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Abstract. Dendritic cell algorithm (DCA) is a binary classification sys-
tem developed by abstracting the biological danger theory and the func-
tioning of human dendritic cells. The DCA takes three signals as in-
puts, including danger, safe and pathogenic associated molecular pat-
tern (PAMP), which are generated in its pre-processing and initialization
phase. In particular, after a feature selection process for a given training
data set, each selected attribute is assigned to one of the three input sig-
nals. Then, these input signals are calculated as the aggregation of their
associated features, usually implemented by a simple average function
followed by a normalisation process. If a nonlinear relationship exists
between a signal and its corresponding selected attributes, the resulting
signal using the average function may negatively affect the classification
results of the DCA. This work proposes an approach named TSK-DCA
to address such limitation by aggregating the assigned features of a sig-
nal linearly or non-linearly depending on their inherit relationship using
the TSK+ fuzzy inference system. The proposed approach was evaluated
and validated using the popular KDD99 data set, and the experimental
results indicate the superiority of the proposed approach compared to
its conventional counterpart.

Keywords: Dendritic cell algorithm, TSK+ fuzzy inference system, in-
formation aggregation, danger theory.

1 Introduction

Intrusion detection systems (IDSes) are of paramount importance in computer
network security as the number of cyber attacks grow in prominence every year.
Over the last three decades, artificial immune systems (AISes) have been pro-
posed primarily for intrusion detection in computer systems. Self-nonself is the
first biological model used in computer security domain to develop AISes such
as clonal selection, negative selection and positive selection algorithms [1]. Self-
nonself model is built upon the observation that the natural immune system
provides protection based on the discrimination between self (own body cells)
which is tolerated and nonself (foreignness) which is the source of attack [2].

⋆ This work is supported by the Commonwealth Scholarship Commission (CSC) and
Northumbria University in the United Kingdom.
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Self-nonself based algorithms often fail to provide beneficial advantages to com-
puter network security systems like those provided by the natural self-nonself
model to the natural immune systems [1].

Inspired by the danger theory [3] and the behaviour of dendritic cells (DCs),
the dendritic cell algorithm (DCA) was developed to address the aforementioned
limitation [4]. Briefly, the DCA first transfers the values of the most relevant fea-
tures from a given training dataset to its input signals, termed as safe, danger,
and pathogenic associated molecular pattern (PAMP). Then, the DCA classifier
takes those input signals to produce a binary output. Conventionally, a linear
average aggregation method is commonly used to aggregate the values from the
assigned features to form each input signal. However, if a non-linear relation-
ship exists between the selected attributes and the resulting signals, the average
approach will adversely impact the performance of the DCA. A fuzzy inference
system is then adopted in this paper to compute the value of each DCA input
signal to generalise the linear average aggregation method.

Fuzzy inference systems are built upon fuzzy logic to map from the input
space to the output space. They have been widely applied in solving either
linear or non-linear problems of arbitrary complexity, such as [5, 6]. The two most
widely used fuzzy inference systems are the Mamdani fuzzy model and TSK fuzzy
model. Compared with the Mamdani fuzzy model, which is more intuitive and
commonly utilised to deal with human natural language, the TSK fuzzy model
is more convenient to be employed when crisp output values are required. Both
of these conventional fuzzy inference systems are only workable with a dense
rule base by which the entire input domain is fully covered. Fuzzy interpolation
enhances the power of the conventional fuzzy inference systems by relaxing the
requirement of dense rule bases [7, 8]. In other words, the conventional fuzzy
inference systems fail to generate a conclusion when a given observation does
not overlap with any rule antecedents in the rule base, but fuzzy interpolation
can still approximate the conclusion. Various fuzzy interpolation methods have
been developed in the literature, such as [9–17].

This paper proposes the TSK-DCA approach for aggregating the assigned
features of each input signal, either linearly or non-linearly, to generate DCA in-
puts using the TSK+ fuzzy inference approach. In particular, the TSK-DCA uses
three TSK+ fuzzy inference systems to deal with the three DCA input signals. In
order to implement the proposed TSK-DCA, a data-driven rule base generation
method is firstly employed to generate three sub-TSK fuzzy rule bases, corre-
sponding to the three input signals. Then, the TSK+ fuzzy inference approach is
applied to compute the value of each input signal from the assigned features for
each data instance, before the application of the DCA. TSK-DCA has been vali-
dated and evaluated by a well-known benchmark dataset, KDD99. Experimental
results indicate that the TSK-DCA performs better than the conventional one.

The rest of this paper is organised as follows: Section 2 describes the back-
ground theories, including TSK+ fuzzy inference approach and the DCA algo-
rithm. Section 3 details the proposed TSK-DCA approach. Section 4 reports the
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experimentation and analyses the results; and Section 5 draws the conclusion
and points out future research directions.

2 Background

2.1 TSK+ Fuzzy Inference System

The original TSK inference system generates a crisp inference result as the
weighted average of the sub-consequences with the firing strength of the fired
rules as weights [18]. Obviously, no rule will be fired if a given input does not
overlap with any rule antecedent. As a consequence, the TSK inference cannot
be performed. TSK+ was proposed to address such issue which generates a con-
sequence by considering all the rules in the rule base [19]. Suppose that a sparse
TSK rule base is comprised of n rules:

R1 : IF x1 is A1
1 and · · ·xj is A1

j · · · and xm is A1
m

THEN z = f1(x1, · · · , xm),

... ...

Rn : IF x1 is An
1 and · · ·xj is An

j · · · and xm is An
m

THEN z = fn(x1, · · · , xm),

(1)

where Ai
j , (i ∈ {1, 2, · · · , n} and j ∈ {1, 2, · · · ,m}) represents a normal and

convex polygonal fuzzy set that can be denoted as (aij1, a
i
j2, · · · , aijv), v is the

number of odd points of the fuzzy set. Given an input I = (A∗
1, A

∗
2, · · · , A∗

m)
in the input domain, a crisp inference result can be generated by the following
steps:

Step 1: Identify the matching degrees between the given input (A∗
1, A

∗
2, · · · , A∗

m)
and rule antecedents (Ai

1, Ai
2, Ai

3, · · · , Ai
m) for each rule Ri by:

S(Ai
j , A

∗
j ) =

(
1−

v∑
q=1

|aijq − a∗jq|

v

)
· (DF ) ,

(2)

where DF is a distance factor, which is a function of the distance between the
two concerned fuzzy sets:

DF = 1− 1

1 + e(−cd+5)
, (3)

where c is a sensitivity factor, and d represents the Euclidean distance between
the two fuzzy sets for a given defuzzification approach. in particular, c is a
positive real number. Smaller value of c leads to a similarity degree which is
more sensitive to the distance of two fuzzy sets, and vice versa.

Step 2: Determine the firing degree of each rule by aggregating the matching
degrees between the given input and its antecedent terms by:

αi = S(A∗
1, A

i
1) ∧ S(A∗

2, A
i
2) ∧ · · · ∧ S(A∗

m, Ai
m) , (4)
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where ∧ is a t-norm operator usually implemented as a minimum operator.
Step 3: Generate the final output by integrating the sub-consequences from

all rules by:

z =
n∑

i=1

αi · fn(x1, · · · , xm) /
n∑

i=1

αi . (5)

2.2 Dendritic Cell Algorithm

In order to detect anomaly for any given inputs, the DCA creates a population
of artificial DCs to form a pool from which a number of DCs are selected to
perform antigens (data items) sampling, signals categorization (into PAMP, DS
and SS) and antigens identification [4]. While in the pool, DCs are exposed to the
current signal values and the corresponding antigen data from the data source.
Each DC has the ability to sample multiple antigens, so during the classification
an aggregated sampling value from different DCs regarding a particular antigen
is computed which is used to classify the antigen as normal or anomalous [4, 20].

The inputs to the DCA are signals from all categories and data items. Signals
are represented as an aggregation of real-valued numbers from their correspond-
ing associated features, while antigens are identified by the data item IDs such
as process ID or any other unique nominal attributes. As a binary classifier, the
DCA classifies each antigen as either normal (semi-mature) cell context, or as
anomalous (mature) cell context. So, the DCA output is the antigen normality
or abnormality context which is represented as a binary value 0 for normality
or 1 for abnormality. After the pre-processing and initialisation, the DCA goes
through three phases as detailed below.

Step 1. Detection The DCA processes the input signals using the following
equation to obtain three cumulative output signals termed as CSM , mDC and
smDC:

C[CSM, smDC,mDC] =

(WPAMP ∗ CPAMP ) + (WSS ∗ CSS) + (WDS ∗ CDS)

WPAMP +WSS +WDS
∗ 1 + I

2
,

(6)

where CPAMP , CDS and WSS are PAMP, DS and SS signal values respec-
tively which are generated by aggregating the assigned attributes. The weights
(WPAMP , WSS and WDS) are pre-defined weights or can be derived empirically
from the data. Each selected DC from the pool is assigned a migration threshold
in order to determine the lifespan for antigen sampling and the amount of data
items it can collect. Each DC computes its CSM value and compares it with
the migration threshold. If the CSM of a DC exceeds the migration threshold,
the DC ceases to sample data items and thus signals.

Step 2. Context Assessment The cumulative values of smDC and mDC
obtained from the detection phase are used to perform context assessment. If
the antigens collected by a DC has a greater mDC than its smDC value, it is
assigned a binary value of 1, and 0 otherwise.
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Step 3. Classification All the collected antigens are analysed by deriving
the Mature Context Antigen Value (MCAV) for each presented antigen, which is
used to assess the degree of an anomaly of a given antigen. Firstly, the anomaly
threshold of MCAV is derived from the test data set. Then, the MCAV value
of each antigen is calculated as dividing the number of times it is presented in
the mature context by the total number of presentations in DCs. Antigens with
MCAVs greater than the anomaly threshold are classified into the anomalous
class while the others are classified into the normal one.

3 The Proposed Approach

The proposed TSK-DCA system is depicted in Figure 1. In particular, given a
training dataset, a feature selection process is first performed to select the most
significant features. The selected features are then categorised into three groups,
representing the three input signals. From this, three TSK+ fuzzy models can be
generated using the given training data set for the aggregation of the three input
values. Given an input, the TSK+ inference systems take place to aggregate the
given inputs to the three DCA input signals. Then, the output of the TSK-DCA
classifier is generated by the DCA model. Each of these key components of the
proposed system is detailed in the following subsections.

Feature

Selection

Fuzzy Rule Base

Generation

Rule

Base

TSK+Input DCA 
Result

Training 

Dataset

Genetic 

Algorithm 

Signals 

Categorisation 

Fig. 1. The overall TSK-DCA system

3.1 Data Pre-processing

This study adopted the information gain approach to decide which features are
more important than others during the data pre-processing stage, although any
other feature selection approach is also applicable here. Briefly, the information
gain of an attribute indicates the amount of information with respect to the
classification a particular attribute provides, which can be obtained by [21]:

G(D,A) = E(D)−
∑

v∈values(A)

|Dv|
|D|

∗ E(Dv), (7)
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where values(A) represent all the possible values of attribute A, Dv is a subset
of D each taking value v for attribute A, G is the gain, and E is the entropy. In
particular, the entropy E is computed as:

Entropy(D) =
i=2∑
i=1

−pi ∗ log2pi, (8)

where pi is the proportion of elements being classified as i in the data set D.
The higher the entropy the more information an attribute contains. Given a
threshold, the attributes with higher gains than the given threshold are selected.

3.2 Signal Categorisation

The selected features are analysed using their histograms with respect to the
two class labels (normal and abnormal) presented in the training dataset. The
frequency of occurrence of the largest values presented in each attribute from
each class is used to decide its signal category. If the largest values of an attribute
have a high frequency of occurrence in normal class than that in anomalous class,
the attribute will be categorized as safe signal. If the largest values of an attribute
have a higher frequency of occurrence in anomalous class and significant lower
frequency of occurrence in the normal class, it is categorised to PAMP signal.
Otherwise, it is assigned to DS signal.

3.3 Signal Generation Using TSK+

Once the selected features are categorised into the three input signals, the TSK+
approach is applied to generate the input signals of the DCA. In order to ap-
ply the TSK+ approach as introduced in Section 2.1, a rule base needs to be
generated first, which is outlined in Figure 2 in two key steps as detailed below.

Clustering: The K-Means clustering algorithm is employed to each sub-
dataset (i.e., danger, safe or PAMP) which includes only the associated features
for the particular input signal. Note that the number of clusters has to be pre-
defined to enable the application of the K-Means algorithm. The Elbow method,
which has been used in [6, 22], is also employed in this work to determine the
number of clusters.

Fuzzy Rule Extraction: Each obtained cluster is expressed as one TSK fuzzy
rule. Assume that a determined cluster for a signal is associated with d features,
then a TSK fuzzy rule Ri can be formed as:

Ri :IF x1 is Ai
1 and ... and xd is Ai

d

THENy = fi(x1, ..., xd) ,
(9)

where Ai
r (r = {1, ..., d}) is a fuzzy set as a rule antecedent. For simplic-

ity, triangular membership functions are utilised in this work, that is Ai
r =

(air1, a
i
r2, a

i
r3). Without loss of generality, take a rule cluster ck as an exam-

ple, which contains pk elements, such as ck = {x1
k, x

2
k, ..., x

pk

k }. The core of
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Training Dataset (D)
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Sub-rule base
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Combination

Fig. 2. The TSK+ fuzzy rule base generation

the fuzzy set is set as the cluster centre which is air2 =
∑pk

q=1 x
qr
k /pk; and the

support the fuzzy set is expressed as the span of the cluster, i.e. (air1, a
i
r3) =

(min{x1r
k , x2r

k , ..., xpkr
k },max{x1r

k , x2r
k , ..., xpkr

k }). The consequent of a TSK fuzzy
rule is the DCA input signal values. In particular, the consequent is expressed
as a first-order polynomial in this work, which can be represented as y =
fi(x1, ...xd) = βi

0 + βi
1x1 + βi

2x2 + ... + βi
dxd, where βd

i is a constant param-
eter of the linear functions.

The rule base is optimised by employing the genetic algorithm (GA). As an
adaptive heuristic search algorithm, GA has been successfully applied to find the
optimised solution in the problem of fuzzy inference systems, such as [22–24]. The
algorithm firstly initialises the population with random individuals. It then se-
lects a number of individuals for reproduction by applying the genetic operators,
that is mutation and crossover. The offspring and some of the selected existing
individuals jointly form the next generation. The algorithm repeats this process
until a satisfactory solution is generated or a maximum number of generations
has been reached.

In this work, an individual (I) in a population (P) is used to represent a
potential solution that contains all the parameters of the polynomial functions
in the TSK rule consequent, represented as I = {β1

0 , ..., β
1
d , ..., β

i
0, ..., β

i
d, β

n
0 , ...,

βn
d }, where n denotes the total number of rules in the current rule base. Given

a population, represented as P = {I1, ..., I|P|}, where |P| is the numbers of in-
dividuals, the next generation of a population is produced by applying a single
point crossover and a mutation, on selected individuals. The DCA classification
accuracy is used to evaluate the quality of individuals in the new generation
of population. After the algorithm is terminated, the fittest individual in the
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current population is the optimal solution. From this, all the extracted rules are
grouped together to form the final rule base.

Once the rule bases are generated for all three input signals, the TSK+
inference approach as introduced in Section 2.1 is applied, which generates the
signal inputs for the DCA as illustrated in Figure 3.

Rule

Base

TSK+

(PAMP Signal)

TSK+

(Safe Signal)

TSK+

(Danger Signal)

Input DCA 
Safe Result

Fig. 3. Inputs generation for DCA

4 Experimentation

The proposed TSK-DCA system was validated and evaluated using the KDD-
99 cup dataset [25]. The KDD-99 dataset was published in 1999 in the context
of the 1998 DARPA initiative for IDS within the realm of computer networks
[25]. This dataset has been intensively employed for building network intrusion
detectors to distinguish normal and abnormal (i.e., intrusions or attacks) network
connections. 10% (494,021) and 2.5% (125,973) data instances of the original
KDD-99 dataset were respectively used for training and testing in this work.

4.1 Model Generation

In order to reduce the system complexity, the information gain method is em-
ployed for feature selection. Ten features were typically selected from 41 ones [26],
and this work also follows this tradition, and the selected features for each signal
category are listed in Table 1. From this, the dataset was normalised using the
min-max (MM) normalisation approach [27].

The rule base was generated in three step based on the training dataset:
Step 1: Training Dataset Partition. Divided the entire training dataset

T into three sub-training dataset T1, T2 and T3 based on the results of the infor-
mation gain method.
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Table 1. Selected features for each DCA input signal

Signal Features

DS count and srv count

SS logged in, srv different host rate and dst host count

PAMP
serror rate, srv serror rate, same srv rate, dst host serror and
dst host rerror rate

Step 2: Optimal Number of Clusters Determination for Each Sub-
Training Dataset. The K-Means clustering algorithm was adopted for each
sub-training dataset in which the optimal number of clusters was determined by
the Elbow method. The identified cluster numbers for the three sub-datasets are
listed in Table 2.

Table 2. The number of clusters for each sub-dataset

DS SS PAMP

Number of clusters 7 7 7

Step 3: TSK Rule Extraction. Based on the results of the Elbow method,
there were 21 TSK fuzzy rules in total in the final rule base. For instance, the
rule antecedents of one fuzzy rule in DS sub-rule base can be expressed as:

x1 = (0, 0.39, 3.52) and x2 = (0, 0.39, 31.51). (10)

Step 4: Fine-Tune Polynomial Coefficients for TSK Consequence.
GA was applied to find the optimised constant parameters of polynomial func-
tions of TSK consequent, and the results are listed in Table 3.

Table 3. The employed GA parameters

Number of Individuals 50

Number of Iterations 250

Crossover Rate 0.95

Mutation Rate 0.1

Taking Equation 10 as an example, the optimised fuzzy rule is:

R1 : IF x1 = (0, 0.39, 3.52) and x2 = (0, 0.39, 31.51)

THEN f1(x1, x2) = 18.2x1 − 4.05x2 − 5.5 .
(11)

Once the TSK fuzzy rule base has been generated, three TSK+ fuzzy in-
ference systems were applied to generate the three input signals for the DCA
model. In this work, the DCA model reported in [26] was employed and the
corresponding parameters for Equation 6 were configured as shown in Table 4.
Note that, antigen multiplier was not used in this work.
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Table 4. DCA parameters

smDC mDC
WPAMP WSS WDS WPAMP WSS WDS

Weights 5 11 11 8 7 14

4.2 Results and Discussion

Based on the parameter values shown in Tables 3 and 4, the best performance
for the training dataset is 98.36%, and for the testing dataset is 92.07%. The
accuracies for the 250 iterations of GA optimisation is shown in Figure 4. The
proposed TSK-DCA approach was compared with the basic DCA without us-
ing antigen multiplier as presented by [26] and Fuzzy-based DCA proposed by
[28]. The proposed TSK-DCA approach overall outperforms the two benchmark
approaches as demonstrated in Table 5.

0 50 100 150 200 250

Iteration No.

20

30

40

50

60

70

80

90

100

Ac
c. 

(%
)

Fig. 4. The processing of fine-tuning the testing accuracies

Table 5. Performance comparison with existing DCA approaches

Approach
Acc. (%)

Training Testing

Basic DCA without antigen multiplier [26] (2008) 78.92 -

Fuzzy-based DCA [28] (2015) 94.00 -

TSK-DCA 98.36 92.07



Title Suppressed Due to Excessive Length 11

5 Conclusion

This work proposed the TSK-DCA classifier which generates the DCA input sig-
nal values from the assigned attributes using the TSK+ fuzzy inference system.
The TSK-DCA is applicable to either linear or nonlinear related data instances.
The experimental results using the KDD99 dataset demonstrate that the TSK-
DCA achieves better classification accuracy in reference to its conventional DCA
counterparts. Although promising, the work can be further improved by better
fine-tune the rule base parameters as the present work only trains the parameters
for the rule consequences. In addition, it is interesting to combine the proposed
approach with other extensions and modifications of DCA to further boost the
performance.
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