
Northumbria Research Link

Citation: Zhang, Shaobin, Chen, Xue, Moumni, Ziad and He, Yongjun (2018) Coexistence
and compatibility of martensite reorientation and phase transformation in high-frequency
magnetic-field-induced deformation of  Ni-Mn-Ga single crystal.  International  Journal  of
Plasticity, 110. pp. 110-122. ISSN 0749-6419 

Published by: Elsevier

URL:  http://dx.doi.org/10.1016/j.ijplas.2018.06.010
<http://dx.doi.org/10.1016/j.ijplas.2018.06.010>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/35714/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


UN
CO

RR
EC

TE
D

PR
OO

F

International Journal of Plasticity xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

International Journal of Plasticity
journal homepage: www.elsevier.com

Coexistence and compatibility of martensite reorientation and phase
transformation in high-frequency magnetic-field-induced deformation of
Ni-Mn-Ga single crystal
Shaobin Zhang⁠a, Xue Chen⁠b, Ziad Moumni ⁠a⁠, ⁠c, Yongjun He⁠a⁠, ⁠∗

a IMSIA, UMR 8193 CNRS-EDF-CEA-ENSTA, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
b Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
c State IJR Center of Aerospace Design and Additive Manufacturing, Northwestern Polytechnical University, Xian, Shaanxi 710072, China

A R T I C L E I N F O

Keywords:
Ferromagnetic shape memory alloys
High-frequency magnetic actuation
Microstructure compatibility
Instability of strain oscillation
Thermo-magneto-mechanical coupling

A B S T R A C T

High-frequency magnetic-field-induced Martensite Reorientation (MR) is one of the most impor-
tant advantages of Ferromagnetic Shape Memory Alloys (FSMAs), but its stability is threatened by
dissipation heat accumulation (“self-heating”) of cyclic frictional twin-boundary motion, which
can cause temperature-induced Phase Transformation (PT) and reduce the output-strain ampli-
tude significantly. In this paper, the interaction of the temperature-induced PT and the mag-
netic-field-induced MR during high-frequency magnetic actuation on FSMA is studied with in-situ
observations of local-strain evolution in conjunction with microstructure-compatibility analy-
sis. Based on the nominal strain and temperature responses and the corresponding local-strain
maps, it is revealed that, when the temperature-induced PT takes place during the high-frequency
field-induced MR, the specimen is divided into three zones: non-active austenite zone (with a
constant deformation), active martensite zone (with cyclic deformations of MR) and buffering
needle zone (interfacial zone) with a fine-needle-twin structure which plays an important role
in maintaining the compatibility between austenite and martensite zones with different cyclic
deformations during the dynamic loading. A novel mechanism is revealed that, under the mag-
netic actuation with changing ambient airflow, the “self-heating” temperature-driven phase
boundary motion and the magnetic-field-driven twin boundary motion can coexist, because
the specimen needs to self-organize the different phases/variants to satisfy all the thermo-mag-
neto-mechanical boundary conditions. Taking advantage of this mechanism, the volume fractions
of austenite and martensite zones can be adjusted with changing ambient airflow velocity, which
provides an effective way to tune the nominal output-strain amplitude (from 1% to 6% in the cur-
rent study) while the working temperature is kept almost constant (around M⁠s and M⁠f).
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1. Introduction

Ni-Mn-Ga single crystal is a typical Ferromagnetic Shape Memory Alloy (FSMA) which has potential applications such as mag-
neto-caloric refrigerators (Basso, 2011; Li et al., 2014; Singh et al., 2014; Sokolovskiy et al., 2014) and high-frequency large-stroke
actuators (Henry, 2002; Smith et al., 2014; Techapiesancharoenkij et al., 2009; Yin et al., 2016) based on the field-induced marten-
sitic phase transformation (transformation between martensite and austenite phases) and the field-induced martensite reorientations
(transition among the variants of the martensite phase), respectively. It was reported in the literature that the levels (magnitudes) of
the magnetic fields required to drive the Phase Transformation (PT) and the Martensite Reorientation (MR) are significantly different:
several Teslas for the phase transformation while less than 1 Tesla for the martensite reorientation (Bruno et al., 2016; Haldar et al.,
2014; Karaca et al., 2006, 2009). So most of the existing research work studied phase transformation (Arndt et al., 2006; Karaca et
al., 2009; Rogovoy and Stolbova, 2016; Sehitoglu et al., 2012) and martensite reorientation (Heczko et al., 2000; Karaca et al., 2006;
Lai et al., 2008; Straka et al., 2006) separately without considering their interactions.

While the magnetic-field-driven phase transformation needs a very strong magnetic field (which is not easy to obtain), the temper-
ature-induced phase transformation can be easily triggered in FSMA by external heat sources (Pinneker et al., 2014) or the self-heating
due to the intrinsic dissipation of the cyclic martensite reorientation. For example, the self-heating induced temperature increasing
rate during the first 20s of actuation is around 0.5°C/s in (Pascan et al., 2015) and 0.3°C/s in (Lai, 2009). Particularly, in a high-fre-
quency FSMA actuator, the dissipation heat of the cyclic frictional twin boundary motion during the martensite reorientation can be
accumulated quickly to increase the specimen temperature to a level comparable with the material characteristic phase-transforma-
tion temperatures where the Martensite-to-Austenite (M-to-A) phase transformation can take place (Jugo et al., 2017; Pascan, 2015;
Zhang et al., 2018). The phase transformation disturbs the process of the field-induced martensite reorientation, leading to a signifi-
cant drop in the output strain amplitude of the FSMA actuators (Jugo et al., 2017; Pascan, 2015; Zhang et al., 2018). This instability
problem is obviously harmful in developing high-frequency large-stroke FSMA actuators.

Recently, a method of changing the ambient airflow (governing the heat exchange efficiency) to control the specimen working tem-
perature was proposed in (Zhang et al., 2018) to overcome this difficulty and to achieve a large output stain in the high-frequency ac-
tuation as shown in Fig. 1, where the combination of the orthogonal mechanical force and the cyclic magnetic field leads to the cyclic
switching between the two different martensite variants (so-called “stress-preferred variant” M⁠1 and “field-preferred variant” M⁠2). It
was shown that the output strain amplitude depended on the controlled ambient airflow velocity. Particularly, when the tempera-
ture-induced phase transformation and the field-induced martensite reorientation coexist, the working temperature of the specimen
consisting of different phases and variants was kept almost constant (close to the material characteristic phase transformation tem-
peratures) while the output strain amplitude changed significantly from 6% (complete martensite reorientation) to less than 1% (only
little martensite reorientation), depending on the airflow velocity. One possible explanation for this phenomenon is that the specimen
could self-organize its volume fractions of the Martensite phase (M-phase) and the Austenite phase (A-phase) to satisfy the thermal
balance between the martensite-reorientation dissipation heat and the heat transfer to the ambient (controlled by the airflow velocity)
(Zhang et al., 2018). To verify this conjecture, a high-frequency magnetic actuation on Ni⁠2MnGa single crystal is performed under an
ambient airflow with stepped changing velocities (to change the heat-exchange efficiency), and in-situ Digital Image Correlation (DIC)
observation on local strain distributions and evolutions is conducted in the current study. It is found that the temperature-induced

Fig. 1. Schematic of the actuation system.
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M-to-A phase transformation makes the specimen form non-active austenite zone (A-phase with a constant strain) and active
martensite zone (M-phase with 6% strain oscillation due to cyclic martensite reorientation) during the magnetic actuation, and the
volume fractions of the non-active and active zones change significantly under the different ambient airflow velocities. This reveals a
novel mechanism that both the temperature-driven phase boundary motion and the magnetic-field-driven twin boundary mo-
tion can be activated simultaneously during the high-frequency magnetic actuation on FSMA, which enables the specimen to self-or-
ganize the different phases/variants to satisfy all the thermo-magneto-mechanical boundary conditions and provides an effective op-
tion to tune the high-frequency output strain amplitude of FSMAs (from 1% to 6% in the current study).

Moreover, the in-situ observations on the local strain evolution demonstrate how the active zone (with the strain oscillation of
the cyclic martensite reorientation) is compatible with the non-active zone (with a constant strain of the A-phase). The compatibility
between different phases (and different variants) in shape memory alloys has been widely studied (Bhattacharya, 2003; Seiner et al.,
2011; Stupkiewicz et al., 2007); the compatibility analyses are based on the principle of the energy minimization studying the static
configurations: only some discrete phase/variants fractions satisfy the compatibility. In other words, the phase/variants fractions can't
continuously change in the compatible configurations. (Note: some special materials satisfying so-called “co-factor conditions” might
allow a continuous change in the compatible phase fractions (Chen et al., 2013; Song et al., 2013)). To the authors' best knowledge,
the currently-observed compatibility between the active martensite zone of strain oscillation (with the cyclic and continuous change
in the volume fractions of the two martensite variants (M⁠1 and M⁠2)) and the non-active austenite zone of a static strain has never been
explained in the literature. In this paper, based on the observations of the distributions of the phases/variants and the microstructure
compatibility analysis, it is revealed that, for the compatibility between the active martensite zone and non-active austenite zone, the
interface between the two zones is not a sharp habit plane, but a buffering zone with needle-like fine twins where the third martensite
variant M⁠3 (which doesn't participate in the cyclic martensite reorientation) might be generated during the self-organizing process of
the simultaneous field-induced martensite reorientation and the temperature-induced phase transformation.

2. Material properties and experiment setup

In this study, a rectangular bar of Ni⁠50Mn⁠28Ga⁠22 (at. %) single crystal with dimensions in 2×3×15mm (from ETO Magnetic GmbH)
is used in the experiments, as shown in Fig. 1. The material characteristic transformation temperatures M⁠s, M⁠f, A⁠s and A⁠f were obtained
as 36.5°C, 35.5°C, 41.5°C and 42.2°C, respectively, from a DSC (differential scanning calorimetry) test detailed in Appendix A. The
material is in the state of 10M martensite phase at room temperature and the martensite variants are slightly monoclinic (γ=90.37°).
For the simplicity of the analysis here, we assume that the martensite variants are tetragonal with two long axes “a” and one short
axis “c” (as adopted in various researches (Haldar et al., 2014; Karaca et al., 2006, 2007, Pinneker et al., 2014, 2013)). The sponta-
neous magnetization is along the short axis “c” for the studied material. Accompanied by the field-induced martensite reorientation
between variants with different orientations of short axis “c”, the material's magnetization direction rotates (some typical magnetiza-
tion measurements can be found in (Ge et al., 2005; Henry, 2002; Murray et al., 2000)). The high-temperature austenite phase is L2⁠1
cubic with a lattice constant of a⁠0. The typical lattice parameters are a ≈ 0.595nm and c≈0.561nm for the 10M martensite and a⁠0 ≈
0.584nm for the cubic austenite (Heczko et al., 2002; Murray et al., 2000; Pinneker et al., 2014, 2013; Straka et al., 2008). All faces
of the rectangular bar are cut approximately along the {100} planes of the parent cubic austenite by the supplier.

Before the test, the specimen is fully compressed along y-direction to obtain the single variant state with the short-axis (c-axis)
along y-direction (so-called stress-preferred variant, shown as M⁠1 in Fig. 1(b)), which is the reference state for the calculation of the
specimen deformation strain in this paper. At the beginning of the test, an initial compressive stress σ⁠ini=0.4MPa is applied on the
specimen along y-direction by a compressed spring (of stiffness 5.5kN/m), as shown in Fig. 1. Then a magnetic field (with magnetic
flux density B cyclically varying between ±0.78 Tesla as shown in Fig. 1(b)) of frequency f⁠mag=90Hz is applied horizontally along
x-direction to drive the martensite reorientation from M⁠1 to M⁠2 (so-called field-preferred variant with the short axis c along x-di-
rection) as shown in Fig. 1(b). The martensite reorientation makes the specimen length L⁠y change, which leads to a change in the
compressive stress applied by the spring. The competition between the cyclic magnetic field and the evolving compressive stress even-
tually drives the cyclic martensite reorientation between the variants M⁠1 and M⁠2, which produces cyclic strain along y-direction. The
nominal output strain along y-direction is measured by a laser displacement sensor (Keyence LK-H027) at the upper specimen holder.
Theoretically, the strain along y-direction is around 6% for the martensite reorientation from M⁠1 to M⁠2 ((a-c)/c≈6%), and around 4%
for the phase transformation from M⁠1 to the cubic austenite ((a⁠0-c)/c≈4%). It is noted that the lattice parameters are temperature
dependent (Glavatska et al., 2002; Pagounis et al., 2014; Straka et al., 2006), so the strain value is also temperature dependent. But
in the current experiments with the small temperature variation (i.e., from the room temperature (≈18°C) to the martensite start
temperature M⁠s=36.4°C), the temperature effect on the lattice parameters can be ignored. During the test, the ambient heat-ex
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change condition is controlled by forcing ambient airflow (around the room temperature) of velocity v⁠air changing from 0m/s to 16m/
s to pass through the specimen (see Fig. 2(a)). The specimen temperature is monitored by a thermocouple (K-type, 0.5mm sheath
diameter) at the bottom end of the specimen. During the whole dynamic actuation, a CMOS camera of 2048×1088 pixels (Basler
acA2000-340km) with Nikkor lens is used to record the optical images of the specimen surface (in a gage section of around 4mm),
which are processed by Digital Image Correlation (DIC) software Vic-2D (Correlated Solutions) to obtain the in-situ local strain distri-
butions and evolutions under different airflow velocities.

3. Experimental results

Fig. 2(a) shows the loading conditions (the cyclic magnetic field between ±0.78 Tesla and the changing airflow velocity
(v⁠air=0m/s ∼16m/s)) and the responses of the nominal output strain and the specimen temperature, while Fig. 2(b) shows
the zoomed nominal strain curves and the local strain distributions (DIC strain maps) of the corresponding responses at sev-
eral typical time slots (t⁠1 ∼ t⁠7). It is seen that at each increase in the airflow velocity, the amplitude Δɛ of the strain oscil-
lation increases correspondingly (see the strain amplitude change at the time t≈100s,

Fig. 2. (a) The global responses of FSMA-actuator under the same magnetic loading (the cyclic magnetic field between ±0.78 Tesla) but the changing airflow velocity
(v⁠air=0m/s ∼16m/s). (b) The zoomed nominal strain curves, the DIC local strain maps and the corresponding local strain profiles (the red and black lines represent
the local strains at the maximum and minimum nominal strain states respectively) along the centerline at the typical time slots marked in (a). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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155s, 220s, 275s, and 330s in Fig. 2(a) and the zoomed nominal strain curves at different time slots in Fig. 2(b)). However, a strain
amplitude drop from 5.8% to 1.0% is observed at t≈15s even though the ambient airflow didn't change (keeping still air, v⁠air=0m/
s).

With the start of the dynamic test in still air (v⁠air=0m/s at t=0 in Fig. 2(a)), the output strain amplitude increased rapidly to
be close to the strain (6%) of a complete martensite reorientation while the specimen temperature T increased slowly from the room
temperature, for example, T increased to 31.6°C at t=13.25s in Fig. 2(a). The corresponding DIC strain maps at the time slot t⁠1
(13.25s–13.27s) in Fig. 2(b) show that the optically observed gauge section of the specimen had the local strains of around 0% (with
the violet color) and around 6% (with the red color) when the nominal output strain (the global strain of the whole specimen) reached
the minimum and maximum levels, respectively. That means a complete martensite reorientation cycle can be achieved at that time.
The local strain evolution of a typical cycle at the time slot t⁠1 is shown in Fig. 3 where the twin boundary (interface between the
two martensite variants) of an angle of 44.7° at the x-y plane (the observed specimen surface) can be identified. It should be noted
that, during the magnetic loading, many fine twins can be generated and the motion of numerous twin boundaries can be activated
(Chmielus et al., 2008; Lai et al., 2008). In the current test, the detailed microstructures of such fine twins cannot be resolved due to
the limited resolution of the optical camera. So the fine-twin regions are just denoted by M⁠1+M⁠2 domains whose strain can continu-
ously change between 0% and 6% as shown in the local strain profiles along the center line of the gauge section in Fig. 3.

The observation above clearly demonstrates that a complete martensite reorientation cycle with 6% strain amplitude can be
achieved under the current magnetic actuation. But the specimen temperature T kept increasing at t⁠1 as shown in Fig. 2(a),
which indicates that the system had not yet reached a steady state. When the specimen temperature became higher than 36°C
(close to the material characteristic phase transformation temperatures), the output strain amplitude Δɛ dropped to around 1%
at t≈20s in Fig. 2(a). After the strain drop, the system reached a steady state—both the strain amplitude and temperature were
kept almost constant (Δε=1.0% and T=36.5°C). The typical local strain fields at this stage (time slot t⁠2 of 80s–80.02s in Fig.
2(b)) show almost the same strain level of around 4% (represented by the green color) in the observed region of the specimen
for both the minimum and maximum nominal strain of the cycle. This indicates that the observed gauge section of the spec-
imen contributes little to the output strain during the cyclic magnetic loading. The green region is occupied by the austenite
phase (A-phase) for the following facts: (a) the theoretical strain of the cubic A-phase with respect to the martensite variant M⁠1
is around 4% for the material (as calculated in Section 2), (b) the green region is not sensitive to such low level of magnetic

Fig. 3. DIC local strain evolutions in a typical cycle of the martensite reorientation process before the occurrence of the strain drop phenomenon (pure martensite
phase) at the time slot t⁠1.
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field (<1 Tesla), and (c) the green region appears when the specimen temperature was increased to the material characteristic phase
transformation temperatures. Thus, the field-induced deformation of martensite reorientation was significantly suppressed due to the
“self-heating” temperature-induced phase transformation.

When the ambient airflow velocity was increased to 2m/s, the temperature decreased slightly from 36.5°C to 36.1°C; but the
nominal output strain amplitude increased significantly from 1.0% to 2.1%, as shown in Fig. 2(a) and the zoomed nominal strain
curve at t⁠3 (140s–140.02s) in Fig. 2(b). The corresponding DIC strain maps at t⁠3 in Fig. 2(b) demonstrate that, in the observed gauge
section, the Martensite zone (M-zone) of cyclic martensite reorientation (where the local strain oscillated between 0% and 6%, as
marked by red arrows) appeared again and the volume of the A-phase (A-zone, as shown in green) was reduced. The interface between
the A-zone and the M-zone (A-M phase boundary) with an angle near 45° can be identified (see dashed lines in Fig. 2(b)). Further
increasing the airflow velocity made the nominal output strain amplitude increase and the volume of the A-phase decrease (through
the phase boundary propagation) as shown by the nominal output strain evolution (Δε=2.1%, 3.0%, 4.3% and 5.1%) and the DIC
strain maps at t⁠3 ∼ t⁠6 in Fig. 2(b). It is seen from the local strain filed evolutions from t⁠3 to t⁠6 that the phase boundary between A- and
M-zones propagated with the increasing airflow velocity and kept the same angle (near 45°), which means that changing the ambient
heat-exchange efficiency (by changing airflow velocity) can drive the A-M phase boundary motion to adjust the volume fractions of
A- and M-zones. Fig. 4 shows a typical cycle of the local strain evolution for the time slot t⁠6. By comparing the DIC strain maps at the
minimum nominal strain ( = 0.6%) and the maximum nominal strain ( = 5.7%), we can identify the active zone (i.e.,
M-zone with cyclic strain due to martensite reorientation between M⁠1 and M⁠2) and the non-active zone (i.e., A-phase with constant
local strain). It is interesting to note that the A-M phase boundary (represented by dashed lines) between the active M-zone and the
non-active A-zone is nearly parallel to the twin boundary (represented by dotted lines) at the observed surface (x-y plane), and both
of them have an angle of around 45°. It is further noted that the A-M phase boundary is fixed while the twin boundaries cyclically
move in the active M-zone in the magnetic loading cycle.

At the time slot t⁠6, the output strain Δε was 5.1% and there still existed A-phase (non-active zone) in the specimen. In order to
improve the output strain, the airflow was further increased to 16m/s where Δε increased to 5.7% as shown by the strain response
and the DIC strain maps in the time slot t⁠7 (380s–380.02s) in Fig. 2(b). It is seen that, in the observed gauge section, the non-active
zone (A-phase) disappeared; the whole gauge section took a cyclic complete martensite reorientation between martensite variants M⁠1
and M⁠2.

In summary, the temperature-induced Martensite-to-Austenite (M-to-A) phase transformation occurred to disturb the field-in-
duced deformation of the martensite reorientation, leading to a significant strain drop, when the specimen temperature increased
to the material characteristic phase transformation temperature due to the frictional twin

Fig. 4. DIC local strain evolutions in a typical cycle of the martensite reorientation process with the existence of the non-active A-phase (the green region of A-phase
(at lower right corner in each DIC map) has a constant local strain around 4%) at the time slot t⁠6. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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boundary motion. The evolution of the DIC local strain maps reveals that the volume fraction of the A-phase (non-active zone con-
tributing little to the cyclic output strain) in the specimen significantly changed with the ambient airflow velocity. That is to say, the
coexistence of the temperature-driven phase boundary motion (phase transformation) and the magnetic-field-driven twin boundary
motion (martensite reorientation) is possible by controlling the external magnetic field and the ambient airflow simultaneously. This
new phenomenon poses some critical questions in theoretical understanding:

(1) As the M-to-A phase transformation is triggered by the temperature rise, it is normally expected that the stable working tem-
perature during the coexistence of the field-induced martensite reorientation and the temperature-induced phase transformation
should be close to A⁠s and A⁠f. However, both the previous study (Zhang et al., 2018) and the current experiment (Fig. 2(a)) show
that the stable working temperature is around M⁠s and M⁠f. It is noted that the measured temperature at a single point in the cur-
rent test can only roughly describe the global temperature evolution of the specimen. To reveal the local temperature distribution
(particularly near the twin/phase boundaries) during the actuation, precise full-field temperature measurement and delicate dy-
namic modeling are needed.

(2) The cyclic local strain evolutions (Figs. 3 and 4) show that the non-active A-zone (A-phase with constant deformation) can be
compatible with the active M-zone (with cyclic deformation and varying fractions of martensite variants). Such compatibility is
not expected because normally the A-phase (cubic phase) can only be compatible with martensite (tetragonal phase) twins of
some specified variant fractions which satisfy the energy minimization, i.e., A-phase cannot be compatible with a single marten-
site variant or martensite twins with continuously changing fractions (Bhattacharya, 2003; Seiner et al., 2011; Stupkiewicz et al.,
2007). To solve this inconsistency, some compatibility analyses are performed in the following section.

4. Compatibility analysis and discussion

Here, the compatibility analysis is focused on the twin boundary and the A-M interface (phase boundary), i.e., the coherent inter-
faces between the cubic austenite phase and the tetragonal martensite variants. Strictly speaking, the 10M martensite phase of the
ferromagnetic shape memory alloy Ni-Mn-Ga are slightly monoclinic: its characteristic angle γ=90.37° is not exactly equal to 90° of
a tetragonal lattice (Chulist et al., 2013; Heczko et al., 2013; Sozinov et al., 2011; Straka et al., 2011). To simplify the analysis, the
Austenite-to-10M martensite transition in Ni-Mn-Ga is approximated by a cubic-to-tetragonal transition. Three tetragonal martensite
variants (M⁠1, M⁠2 and M⁠3 with short axis c along y, x and z directions respectively) can be formed and their corresponding Bain matri-
ces (Bhattacharya, 2003) are:

(1)

where and for the material (the meaning and the values of the lattice parameters a⁠0, a and c have
been given in Section 2).

Firstly, we check the formation of the compatible twin boundaries among the three variants: M⁠1, M⁠2 and M⁠3. The kinematic com-
patibility condition between two unstressed, but possibly rotated, martensite variants can be formulated into a twinning equation
(Bhattacharya, 2003):

(2)

where U⁠I and U⁠J are the Bain matrices of the I⁠th and the J⁠th martensite variants; R belonging to a 3D rotation group (SO(3)) represents
the rotation of the variant U⁠I with respect to the variant U⁠J when the twin is formed; a⊗n is a dyadic product of a non-zero vector
a and a unit vector n; the vector n represents the normal of the twinning plane in the reference cubic coordinate system while the
vector a is the so-called shearing vector.

Following the standard solving method (Bhattacharya, 2003), the solution to the twinning equation Eq. (2) with the Bain matrices
in Eq. (1) can be found. There are three types of twins: (1) the twin boundaries (planes) between the variant-pair M⁠1:M⁠2 have the
normal vector n=[±1±1 0], cutting the x-y plane (the experimentally observed specimen surface) by an angle 45° as shown in Fig.
5, where the observed surface in x-y plane is highlighted in light blue and dark blue schematically representing the two variants ob-
served in the surface; (2) the twin boundaries between the variant-pair M⁠2:M⁠3 have the normal vector n=[±1 0±1], cutting the x-y
plane with a horizontal line (Fig. 5); (3) the twin boundaries between the variant-pair M⁠1:M⁠3 have the normal vector n=[0±1 ±1],
cutting the x-y plane with a vertical line (Fig. 5).

Based on the comparison between the above theoretically predicted twin boundaries (Fig. 5) and the experimentally ob-
served twin boundary in Fig. 3 whose twin plane cuts the x-y plane (the observed specimen surface) by the
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Fig. 5. Twin boundaries of the tetragonal martensite variants of Ni-Mn-Ga. The x-y plane (the experimentally observed surface) is shown in color in each 3D schematic,
where different colors represent different variants. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)

angle 44.7°, it is easy to confirm that the martensite reorientation under the magnetic field (along x-direction) and the compressive
force (along y-direction) in the dynamic tests (Fig. 1) is the cyclic transition between the variant-pair M⁠1:M⁠2.

Then, we check whether the twin (M⁠1:M⁠2) can be compatible with the cubic A-phase via the habit plane equation for the Austen-
ite-Martensite interface (A-M interface) (Bhattacharya, 2003):

(3)

where I is an identity second-order tensor representing the Bain matrix of the A-phase; m is the normal of the A-M interface while
the vector b is the shear vector; R' represents the rotation of the martensite twin (consisting of the I⁠th and the J⁠th martensite variants)
with respect to the A-phase; f and 1−f are the fractions of the I⁠th and the J⁠th martensite variants in the twin, respectively. Equation
(3) represents the kinematic compatibility between undeformed austenite and a martensite twin.

Solving Eq. (3) with the twin M⁠1:M⁠2, we can obtain the normal of the compatible A-M interface (the vector m) and the corre-
sponding volume fraction f of variant M⁠1 in the twin as listed in Table 1. The normal of the compatible A-M interface has several
possibilities for the material:

(4)

Table 1
Theoretical prediction on the compatible interfaces between the austenite phase and the martensite twins M⁠1:M⁠2.

Martensite
variant-pair f (fraction of M ⁠1)

n (normal
of fine-twins)

m
(normal of A-M interface)

M⁠1:M⁠2 0.32 [1 1 0] 1/1.4518 [−1.0519 0.0367 1]
1/1.4518 [1.0519 −0.0367 1]

[−1 1 0] 1/1.4518 [1.0519 0.0367 1]
1/1.4518 [−1.0519 −0.0367 1]

0.68 [1 1 0] 1/1.4518 [0.0367 −1.0519 1]
1/1.4518 [−0.0367 1.0519 1]

[−1 1 0] 1/1.4518 [0.0367 1.0519 1]
1/1.4518 [−0.0367 −1.0519 1]
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It is seen from Eq. (4) that one of the absolute values of the components of the normal is 0.0367, which is much smaller than those
of the other two components (1.0519 and 1), and the two components (1.0519 and 1) are very close to each other. So, the orientation
of the A-M interface can be approximated as

(5)

The A-M interface with the normal m in Eq. (5) can cut the x-y plane (the experimentally observed surface) by a horizontal line
or a vertical line, depending on the volume fraction f as shown in Fig. 6(a) and (b). Such theoretical prediction doesn't agree with the
experimental observation in Fig. 2(b) where the A-M interface cuts the x-y plane by an angle close to 45°.

In order to find out the reason for this inconsistency, we also solve the habit-plane equation (Eq. (3)) between A-phase and other
kinds of twins to determine other possible A-M interfaces, i.e., the compatible interface between A-phase and other martensite twins
such as the twins M⁠1:M⁠3 and M⁠2:M⁠3. Following the similar solving procedures, all the possible A-M interfaces are determined and
listed in Table 2, and the corresponding traces in the observed surface (i.e., the intersection line of the A-M interface in the x-y plane)
are shown in Fig. 6(a)∼(f). It is seen that the traces of the A-M interfaces in Fig. 6(d) and (f) have the angle 45°. So the twin M⁠1:M⁠3
(with the fixed volume fractions 68%:32%) and the twin M⁠2:M⁠3 (with the fixed volume fractions 68%:32%) can have a compatible
A-M interface with the trace in x-y plane agreeing with the experimental observation (of 45° angle).

Combining the calculations above and the observations in the experiments, we can conjecture that the interface between the ac-
tive M-zone (M-phase of the cyclic switching between variants M⁠1 and M⁠2) and the non-active A-zone (A-phase) is not a simple sharp
interface, but a transitional layer containing the twins M⁠1:M⁠3 or M⁠2:M⁠3. The situations about the transitional layer at the interfacial
zone were studied in the literature to explain the coexistence of different phases; for example, some needle twin structures have been
observed (Boullay et al., 2001; Chu, 1993; Zárubová et al., 2010) and modeled (James et al., 1995; Li, 2001; Schryvers et al., 2002;
Seiner et al., 2011) in similar materials (Cu-Al-Ni and Ni-Al), where the gradually tapering needle twins are reported to serve as a
compatible transition layer between A-phase and M-phase (no matter single variant state or twinned martensite). Inspired by such
needle twin microstructure, the compatible interfacial zone between the active M-zone and the non-active A-zone can be schemati-
cally drawn in Fig. 7(a)∼ (c), where Fig. 7(a) shows the 3D schematic and Fig. 7(b) and (c) show the unfolded views of the possible
horizontal and vertical needle twin structures of the martensite variant M⁠3, respectively.

Fig. 6. Theoretical predictions of all the possible patterns of A-M interface and martensite fine-twins (projections on x-y plane). The patterns in (a) and (b) are formed
by fine twins of M⁠1:M⁠2, (c) and (d) are formed by fine twins of M⁠1:M⁠3, (e) and (f) are formed by fine twins of M⁠2:M⁠3.
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Table 2
Theoretical prediction on the compatible interfaces between the austenite phase and the martensite twins, whose schematic microstructure patterns are given in Fig. 6.

Martensite
variant-pair
M⁠I:M⁠J

f
(fraction of M ⁠I)

n
(normal
of fine-twins)

m
(normal of A-M interface) Trace of A-M interface (on observation surface)

M⁠1:M⁠2 0.32 [1 1 0] 1/ [±1 0 1] horizontal (Fig. 6(a))
[−1 1 0] 1/ [±1 0 1]

0.68 [1 1 0] 1/ [0±1 1] vertical (Fig. 6(b))
[−1 1 0] 1/ [0±1 1]

M⁠1:M⁠3 0.32 [0 1 1] 1/ [1 0±1] horizontal (Fig. 6(c))
[0 −1 1] 1/ [1 0±1]

0.68 [0 1 1] 1/ [1±1 0] 45° (Fig. 6(d))
[0 −1 1] 1/ [1±1 0]

M⁠2:M⁠3 0.32 [1 0 1] 1/ [0 1±1] vertical (Fig. 6(e))
[1 0 −1] 1/ [0 1±1]

0.68 [1 0 1] 1/ [±1 1 0] 45° (Fig. 6(f))
[1 0 −1] 1/ [±1 1 0]

In order to clarify the microstructure of the interfacial zone in the current specimen (details of the interfacial zone cannot be
resolved in the high-frequency actuation due to the limited resolution), we performed a simple test: by quasi-static mechanical com-
pressions along y and x directions, we created twins consisting M⁠1 and M⁠2 in the specimen (with the same orientation as that in the
dynamic case of the high-frequency magneto-mechanical loading); then, a hot airflow was forced to pass through the specimen to in-
crease the specimen temperature, and an optical microscope with a polarized light (Olympus AX70) was used to observe the specimen
surface (x-y plane) as shown in Fig. 7(d) where there is a horizontal needle zone (the interfacial zone) separating the martensite zone
(45° twins between M⁠1 and M⁠2) from the A-phase, which is similar to the previously reported needle patterns observed in Cu-Al-Ni
and Ni-Al (Boullay et al., 2001; Chu, 1993; Zárubová et al., 2010). Moreover, it is noted that the A-M interface is parallel to the twin
boundaries at the observed specimen surface in Fig. 7(d), which is consistent with that in the dynamic experiment as shown in Fig. 4.
Therefore, the experimentally observed compatible A-M interface in the dynamic experiment in Fig. 4 can be due to the occurrence of
the transition needles of the variant M⁠3 (horizontal needles in Fig. 7(b) or vertical ones in Fig. 7(c)). It means, to reach the compatibil-
ity between austenite and martensite zones, the third martensite variant M⁠3 must be nucleated besides the original martensite variants
M⁠1 and M⁠2 taking part in the cyclic martensite reorientation during the dynamic loading. Further higher resolution observation on the
fine twin structures at the interfacial zone may help better understand the dynamic behaviors.

In summary, when the temperature-induced phase transformation occurs during the high-frequency field-induced martensite re-
orientation, the specimen is divided into three zones as schematically shown in Fig. 8(a): the non-active Austenite zone (A-zone
with the constant local strain), the active Martensite zone (M-zone of the cyclic switching between the variants M⁠1 and M⁠2) and the
buffering needle zone (interfacial zone) with the fine transition needles of the variant M⁠3 which helps maintain the compatibility
between A-zone with constant deformation and M-zone with cyclic martensite reorientation during the dynamic loading. When the
ambient airflow increases, the non-active A-zone shrinks and the active M-zone expands through the propagation of the A-M phase
boundary (see Fig. 8(a)∼8(c)); if the airflow is strong enough to keep the specimen temperature lower than the phase-transformation
temperature, the specimen would be fully occupied by the active martensite zone and the output strain reaches the maximum value
(around 6% in current system).

5. Summary and conclusions

In this paper, we report a test of the high-frequency magnetic-field-induced martensite reorientation in Ni-Mn-Ga ferromag-
netic shape memory alloy under stepped changing ambient airflows with the in-situ optical observation on the specimen sur-
face, from which the local strain evolution (DIC strain maps) and the associated transformation/reorientation among the var-
ious phases/variants in the thermo-magneto-mechanical situations are demonstrated. It is shown that the high-frequency fric-
tional martensite reorientation causes a significant temperature rise leading to the temperature-induced Martensite-to-Austen-
ite phase transformation; i.e., some part of the specimen becomes austenite phase which doesn't contribute any cyclic defor-
mation in current low-level magnetic loading so that the global field-induced deformation is significantly reduced. Increasing
heat transfer to ambient by controlling the ambient airflow is
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Fig. 7. The 3D and unfolded schematics and of the compatible microstructures with the coexistence of non-active austenite zone, buffering needle zone and active
martensite zone in (a)∼ (c); (d) The optical observation of the needle fine twins jointly generated with A-M interface in a quasi-static thermo-mechanical test.

demonstrated to be an effective way to reduce the influence of the austenite phase: the volume size of austenite phase reduces with in-
creasing the ambient airflow. That presents a novel mechanism: the temperature-induced phase transformation (phase boundary mo-
tion) and the field-induced martensite reorientation (twin boundary motion) coexist in the magnetic actuation with changing ambient
airflow, as the specimen needs to self-organize the different phases/variants to satisfy all the thermo-magneto-mechanical boundary
conditions. The self-organized microstructure of the different phases/variants can be understood by compatibility analysis. The main
conclusions can be drawn:

(1) The coexistence of the temperature-induced phase transformation and the field-induced martensite reorientation divides the
specimen into three zones: the non-active austenite zone (A-zone, not sensitive to the applied low-level magnetic field),
the active martensite zone (M-zone, taking cyclic martensite reorientation to provide strain oscillation) and the buffer-
ing zone (the interfacial zone with needle twins between the A- and M-zones). To be compatible with both the active
zone and the non-active zone, the interfacial zone might need the needle twin structure formation composed of the third
martensite variant which does not participate in the martensite reorientation; i.e., the martensite variant which does not
exist originally in the field-induced deformation can be gen
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Fig. 8. Schematic of the martensite reorientation (with twin boundary motion) between M⁠1 and M⁠2 driven by cyclic magneto-mechanical loading (see the vertical
evolution, marked by vertical dashed double-headed arrows) and the phase transformation (with A-M phase boundary motion) driven by changing heat-exchange effi-
ciency (see the horizontal evolution from (a) to (d)). The buffering zone can be compatible with both the austenite phase and martensite phase (no matter single variant
or twins of M⁠1 and M⁠2).

erated due to the requirement of the compatibility between the active martensite zone and the non-active austenite zone.
(2) By controlling the ambient heat-transfer efficiency (changing ambient airflow velocity), the volume fractions of the active marten-

site zone and non-active austenite zone in the specimen under the low-level magnetic field loading can be self-organized to main-
tain the heat balance. Therefore, the global output strain amplitude can be significantly tuned (from ∼1% to ∼6% in the current
study) while the working temperature keeps almost constant at the material characteristic phase transformation temperature M⁠s
and M⁠f.
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Appendix A.

To measure the characteristic transformation temperatures of the material used in our experiment, Differential Scanning Calorime-
try (DSC) test was performed in a temperature range between 30°C and 55°C (by a machine of DSC131 supplied by SETARAM Instru-
mentation). The heating/cooling rate of the test is 0.5°C/min and the weight of the sample is 50.1mg. The obtained heat flow curve
is shown in Fig. A1, from which the material characteristic transformation temperatures M⁠s, M⁠f, A⁠s and A⁠f were found to be 36.5°C,
35.5°C, 41.5°C and 42.2°C, respectively.

12



UN
CO

RR
EC

TE
D

PR
OO

F

S. Zhang et al. International Journal of Plasticity xxx (2018) xxx-xxx

Fig. A1. DSC curve of the single crystal Ni-Mn-Ga at the heating/cooling rate of 0.5°C/min.
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