitioners. Four of them have PhDs, two have masters and one has bachelor’s degree. The years of industrial experience...
indicated that all of them have more than 05 years’ experience. The academics have involved in green construction related researches while industrial practitioners have involved in the green building consultancy projects. Thus, this indicates that the selected respondents are well educated, experienced as well as in a capacity to make a contribution to this study.

B. Reasons for the Slow Uptake of EC Estimation in Sri Lankan Building Sector

Fig. 1 graphically presents how the respondents have rated each reason. It indicates the relevance rates given for each reason as a percentage of total respondents. Based on their ratings, the mode value of each reason was derived and eventually, it was able to categorize them as high, moderate, and low relevant reasons.

Table III discloses the mode values and the classification clearly. It identifies 11 numbers of high relevant reasons and the remaining five 05 as moderately relevant reasons for the slow uptake of EC estimation in Sri Lankan building sector. It further indicates that there are no low relevant reasons for the slow uptake of EC estimation.

According to Table III, the following 11 reasons were identified as highly relevant reasons: 1) no regulations mandating the EC estimation in buildings; 4) unavailability of a standard data collection, estimation and maintenance procedure; 5) unavailability of national database for carbon emission factors; 6) limited knowledge dissemination; 8) lack of open source assessment tools and software; 10) lack of accurate and transparent data; 11) complex and work intensive nature of estimation procedure; 13) time consuming nature of EC estimation; 14) lack of skilled personnel; 15) limited environmental awareness; 16) lack of interest in the embodied impacts by the public and the industry stakeholders; Following

5 reasons were identified as moderately relevant reasons for the Sri Lankan context; 2) inconsistencies in the EC estimation methods; 3) difficulty in choosing an estimation boundary; 7) out of date assessment tools; 9) lack of benchmarks and 11) high data demands.

V. CONCLUSIONS AND THE WAY FORWARD

With the reduction of OC emissions in the global building sector, the attention has now shifted towards EC reduction. However, Sri Lanka as a developing country which promotes sustainable/green building construction has not yet extensively looked into the EC estimation and thereby EC reduction. Therefore, it created a necessity to identify the main reasons which has caused for the slow uptake of EC estimation in Sri Lankan building sector. The findings revealed that there are 11 high and 05 moderately relevant reasons. Accordingly, it concluded that all the known global challenges and barriers are significant reasons for the slow uptake of EC estimation in Sri Lankan building sector and they need to be addressed in order to encourage the EC estimation and then reduce the EC.

This paper was limited to a pilot survey in which the conclusions were derived based on few experts. This indicates that the conclusions are subjective and the study is not conclusive enough. However, the findings lead to a broader scale study in future. Accordingly, the survey will be repeated in a large scale and the findings will be tested again. Further, the future work of this study will look in to provide probable suggestions to overcome the significant reasons, so then the necessary actions can be taken to estimate and reduce the EC of buildings in Sri Lanka.


[41] UK Green Building Council, Embodied Carbon Week – Seeing the whole picture, Key findings from Embodied Carbon Week 2014. UKGBC.


