
Northumbria Research Link

Citation: Naik, Nitin, Jenkins, Paul, Cooke, Roger and Yang, Longzhi (2018) Honeypots
That Bite Back: A Fuzzy Technique for Identifying and Inhibiting Fingerprinting Attacks on
Low Interaction Honeypots. In: 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE). IEEE. ISBN 978-1-5090-6021-4

Published by: IEEE

URL: http://doi.org/10.1109/FUZZ-IEEE.2018.8491456 <http://doi.org/10.1109/FUZZ-
IEEE.2018.8491456>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/35741/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

Honeypots That Bite Back: A Fuzzy Technique for
Identifying and Inhibiting Fingerprinting Attacks on

Low Interaction Honeypots

Nitin Naik1, Paul Jenkins1, Roger Cooke1 and Longzhi Yang2

1Defence School of Communications and Information Systems, Ministry of Defence, United Kingdom
2Department of Computer and Information Sciences, Northumbria University, United Kingdom

Email: {nitin.naik100, paul.jenkins683, roger.cooke472}@mod.gov.uk, longzhi.yang@northumbria.ac.uk

Abstract—The development of a robust strategy for network
security is reliant upon a combination of in-house expertise and
for completeness attack vectors used by attackers. A honeypot is
one of the most popular mechanisms used to gather information
about attacks and attackers. However, low-interaction honeypots
only emulate an operating system and services, and are more
prone to a fingerprinting attack, resulting in severe consequences
such as revealing the identity of the honeypot and thus ending
the usefulness of the honeypot forever, or worse, enabling it to
be converted into a bot used to attack others. A number of tools
and techniques are available both to fingerprint low-interaction
honeypots and to defend against such fingerprinting; however,
there is an absence of fingerprinting techniques to identify the
characteristics and behaviours that indicate fingerprinting is
occurring. Therefore, this paper proposes a fuzzy technique to
correlate the attack actions and predict the probability that an
attack is a fingerprinting attack on the honeypot. Initially, an
experimental assessment of the fingerprinting attack on the low-
interaction honeypot is performed, and a fingerprinting detection
mechanism is proposed that includes the underlying principles
of popular fingerprinting attack tools. This implementation is
based on a popular and commercially available low-interaction
honeypot for Windows - KFSensor. However, the proposed fuzzy
technique is a general technique and can be used with any
low-interaction honeypot to aid in the identification of the
fingerprinting attack whilst it is occurring; thus protecting the
honeypot from the fingerprinting attack and extending its life.

I. INTRODUCTION

The Honeypot is one of the most popular mechanisms
to gather information about attacks and attackers, and is
deliberately placed on the organisational network to be probed
and attacked. A honeypot deceives and attracts an attacker
who attempts to gain unauthorized access to the network [1].
As a result, the honeypot can gain information about the
attacker, their attack tools and techniques, or it can divert
an attacker from the real targets [2]. Honeypots are gener-
ally classified as high-interaction or low-interaction. High-
interaction honeypots are very expensive and have higher
probability of being hijacked by the attacker [3]. Conversely,
low-interaction honeypots are inexpensive and have a lower
likelihood of being hijacked by the attacker [3]. However, the
latter emulates an operating system and other services, and has
a greater probability of being attacked by a fingerprinting or
identity probing attack, to collect the complete details of the
honeypot. In general, fingerprinting is relatively harmless, as it

is intrinsically used to detail the system, however, it has severe
consequences for the honeypot as it can reveal the identity of
the honeypot and may end the usefulness of the honeypot.

A fingerprinting attack requires a sequence of actions by
the attacker to collect fingerprints of the target system. For
example, in OS fingerprinting, an attacker has to examine
several TCP fields, Timestamps, Window Scaling, Maximum
Segment Size, Explicit Congestion Notification and IP Iden-
tification together to reveal the fingerprint [4]. A number of
tools and techniques are available to fingerprint low-interaction
honeypots and to defend against such fingerprinting; however,
the issue is to attempt to identify fingerprinting in real-time
and in situ. There is an absence of fingerprinting techniques
to identify the characteristics and behaviours that indicate fin-
gerprinting is occurring. Almost all low-interaction honeypots
lack intelligence to indicate that fingerprinting is occurring.
The principal difficulty in identifying that such an attack is
happening is: to correctly correlate all attack actions and
differentiate between an individual attack and a fingerprinting
attack. Despite the possibility of errors in their correlation,
fuzzy logic has the ability to correlate all attack actions in a
given range successfully to identify a fingerprinting attack [5],
[6], [7], [8], [9], [10], [11], [12]. Using this feature of fuzzy
logic, this paper proposes a fuzzy technique to correlate the
attack actions and identify that an attack is a fingerprinting
attack [13], [14].

Firstly, the paper presents an experimental assessment
of the fingerprinting attack on the low-interaction honeypot
- KFSensor. The KFSensor honeypot was selected for this
experiment because it is a popular and commercially available
low-interaction honeypot for Windows and which is actively
maintained. Subsequently, based on this experimental assess-
ment, the paper proposes a fingerprinting detection mechanism
for the low-interaction honeypot, which includes the underly-
ing principles of popular fingerprinting attack tools. Finally,
based on the proposed fingerprinting detection mechanism, a
fuzzy technique for detecting the fingerprinting attack on low-
interaction honeypots is proposed. This fuzzy technique is a
general technique and can be used with any low-interaction
honeypots to aid in the identification of the fingerprinting
attack whilst it is occurring; thus this can protect the honeypot
from the fingerprinting attack and extend its life.

The remaining paper is organised as follows. Section II

presents the background information on honeypots and the
fingerprinting attack. Section III presents the experimental
assessment of the fingerprinting attack on the low-interaction
honeypot, KFSensor. Section IV proposes a detection mech-
anism for the fingerprinting attack on the low-interaction
honeypot. Section V proposes the fuzzy technique for detecting
the fingerprinting attack on low-interaction honeypots. Section
VI presents the test results of the simulated attacks on low-
interaction honeypots and the success of the proposed fuzzy
technique. Finally, Section VII presents the conclusion and
specifies possible future extensions of the proposed fuzzy
technique for the low-interaction honeypot.

II. BACKGROUND INFORMATION

A. Honeypots and Honeypot Types

A honeypot is a security system designed for deceiving,
detecting and diverting an attacker, whilst simultaneously
collecting information to prevent the honeypot being utilised
in an attack [1]. Residing on the network, it remains idle until
triggered, causing a reaction that will produce information
allowing the identification of the attacker [2]. The honeypot
is monitored continuously by in-house security experts to
reveal the vulnerabilities of their network while evolving an
improved defensive strategy [15]. Honeypots can be grouped
into two major categories, low-interaction honeypots and high-
interaction honeypots, based on the level of activity they allow
an attacker to perform. Low-interaction honeypots commonly
attempt to limit the interaction capability with an attacker
by emulating services and an operating system [3]. High-
interaction honeypots are complex systems that have an un-
restricted interaction capability with an attacker, offering a
suite of real services and a real operating system, nothing is
emulated [3]. Obviously, honeypots should not be used as a
defensive mechanism for the network they reside in.

B. Fingerprinting Attack

Fingerprinting is a technique to collect information about
a remote system for the purpose of its identification. It can be
an active operation where carefully crafted packets are sent to
the target system to analyse its response, or a passive operation
where the network traffic from the target system is analysed.
Operating System (OS) fingerprinting is the most common type
of fingerprinting, which works by sending carefully crafted
packets to various open and closed ports on the target system
and receiving responses containing fingerprint information [4].
Every OS replies differently to the same query and the differ-
ence between the responses generated by two OS’s reveals
significant information to the attacker. Moreover, every OS
implements a TCP/IP stack differently which in turn results
in different responses and this enables the OS fingerprinting
attack to become successful.

III. EXPERIMENTAL ASSESSMENT OF THE
FINGERPRINTING ATTACK ON THE LOW-INTERACTION

HONEYPOT - KFSENSOR

To demonstrate the fingerprinting attack on the low-
interaction honeypot KFSensor, simulation of the fingerprint-
ing attack is carried out using the Nmap scanning tool,
allowing post-experiment analysis of the results to discover

various indicators of the fingerprinting attack. Nmap is an
effective tool for use in the fingerprinting attack and is capable
of performing fuzzy fingerprinting when it cannot find a perfect
fingerprint match. While performing OS fingerprinting, Nmap
sends up to 16 TCP, UDP, and ICMP probes (excluding
retransmission) to known open and closed ports of the target
system [16]. All these probes are designed to exploit various
ambiguities present in the standard protocol RFCs. Upon
receiving responses from the target system, it analyses several
attributes of those responses and combines them to generate a
fingerprint. Every probe packet is tracked and if no response is
received, it retransmits that probe packet at least once. These
probe packets are IPv4 packets with random IP ID values.
Probes sent to open TCP ports are skipped when there is no
open port found, while a probe is sent to closed TCP and UDP
ports and if no closed port is found, Nmap selects another port
at random and retries [17].

The experiments on the fingerprinting attack utilise five
different fingerprinting attack scripts with various sub-options
as shown in Figs. 1 to 5, which are run to perform the OS
fingerprinting attack on the KFSensor to obtaining details of
OS and devices of the system that are running on the KFSensor
honeypot. The first fingerprinting attack script in Fig. 1 detects
OS fingerprints of the target machine and presents a detailed
description for each fingerprint [18]. This information contains
the device type and the OS details in the format of free-
form data. The fingerprint may include a perfect match against
OS version numbers, device models, and architectures specific
to a given fingerprint [19]. The second fingerprinting attack
script in Fig. 2 performs OS detection, version detection, script
scanning, and traceroute. The third fingerprinting attack script
in Fig. 3 shows a fuzzy technique for a powerful fingerprinting
attack, performing aggressive fingerprinting and OS guesses,
which provides very close OS match results when it could not
find the perfect OS match [20]. Nmap displays all the near-
matches with their confidence level in percentages. The fourth
fingerprinting attack script in Fig. 4 attempts to find the version
of the service (e.g., HTTP, SSH, FTP, Telnet, SMTP, DNS)
running on the port, where, a higher intensity level (0 to 9)
increases the probability of the correctness of the fingerprinting
results [21], [22]. The fifth and final fingerprinting attack script
in Fig. 5 performs remote OS detection by trying several times
as shown in the script.

The traffic analysis is conducted on the two separate logs
captured by the KFSensor honeypot and Wireshark analyser
for comparative analysis purposes. Wireshark offers detailed
analysis of traffic and is used here mainly to capture the entire
traffic as precaution that KFSensor could not, possibly due
to configuration issues and has prioritised the events for log
recording.

IV. PROPOSED DETECTION MECHANISM FOR THE
FINGERPRINTING ATTACK ON THE LOW-INTERACTION

HONEYPOT

The proposed detection mechanism for the fingerprinting
attack is based on the assessment of the previous experiments
and the underlying attack principles of popular fingerprinting
tools such as Nmap, Xprobe2, HTTPrint, IPlog, Amap and
Nessus. Most of these tools utilise similar principles in their
fingerprinting technique; which can easily be derived from

Fig. 1. Fingerprinting attack script for remote OS detection using TCP/IP
stack

Fig. 2. Fingerprinting attack script for OS detection, version detection, script
scanning and traceroute

Fig. 3. Fingerprinting attack script (FUZZY) for detecting closest OS match
results

Fig. 4. Fingerprinting attack script for determining the version of the service
running on the port

Fig. 5. Fingerprinting attack script for for remote OS detection with the
given number attempts

Fig. 6. Wireshark capturing TCP Options in a normal TCP packet

Fig. 7. Wireshark capturing TCP Options in an abnormal TCP packet

the experiments presented on fingerprinting using Nmap. In
TCP/IP networks, the OS fingerprinting technique is called
TCP/IP stack fingerprinting, based on the TCP, ICMP and
UDP packets. Some fingerprinting tools employ TCP packets
as the main weapon for the fingerprinting attack, while other
tools employ ICMP and UDP packets. Therefore, to determine
the most appropriate and effective detection mechanism for
detecting signs of a fingerprinting attack requires a detailed
investigation of TCP, ICMP and UDP packets.

A. Detection Mechanism based on the Investigation of TCP
Packets

A fingerprinting attack is profoundly reliant on TCP pack-
ets and its six flags (SYN, ACK, URG, PSH, RST, FIN) which
control different aspects of communications. The different
combinations of six TCP flags with two additional flags (CWR,
ECN) and 3 Reserved Bits are used to perform various types
of probing in the fingerprinting attack.

• TCP Options: TCP Options is one of the most im-
portant fields of the TCP header and is utilised by the
majority of fingerprinting tools due to its customised
settings and variable size of 0 to 40 bytes. Its patterns
of compliance for any particular OS can reveal the
target OS. Interestingly, the same TCP Options can be
used as a counter-measure and to locate the potential
fingerprinting attacks. Here the two TCP Options
are illustrated which are collected on the KFSensor
machine during the experiment. Fig. 6 shows the TCP
Options of a normal TCP packet and, Fig. 7 shows
the TCP Options of a packet sent for the purpose of
the fingerprinting attack.

Fig. 8. Wireshark capturing normal pattern of FIN-ACK flags

Fig. 9. Wireshark capturing abnormal pattern of FIN flag (FIN probing)

• FIN Probing: This flag indicates the end of com-
munication and a single FIN packet is never expected
without a connection being previously established. An
attacker sends a FIN packet to a port for closing a
connection and waits for a response. If the port is open
on the target system, the FIN packets will be ignored.
If the port is closed, an RST packet will be sent back
to the attacker. For example, Windows OS responds to
a FIN packet with an RST packet, this clearly indicates
the machine is running Windows OS. The FIN prob-
ing has the ability to pass undetected through most
firewalls, packet filters, and scan detection programs.
Here the two cases of FIN flags (normal and abnormal)
are illustrated, Fig. 8 shows the normal pattern of FIN-
ACK flags and Fig. 9 shows the FIN probing pattern
which can be used for the purpose of the fingerprinting
attack.

• FIN/SYN Probing: These two flags SYN and FIN
are not normally set in the same TCP segment header
because their purposes are mutually exclusive. An
attacker sends a FIN/SYN packet to a port and waits
for a response. For example, Linux OS responds to a
FIN/SYN packet with a FIN/SYN/ACK packet. This
flag combination can be used for the purpose of the
fingerprinting attack.

• URG/PSH/FIN Probing: This is also known as a
Xmas scan which uses a loophole with the TCP RFC
793 to differentiate between open and closed ports.
An attacker sends a URG/PSH/FIN packet to a port
and waits for a response. If the port is open on the
target system then the URG/PSH/FIN packets will be
ignored. If the port is closed then an RST/ACK packet
will be sent back to the attacker. This Xmas probing
does not work with various operating systems that do

not conform to RFC 793. This flag combination can
be used for the purpose of the fingerprinting attack.

• NULL Packet: A NULL probing is similar to XMAS
probing and FIN probing in its limitations and re-
sponse. The TCP NULL scan uses a series of uniquely
configured TCP packets that contain a sequence num-
ber but no flags. If the port is open on the target
system then the NULL packets will be ignored. If the
port is closed then an RST packet will be sent to the
attacker. This flag can be used for the purpose of the
fingerprinting attack.

• Reserved Bit Probing: The TCP header has 3 re-
served bits for future use and these bits should be set
to zero. These bits can be used for the purpose of the
fingerprinting attack.

• ECN-Echo Probing: Explicit Congestion Notification
(ECN) is an extension to the TCP packet that allows
end-to-end notification of network congestion without
dropping packets. ECN is an optional feature that may
be used between two ECN-enabled endpoints. This
flag can be used for the purpose of the fingerprinting
attack.

B. Detection Mechanism based on the Investigation of UDP
and ICMP Packets

Many fingerprinting tools utilise ICMP and UDP pack-
ets for performing the fingerprinting attack on the target
system/network. This ICMP and UDP based fingerprinting
technique is different from TCP based fingerprinting and does
not use several flags.

• UDP Requests: UDP protocol is a connectionless
protocol allowing a client to send packets to a UDP
service without first establishing a connection. There-
fore, UDP works with ICMP for its data transmission.
A UDP packet is sent to a port of the target host to
check the status of the port. If the UDP port is open
on the target system, the packet is accepted without
sending a response. If the UDP port is closed, an
ICMP error message such as Destination Unreachable
is returned to the attacker. When a UDP packet with
DF bit set is sent to a UDP port of the target host,
the packet can cause the target system to generate an
ICMP error message. This is the most common usage
of UDP packet for the purpose of the fingerprinting
attack.

• ICMP Inbound Requests: ICMP request packets are
used for legitimate reasons such as to check internal or
external address availability or routes, therefore, they
can also be used by the attacker to probe and collect
substantial information about target OS and devices.
An attacker can send specially crafted ICMP echo
requests such as ICMP Echo Request (Type 8), ICMP
Router Solicitation Request (Type 10) and ICMP
Timestamp Request (Types 13) for the fingerprinting
attack. These ICMP requests differ from normal ICMP
echo requests in that they contain no payload. Usually
an ICMP echo request will contain a timestamp, a
sequence number and a series of alphabetic characters.

Fig. 10. Wireshark capturing UDP packets with Don’t Fragment (DF) Bit
Set

However, these inbound ICMP request Types could
also be used against the attacker to locate the potential
fingerprinting attacks.

V. PROPOSED FUZZY TECHNIQUE FOR DETECTING THE
FINGERPRINTING ATTACK ON THE LOW-INTERACTION

HONEYPOT

The real problem with all low-interaction honeypots is that
they may not be able to record all the fingerprinting attempts
if the attacker uses sophisticated attack techniques or if the
honeypot itself is not capable or configured for that attempt.
While a honeypot can capture all the fingerprinting attempts,
it is extremely difficult to correlate them to conclude that all
these attempts are made only for the fingerprinting attack and
not for other malicious intentions. Therefore, low-interaction
honeypots require an intelligent mechanism to detect finger-
printing attempts and predict the likelihood of fingerprinting
of the honeypot. In common with other low-interaction honey-
pots, KFSensor is susceptible to the fingerprinting attack and
sending its identity information to the attacker. Therefore this
proposed fuzzy technique offers an intelligent solution based
on the detection mechanism proposed in the previous section.

A. Fuzzy Input Variables

The previous section investigated TCP, UDP and ICMP
packets and proposed a detection mechanism, which led to
the development of the proposed fuzzy technique to detect the
signs of the fingerprinting attack and establish its severity level.
Based on the proposed detection mechanism parameters for the
fingerprinting attack, four fuzzy input variables are derived to
observe the four unusual behaviours of TCP, UDP and ICMP
packets. These fuzzy input variables are: Unusual TCP Op-
tions (UTCPO), Unusual TCP Flags (UTCPF), Unusual UDP
Requests (UUDPR) and Unusual ICMP Requests (UICMPR).

Based on the detailed investigation and experimentation in
the previous sections, these four fuzzy input variables UTCPO,
UTCPF, UUDPR and UICMPR have been assigned the value
range 1-15 packets based on the underlying principles of fin-
gerprinting tools Nmap and Xprobe2. Furthermore, these four
variables UTCPO, UTCPF, UUDPR and UICMPR are divided
into three fuzzy sets: Low, Medium and High, fingerprinting
attack categories where the value range of Low is 0-6 packets,
the value range of Medium is 4-10 packets, and the value

Fig. 11. Fuzzy input variable UTCPO and its fuzzy sets

Fig. 12. Fuzzy input variable UTCPF and its fuzzy sets

range of High is 8-15 packets. The Matlab design of these four
fuzzy input variables UTCPO, UTCPF, UUDPR and UICMPR
are shown in Figs. 11 to 14, where fuzzy sets are selected
as a triangular membership function for all four fuzzy input
variables.

B. Fuzzy Output Variable

These four fuzzy input variables UTCPO, UTCPF, UUDPR
and UICMPR are used to generate the output from the fuzzy
reasoning system which is the probability of the fingerprinting
attack. This fuzzy output variable is called Fingerprinting At-
tack Probability (FAP). The FAP is represented as a percentage

Fig. 13. Fuzzy input variable UUDPR and its fuzzy sets

Fig. 14. Fuzzy input variable UICMPR and its fuzzy sets

Fig. 15. Fuzzy output variable FAP and its fuzzy sets

and its entire range (0-100%) is also divided into three fuzzy
sets: Low, Medium and High, fingerprinting attack categories
with their corresponding ranges 0-40%, 30-70% and 60-100%
respectively. The Matlab design of this fuzzy output variable
FAP is shown in Fig. 15, where fuzzy sets are also chosen as a
triangular membership function for this fuzzy output variable.

C. Fuzzy Rule Base and Fuzzy Reasoning System

The four input and one output variable described above
and their corresponding value ranges are utilised in the de-
velopment of a fuzzy reasoning system (based on Mamdani’s
inference [23]) as shown in Fig. 16. The fuzzy rules are educed
based on the four chosen fuzzy input variables, a sample of
fuzzy rules is shown in Fig. 17. Finally, the fuzzy rule base
is obtained for the reasoning purposes, a sample of fuzzy rule
base is shown in Fig. 18. The development of this fuzzy rule
base and fuzzy reasoning system predicts the probability of
the fingerprinting attack on the low-interaction honeypot. The
complete working procedure of this fuzzy technique is shown
in Fig. 19.

VI. TEST RESULTS OF THE PROPOSED FUZZY
TECHNIQUE FOR PREDICTING THE FINGERPRINTING

ATTACK ON THE LOW-INTERACTION HONEYPOT

This section presents the test results of the proposed fuzzy
technique for the simulated fingerprinting attacks on the low-
interaction honeypot under various controlled network condi-
tions. Table I shows the results of the fingerprinting attack on

Fig. 16. Fuzzy reasoning system consisting of input and output variables for
the proposed fuzzy technique

Fig. 17. Fuzzy rules of the proposed fuzzy technique to predict the
fingerprinting attack on the low-interaction honeypot

Fig. 18. Fuzzy rule base of the proposed fuzzy technique to predict the
fingerprinting attack on the low-interaction honeypot

Fig. 19. Illustration of the working procedure for the proposed fuzzy
technique to predict the fingerprinting attack on the low-interaction honeypot

KFSensor honeypot for all the previous five fingerprinting at-
tack conditions explained in the Section III. These five attacks
are performed on the KFSensor using the Nmap fingerprinting
tool which is extensively covered in the previous analysis while
developing this approach, thus, the method encompasses the
underlying attack principles of Nmap. This is evident from the
test results given in the Table I.

A total 50 fingerprinting attacks are carried out and 10
repetition for every fingerprinting attack. Out of 50 attacks,
the fuzzy technique predicted 47 attacks as high or medium
attack probability, where 31 attacks are predicted as high and
16 are predicted as medium. Only 3 attacks are predicted
as low probability attacks by the fuzzy technique. For the
four special OS fingerprinting attack scripts 1,2,3 and 5 in
Table I, out of 40 attacks, 31 attacks are predicted as high
probability attacks and 9 attacks are medium attacks with
the accuracy of 77.5%. The fourth fingerprinting attack script
(nmap -sV –version-intensity 9 192.168.0.175) is different from
the other four scripts, by utilising a different nmap database
nmap-services [24] while the other four scripts use nmap-os-
db [25]. It detects the operating system and device type but
based on the detected service information such as identify a
service as Microsoft Exchange means the operating system
is Windows because Microsoft Exchange runs on Windows
OS [21]. Despite the fourth fingerprinting attack script being
a different type of indirect OS fingerprinting attack script, the
fuzzy technique predicted 7 times medium probability of attack
in 10 attacks.

This preliminary test results are encouraging and indicate
that the fuzzy technique can identify the majority of the Nmap
fingerprinting attacks successfully. However, it requires the
inclusion of more parameters related to application services to
encompass all fingerprinting attacks. Moreover, the controlled
network conditions reveal that the success of the fuzzy tech-
nique also depends on some external factors such as all the
fingerprinting probe packets being received successfully and
timely, otherwise, it would affect the analysis and prediction
result of the fuzzy technique. This is reflected in the results
of the scripts 1,3 and 5 where the 3 prediction results of each
script are medium but not high. Therefore, it should be noted
that the same type of fingerprinting test may yield a different
result depending on the probe packet sent to the target and
received by the target in the configured network.

VII. CONCLUSION

This paper presented a fuzzy technique for detecting and
predicting the fingerprinting attack on the low-interaction
honeypot. Initially, it presented an experimental assessment
of the fingerprinting attack on the low-interaction honeypot

TABLE I. PROPOSED FUZZY TECHNIQUE BASED DETECTION AND
PREDICTION OF THE FINGERPRINTING ATTACK ON THE KFSENSOR

HONEYPOT

No. Nmap Fingerprinting Attack Script Fingerprinting Attack
Probability for 10 Run
Low Medium High

1 nmap −O 192.168.0.175 0 3 7

2 nmap −A 192.168.0.175 0 0 10

3 nmap − O − fuzzy −
−osscan−guess 192.168.0.175

0 3 7

4 nmap − sV − −version −
intensity 9 192.168.0.175

3 7 0

5 nmap − O − −max − OS −
tries 5 192.168.0.175

0 3 7

called KFSensor. Subsequently, based on this experimental
assessment, the paper proposed a fingerprinting detection
mechanism for the low-interaction honeypot, which includes
the underlying principles of popular fingerprinting attack tools.
Finally, based on the proposed fingerprinting detection mech-
anism, the paper proposed a fuzzy technique for detecting
and identifying the fingerprinting attack on the low-interaction
honeypot. This proposed fuzzy technique is a general technique
and can be used with any low-interaction honeypot to aid
in the identification of the fingerprinting attack whilst it is
occurring; thus it can protect the honeypot from the finger-
printing attack and extend its life. Despite the fuzzy technique
being promising, it may not be effective in cases where some
unknown fingerprinting probes are used which are not covered
in the proposed detection method. Therefore, in the future, it is
important to extend this technique and include some additional
attack principles. Furthermore, it is beneficial to transform
this fuzzy technique as an adaptive technique based on the
Dynamic Fuzzy Rule Interpolation (D-FRI) framework [26],
[27], [28], [29], [30] and adaptive FRI [31], [32], [33], [34],
thus, it can be more effective for changing attack patterns.

REFERENCES

[1] R. Joshi and A. Sardana, Honeypots: A new paradigm to information
security. CRC Press, 2011.

[2] R. A. Grimes, Honeypots, in Hacking the Hacker: Learn from
the Experts Who Take Down Hackers. John Wiley & Sons,
Inc., Indianapolis, Indiana, 2017. [Online]. Available: doi:10.1002/
9781119396260.ch19

[3] L. Spitzner, Honeypots: Tracking Hackers. Addison-Wesley Reading,
2003, vol. 1.

[4] J. M. Allen. (2008) OS and Application Fingerprinting Techniques.
[Online]. Available: https://www.sans.org/reading-room/whitepapers/
authentication/os-application-fingerprinting-techniques-32923

[5] N. Naik and P. Jenkins, “Fuzzy reasoning based windows firewall for
preventing denial of service attack,” in IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), 2016, pp. 759–766.

[6] ——, “Enhancing windows firewall security using fuzzy reasoning,” in
IEEE International Conference on Dependable, Autonomic and Secure
Computing, 2016, pp. 263–269.

[7] N. Naik, P. Jenkins, R. Cooke, D. Ball, A. Foster, and Y. Jin, “Aug-
mented windows fuzzy firewall for preventing denial of service attack,”
in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE). IEEE, 2017, pp. 1–6.

[8] N. Naik, R. Diao, C. Shang, Q. Shen, and P. Jenkins, “D-FRI-
WinFirewall: Dynamic fuzzy rule interpolation for windows firewall,” in
2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
IEEE, 2017, pp. 1–6.

[9] N. Naik, “Fuzzy inference based intrusion detection system: FI-Snort,”
in IEEE International Conference on Dependable, Autonomic and
Secure Computing, 2015, pp. 2062–2067.

[10] N. Naik, R. Diao, and Q. Shen, “Application of dynamic fuzzy rule in-
terpolation for intrusion detection: D-FRI-Snort,” in IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), 2016, pp. 78–85.

[11] ——, “Dynamic fuzzy rule interpolation and its application to intrusion
detection,” IEEE Transactions on Fuzzy Systems, 2017.

[12] L. Yang, J. Li, G. Fehringer, P. Barraclough, G. Sexton, and Y. Cao, “In-
trusion detection system by fuzzy interpolation,” in IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), 2017, pp. 1–6.

[13] N. Naik, P. Jenkins, N. Savage, and V. Katos, “Big data security analysis
approach using computational intelligence techniques in R for desk-
top users,” in IEEE Symposium Series on Computational Intelligence
(SSCI), 2016.

[14] N. Naik and P. Jenkins, “A fuzzy approach for detecting and defending
against spoofing attacks on low interaction honeypots,” in 2018 21st
International Conference on Information Fusion (Fusion), 2018.

[15] N. C. Rowe, “Measuring the effectiveness of honeypot counter-
counterdeception,” in System Sciences, 2006. HICSS’06. Proceedings
of the 39th Annual Hawaii International Conference on, vol. 6. IEEE,
2006, pp. 129c–129c.

[16] G. F. Lyon. (2009) Chapter 8. Remote OS Detection: TCP/IP
Fingerprinting Methods supported by Nmap. [Online]. Available:
https://nmap.org/book/osdetect-methods.html

[17] L. G. Greenwald and T. J. Thomas, “Toward undetected operating
system fingerprinting.” WOOT, vol. 7, pp. 1–10, 2007.

[18] G. F. Lyon, Nmap network scanning: The official Nmap project guide
to network discovery and security scanning. Insecure, 2009.

[19] ——. (2009) Chapter 8. Remote OS Detection: Usage and Examples.
[Online]. Available: https://nmap.org/book/osdetect-usage.html

[20] ——. (2009) Chapter 15. Nmap Reference Guide. [Online]. Available:
https://nmap.org/book/man-os-detection.html

[21] ——. (2009) Chapter 7. Service and Application Version Detection.
[Online]. Available: https://nmap.org/book/vscan.html

[22] ——. (2009) Chapter 15. Service and Version Detection. [Online].
Available: https://nmap.org/book/man-version-detection.html

[23] E. H. Mamdani and S. Assilina, “An experiment in linguistic synthesis
with a fuzzy logic controller,” International Journal of Man-Machine
Studies, vol. 7, no. 1, pp. 1–13, 1975.

[24] G. F. Lyon. (2011) Nmap Service DB. [Online]. Available:
https://svn.nmap.org/nmap/nmap-services

[25] ——. (2017) Nmap OS Fingerprinting 2nd Generation DB. [Online].
Available: https://svn.nmap.org/nmap/nmap-os-db

[26] N. Naik, P. Su, and Q. Shen, “Integration of interpolation and inference,”
in UK Workshop on Computational Intelligence, 2012, pp. 1–7.

[27] N. Naik, “Dynamic Fuzzy Rule Interpolation,” Ph.D. dissertation,
Department of Computer Science, Institute of Mathematics, Physics
and Computer Science, Aberystwyth University, UK, 2015.

[28] N. Naik, R. Diao, C. Quek, and Q. Shen, “Towards dynamic fuzzy
rule interpolation,” in IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), 2013, pp. 1–7.

[29] N. Naik, R. Diao, and Q. Shen, “Genetic algorithm-aided dynamic fuzzy
rule interpolation,” in IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), 2014, pp. 2198–2205.

[30] ——, “Choice of effective fitness functions for genetic algorithm-aided
dynamic fuzzy rule interpolation,” in IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), 2015, pp. 1–8.

[31] L. Yang and Q. Shen, “Adaptive fuzzy interpolation,” IEEE Transactions
on Fuzzy Systems, vol. 19, no. 6, pp. 1107–1126, 2011.

[32] ——, “Closed form fuzzy interpolation,” Fuzzy Sets and Systems, vol.
225, pp. 1–22, 2013.

[33] L. Yang, F. Chao, and Q. Shen, “Generalized adaptive fuzzy rule
interpolation,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 4,
pp. 839–853, 2017.

[34] J. Li, L. Yang, X. Fu, F. Chao, and Y. Qu, “Dynamic QoS solution for
enterprise networks using tsk fuzzy interpolation,” in IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2017, pp. 1–6.

