
Northumbria Research Link

Citation: Liu, Zhiguang, Zhou, Liuyang, Leung, Howard and Shum, Hubert P. H. (2018)
High-quality compatible triangulations and their application in interactive animation.
Computers and Graphics, 76. pp. 60-72. ISSN 0097-8493

Published by: Elsevier

URL: https://doi.org/10.1016/j.cag.2018.07.002
<https://doi.org/10.1016/j.cag.2018.07.002>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/35739/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

Computers & Graphics (2018)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

High-quality Compatible Triangulations and their Application in Interactive Animation

Zhiguang Liua, Liuyang Zhoub, Howard Leungc, Hubert P. H. Shumd

aINRIA MimeTIC, Rennes, France
bZhiyan Technology (Shenzhen) Limited, China
cCity University of Hong Kong, Hong Kong
dNorthumbria University, Newcastle upon Tyne, UK

A R T I C L E I N F O

Article history:
Received August 1, 2018

Keywords: character animation, shape
morphing, compatible triangulation

A B S T R A C T

We propose a new method to compute compatible triangulations of two polygons in
order to create smooth geometric transformations between them. Compared to existing
methods, our approach creates triangulations of better quality, that is, triangulations
with fewer long thin triangles and Steiner points. This results in visually appealing
morphings when transforming the shape from one into another. Our method consists
of three stages. First, we use a common valid vertex pair to uniquely decompose
the source and target polygons into pairs of sub-polygons, in which each concave
sub-polygon is triangulated. Second, within each sub-polygon pair, we map the
triangulation of a concave sub-polygon onto the corresponding sub-polygon using a
linear transformation, thereby generating compatible meshes between the source and
the target. Third, we refine the compatible meshes, which creates better quality planar
shape morphing with detailed textures. In order to evaluate the quality of the resulting
mesh, we present a new metric that assesses the deformation of each triangle during the
shape morphing process. Finally, we present an efficient scheme to handle compatible
triangulations for a shape with self-occlusion, resulting in an interactive shape morphing
system. Experimental results show that our method can create compatible meshes
of higher quality as compared to existing methods with fewer long thin triangles and
smaller triangle deformation values during shape morphing. These advantages enable
us to create more consistent rotations for rigid shape interpolation algorithms and
facilitate a smoother morphing process. The proposed algorithm is both robust and
computationally efficient. It can be applied to produce convincing transformations
such as interactive 2D animation and texture mapping. The proposed interactive shape
morphing system enables normal users to generate morphing video easily without any
professional knowledge.

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction1

Planar shape morphing, also known as metamorphosis or2

shape blending, allows smoothly transforming a source shape3

into a target one [1, 2, 3]. Shape morphing techniques have been4

used widely in animation and special effects packages, such as5

Adobe After Effects and HTML5, generating visual effects for6

both the film and television. The key research focus here is7

to synthesize high-quality character animations that can handle 8

shapes with self-occlusion and avoid collapsing of polygons 9

during the morphing process. 10

2D image deformation algorithms such as rigid shape 11

deformation in [4, 5] have been extensively explored in 12

the research community. With these algorithms, users can 13

manipulate constrained handlers to deform a given image. 14

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint Submitted for review / Computers & Graphics (2018)

However, such image warping techniques offer a limited1

range of transformations. Transforming a shape into a2

significantly different one is difficult due to the lack of feature3

correspondence.4

Planar shape morphing methods offer solutions that deter-5

mine the trajectory along which the source vertex will travel to6

the target one. Previous attempts to tackle the shape morphing7

problem by linearly interpolating the coordinates of each8

corresponding vertex pair between the source and the target9

polygons. However, simple linear interpolation sometimes10

creates intermediate polygons that overlap with each other,11

resulting in geometrically incorrect transformations. While12

other image space techniques such as [5, 6] achieve pleasant13

blending results, they usually suffer from overlapping problems14

due to the lack of topology information.15

Previous work [7, 8, 9, 10] has shown that comput-16

ing compatible triangulation can successfully create smooth17

transformations for both the boundary and the interior of a18

shape. Two triangulations are compatible if they have the19

same combinatorial structure, i.e., if their face lattices are20

isomorphic [11]. However, in many situations, compatible21

meshes can be generated only if additional points, known22

as Steiner points, are added. Thus, one challenge of23

building compatible triangulation is to use a small number of24

Steiner points such that we can reduce the shape morphing25

complexity. Another challenging problem of computing26

compatible triangulation is to avoid the generation of some27

long thin triangles using a computationally efficient algorithm.28

The long thin triangles can cause inconsistent rotation problems29

and create artifacts when applied to shape interpolation30

algorithms [12]. Therefore, a good compatible triangulation31

contains a small number of Steiner points and keeps a small32

percentage of long thin triangles. In this paper, we propose33

a heuristic polygon decomposition method that reduces the34

overall algorithm complexity.35

We observed that most existing compatible triangulation36

approaches either create a large number of skinny triangles37

or are too complicated for real-time shape morphing. In38

this paper, we propose an efficient framework to compute39

compatible triangulation of two simple polygons defined as40

planar shapes with non-intersecting edges that form a closed41

path. Our method produces compatible meshes with fewer long42

thin triangles and fewer Steiner points, thereby enabling smooth43

transformations from one shape into another. The proposed44

method applies to any 2D shape without holes. Here, we use45

the human shape as an example to illustrate our interactive46

animation system. We demonstrate an interactive entertainment47

system that transforms a human into a bird or other objects that48

people may never experience in real life.49

The major contributions of this paper are summarized as50

follows:51

• First, we propose a new algorithm to calculate the52

compatible polygon decomposition based on the common53

valid vertex pairs that results in a flexible decomposition54

of the source and target polygons.55

• Second, we present a new metric to measure the quality of56

the resulting mesh during the shape morphing process. 57

• Finally, we propose an enhanced scheme that can compute 58

a compatible triangulation for a shape with self-occlusion 59

by introducing a calibration image. To demonstrate the 60

effectiveness of the proposed algorithm, we present an 61

interactive morphing system that uses human silhouette as 62

the source input shape. 63

Our preliminary research documented in [12] proposed a 64

basic system to construct the compatible triangulation for 65

two simple polygons. Compared with this work, our new 66

compatible polygon decomposition algorithm is more flexible 67

and leads to better mesh quality with fewer number of Steiner 68

points, as illustrated in Fig. 8 and Table 2. The method 69

of [12] generates different triangulation results depending on 70

whether we start the convex decomposition from the source 71

or target polygon. However, our method always produces the 72

same triangulation results even when started from different 73

directions. This is because we consider the source and target 74

polygons at the same time using the common valid vertex 75

pairs. Generally, our algorithm is faster than [12], as shown 76

in Section 5. Compared to [13], we proposed a new metric 77

to measure the quality of the resulting meshes during the rigid 78

shape deformation process. We have also conducted extensive 79

experiments to analyze the influence of the mesh quality on 80

shape morphing such as texture mapping. Finally, to produce 81

sensible transformations, we proposed an improved scheme to 82

deal with compatible triangulations with self-occlusion, and we 83

tested the proposed interactive animation system using a human 84

silhouette as our source shape input. 85

2. Related Work 86

Planar shape morphing involves two sub-problems: vertex 87

correspondence and vertex path computation [14]. Vertex 88

correspondence determines how the vertex u of source polygon 89

P matches the vertex v of target polygon Q. The vertex path 90

determines the trajectory along which the vertex u will travel 91

to the vertex v. In this paper, we concentrate on the vertex 92

correspondence problem, i.e., computing compatible meshes. 93

Previous methods for computing compatible triangulations 94

usually fall into two categories: (1) Transforming the source 95

and target polygons into another common space [11, 7, 15]. 96

(2) Iteratively partitioning the source and the target polygons 97

until both inputs become a set of triangles [16, 17, 9, 10]. 98

Aronov et al. [11] constructed the compatible triangulations 99

by overlaying the triangulations of the source and target 100

polygons in a convex polygon. The intersections of the two 101

triangulations built a piecewise-linear homeomorphism, which 102

introduced a large number of Steiner points. To solve this 103

problem, [7] employed Delaunay triangulation to reduce the 104

number of Steiner points. Kranakis and Urrutia [15] proposed 105

another method by which the number of Steiner points can be 106

determined by the number of inflection vertices. While their 107

method can reduce the number of Steiner points, it sometimes 108

results in Steiner points on the edge of a polygon. 109

Preprint Submitted for review / Computers & Graphics (2018) 3

Gupta and Wenger [17] used the divide-and-conquer method1

to partition the source and target polygons iteratively. Their2

algorithm introduced a small number of Steiner points by3

using the link paths. However, it is not suitable for polygons4

with a small number of vertices. Surazhsky and Gotsman [9]5

simplified the algorithm of [17] and proposed a new remeshing6

method that greatly improves the mesh quality by adding a7

few number of Steiner points. Their algorithm requires the8

implementation of many data structures and algorithms in [16],9

and therefore is algorithmically complex. Baxter et al. [10]10

proposed a new way to find compatible link paths. Based on this11

new link path generation algorithm, they used a similar scheme12

as in [9] to compatibly partition the two polygons. Although13

their algorithm for computing link paths is faster than [9], the14

proportion of regular-shaped triangles (as opposed to long thin15

triangles) still needs to be improved.16

A lot of work has been proposed for interpolating two17

shapes. Alexa et al. [7] proposed a method that attempted18

to preserve rigidity. They separately interpolated the rotation19

and the scale/shear components of an affine transformation20

matrix, which generated pleasing results with small rotations21

for most of the cases. Inspired by [7], [18] presented a22

3D morphing method based on the Poisson’s equation that23

generated visually pleasing morphing sequences. However,24

their method suffered from the inherited problem of rigid25

interpolation methods that the rotations may be incorrectly26

interpolated. As a solution, [19] proposed a method to27

consistently assign rotations. Sumner and Popovic [20]28

proposed a method that transferred the 3D deformation of29

a source triangle mesh onto a different target triangle mesh.30

However, their algorithm is designed for the case where there is31

a clear semantic correspondence between the source and target.32

Li et al. [21] introduced a new type of coordinates for Hermite33

interpolation that can be applied to shape deformation. Other34

methods such as [22] try to preserve certain properties such as35

the smoothness and the distortion for 2D shape interpolation.36

In this paper, we propose a new method to construct37

the compatible meshes of two simple polygons. Our38

approach draws inspiration from [23], which uses barycentric39

coordinates to map a spatial surface triangulation to a planar40

triangulation. However, [23] requires that every Steiner point41

of the target polygon Q must be a strict convex combination42

of its neighbors, which cannot always be satisfied in practice.43

As a solution, we propose an efficient compatible polygon44

decomposition algorithm that simultaneously partitions the45

source and target polygons into a set of sub-polygon pairs such46

that we can solve the compatible mapping with a sparse linear47

system for each sub-polygon pair. On the other hand, the48

resulted initial triangulation may still contain long thin triangles49

that need to be improved. We propose some efficient schemes50

to further improve the mesh quality.51

3. Compatible Triangulations52

As illustrated in Fig. 1 (a-b), the input data of our system53

are two simple polygons P and Q with corresponding vertices54

ordered in counter-clockwise. We denote P = {U, EP} and55

Q = {V, EQ} as the source and target polygons with point set 56

u ∈ U and v ∈ V , together with the edge set EP, EQ respectively. 57

P and Q are assumed to be simple polygons without holes, in 58

which the edges do not cross each other and form a closed 59

contour enclosing each polygon. We define TP and TQ as 60

the triangulation of the polygon P and Q. TP and TQ are 61

compatible if they have an equivalent topology, which is defined 62

as: 63

1. There is a one-to-one correspondence between the vertices 64

of TP and that of TQ. 65

2. There is a one-to-one correspondence between the edges 66

of TP and TQ, meaning that if there is an edge connecting 67

two vertices of TP, then there is an edge connecting the 68

corresponding vertices of TQ and vice versa. 69

3. The boundary vertices of both TP and TQ are traversed in 70

the same clockwise or counter-clockwise order. 71

The core of our framework is a new algorithm for partitioning 72

the source and target polygon pairs, which is more flexible 73

to increase the mesh quality. Given two simple polygons P 74

and Q with a boundary vertex correspondence as illustrated 75

in Fig. 1 (a-b), our algorithm works in three stages. First, 76

we decompose the source polygon P and the target polygon 77

Q into compatible sub-polygons (p, q) =
⋃

(pi, qi) as shown 78

in Fig. 1 (c-g), where either the target sub-polygon qi or the 79

corresponding source sub-polygon pi is convex. Considering 80

a sub-polygon, pi of P, we triangulate pi using Delaunay 81

triangulation as illustrated in Fig. 1 (h-i). Second, we map 82

the triangulation Tpi of the source sub-polygon pi onto the 83

corresponding target sub-polygon qi using a sparse linear 84

system as shown in Fig. 1 (j-k). Third, we refine the compatible 85

meshes to improve the mesh quality shown in Fig. 1 (l-m), 86

which is important for high-quality morphing in 2D animation, 87

special effects for movies and texture mapping. 88

3.1. Compatible Decomposition of the Target and Source 89

Polygons 90

In the first phase, we compatibly decompose the source and 91

target polygons, P and Q, into pairs of sub-polygons. In a 92

simple polygon, a vertex u ∈ U is convex if the angle α formed 93

by the two edges at u is less than π radians. Otherwise u is 94

considered to be concave. Our goal is to turn some concave 95

vertices into convex ones through the decomposition and to 96

construct pairs of sub-polygons from the source and target 97

polygons such that each of the sub-polygon pair contains at 98

least one convex sub-polygon. 99

Without loss of generality, we assume the source and target 100

polygons P and Q each to be a simple polygon with N 101

vertices arranged in counter-clockwise order. Here, we label 102

the concave vertices of Q as v1, ..., vC and the convex vertices 103

vC+1 , ..., vN . Similarly, we label u1, ..., uC′ as the concave vertices 104

and uC′+1 , ..., uN as the convex vertices of P. We call a vertex 105

pair (i, j) of P valid if ui is visible from u j, and at least one 106

of the two vertices is a concave vertex, e.g., (1, 4) is valid 107

as shown in Fig. 2. If two vertices are visible to each other 108

while not being a valid pair, then it implies that both vertices 109

are convex such as vertex pair (2, 4) as illustrated in Fig. 2. A 110

4 Preprint Submitted for review / Computers & Graphics (2018)

(b) (c) (d) (h)(e) (f) (m)(i)

5

So
ur

ce
 P

ol
yg

on
 P

Ta
rg

et
 P

ol
yg

on
 Q

Stage One Stage Two Stage Three

(a) (g) (j) (l)(k)

v6

v5

v1

v4

v2

v3

v5

v1

v4

v2

v3

v6

v5

v1

v4

v2

v3

v6

v5

v1

v4

v2

v3

v5

v1

v4

v2

v3

u1

u2

u5

u3

u4

u1

u2

u5

u3

u4

u6

u1

u2

u5

u3

u4

u6

u1

u2

u5

u3

u4

u6

Collect Common
Valid Vertex Pairs

Yes

Compute Valid
Vertex Pairs

No

Using Link path for
Decomposition

Using Diagonal for
Decomposition

(3,1)
(3,5)

(2,4)
(2,5)

M
ax

im
iz

in
g

M
in

im
um

In

te
rio

r A
ng

leEmpty

Fig. 1. The overview of the proposed framework to compatibly triangulate two simple polygons. (a) The target polygon Q. (b) The source polygon P. (c)
We compute the valid vertex pairs for both the source and target polygons. (d) We collect the common valid vertex pairs. (e) We use the common valid
vertex pair for compatible decomposition if the common vertex pair exists; otherwise, we calculate the link path, e.g., the 2-link path between vertex u2
and u5 with the blue color shown in (h). (f-h) We use the polyline found in (e) that maximizes the minimum angle to decompose the source and target
polygons. (i) We triangulate each sub-polygon pi of source polygon P using Delaunay triangulation. (j) We may need to add some Steiner points on the edge
of sub-polygon qi to keep equivalent topology. (k) We solve a linear system to map the triangulation of sub-polygon pi onto the corresponding sub-polygon
qi of target polygon Q. (l-m) We finally refine the compatible meshes by operations such as splitting long edges and flipping interior edges to improve the
interior angles of the mesh.

diagonal uaub of P is a line segment that joins vertex ua and1

ub of P and remains strictly inside P. A diagonal such as u2u42

in Fig. 2 that connects two convex vertices is redundant in our3

compatible decomposition algorithm because it can be removed4

and the two convex sub-polygons on its sides can be merged5

into a convex polygon. Therefore, for the construction of a6

compatible decomposition, we consider only the diagonals that7

connect two vertices that belong to valid vertex pairs.8

u1
α

β

γ
δ

u4

u3

u2

u5

u6

Fig. 2. A valid vertex pair (1, 4) used to partition the source polygon, which
yields four interior angles between vertex u1 and u4.

In some cases, the compatible triangulation can be con-9

structed only if Steiner points are added. In order to introduce10

the minimum number of Steiner points, we need to search for11

all the potential decomposition combinations in the solution12

space. As a result, there can be an exponential number of13

ways to decompose a simple polygon into convex sub-polygons14

using the valid vertex pair, which forbids the practical use15

of the algorithm. Previous work converted the compatible16

triangulation problem into a common base domain [11, 7] or17

used a divide-and-conquer methods [24, 10, 12] to iteratively18

partition the source and target polygons. However, these19

methods may either be too complex for a real-time application20

or produce a mesh of poor quality. This motivates us to design21

an efficient compatible triangulation algorithm with improved22

mesh quality.23

We start from the source polygon P and find all the valid

vertex pairs VPP for P. Similarly, we find the valid vertex pairs
VPQ for the target polygon Q. Among all the valid vertex pairs
in VPP and VPQ, we collect the common valid vertex pairs
VP = VPP ∩ VPQ that appear in both VPP and VPQ . The
best partition for P and Q is the common valid vertex pair that
generates the maximum minimum interior angle IntAng by:

(a, b) = arg max
va,vb∈V
ua,ub∈U

a,b

min{IntAngP (a, b) , IntAngQ (a, b)} (1)

where the IntAngP (a, b) contains four angles formed by the 24

intersection of the source polygon P and the diagonal uaub that 25

connects a valid vertex pair (a, b). For example, IntAngP (1, 4) 26

contains ∠α, ∠β, ∠γ and ∠δ in Fig. 2. 27

Decomposing polygons with Equation 1 generates a balanced 28

angle partition for both the source and target polygons, which 29

maximizes the interior angle of both the source and target sub- 30

polygons in the current iteration. Liu et al. [12] only considered 31

a balanced angle partition for the target polygon; however, 32

the source polygon may still generate small interior angles. 33

Previous methods such as [9, 10] only considered balanced 34

index partition of the source and target polygons, which is likely 35

to decrease the mesh quality regarding the proportion of small 36

angles in the compatible meshes, which will be discussed in 37

Section 6.2. 38

In practice, the common valid vertex pair may not always be 39

available in some cases. For example, as shown in Fig. 1(c- 40

d), the intersection of two valid vertex pair sets {(2, 4), (2, 5)} ∩ 41

{(3, 1), (3, 5)} is empty. Here, we apply a link path to determine 42

the partition line between two vertices instead of using the 43

common valid vertex pair. A link path between vertex ua 44

and ub is a polyline within the polygon that joins the vertex 45

pair (a, b) such as vertex pairs (2, 6) and (6, 5) in Figure 1(h), 46

which defines a 2-link path between vertex u2 and u5. A 47

minimum link distance for vertex pair (a, b), linkDist(ua, ub), 48

is the minimum number of line segments in a polyline, for 49

Preprint Submitted for review / Computers & Graphics (2018) 5

Algorithm 1: Compatible decomposition of the source and
the target polygons

1 Input: The source and target polygons, P and Q
2 Output: A decomposition of P, p =

⋃
pi, and Q, q =

⋃
qi,

where either pi or qi is a convex sub-polygon
3 convexDecomposition(P, Q)
4 if P or Q is convex then
5 exit
6 end
7 Compute valid vertex pairs VPP and VPQ

8 Find common valid vertex pairs
9 VP = VPP ∩ VPQ

10 if VP is not empty then
11 Calculate the best partition by:
12 (a, b) =

arg max
va,vb∈V
ua,ub∈U

a,b

min{IntAngP (a, b) , IntAngQ (a, b)}

13 Decompose P and Q using (a, b) that creates
two sets of sub-polygons:

14 {pi, pi+1}, {qi, qi+1}

15 else
16 Decompose P or Q using link path that creates

two sets of sub-polygons:
17 {pi, pi+1}, {qi, qi+1}

18 end
19 convexDecomposition(pi , qi)
20 convexDecomposition(pi+1, qi+1)

example, the minimum link distance for vertex pair (2, 5) in1

Figure 1(h) is 2. We follow [10] to compute the link path with2

the minimum link distance for all vertex pairs in O(H · N3
i),3

where H is the number of sub-polygon pairs and Ni is the4

number of vertices for the i-th sub-polygon. Algorithm 15

summarizes our recursive polygon decomposition algorithm.6

By this stage, we have compatibly decomposed the source7

polygon P and the target polygon Q into sub-polygons {pi =8

(U pi , Epi)} and {qi = (Vqi , Eqi)} , where (pi, qi) is a pair of sub-9

polygons and either pi or qi is convex. We apply Delaunay10

triangulation as the initial triangulation of a sub-polygon, which11

can maximize the minimum interior angle with no extra Steiner12

points in O(NilogNi) [25]. Here, we denote Tpi as the13

triangulation of the sub-polygon pi and aim to construct the14

compatible triangulation Tqi of qi based on Tpi .15

3.2. Compatible Triangulations Mapping16

The compatible decomposition process may introduce17

Steiner points on the link path of either the source polygon18

P or the target polygon Q. Moreover, to improve the mesh19

quality, the mesh refinement process detailed in Section 3.320

creates Steiner points within each sub-polygon. Therefore, we21

have two types of Steiner points: (1) Steiner points that lie on22

the link path of source sub-polygon pi, and (2) Steiner points23

that lie within pi. For (1), we map the Steiner points onto the24

corresponding edges of the target sub-polygon qi based on the25

simple line-segment-length proportion principle. For (2), we 26

solve the mapping with a sparse linear system. 27

3.2.1. Mapping the Steiner Points onto the Link Path of the 28

Source Polygon 29

We denote us as a Steiner point that lies on the link path 30

between vertex ua and ub in the source sub-polygon pi such 31

as the vertex u6 for vertex pair (u2, u5) in Figure 1(h). We 32

add a Steiner point vs for the target sub-polygon qi on the 33

corresponding line segment vavb based on the linear ratio with 34

the following equation: 35

vs =
polylineLength(ub, us)
polylineLength(ua, ub)

va +
polylineLength(us, ua)
polylineLength(ua, ub)

vb (2)

where polylineLength(ua, ub) is the summation of the length of 36

all line segments on the link path between ua and ub. 37

As shown in Figure 1(h), the length of the poly- 38

line for vertex pair (u2, u5) is polylineLength(u2, u5) = 39

polylineLength(u2, u6) + polylineLength(u6, u5). We place the 40

vertex v6 on the line segment v2v5 using Equation (2). 41

3.2.2. Mapping the Steiner Points Within the Source Polygon 42

In this section, we will explain how to map the Steiner points 43

inside the source polygon onto the corresponding locations 44

inside the target polygon. As shown in Figure 3, we have to 45

decide how to map the Steiner point u1 and u2 onto v1 and v2 46

inside the target polygon. Here, we calculate the barycentric 47

coordinates of u1 and u2. We then compute the proper locations 48

for Steiner point v1 and v2 using the barycentric coordinates 49

found in the source polygon. 50

1u

2u

3u

4u
5u

6u

7u

2v

1v

3v

4v

5v 6v

7v

(a) Source Polygon with Steiner
points u1 and u2

(b) Target Polygon with unknown
Steiner points v1 and v2

(a) (b)

Fig. 3. Mapping the Steiner points within the source sub-polygon onto
the target sub-polygon. (a) The source sub-polygon with the Steiner points
u1 and u2. (b) The corresponding target sub-polygon with the unknown
Steiner points v1 and v2.

Denoting u j, j ∈ {1, ..., S i} as a Steiner point that lies within
the source sub-polygon pi, where S i is the number of the Steiner
points within pi. We use the barycentric coordinates λ to
map the Steiner point u j of the source sub-polygon pi onto
the Steiner point v j of the target sub-polygon qi. Here, we
employ the Floater’s mean value coordinates [26] to calculate
the barycentric coordinates λ. The barycentric coordinates λ of
vertex u j can be seen as a weight of its neighboring vertices,
which allow us to generate continuous data from these adjacent
vertices. We represent the Steiner point u j, including the
Steiner points on the link path of source polygon and Steiner

6 Preprint Submitted for review / Computers & Graphics (2018)

points inside the source polygon, as a weighted average of its
neighboring vertices:

u j =

M∑
k=1

λ j,kuk,

M∑
k=1

λ j,k = 1 (3)

where M is the total number of points including the boundary1

vertices and the Steiner points for source sub-polygon pi, i.e.2

M = Ni + S i.3

We now explain how to map the Steiner point u j ∈ U pi , j ∈
{1, ..., S i} of the source sub-polygon pi onto the corresponding
Steiner point v j ∈ Vqi of the target sub-polygon qi, where S i is
the number of Steiner points within pi. We define v1, ..., vS i to
be the solutions of linear equations with S i variables.

v j =

M∑
k=1

λ j,kvk,

M∑
k=1

λ j,k = 1 (4)

where

λ j,k = 0, (j, k) < Eqi

λ j,k > 0, (j, k) ∈ Eqi

Note that the barycentric coordinates λ j,k can be uniquely4

determined by Equation (3).5

We rewrite Equation (4) by breaking the summation term into6

two sub-terms:7

v j =
S i∑

k=1
λ j,kvk +

S i+Ni∑
k=S i+1

λ j,kvk, j ∈ {1, ..., S i}

v j −
S i∑

k=1
λ j,kvk =

S i+Ni∑
k=S i+1

λ j,kvk (5)

where S i is the number of Steiner points within the target sub-8

polygon qi and Ni is the number of boundary vertices of qi.9

Denoting v j = (x j, y j) to be a Steiner point within target sub-
polygon qi that we want to solve, Equation (5) is equivalent to
the following form:

Ax = b1, Ay = b2 (6)

where x = (x1, ..., xS i)
T , y = (y1, ..., yS i)

T , and the matrix AS i×S i

is in the form:

a j, j = 1, j ∈ {1, ..., S i}

a j1, j2 = −λ j1, j2 (j1, j2 ∈ {1, ..., S i}, j1 , j2).

This linear system in Equation 6 has S i unknown variables10

and S i equations. The solution to Equation (6) is unique as the11

matrix A is non-singular. We apply LU decomposition to solve12

Equation (6) in O(S 3
i) [27], where S i is the number of Steiner13

points within target sub-polygon qi.14

In practice, the source sub-polygon pi maybe concave and15

we cannot guarantee that any point inside pi can be mapped16

onto its corresponding point inside the target sub-polygon17

qi using the barycentric coordinates. Our decomposition18

algorithm generates a pair of sub-polygons in which at least19

one of the sub-polygons is convex. As shown in Fig. 1 (g)20

and (h), although the source sub-polygon P2345 is concave, 21

its corresponding target sub-polygon Q2345 is convex. We 22

can triangulate the target sub-polygon Q2345 and map it 23

onto the source sub-polygon P2345. Because the target sub- 24

polygon Q2345 is convex, we can map the points inside Q2345 25

onto the countering-points inside P2345 using the barycentric 26

coordinates. 27

3.3. Compatible Mesh Refining 28

While the compatible meshes generated by our method 29

introduce a small number of Steiner points, there may still 30

be some long thin triangles such as the second column in 31

Figure 7(a). In practice, we found that these long thin triangles 32

can cause numerical problems such as inconsistent rotations for 33

shape morphing. Therefore, we have to refine the compatible 34

meshes to avoid numerical problems. 35

To refine the compatible meshes, we apply a variation of the 36

remeshing method in [9]. We only smooth those triangles with 37

small interior angles and long edges. Specifically, we smooth 38

the mesh using area and angle based remeshing, splitting long 39

edges, and flipping interior edges to improve the interior angles. 40

We follow [28] to employ the minimum interior angle as a 41

criterion to measure the mesh quality. We want to increase the 42

minimum interior angle for both the source and target meshes. 43

We apply the refinement operations to improve a pair of meshes 44

only if these operations can further improve the mesh quality for 45

both the source and target meshes. The smoothed results can be 46

found in Figure 7(b). 47

4. Computing Compatible Triangulation with Self- 48

occlusion 49

4.1. The Problem of Shape Morphing with Self-occlusion 50

As shown in Fig. 4(t=0), the user adopts a pose with 51

self-occlusions, e.g., with the right hand placed in front 52

of the torso and the left hand behind it. We apply the 53

compatible triangulation method discussed in Section 3, which 54

generates the compatible meshes. However, these meshes 55

cannot distinguish the hands and the other body parts due 56

to self-occlusion. We apply the rigid shape interpolation 57

method introduced in [7] to blend the mesh, which results 58

in the transformations shown in Fig. 4. We can see the 59

transformations of the in-between images such as the time slice 60

t=0.2, which dose not make sense because we want the hands 61

of the user to be gradually transformed into the wings of the 62

butterfly. 63

4.2. Enhancing Shape Morphing with Self-occlusion 64

To generate sensible transformation, we need to enable 65

our compatible triangulation method to deal with the shape 66

with self-occlusion. However, the shape extracted from an 67

image with self-occlusion does not contain any overlapping 68

information, which makes it hard to compute the compatible 69

triangulation between two shapes with self-occlusion. Thus, 70

we propose an improved scheme to tackle triangulation with 71

self-occlusion by introducing a calibration image. 72

Preprint Submitted for review / Computers & Graphics (2018) 7

t=0 t=0.2 t=0.4

t=0.6 t=0.8 t=1

Fig. 4. An example of shape morphing with self-occlusion. The
transformation does not make sense as the limbs of the user are not
transformed into the corresponding wings of a butterfly due to self-
occlusion.

Zhiguang Liu

Shape Morphing with Self-occlusion Enhanced

2/21/2018 An Interactive Shape Morphing System
Shape Morphing with Self-occlusion Enhanced 3

(c) Target shape(b) Calibration shape(a) Source shape with
self-occlusion

(d) Compatible triangulation
of target shape

(e) Compatible triangulation
of calibration shape

(f) Compatible triangulation
of source shape

Fig. 5. The overview of compatible triangulation for shapes with self-
occlusion using a human posture as an example. Our inputs are the source
shape with self-occlusion (a) and the target shape (c). (b) We introduce
a calibration shape without self-occlusion. (d-e) We build the compatible
triangulation between the calibration shape (b) and target shape (c). We
deform the calibration mesh (e) into the source shape with occlusion (a)
using the four color-coded control points.

Our inputs are the RGB image of the source object, together1

with its deformation control points, and the target shape with2

texture. Here are the steps to build the compatible triangulation3

between the source shape with self-occlusion and the target4

shape: (1) We capture a calibration shape of the source object5

that gives us the full body texture of the source object. Here, the6

calibration shape is used to extract the topology information,7

e.g., the deformation control points, and it requires the shape8

to have no overlapping parts. Additionally, the calibration9

shape enables us to synthesize texture for transformation with10

overlapping as it contains the full texture of the source shape. In11

particular, the calibration shape for human in this case is the full12

body image as shown in Fig. 5(b). (2) We build the compatible13

triangulation between the calibration and target shapes, which14

bridges the shape with self-occlusion and the target shape. (3)15

We use the control points to deform the mesh of the calibration16

shape into the source shape with occlusion, which implicitly17

builds the compatible triangulation between the source shape18

with occlusion and the target shape. As illustrated in Fig. 5, we19

take the human posture as an example to explain the process of20

computing compatible triangulation with self-occlusion.21

(a) Calibration shape (b) Without depth ad-
justment

(c) With depth adjust-
ment

Fig. 6. Collision detection and depth adjustment. Without appropriate
depth assignment, one can see interpenetration (b). We detect overlapping
regions and adjust depth on the fly (c).

Using as-rigid-as-possible shape morphing, the points on 22

the medial axis of a shape experience only rotations [7, 29]. 23

Therefore, it is reasonable to use a sparse set of points on 24

the media axis as the deformation control points. Methods 25

such as [30, 31] have been proposed to extract the skeleton 26

of a shape. Since we are using the human as an example, we 27

follow the Kinect’s posture estimation method [32] to identify 28

the skeleton of human and use these skeleton joints as our 29

deformation control points. In addition, Kinect also simplifies 30

the work of capturing the silhouette and texture of the source 31

object. 32

4.3. Collision Detection and Depth Adjustment 33

As the searching sequence of our polygon decomposition 34

algorithm is similar to the breadth-first search method, the 35

triangles are not stored in sequence. We must be careful 36

when different parts of the shape overlap. If we assign depths 37

inappropriately, the overlapping parts may interpenetrate as 38

shown in Fig. 6(b). We continuously monitor the mesh for 39

self-intersection and assign appropriate depth values to the 40

overlapping parts. The depth value we assigned to each triangle 41

is estimated from the posture reconstruction algorithm studied 42

in [33]. As we have recovered the joint positions for each joint, 43

we know if the hands are in front of or behind the spine as 44

shown in Fig. 6(c). 45

As shown in the second row of Fig. 12, we blend the 46

human with self-occlusion and the butterfly. Compared with 47

the transformations that do not consider body parts overlap as 48

shown in Fig.4, the results in the second row of Fig. 12 make 49

more sense as we now transform the human’s limbs into the 50

butterfly’s wings. 51

5. Method Complexity 52

In this section, we will analyze the computational complexity 53

of our method. It takes O(N) time to determine the concave 54

vertices and O(N) time to find a valid vertex pair using the 55

visibility polygon algorithm [34], where N is the number of 56

vertices of a polygon. Finding the common valid vertex pairs 57

using methods like hash table usually requires O(1) time. 58

Thus, the time cost of decomposing the source and target 59

polygons into pairs of sub-polygons is O(N2). Finding a 60

corresponding link path for a sub-polygon, e.g., pi in source 61

polygon P, is O(N3
i), where Ni is the number of vertices of 62

8 Preprint Submitted for review / Computers & Graphics (2018)

a source sub-polygon pi. The Delaunay triangulation can be1

finished in O(NilogNi). The compatible mapping between a2

pair of sub-polygons requires solving a linear equation using3

LU decomposition that leads to O(S 3
i) operations, where S i is4

the number of Steiner points in the sub-polygon pi.5

Table 1 compares the computational complexity between our6

method and alternative approaches. The main computation of7

our algorithm is dominated by computing link paths and solving8

a linear system, i.e., O(H ·max(N3
i , S

3
i)), where H is the number9

of sub-polygon pairs. In practice, the most time-consuming part10

of our algorithm is building the link path as S i is often smaller11

than Ni. Generally, our algorithm is faster than [12]. This is12

because our method simultaneously decomposes the source and13

target polygons, and we will stop partitioning a polygon pair if14

one of them is convex. However, [12] keeps partitioning the15

target polygon until all the target sub-polygons are convex. Our16

method is much faster than [9, 10] as we solve a small linear17

sparse system within each sub-polygon pair.18

Table 1. The computational complexity: the main computational cost of
our method is computing the link paths, where N is the total number
of boundary vertices of source polygon P, CP is the number of concave
vertices of P, L and H are the number of sub-polygon pairs created by Liu
et al. and our method, Ni and S i are the number of boundary vertices and
the number of Steiner points of the i-th sub-polygon respectively.

Surazhsky-Gotsman, 04 3()O N logN

Baxter et al., 09 3(2)O N

Liu et al., 15

3 3(max(,)), ,
1 1 1
2

i i i i

Q Q

O L N S S N N

C L C

Proposed
Method

Convex
decomposition

Common valid vertex
pairs computation

2()O N

Link paths generation 3(),i iO HN N N

Linear system computation 3(), ,i iO HS S LN H

The matrix A in Equation (6) is sparse and non-symmetric.19

Therefore, we further speed it up by using iterative methods20

such as Bi-CGSTAB [35]. Here, we apply an open library21

Eigen [36] to solve the sparse linear system. The compatible22

mapping process of a sub-polygon pair can be even faster23

before the mesh refinement operations, and it can be completed24

in O(S i). This is because the Delaunay triangulation can25

triangulate the sub-polygon pi with no Steiner points such that26

we only need to map the Steiner points on the link path as27

discussed in Section 3.2.1.28

6. Experimental Results29

In this section, we will show the experimental results30

and present the comparisons with the alternative approaches31

including [9], [10] and [12]. Qualitative analysis is conducted32

to evaluate the mesh quality between the proposed method and33

other alternatives. The experiments are conducted on an Intel34

Core i3-2350M 2.3 GHz PC with 4GB RAM.35

6.1. Compatible Triangulations36

To demonstrate the effectiveness of our method, we im-37

plemented the as-rigid-as-possible shape interpolation method38

(a) (b)

\

Fig. 7. Compatible triangulation results. (a) The initial tessellations of two
polygons. (b) Mesh refinement and morphing. Note that our compatible
meshes can be used to blend shapes with large rotations, e.g., shapes in the
third row.

introduced in [7]. Figure 7 and 8 show some compatible 39

triangulation results and some challenging polygon pairs that 40

are quite different such as the shark and the seahorse in the 41

third row of Figure 7. More examples of comparing morphing 42

against previous triangulation strategies can be found in 43

Figure 13. In practice, in order to create good correspondences 44

between two polygons, shape matching algorithms such as [37] 45

and [38] can be employed to automatically construct a few 46

key correspondences between the source and target polygons, 47

e.g., the vertices around the head, the hands and the feet of the 48

human. Then, the remaining vertices between the user selected 49

key points can be aligned based on linear interpolation. The 50

user can specify a small number of matching points to ensure 51

that the matching points are selected with similarity context. 52

The mismatched correspondences can be detected by observing 53

the generated transformations. 54

Figure 7(a) shows that our initial compatible triangulation 55

contains few long thin triangles and we only need to flip some 56

edges of such triangles to enlarge the minimum interior angles. 57

Figure 7(b) shows that our compatible meshes can be further 58

refined by methods such as splitting long edges and averaging 59

the area of adjacent triangles. However, it should also be 60

noted that not every long thin triangle can be further enhanced 61

with our refinement method. For example, in the third row of 62

Figure 7, some thin triangles around the head of the seahorse 63

cannot be improved. 64

Given the compatible triangulations of two input polygons, 65

shape interpolation can be applied to create animations showing 66

the transitions from one shape to another. Figure 7(b) shows 67

some interpolation results using our compatible meshes. For 68

more transformations, please see our supplemental demo video. 69

6.2. Mesh Quality Evaluation 70

The quality of the compatible meshes greatly influences the 71

intermediate shapes generated by morphing techniques. In 72

particular, meshes with those long and skinny triangles would 73

suffer from the inconsistent rotation problem [7, 19]. 74

Preprint Submitted for review / Computers & Graphics (2018) 9

Surazhsky-Gotsman, 04 Baxter et al., 09 Liu et al., 15 Ours

Steiner Points: 0 0 3 0

Steiner Points: 2 5 2 1

Steiner Points: 6 4 3 1

Steiner Points: 0 0 0 0

Steiner Points: 0 0 0 0

Fig. 8. Compatible triangulations comparisons. We compare our results with [9], [10] and [12]. While we generally use fewer number of Steiner points
than the others, our algorithm creates high-quality compatible meshes concerning the proportion of long thin triangles.

We employ the following criteria to measure the mesh1

quality: (1) the minimum interior angle of a given mesh; and2

(2) the proportion of angles that are smaller than a certain3

constant value, which is known to be a reasonable mesh quality4

criteria [28]. We want to increase the minimum interior angle5

of a mesh and decrease the percentage of small angles.6

Table 2 shows a quantitative comparison between our7

algorithm and three alternative methods. [9] tends to create8

more long thin triangles than the others. Compared with the9

Table 2. Quantitative comparisons between triangulation quality

Shape Method #Steiner
Point

Minimum
angle

Angles
≤10°

Angles
≤15°

Angles
≤20°

Computation
time(second)

Surazhsky-Gotsman,
04 0 1.6730° 11.57% 16.12% 31.27% 21

Baxter et al., 09 0 3.3052° 10.61% 14.39% 30.30% 12
Liu et al., 15 3 3.7557° 5.35% 11.90% 22.02% 7

Ours 0 6.4161° 8.75% 12.87% 26.93% 3

Surazhsky-Gotsman,
04 2 0.0441° 27.43% 36.81% 42.36% 24

Baxter et al., 09 5 0.9779° 21.91% 29.32% 37.96% 14
Liu et al., 15 2 0.9913° 15.27% 22.91% 32.29% 6

Ours 1 1.3653° 12.49% 21.08% 26.37% 5

Surazhsky-Gotsman,
04 6 0.4837° 8.60% 13.03% 20.59% 27

Baxter et al., 09 4 0.5849° 6.49% 12.42% 18.64% 15
Liu et al., 15 3 0.6120° 5.29% 11.64% 17.46% 8

Ours 1 1.6855° 5.18% 9.11% 15.72% 7

Surazhsky-Gotsman,
04 0 0.0347° 28.96% 35.47% 44.88% 35

Baxter et al., 09 0 0.0229° 21.45% 29.21% 35.48% 18
Liu et al., 15 0 0.3294° 16.01% 23.77% 29.54% 6

Ours 0 5.6835° 3.99% 7.63% 12.11% 4

Surazhsky-Gotsman,
04 0 0.8893° 12.43% 19.16% 24.13% 29

Baxter et al., 09 0 2.1933° 10.95% 14.68% 21.89% 16
Liu et al., 15 0 2.6746° 9.95% 14.18% 20.15% 9

Ours 0 2.9338° 6.21% 10.94% 15.92% 5

results of [9], [10] improves the minimum interior angle. [12] 10

enhances the proportion of regular triangles but sometimes 11

introduces a few more Steiner points than [9]. While our 12

results are similar to [9] regarding the number of Steiner 13

points, our algorithm creates a much smaller percentage of 14

small angles than [9, 10]. Compared with [9, 10, 12], the 15

minimum angle of our method has been improved greatly 16

while we generally add a fewer number of Steiner points than 17

the alternative methods. Regarding our computational time, 18

most of the examples in this paper take less than 5 seconds. 19

Additionally, as the compatible decomposition and mapping are 20

highly independent, our method can potentially benefit from 21

the parallel computing of GPU, and hence the entire computing 22

process may be done in real-time. 23

6.3. Triangle Deformation Evaluation 24

We apply the rigid shape interpolation algorithm [7] to
transform a source mesh TP into the target one TQ. Here,
we define an edge deformation function to measure the
deformation of each triangle face during the transformation.
Given the vertices of a source triangle TP1

= {u1, u2, u3} and the
target triangle TQ1

= {v1, v2, v3}, the edge deformation function
is defined as:

Euaub =
| ‖uaub‖ − ‖vavb‖ |

‖uaub‖
, a, b ∈ {1, 2, 3}, a , b (7)

where ‖uaub‖ is the length of the edge that connects vertex ua 25

and ub. 26

10 Preprint Submitted for review / Computers & Graphics (2018)

Fig. 9. Mesh deformation evaluation. (top) Dog and cat. (bottom)
Alligator.

The deformation of the triangle TP f is defined as:

E f =
1
3

∑
ua,ub∈TP f

Euaub (8)

where ua and ub are vertices of the f -th source triangle in TP.1

The deformation function E f measures the deformation2

degree of each triangle. A source triangle TP f will experience3

very small deformation to transform into the target triangle4

TQ f as E f approaches 0; Otherwise, a source triangle will5

experience a big distortion as E f becomes larger. For a6

good compatible triangulation, a larger percentage of small7

deformation E is preferred, which benefits applications such8

as shape morphing and texture mapping. The horizontal axis9

of Fig. 9(bottom) shows the deformation values that range10

from the smallest to the largest deformation values in a mesh.11

For some specific deformation amount of the horizontal axis,12

the value of vertical axis demonstrates the percentage of13

triangles that need a deformation smaller than such a particular14

deformation value. For example, one triangle in the mesh needs15

a deformation value of 0.5, and more than 90% of triangles16

generated by our method experience the deformation values less17

than 0.5. Fig. 9 shows that our method generally creates the18

compatible meshes with a higher percentage of triangles that19

experience small deformation E. On the other hand, our method20

generates fewer triangles that need large deformation during the21

shape morphing.22

[37, 38]23

As illustrated in Fig. 10, we demonstrate the texture24

mapping using compatible triangulations generated by methods25

of [9], [10], [12] and ours. The system inputs are a source 26

polygon with texture and a target polygon without texture. We 27

first build the compatible triangulations of two shapes with 28

alternative approaches, as shown in the third and fourth rows 29

in Fig. 8. Based on the compatible meshes, we map the texture 30

of a source shape onto the target one. In general, mapping the 31

texture of a shape onto another very different one always suffers 32

from the texture stretching. As shown in the dog-cat example in 33

Fig. 10 (b-e), nearly all the squares experience some distortion 34

due to the creation of some long thin triangles as shown in the 35

third example in Fig. 8. These long thin triangles need large 36

distortion to be transformed into the target triangles. We can 37

still observe that both [12] and our method preserved some 38

regular squares around the upper body of the cat while our 39

method only generates 1 Steiner point. We then try to map the 40

texture of an alligator between two postures. For the method 41

of [9] in Fig. 8(b), we can see some distortions appear around 42

the abdomen of the alligator. The stretched pattern can also be 43

observed at the back of the alligator for both methods of [10] 44

and [12] as shown in Fig. 8(c) and Fig. 8(d) respectively. 45

Compared with the other methods, ours generates a smoother 46

pattern around the back of the alligator, and the deformation of 47

the abdomen makes more sense. This is because our method 48

generates much more regular triangles that only involve small 49

deformation during the shape morphing process, as shown in 50

Fig. 9(b). 51

6.4. Interactive Shape Morphing System 52

To test the effectiveness of our approach, we have 53

implemented a prototype of the proposed interactive shape 54

morphing system using a human posture as the input of source 55

shape. Fig. 11(a) shows the setup of our interactive shape 56

morphing system. We use Kinect as the input device of the 57

source shape. The user stands in front of the Kinect, and the 58

system can be controlled by gesture command. For example, 59

the system starts to capture and extract the shape of the user 60

when the user in the scene raises his/her left hand over the head. 61

More commands such as raising two hands to go back to the 62

default capture view have been implemented. 63

Fig. 11(b) and 11(c) show the interface of the interactive 64

shape morphing system. As shown in the bottom left of 65

Fig. 11(b), the user adopts a pose as the source input shape. 66

The user can select the target shape in the shape database with 67

a certain gesture such as waving the hand, and then the target 68

shape is rendered in the right of Edit window in Fig. 11(b). We 69

then compute the compatible triangulation between the source 70

and target shapes. Finally, we transform the source shape 71

into the target shape based on the compatible meshes. The 72

intermediate results are shown in the Transformation window as 73

shown in Fig. 11(c). More animations generated by our system 74

can be found in Fig. 12. 75

On the other hand, our interactive shape morphing system 76

can be applied to create animation, movie and even special 77

effects. The typical users may not have the professional 78

resources to create some interesting morphing video, our 79

method and system can simplify the work to produce the 80

interactive morphing video. 81

Preprint Submitted for review / Computers & Graphics (2018) 11

Fig. 10. Texture mapping comparisons. (a) The source shape with texture. Adding texture to the target shape using the compatible meshes generated by
methods of (b) Surazhsky-Gotsman, 04. (c) Baxter et al., 09. (d) Liu et al., 15. (e) Ours.

Kinect

UserSystem
Interface

(a)

(b)

(c)

Fig. 11. The interactive shape morphing system. (a) The system setup. The
system interface for capturing the source object image (b) and generating
transformations (c).

7. Conclusions1

We propose a new method to compute the compatible2

triangulations of two simple polygons and apply them to3

2D shape morphing. Our method compatibly decomposes the4

source and target polygons into sub-polygon pairs and maps5

the triangulation between a pair of sub-polygons using a sparse6

linear system. We present a new metric to measure the quality7

of the resulting mesh during the transformation. In addition, we8

propose an enhanced scheme to fix compatible triangulations9

with self-occlusion that benefits sensible transformations.10

Finally, to demonstrate the proposed algorithm, we build an11

interactive shape morphing system using the human silhouette12

as the source shape input.13

Comparing with previous methods, our compatible polygon14

decomposition algorithm offers a more flexible way to15

decompose the source and target polygons such that the16

minimum interior angle can be maximized at each iteration.17

This leads to compatible triangulations with more regular-18

shaped triangles as opposed to long thin triangles. This is19

supported by the analysis that we generate fewer triangles20

whose minimum angles are small under our approach when21

compared to methods in [9, 10, 12]. Second, compared to22

our preliminary work [12], the proposed method generates the 23

same compatible meshes whether we start the decomposition 24

from the source or target polygon. Another advantage is the 25

simplicity of our system that involves only three stages. All we 26

need is to decompose a polygon, to calculate link paths, and to 27

solve a sparse linear system, enabling real-time morphing. 28

While our method handles well the mapping between shapes, 29

the morphing results need to be further improved. As we focus 30

on generating the compatible meshes, we simply crossfade 31

between textures in the image space. More sophisticated 32

texture blending or image warping algorithms such as [5] 33

can be incorporated into our technique. Currently, the 34

intermediate images interpolated are uniquely determined by 35

a rigid interpolation method [7], which offers no means of 36

control. It would thus be desirable to modify some parts of the 37

intermediate shapes if the users were not satisfied with them. 38

We can explore possible solutions such as the linear constraints 39

proposed in [19] to increase the user controllability. 40

Another drawback of our method is that we cannot deal with 41

polygons with holes. One possible solution would be adding 42

a bridge between the outer polygon and the inner polygons 43

(i.e., the holes). We may connect the outer polygon to all the 44

holes to treat such a polygon with holes as a single polygon. 45

We can then apply our method to decompose the source and 46

target polygons compatibly. While we have shown many 47

examples of compatible triangulations both in the paper and 48

the supplemental video, we also want to test our algorithm on 49

shapes with a more complex structure or completely different 50

topologies in the future. 51

Finally, we want to make better use of the features afforded 52

by commodity depth cameras. It is possible to detect self- 53

occlusions in a video sequence using the depth image captured 54

by commodity depth cameras automatically. However, it is hard 55

to recover the occluded textures for human figures with self- 56

occlusion, which makes it difficult to compute the cross-fade 57

textures for each in-between transformation. That is why we 58

need a calibration image that offers the full body texture for 59

shape morphing with occlusions. An interesting direction of 60

future work would be to skip the calibration image and compute 61

the compatible triangulation directly from shapes with self- 62

occlusions using data from a commodity depth camera. 63

12 Preprint Submitted for review / Computers & Graphics (2018)

t=0 t=0.2 t=0.4 t=0.6 t=0.8 t = 1

Fig. 12. Producing interactive animation using our interactive animation system: transforming a man into one wolf beast (first row), butterfly (middle
row), and bat monster (bottom row).

8. Acknowledgements1

This work was partially supported by the INRIA PRE2

“Smart sensors and novel motion representation breakthrough3

for human performance analysis” project, the Engineering4

and Physical Sciences Research Council (EPSRC) (Ref:5

EP/M002632/1) and the Royal Society (Ref: IE160609).6

References7

[1] Wolberg, G. Image morphing: a survey. The visual computer8

1998;14(8):360–372.9

[2] Chiang, CC, Way, DL, Shieh, JW, Shen, LS. A new image morphing10

technique for smooth vista transitions in panoramic image-based virtual11

environment. In: Proceedings of the ACM Symposium on Virtual Reality12

Software and Technology. VRST ’98; New York, NY, USA: ACM. ISBN13

1-58113-019-8; 1998, p. 81–90.14

[3] Dym, N, Shtengel, A, Lipman, Y. Homotopic morphing of planar15

curves. Computer Graphics Forum 2015;34(5):239–251.16

[4] Igarashi, T, Moscovich, T, Hughes, JF. As-rigid-as-possible shape17

manipulation. ACM transactions on Graphics 2005;24(3):1134–1141.18

[5] Schaefer, S, McPhail, T, Warren, J. Image deformation using moving19

least squares. ACM Transactions on Graphics 2006;25(3):533–540.20

[6] Fang, H, Hart, JC. Detail preserving shape deformation in image editing.21

ACM Transactions on Graphics 2007;26(3).22

[7] Alexa, M, Cohen-Or, D, Levin, D. As-rigid-as-possible shape23

interpolation. In: Proceedings of the 27th annual conference on24

Computer graphics and interactive techniques. ACM Press/Addison-25

Wesley Publishing Co.; 2000, p. 157–164.26

[8] Gotsman, C, Surazhsky, V. Guaranteed intersection-free polygon27

morphing. Computers & Graphics 2001;25(1):67–75.28

[9] Surazhsky, V, Gotsman, C. High quality compatible triangulations.29

Engineering with Computers 2004;20(2):147–156.30

[10] Baxter, W, Barla, P, Anjyo, Ki. Compatible embedding for 2d shape31

animation. IEEE Transactions on Visualization and Computer Graphics32

2009;15(5):867–879.33

[11] Aronov, B, Seidel, R, Souvaine, D. On compatible triangulations of 34

simple polygons. Computational Geometry 1993;3(1):27–35. 35

[12] Liu, Z, Leung, H, Zhou, L, Shum, HPH. High quality compatible 36

triangulations for 2d shape morphing. In: Proceedings of the 21st ACM 37

Symposium on Virtual Reality Software and Technology. VRST ’15; New 38

York, NY, USA: ACM; 2015, p. 85–94. 39

[13] Liu, Z, Zhou, L, Leung, H, Multon, F, Shum, HPH. High quality 40

compatible triangulations for planar shape animation. In: Proceedings of 41

the ACM SIGGRAPH ASIA Workshop. 2017, p. 1–8. 42

[14] Sederberg, TW, Gao, P, Wang, G, Mu, H. 2-d shape blending: an 43

intrinsic solution to the vertex path problem. In: Proceedings of the 44

20th annual conference on Computer graphics and interactive techniques. 45

ACM; 1993, p. 15–18. 46

[15] Kranakis, E, Urrutia, J. Isomorphic triangulations with small number 47

of steiner points. International Journal of Computational Geometry & 48

Applications 1999;9(02):171–180. 49

[16] Suri, S. A linear time algorithm for minimum link paths inside a 50

simple polygon. Computer Vision, Graphics, and Image Processing 51

1986;35(1):99–110. 52

[17] Gupta, H, Wenger, R. Constructing piecewise linear homeomorphisms 53

of simple polygons. Journal of Algorithms 1997;22(1):142–157. 54

[18] Xu, D, Zhang, H, Wang, Q, Bao, H. Poisson shape interpolation. 55

Graphical Models 2006;68(3):268–281. 56

[19] Baxter, W, Barla, P, Anjyo, Ki. Rigid shape interpolation using normal 57

equations. In: Proceedings of the 6th international symposium on Non- 58

photorealistic animation and rendering. ACM; 2008, p. 59–64. 59

[20] Sumner, RW, Popović, J. Deformation transfer for triangle meshes. 60

ACM Transactions on Graphics 2004;23(3):399–405. 61

[21] Li, XY, Ju, T, Hu, SM. Cubic mean value coordinates. ACM 62

Transactions on Graphics 2013;32(4):126:1–126:10. 63

[22] Chen, R, Weber, O, Keren, D, Ben-Chen, M. Planar shape interpolation 64

with bounded distortion. ACM Transactions on Graphics 2013;32(4):108. 65

[23] Floater, MS. Parametrization and smooth approximation of surface 66

triangulations. Computer aided geometric design 1997;14(3):231–250. 67

[24] Surazhsky, V, Gotsman, C. Explicit surface remeshing. In: Proceedings 68

of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry 69

processing. Eurographics Association; 2003, p. 20–30. 70

Preprint Submitted for review / Computers & Graphics (2018) 13

[9]

[10]

[12]

Ours

[9]

[10]

[12]

Ours

[9]

[10]

[12]

Ours

Fig. 13. Shape morphing comparisons by using different triangulation algorithms

[25] Fortune, S. A sweepline algorithm for voronoi diagrams. Algorithmica1

1987;2(1-4):153–174.2

[26] Floater, MS. Mean value coordinates. Computer aided geometric design 3

2003;20(1):19–27. 4

14 Preprint Submitted for review / Computers & Graphics (2018)

[27] Murota, K. Lu-decomposition of a matrix with entries of different kinds.1

Linear Algebra and its Applications 1983;49:275–283.2

[28] Sarrate, J, Palau, J, Huerta, A. Numerical representation of the3

quality measures of triangles and triangular meshes. Communications4

in numerical methods in engineering 2003;19(7):551–561.5

[29] Ben-Chen, M, Weber, O, Gotsman, C. Variational harmonic maps6

for space deformation. ACM Transactions on Graphics 2009;28(3):34:1–7

34:11.8

[30] Au, OKC, Tai, CL, Chu, HK, Cohen-Or, D, Lee, TY. Skeleton9

extraction by mesh contraction. ACM Transactions on Graphics10

2008;27(3):44:1–44:10.11

[31] Tagliasacchi, A, Alhashim, I, Olson, M, Zhang, H. Mean curvature12

skeletons. Computer Graphics Forum 2012;31(5):1735–1744.13

[32] Shotton, J, Fitzgibbon, A, Cook, M, Sharp, T, Finocchio, M, Moore,14

R, et al. Real-time human pose recognition in parts from single depth15

images. In: CVPR 2011. 2011, p. 1297–1304.16

[33] Liu, Z, Zhou, L, Leung, H, Shum, HPH. Kinect posture reconstruction17

based on a local mixture of gaussian process models. IEEE Transactions18

on Visualization and Computer Graphics 2016;22(11):2437–2450.19

[34] Joe, B, Simpson, RB. Corrections to lee’s visibility polygon algorithm.20

BIT Numerical Mathematics 1987;27(4):458–473.21

[35] Van der Vorst, HA. Bi-cgstab: A fast and smoothly converging variant of22

bi-cg for the solution of nonsymmetric linear systems. SIAM Journal on23

scientific and Statistical Computing 1992;13(2):631–644.24

[36] Guennebaud, G, Jacob, B, et al. Eigen v3. http://eigen.tuxfamily.org;25

2015.26

[37] Belongie, S, Malik, J, Puzicha, J. Shape matching and object recognition27

using shape contexts. IEEE transactions on pattern analysis and machine28

intelligence 2002;24(4):509–522.29

[38] Mai, F, Chang, CQ, Hung, YS. Affine-invariant shape matching30

and recognition under partial occlusion. In: 2010 IEEE International31

Conference on Image Processing. 2010, p. 4605–4608.32

	Introduction
	Related Work
	Compatible Triangulations
	Compatible Decomposition of the Target and Source Polygons
	Compatible Triangulations Mapping
	Mapping the Steiner Points onto the Link Path of the Source Polygon
	Mapping the Steiner Points Within the Source Polygon

	Compatible Mesh Refining

	Computing Compatible Triangulation with Self-occlusion
	The Problem of Shape Morphing with Self-occlusion
	Enhancing Shape Morphing with Self-occlusion
	Collision Detection and Depth Adjustment

	Method Complexity
	Experimental Results
	Compatible Triangulations
	Mesh Quality Evaluation
	Triangle Deformation Evaluation
	Interactive Shape Morphing System

	Conclusions
	Acknowledgements

