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Abstract 

Kesterite thin film solar cells are one of the most promising technologies for the 

future thin film PV market. The term “kesterite” refers to the crystal structure that the 

Cu2ZnSn(S,Se)4 compound adopts.  

This thesis discusses the study of the formation of the pure selenide of the kesterite 

compound Cu2ZnSnSe4 (CZTSe) as an absorber layer. The layers were produced 

by a 2-stage physical vapour deposition (PVD) of Cu-Zn-Sn precursor films by 

sputtering followed by a reactive conversion step in the presence of Se. Solar cells 

have been fabricated with the absorbers produced.  

The research explored the evolution of phases during the formation of CZTSe and 

the influence of the absorber composition on its optical and microstructural 

properties. In addition, the work involved: optimisation of the CZTSe synthesis 

process, studying the influence of the Se source, the role of temperature of the 

conversion process, the role of ramping rate and the ambient pressure, and the role 

of these for maximising device performance.  

From the study of the evolution of phases it was concluded that CZTSe can be 

formed from Cu-Zn-Sn precursors over a wide range of temperatures (380-550 oC). 

The formation of the ternary compound Cu2SnSe3 (CTSe) from Cu-Sn precursors 

using the same synthesis approach was also demonstrated. Whilst this material was 

considered unsuitable as a solar PV absorber layer due to its low bandgap, the pure 

sulphide ternary phase Cu2SnS3 (CTS) was considered more suitable and was 

synthesised using a single step co-evaporation PVD method. A device with an 

efficiency of 1.8% demonstrated the possibility of using this earth abundant 

compound for thin film PV. 
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A combination of X-ray diffraction and Raman spectroscopy studies demonstrated 

that CZTSe films with very Cu-poor and Zn-rich compositions led to a high 

population of the beneficial VCu + ZnCu defect clusters, and CZTSe phase domains 

with a less disordered kesterite type structure. This led to devices with efficiencies 

over 8% and VOC values greater than those of the current world record CZTSe solar 

cells. The research of this thesis provides a combination of practical and 

fundamental knowledge that could become a key towards minimising the efficiency 

gap between kesterites and their commercialised chalcogenide predecessors: CdTe 

and Cu(In,Ga)Se2. 
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1 Introduction 

Solar PV is an elegant technology involving the conversion of sunlight into electricity 

using an electronic device called solar cell. It is also one of the fastest growing 

renewable energy technologies. It has been predicted that 0.4TW will have been 

deployed by the end of 2016 and this number is expected to increase by an order of 

magnitude by 2050. 

 The photovoltaic effect was discovered by Edmund Becquerel in 1839 [1]. In 1876, 

Adams and Day observed the photovoltaic effect in solidified selenium [2].The first 

solar cell using diffused junction Si based device  was fabricated in the Bell 

laboratories in the 1954 [3].  

According to the 2015 International Energy Agency (IEA) Photovoltaic Power 

Systems Programme (PVPS) report 1.1% of the world’s electricity was produced by 

PV systems and from 2010 to 2014 the installed capacity from PV increased from 40 

to 180 GW [4]. With this data it is safe to say that the PV market is healthy and it is 

expected to keep on growing.  

This thesis is focused on kesterites thin films and their potential to be used in 

photovoltaic systems. The compound studied in this thesis is Cu2ZnSnSe4 (CZTSe) 

derived from the natural compound Cu2Fe1−xZnxSnS4 which crystallizes in the 

kesterite type structure and gives the name to the photovoltaic (PV) technology and 

research community. CZTSe, along with the compounds from its family such as the 

pure sulfide Cu2ZnSnS4 (CZTS) and the solid solution Cu2ZnSn(S,Se)4 (CZTSSe) 

have been developed in the last decade as an alternative compounds to cadmium 

telluride (CdTe) and copper indium gallium (di)selenide (CIGS) that are already 

commercialized [5].  
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1.1  Thin film solar cells: towards sustainable 
photovoltaics 

Thin film photovoltaic devices use a light absorbing layer which is capable of 

absorbing a large number of photons in the solar spectrum with wavelengths shorter 

than near-infra red. These layers are just a few m thick, in contrast to the classical 

Crystalline Si (c-Si) technology which needs material thicknesses of hundreds of 

microns due to its lower absorption coefficient () because of its indirect bandgap. 

This provides the thin film technologies with a great potential to reduce costs 

compared to c-Si. According to the MIT report “The Future of Solar Energy”, c-Si 

accounted for more than 90% of the global module production capacity in 2014 [6]. 

Some other advantages of thin film technologies such as CdTe or CIGS are their 

potential to be produced in flexible and light substrates such as polyamide [7, 8],  

and various metal foils [9]. Thin film technologies also require less energy to 

manufacture, which makes the fabrication a more sustainable process. In addition, 

the thin film technologies provide aesthetical alternatives for building integration in 

comparison to the classical commercialized c-Si based modules. 

1.2  Kesterites as earth abundant thin film photovoltaics? 

It has been commonly identified in many research articles that kesterite solar cells 

are semiconductors made out of earth abundant elements [10-13]. This is true for 

the pure sulphur variety of the kesterite compounds CZTS and also for the ternary 

Cu2SnS3 (CTS). However, Se-containing kesterite absorber layers have, in general, 

resulted in devices with greater efficiencies than those based on CZTS [14-16]. This 

led groups to produce devices with a high concentration of Se, therefore, it cannot 

be stated anymore that the absorber layers are fully fabricated out of earth abundant 

elements.  



3 

 

To make kesterite solar cells competitive at industrial level against the already 

commercialised CdTe and CIGS technologies, the fabrication of at least 19% 

efficient kesterite solar cells at laboratory scale is required [17].   

The prospects for the deployment of large-scale PV for CdTe and CIGS 

technologies can potentially be limited by the materials availability, in particular, by 

the availability of Te, In, Ga and Se. From these elements, Te has been identified as 

the most critical one when the estimations of production are taken into account  [6]. 

In a less critical case, it is also important to point out that even in Si technologies 

could have material limitations. In this case, the production of Ag could be 

problematic since it is used for the contacts [6].  

It is therefore possible to conclude that from the thin film technologies, kesterites 

have significantly lower material limitations than CIGS due to the replacement of In 

and Ga by Zn and Sn. In addition to this, a greater spectrum of efficient PV 

technologies, fabricated with more abundant elements, would help to cover the total 

PV demand reducing risks in materials availability. For example, according to the 

MIT report “The future of Solar Energy”, supplying 5% of the world electricity 

demand with CdTe would require directing the entire world production of Te to PV 

applications [6]. The materials implications for the deployment of PV technologies 

have also been covered by Forbes and Peter, where they also conclude that the 

currently commercialized technologies CIGS and CdTe based on scarce elements 

such as In and Te might be ultimately limited by the availability of raw materials if 

the current increase in installation rate continues [18].  

Although it has been clarified that if the absorbers are Se-containing they cannot be 

considered fully as earth abundant semiconductors. Selenium is obtained principally 

as a by-product of copper production, is also abundant in coal, especially high-sulfur 

coal, and is enriched in coal ash by an order of magnitude. Selenium’s relative 
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abundance in copper and the potential for selenium recovery from coal make it 

unlikely that the availability of this element would act as the limiting constraint on 

large-scale Se-containing thin films deployment [6].  

In general, from the materials usage point of view for the future deployment of the 

whole family of PV technologies, the research in kesterites and derived materials 

such as CTS is clearly justified. 

1.3 The scope of this thesis 

The interest in researching in kesterite thin film solar cells and related compounds 

should keep on increasing to ensure a more sustainable deployment of the PV 

technologies. In order to do so, this project started as a continuation of the previous 

work elaborated at Northumbria University where a 3.2 % efficient CZTSe solar cell 

was reported in 2009 [19]. Since kesterites are an emerging PV technology, the 

main goal of this thesis is not limited just to improve the previous device 

performances reported by the laboratory at Northumbria University and other 

groups. This work also aims to contribute to increasing the fundamental knowledge 

of the kesterite properties and their correlation to their fabrication conditions. This 

project aims to develop a synthesis process with already successfully industrialised 

physical vapour deposition (PVD) techniques used for the production of the already 

commercialised CIGS technology. Along with the development and understanding of 

the growth process, the fundamental properties of the CZTSe related to its 

composition and defect chemistry are also explored and compared to other 

theoretical and fundamental results reported in literature. 

In general, the objective of this work was to provide a major contribution to the 

knowledge about the compound Cu2ZnSnSe4 and its formation for its use in thin film 

PV devices. The specific goals of this project can be summarised as: 
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 Synthesis and fabrication of CZTSe thin films with a potentially scalable 

method: sputtering of Cu-Zn-Sn metallic precursors followed by a reactive 

annealing step for the incorporation of Se and the optimisation of this 

process. 

 Study of the phase evolution and formation of CZTSe by the synthesis 

approach described in this thesis. 

 Study of the influence of the composition of the CZTSe absorber layers in its 

microstructural and optical properties 

 Demonstration of the use of CZTSe absorbers in thin film PV devices and 

assessment of the conditions for maximising its performance. 

1.4 The structure of the thesis 

Chapter 2 presents an introduction to the history of the research in CZTSe and CTS 

for its application in PV technologies as part of the larger family of Cu chalcogenide 

materials for thin film solar cells. It provides a brief literature review of some general 

aspects of the kesterite community and also provides an insight of the integration of 

the CZTSe and CTS absorber layers into a PV device and its operation. Chapters 3 

and 4 describe the fabrication and characterisation methods used in this project 

respectively. Theoretical background is also provided, particularly for the most 

relevant characterisation techniques discussed in this thesis.  

The results and discussion from this study are presented in chapters 5,6,7,8 and 9. 

The chapters are composed of a specific introduction and motivation section to put 

the research developed into context. A section explaining the specific experimental 

details of the chapter follows the motivation section. At the core of each chapter are 
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the results and discussion sections which are followed by a summary of the main 

conclusions of each chapter. 

Chapter 5 aims to assess the formation of CZTSe via the study of the selenisation of 

Cu-Zn-Sn and the copper alloys Cu-Zn and Cu-Sn at different temperatures. A 

critical analysis of the phases identified in the formation process and a comparison 

with the data reported in the literature for a similar fabrication process is presented 

in this chapter. A critical assessment of the potential limitations of the current 

synthesis process of CZTSe used for the samples of chapters 5 and 6 is also 

discussed.  

Chapter 6 deals with the influence of the composition of the Cu-Zn-Sn metallic 

precursor on the microstructure of the CZTSe absorber layers. In particular, the 

variations in composition studied are related to the formation of films with Cu-rich 

(Cu/Zn+Sn>1), stoichiometric related to the formula of the compound Cu2ZnSnSe4 

(Cu/Zn+Sn~1) and Cu-poor (Cu/Zn+Sn<1) material.  Particular emphasis is put in 

this chapter on the influence of the composition on the microstructure, morphology 

and defects. 

Chapter 7 studies the influence of the Cu content in the CZTSe films but narrowing 

the range to Cu-poor absorbers, which is the range of composition producing the 

most efficient kesterite devices as it has been reported in the literature. Significant 

changes in the selenisation process were implemented in the synthesis of the 

samples of this chapter with respect to the fabrication method used in chapters 5 

and 6. PV devices have been fabricated from these absorbers and their properties 

are also discussed. 

Chapter 8 deals with a revision of the selenisation parameters after the 

implementation of the changes presented for the synthesis of the CZTSe asborbers 
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studied in chapter 7. In this chapter, the influence of the maximum temperature in 

the selenisation stage is studied. The structural and optical properties of the 

absorbers produced are studied and correlated to the behaviour of the devices 

fabricated. 

Chapter 9 presents the fabrication of CTS absorbers and devices by a single step 

coevaporation method. The interest in the use of CTS as an absorber layer was 

developed during the phase evolution study discussed in chapter 5. There, the 

synthesis of the pure selenide version of this ternary compound Cu2SnSe3 (CTSe) is 

presented. The properties of the CTS solar cells fabricated with this compound are 

discussed as well as the potential of this novel earth abundant semiconductor for PV 

technologies. 

Chapter 10 summarises the work presented in this thesis, highlighting the most 

important conclusions and discussing the future prospects of kesterite and related 

materials, in particular CZTSe and CTS. 

1.5 Thesis contributions 

The work presented in this thesis was carried out by the author with the exceptions 

that have been clarified in chapter 3 in any fabrication stage, or in chapter 4 in any 

characterisation done. Appropriate acknowledgements are specified when 

assistance for any processing or characterisation technique was required. 

The evaluation of all results was carried out by the author with the following 

exceptions: 
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performed by Dr. Michael Yakushev from the University of Strathclyde at 
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2 Background 

This chapter introduces the history of kesterite solar cells and describes the 

development of the technology as part of a bigger family; the Cu chalcogenide thin 

films solar cells. An overview about the history of the crystallographic findings 

related to kesterite is described. Then, a summary of the synthesis methods of 

kesterite thin films is also presented. Special emphasis is put on the defect 

chemistry history of the kesterites, as these studies have been very relevant for the 

development of this thesis.  Finally, the integration of the CZTSe absorber layers in 

a device structure is described as well as a brief introduction to the physics behind 

the operation of the solar cells. 

2.1 Cu-chalcogenide based absorber layers for thin film 
solar cells 

2.1.1 Cu2S  

The first of the Cu chalcogenide material to be used as an absorber in solar cells 

was Cu2S.  A priori, Cu2S is an ideal candidate as an absorber for thin film solar 

cells. It has a direct bandgap of 1.2 eV, high absorption coefficient and it is formed 

from earth abundant elements [21]. In the early 80’s, 10% efficient solar cells were 

already reported using Cd1-xZnxS buffer layers [22]. However, over a period of 

weeks, ambient exposure induced oxidation and Cu diffusion from CuS into the CdS 

buffer layer. This resulted in the degradation of the devices due to the formation of a 

highly doped Cu2-xS phase [23]. This problem was never solved and the research in 

this material declined. This fact prompted the community to start researching other 

alternative materials. 
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2.1.2 CuInSe2 (CIS)  and Cu(In,Ga)Se2  (CIGS) 

CIS started to gain interest as an alternative to Cu2S, and in 1976 there were 

already reports of thin film solar cells with efficiencies up to 5%  reported by 

Kazmerski et al [24]. With the aim of increasing the bandgap of CIS, Ga was 

introduced in the crystal structure of the absorber layers for this purpose, this idea 

being the origin of CIGS. Currently, over 22% efficient solar cells at laboratory scale 

can be produced [25]. This has been possible by the introduction of Ga along with 

several important breakthroughs in the development of the synthesis process. The 

development of two and three stage processes allowing different diffusion of the 

elements composing the absorber layer and allowed groups to create bandgap 

gradients. This minimised the recombination processes in the solar cells. Increases 

in the understanding of the role of Na [26-29] and K [8] led the community to break 

the barrier of 20% efficiency CIGS solar cells [8, 30]. 

2.1.3 CZTSSe 

The previous development of CIGS, led to a rapid increase in the efficiencies of 

CZTSSe devices basically by adopting the same device architecture and strategies 

that were learnt in the previous technology. In 1988, Nakazawa and Ito 

demonstrated for the first time a photovoltaic effect in a CZTS heterodiode [31]. 

Almost ten years later, in 1997, Friedlmeier at el. demonstrated 2.3% CZTS and 

0.5% CZTSe devices using a CdS/ZnO window layer [32]. In 1999 Katagiri et al. 

reported a 2.6% CZTS device by the evaporation of Cu-Sn-ZnS precursors followed 

by a sulphurisation process [33]. Further optimisation of the sulphurisation process 

increased the performance of the CZTS devices in Katagiri’s group up to 6.7%. For 

doing so, they used an in line sulphurisation-cosputtering system from Cu, SnS and 
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ZnS targets as shown in a review published in 2009 [34]. In the same year, the 

group at Northumbria University developed CZTSe solar cells with efficiencies up to 

3.2%, this being the world record for the pure selenide version of the kesterite family 

at that time [19]. The addition of a selenisation step to a solution process precursor 

containing sulphur and the metals introduced an important breakthrough in the 

efficiency gain of the technology by the IBM group, reporting a 9.7% efficient 

CZTSSe solar cell in 2010 [12]. Since then, the IBM group has been leading the 

record charts of kesterites and they currently hold the world record with devices with 

efficiencies up to 12.6% [35].  

A careful control of the composition has been demonstrated to be a key towards 

high performing kesterites. The control of the formation of secondary phases in the 

absorber layer and its defect chemistry is crucial and guided the community to 

conclude that the composition of CZTSSe should be slightly Cu poor and Zn rich in 

order to achieve high performing devices [11, 14, 36] . The secondary phases role 

and formation and the defect chemistry in CZTSSe are reviewed in section 2.2 of 

this chapter and are a major topic in this thesis. 

A great control in the defects of the kesterites and the secondary phases formed in 

the absorber layers has been developed in the last years. However, if similar 

efficiencies to CIGS are to be achieved for the commercialisation of the technology, 

the strategies that led CIGS to increase the lab scale efficiencies over 20% should 

be understood and studied for kesterites. These strategies include: 

 Control of doping (via controlled addition of Na and/or K) 

 Fabrication of absorbers with graded bandgap to minimise losses due to 

recombination.  

 Interface engineering to improve the band alignment in the solar cells.  
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 Development of post deposition treatments (PDT). 

The potential effects of the implementation of these strategies in kesterite based 

devices will be discussed in chapter 10. 

2.1.4 CTS 

Along with the development of CZTS based solar cells, devices based in the ternary 

compound Cu2SnS3 have been fabricated by several groups. This was encouraged 

by the fact that similar fabrication routes used for kesterites could also be used for 

this material [37-47]. The first solar cell using CTS as an absorber layer was 

reported in 1987 [48]. Until 2012, few reports could be found in literature regarding 

CTS based solar cells. Along with the rapid progress in kesterite devices, in 2012 

several publications started to report CTS solar cells. In this year, Berg et al. 

reported a 0.5% efficient device [47] and Koike et al. reported a 2.8% solar cell [49],  

both being prepared using electrodeposited precursors. Devices with efficiencies up 

to 4% have already been reported [40]. Introducing Ge in the absorber led Umehara 

et al to report a promising solar cell with an efficiency of 6% with an absorber 

composition of Cu2Sn0.83Ge0.17S3 [50]. CTS absorbers have been reported to have 

bandgaps between 0.9 eV and 1.35 eV, making the material suitable for single 

junction PV [47, 51]. CTS have been found to crystallise in different structures, 

including monoclinc, tetragonal and cubic [52]. Its Se counter-part, Cu2SnSe3 

(CTSe), has also been found to crystallise in the monoclinic system [53]. However, 

its low bandgap of around 0.5 eV makes it difficult to use the material as an 

absorber for single junction PV [54]. 
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The results regarding the CTS material and solar cells processed in this thesis are 

described in detail in chapter 9, where a more detailed introduction to the properties 

of this material will be provided. 

2.2   The crystal structure of CZTSe, secondary phases 
and defect chemistry. 

2.2.1 The crystal structure of CZT(S,Se) 

CZTSSe materials are derived from the substitution of two atoms of In in CIS by one 

atom of Zn and one atom of Sn. This substitution gives CZTSSe similar properties to 

its predecessor. CZTSSe materials are also known as kesterites, which comes from 

the crystal structure that 𝐴2
𝐼 𝐵𝐼𝐼𝐶𝐼𝑉𝑋4

𝑉𝐼 (A=Cu; B= Zn or Fe; C= Sn; X= S or Se) type 

compounds adopt in nature (Cu2(Zn,Fe)SnS4) [55].  These type of compounds can 

also adopt another tetragonal type structure called stannite [56]. Both, the kesterite 

and stannite structures have a closed cubic-packed array of anions with the cations 

occupying half of the tetrahedral voids [55]. The difference in the symmetry of the 

structures arises from the different distributions of the cations in the unit cell, as 

represented in figure 2.1. The difference in the kesterite and stannite type crystal 

structures was accurately described by Schorr [55]: “The kesterite type structure is 

characterized by alternating cation layers of CuSn, CuZn, CuSn and CuZn at z= 0, 

1/4, 1/2 and 3/4 respectively. Thus one copper occupies the 2a (0,0,0) position with 

zinc and the remaining copper ordered at 2c (0,1/2,1/4) and 2d (0,1/2,3/4) resulting 

in the space group I4̅ . On the other hand, in the stannite type structure ZnSn layers 

alternate with Cu2 layers. The structure is consistent with the symmetry of the space 

group I4̅2m, with the divalent cation located at the origin (2a) and the monovalent 

cation at the 4d position (0,1/2,1/4). Sn is located at the 2b site (0,0,1/2) in both 
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structures. The anions lie on the (110) mirror plane at 8i (x,x,z) for the stannite type 

and 8g (x,y,z) for the kesterite type structure.” 

 

Figure 2.1 Unit cell representations of the kesterite type structure (a) and stannite 

type structure (b). Cu atoms are represented in blue, Zn atoms in yellow and Sn 

atoms in red. The big light yellow spheres represent the anions. This figure is 

adapted from [55]. 

In the same manuscript, Schorr reported that CZTS and CZTSe both crystallised in 

the kesterite type structure in a neutron diffraction study [55]. This was in agreement 

with first principle calculations [57]. The kesterite type structure, is defined in figure 

2.1. In its ideal case, the structure has the Cu and Zn atoms at z=1/4 and 3/4 

located in the 2c and 2d positions respectively. It could also occur that these atoms 

are interchanging their positions, forming the antisite defects CuZn and ZnCu [55]. 

When there is random distribution of Cu and Zn atoms in the Cu-Zn (001) planes, 

then the unit cell is of greater symmetry (I4̅2m) and it is also known as the kesterite 
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disorder structure [58]. It is normal to think that the synthesised kesterites are 

neither fully ordered nor fully disordered, and several reports in literature support 

this [55, 58-60]. Understanding the influence of disorder in the crystal structure has 

attracted the attention of the community in the last years. Several studies concluded 

that different levels of disorder affected some properties of the material, for example 

the bandgap [58, 60, 61]. The effect of compositional changes on the order-disorder 

kesterite phenomenon is discussed in chapter 7. 

2.2.2 Secondary phases and the pseudo-ternary phase 
diagram 

The narrow phase stability of CZTSe implies that formation of secondary phases 

either in the growth or in post-growth processes is very likely to occur [11]. 

Therefore, understanding the formation of the growth of the secondary phases 

associated to the composition of the CZTSe absorbers and the processing 

conditions is a key to improve the synthesis routes towards higher quality absorber 

layers. 

The compositional limits of the phases are normally defined in the phase diagrams. 

The phase diagram of CZTSe was published by Dudchak et al. [62] and it is shown 

in figure 2.2. At this point is important to describe some characteristics of this phase 

diagram to define under which limitations it can be used. First of all, it is an 

isothermal section at 400 ºC, so it is valid just at temperatures around this value, 

since the deviations of the diagram at higher and lower temperatures are uncertain. 

There should also be enough Se to form Cu2Se, ZnSe and SnSe2 so the total 

amount of Se in the bulk should not deviate too much from 50 at%. It is not valid for 

rapid thermal processing, since the diagrams show the most stable phases 

(equilibrium) for given conditions. In this thesis, particularly in chapters 5, 6 and 7 
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this phase diagram has been used. According to the limitations stated above for the 

use of the pseudo-ternary phase diagram of CZTSe, the use of the figure has been 

limited for qualitative purposes. The aim of the use of this diagram is to orientate the 

reader about variations in compositions and for non-quantitative predictions of 

potential secondary phases. 

 

 

 

Figure 2.2 Pseudo-ternary phase diagram Cu2Se-ZnSe-SnSe2 at 397 ºC. Image 

from [62]. 

For the case of CZTSe, the presence of secondary phases has been demonstrated 

to have a detrimental effect on the device performance. Cu2SnSe3 is the most 

detrimental due to its low bandgap of 0.5 eV [36]. The highly resistive ZnSe phase is 



19 

 

very likely to also reduce the solar cell performance and Sn-Se binary phases have 

been found to induce shunting paths in the CZTSe solar cells [63-65]. 

2.2.3 Defects in CZT(S,Se) 

Defects in the lattice of CZT(S,Se) define the optoelectronic properties of the 

material, and therefore there is interest in understanding their nature and exploring 

ways to identifying them. 

A large variety of defects have been theoretically calculated for kesterites and some 

of them have also been experimentally observed. These defects can appear as 

vacancies (VCu, VSe…), interstitials (Cui, Zni, Sei …), antisites (CuZn, SnCu, CuSn, 

ZnCu…) and charged-compensated defect clusters (VCu+ZnCu, ZnSn+2ZnCu…). These 

defects can be either beneficial or detrimental, depending on their concentration and 

the position of the energy level that their presence can induce. For example, 

selenium vacancies can act as a donor by introducing an energy level in the middle 

of the band gap of CZTSe [11]. This level can become an active recombination 

centre and is thus detrimental for the solar cell performance. The potential of defects 

to be formed can be predicted by theoretical calculations. It has been calculated that 

the CuZn antisite has the lowest formation energy of the intrinsic defects in kesterite-

type compounds [11]. Another acceptor defect with low formation energy in 

kesterites is the Cu vacancy [11]. All these acceptor defects can be present in high 

concentrations and they contribute to an increase in the hole concentration in the 

CZTSe and are primarily responsible for the intrinsic p-type conductivity of the 

material. Considering that multiple types of defects can be formed in these 

quaternary compounds, self-compensated defect clusters can also be formed as a 

consequence of atomic substitutions that mantain charge neutrality (acceptor-donor 

combinations). These clusters, do not then contribute to the hole concentration in 
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CZTSe. It has been calculated that the formation energy of these complexes is 

lower than the relative sum of the isolated ones [11, 66]. The defect cluster with the 

lowest formation energy is the CuZn +ZnCu cluster which is formed from the lowest-

energy acceptor and donor defects respectively.  As mentioned in the previous sub-

section, these defects are responsible for the partial disorder of the kesterite type-

structure and can be found in high density [11, 55, 66, 67]. Lafond et al. described 

important atomic substitutions keeping the charge balance for non-stoichiometric 

CZT(S,Se), for Cu-poor, and also for Cu-rich regions [68]: 

For the Cu-poor Zn-rich region 

2𝐶𝑢+ → 𝑍𝑛𝐶𝑢
2+ + 𝑉𝐶𝑢(A-type) 

2𝐶𝑢+ + 𝑆𝑛4+
 → 2𝑍𝑛𝐶𝑢

2+ +  𝑍𝑛𝑆𝑛
2+ (B-type) 

For the Cu-rich and Zn-poor region 

3𝑍𝑛2+
→  2𝐶𝑢𝑍𝑛

+ +  𝑆𝑛𝑍𝑛
4+  (C-type) 

𝑍𝑛2+
→ 𝐶𝑢𝑍𝑛

+ + 𝐶𝑢𝑖
+  (D-type) 

These substitutions are associated with compositional lines in the ternary phase 

diagram [68] and are represented in figure 2.3.  These defect lines can also be 

represented in a diagram with the Zn/Sn and Cu/(Zn+Sn) ratio which are commonly 

used to described the composition of the CZT(S,Se) films. This is shown in figure 

2.4. These two figures have been used for an initial assessment of the possible 

defect clusters that can be presented in the material synthesized for this thesis. 
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Figure 2.3 Pseudo-ternary phase diagram Cu2Se-ZnSe-SnSe2 showing the 

compositional lines associated to the charged compensated defined as A type 

(black), B type (red), C type (blue) and D type (green) described in the text. Adapted 

from [62]. 
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Figure 2.4 Compositional lines associated to the charged compensated defined as 

A type (black), B type (red), C type (blue) and D type (green) represented as a 

function of the Zn/Sn and Cu/(Zn+Sn) metallic ratio of the CZTSe films. The plot is 

courtesy of Prof. Susan Schorr. 
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The most interesting range of composition is the Cu-poor and Zn-rich region, where 

the devices with higher performance are produced [11, 14, 36]. In this thesis, 

understanding the defects present in the CZTSe synthesized in this particular range 

of composition was prioritised and is discussed in chapters 6, 7 and 8. 

2.3 Synthesis of Cu2ZnSnSe4 thin films 

One of the main advantages of the kesterite technology is its great versatility in 

terms of synthesis approaches. The majority of kesterite absorber layers are 

synthesised via a 2-stage process consisting of the deposition of a precursor layer 

followed by a reactive annealing step with sulphur and/or selenium. CZT(S,Se) 

devices with efficiencies greater than 8% have been achieved by a variety of 

vacuum synthesis methods including co-evaporation [69, 70],  sputtering [71, 72], 

reactive sputtering [73]. Electrodeposition [74] and several other liquid processing 

techniques, including the deposition of a CZTS solution either by spray of spin 

coating [35, 75-78], have also been used for fabricating highly efficient devices. The 

reader is referred to the review article reported by Delbos for a compilation of 

several synthesis routes for kesterite based absorbers [14]. The way of fabricating 

the absorbers are normally classified in two groups, the vacuum process techniques 

(co-evaporation, sputtering) and the non-vacuum techniques (electrodeposition, 

spin/spray coating of CZTS solution…), which normally refers to the way that the 

precursor layer is deposited.  

There is one important thing that the groups synthesising highly efficient kesterite 

absorbers have in common, that, with the exception of the CZTSe processed by 

coevaporation by the group at NREL [69] and Luxembourg [79], all processes 

involved a 2nd  step consisting of the sulfurisation (for the case of CTZS) or 

selenisation (for the case of CZTSe or CZTSSe) of the precursors at temperatures 
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between 450 ºC and 600 ºC. In the case of selenium-pure kesterites (CZTSe), the 

best devices found in literature are dominated by vacuum deposited precursors with 

the exception of the electrodeposited films reported by Vauche et al. [74], i.e. the 

11.6% efficient world record CZTSe reported by Lee et al. [16]. For the pure 

selenide case, there are no reports of highly efficient devices reported based on 

solution process CZTSe precursors. This might be due to limited research on these 

routes to avoid the use of more expensive and toxic Se containing chemicals that 

would be needed to prepare the precursor ink such as selenourea (CH4N2Se). 

2.3.1 Efficiency chart of pure selenide kesterite solar 
cells and the selection of the chalcogen source 

Since a 3.2% pure selenide solar cell was reported in 2009 by the group at 

Northumbria University, several groups progressed significantly in making efficient 

devices with CZTSe absorber layers. In 2013, at the beginning of the research of 

this thesis, the efficiency charts of CZTSe based devices were dominated by NREL 

with a 9.2% efficient device deposited by co-evaporation. In Europe, the best CZTSe 

devices were processed by IMEC, using H2Se (g) as the chalcogen source [80]. 

As mentioned earlier, the selenisation-annealing step plays an important role for the 

synthesis of high quality CZTSe. Several Se sources led to high efficiency pure 

selenide kesterite solar cells and they are summarised in table 2.1. 

In the experiments presented in this thesis, two different types of Se sources were 

employed. The first one was used for the synthesis of the samples presented in 

chapters 5 and 6. In this case, an evaporated cap layer of Se on top of the precursor 

layer was deposited, as described in section 3.3.1. Some issues related to this way 

of incorporating the chalcogen in the samples were identified. These issues will be 

discussed in chapter 5. Because of these problems, the synthesis of the CZTSe 
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films in chapters 7 and 8 was performed using Se pellets, as described in section 

3.3.2. The use of H2Se (g) was avoided for safety reasons, despite having 

demonstrated good results in a similar approach [80-82].  

Since many efficiency charts of kesterites involving the pure sulphide CZTS, the 

pure selenide CZTSe and the solid solutions CZTSSe together can be found in 

reviews in the literature [14, 75, 83, 84], this section aims to discuss the progress 

made only in the pure selenide counterpart of the kesterites. A compilation of the 

current density-voltage (J-V) characteristics of CZTSe solar cells with efficiencies 

higher than 7% is also shown in table 2.1, including the open circuit voltage (VOC), fill 

factor (FF) and current density (JSC) values. In this table, the values the J-V 

parameters of the best device of this thesis are also shown in the bottom row. The 

direct comparison of the current density values is complicated because in many 

cases these values are reported using the active area of the cell for the calculation, 

or the solar cells have MgF2 as antireflecting coating. Nevertheless, it is interesting 

to see that for the case of pure selenide devices found in literature, the best CZTSe 

solar cell fabricated in the development of the research discussed in this thesis has 

the largest open circuit voltage (VOC). The reasons for the large characteristic VOC of 

this device will be discussed throughout this thesis, particularly in chapter 7 and 8. 

The reader is referred to section 4.5 for insights into the J-V analysis of solar cells. 
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Table 2.1 Summary of J-V parameters of CZTSe solar cells reported in literature. 

The method indicates the technique used for depositing the precursor. The way of 

introducing the Se in the synthesis process of the absorber layer is also indicated. 

This table is an adaptation from a table reported by Vauche [84]. 

 IMEC = Interuniversity Microelectronics Centre 

 NREL = National Renewable Energy Laboratory 

 IREC = Catalonia Institute for Energy Research 

 IRDEP = Institute of Research and Development on Photovoltaic Energy 

 KIST = Korea Institute of Science and Technology 

Group Method Se source 

Eff  

(%) 

JSC  

(mA cm
-2

) 

VOC  

(mV) 

FF  

(%) 

Ref 

IBM 

Co-evaporation 

+ selenisation 

No information 11.6 40.6 423 67.3 [16] 

IMEC Sputtering H2Se (g) 10.4 39.7 394 66.4 [81] 

NREL Co-evaporation Se in cracking unit 9.8 37.6 380 68.9 [69, 85] 

Nakai Univ. Sputtering Not given 8.7 36.2 418 57.6 [86] 

IREC Sputtering Se powder 8.2 32.4 392 64.4 [71, 87] 

Luxembourg Univ. Co-evaporation Se in cracking unit 8.1 42.1 331 58 [79] 

IRDEP Co-sputtering Se in cracking unit 7.1 30.7 390 59.8 [88] 

KIST Electrodeposition Not given 8.0 35.3 390 58 [89] 

NEXCIS Electrodeposition Se powder 8.2 30.9 425 62.7 [74] 

Northumbria Univ. Sputtering Se pellets 8.1 31.1 434 59.8 [90] 



26 

 

2.4  CZTSe and CTS solar cells: Device integration, 
physics of the solar cell and recombination 
mechanisms 

Thin film solar cells based on Cu chalcogenides are fabricated in the form of 

heterostructures. These heterostructures are basically made by joining a p-type 

semiconductor material to a different semiconductor material that is n-type. One of 

the semiconductors is a light absorber and the other would be a window material or 

a wide gap semiconductor contributing very little to carrier generation, but is needed 

to create the heterojunction to separate the carriers. Therefore, a p-n junction diode, 

is formed between the p-type and n-type material.  

Light-generated current in a solar cell occurs via the generation of electron and hole 

pairs due to the absorption of photons with energy greater than the bandgap and 

their spatial separation due to an electric field created by the p-n junction. 

2.4.1 Solar cell architecture 

The architecture used to make kesterite solar cells is adapted from the CIGS 

technology. In this section, only the so called “substrate configuration” will be 

described, where the absorber layer is grown in the order on top of the back 

contact/substrate, which forms the mechanical support for the thin film structure. 

The window layer is deposited on top of the absorber layer. Figure 2.5 shows a 

schematic diagram of the structure of a kesterite solar cell. The layers shown in the 

diagram are grown from the bottom to the top as is described in chapter 3.  In this 

thesis, the substrates used were soda lime glass (SLG). Flexible substrates can also 

be used for CIGS and kesterite solar cells [8, 10]. On top of the SLG, a Mo metallic 

layer is deposited by sputtering and it serves as the back contact of the device. On 

top of the back contact, the kesterite CZTSe absorber layer is grown. As a result of 
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a reaction with Se and the CZTSe [91], a MoSe2 layer is formed between the 

metallic Mo and the absorber layer. To form the p-n junction, normally a thin CdS 

buffer layer is deposited on top of the absorber by chemical bath deposition, as for 

the example described by Neuschitzer et al. [71]. This material has given the best 

results so far in terms of efficiency for kesterite solar cells and also for CIGS 

technology [30, 35]. Also, other materials such as Zn(S,O,OH) buffer layers can be 

used to replace CdS [92]. To finally close the device, a window layer is sputtered on 

top of the buffer layer. The materials used for this are transparent conductive oxides 

(TCO) and in the case of this thesis, Al doped ZnO (AZO) has been used as the 

front contact of the devices. 

 

Figure 2.5 Schematic diagram of a CZTSe solar cell indicating the layers and 

approximate thicknesses of each one. The materials forming each layer are also 

indicated.  

2.4.2 Physics of the p-n junction 

The physics of the p-n junction (diode) has been well covered in several excellent 

text books and the reader is referred to them for an extended description [93-95] . 
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This section focuses on summarising the important points to understand the basic 

transport mechanisms behind the physics of the solar cells. 

 

Figure 2.6 Schematics diagram of a p-n junction (top) showing the quasi-neutral 

region (QNR) and the space charge region (SCR), space charge density (middle) 

and the bending of the valance and the conduction band (bottom) under equilibrium. 

The transport of electrons and holes due to diffusion or drift are also represented in 

these diagrams. This figure is inspired by [93, 96]. 
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The Fermi level in a p-type semiconductor is close to the valence band, whereas in 

a n-type semiconductor it is close to the conduction band. When both type 

semiconductors are electrically contacted, the conduction and the valence band 

need to bend in the interface to reach equilibrium. The region where the bands are 

bent is called the space charge region (SCR). In order to form the SCR, the majority 

carriers of the n-type semiconductor (electrons) diffuse towards the p-type 

semiconductor to a more energetically favourable state. The same occurs with the 

majority carriers of the p-type semiconductor (holes) that diffuse towards the n-type. 

This is known as the diffusion current. By this process, positively charged ions are 

left in the n-type semiconductor part and negatively charged ions are left in the p-

type part having created an electric field. This electric field opposes the diffusion 

process, and allows a current in the opposite direction to flow, so-called drift current. 

For an illustrative explanation of this principle of operation of a p-n junction the 

reader is referred to figure 2.6 

Once a semiconductor is under illumination, the energy of the light can promote an 

electron from the valence band to the conduction band leaving a positively charged 

absence of a particle (hole) behind. The separation of an electron and a hole due to 

excitation energy is not infinite, and these particles can recombine. The 

recombination mechanisms are covered in the next subsection. Under an electric 

field, electrons and holes can be driven in opposite directions before the 

recombination process happens. This electric field can be created by a p-n junction, 

and therefore the photoexcited electrons (and holes) can be transported to the 

terminal of a device and be collected.  

In the work presented in this thesis, the p-n junction in the solar cells were created 

between the p-type CZTSe (or CTS in chapter 9) and an n-type CdS. 
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2.4.3 Recombination mechanisms 

As mentioned in previous sections, once electrons are excited into the conduction 

levels and holes are created in the valence levels, they need to be separated by an 

electric field in order to be collected in the terminals of the solar cells. However, 

excited electrons can return to their ground state before being collected. This 

phenomenon is known as recombination and can happen in different ways that are 

introduced briefly in this section. 

2.4.3.1 Radiative recombination (band-band) 

Radiative recombination normally dominates in direct bandgap semiconductors. In 

radiative recombination, an electron in the conduction band directly combines with a 

hole in the valence band, and this process emits a photon with energy similar to the 

difference between the energy of the bands, i.e. the bandgap of the semiconductor. 

Due to the fact that the emitted photon has energy similar to the bandgap is 

therefore weakly absorbed and can escape the semiconductor. In some cases, 

radiative recombination can occur via defects if they are shallow, and this possibility 

in the case of CZTSe will be discussed in chapter 8.  A band to band recombination 

process with the emission of a photon is illustrated in figure 2.7. 

 

Figure 2.7 Simplified diagram describing a band to band recombination process. 



31 

 

2.4.3.2 Recombination through defect levels 

The recombination through a defect level is also called Shockley-Read-Hall (SRH) 

recombination and occurs in materials with imperfections. SRH recombination can 

be described as a two-step process. First, an electron (or a hole) is trapped in a 

forbidden region (an energy level within the bandgap) which is normally introduced 

though defects in the crystal lattice, for example when an atom of an element is 

located in the position in the lattice that should be occupied by another element. 

Then, a hole (or an electron) can recombine in the same energy level before the 

carrier is re-emitted to the band. It is important to mention that in complex materials 

like CZTSSe, defects are very likely to occur unintentionally, but can be controlled to 

induce changes in the properties of the materials. If the energy levels are close to 

the band edges (shallow defects), the recombination process is less likely to happen 

since the energy difference is small and the re-emission process to the band edges 

is more likely to occur. Because of this, energy levels in the middle of the bandgap 

(deep defects) are more effective recombination centres. A SRH recombination 

process is illustrated in figure 2.8 

 

Figure 2.8 Simplified diagram describing a SRH recombination process through a 

defect state in the middle of the bandgap 
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2.4.3.3 Auger recombination 

Auger recombination involves three carriers and it is a similar process to the band-

band recombination. In this case, after an electron in the conduction band 

recombines with a hole in the valence band, the energy released from the process is 

transferred to an electron in the conduction band. This recombination process is 

typical from heavily doped material and the heavier the material is doped, the 

shorter the recombination lifetime is. An Auger recombination process is illustrated 

in figure 2.9 

 

 

Figure 2.9 Simplified diagram describing an Auger recombination process.
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3 Processing techniques 

This chapter describes the processing techniques used for the development of the 

material of this thesis. The synthesis of the CZTSe absorbers in this thesis was a 2-

stage process consisting of the physical vapour deposition of Cu-Zn-Sn precursor 

layers by sputtering followed by a reactive annealing step in Se atmosphere where 

the metallic precursors were selenised and converted into the CZTSe absorber 

layers of chapters 5, 6, 7 and 8. The process of fabrication of solar cells is also 

explained in this chapter of the thesis. In addition to the description of the synthesis 

of the CZTSe absorber layers, the coevaporation process used for the fabrication of 

the CTS absorber layers of chapter 9 is also described. 

3.1 SLG/Mo Substrates 

In this study, molybdenum coated soda lime glass (SLG/Mo) has been used for the 

substrates. The dimensions of the SLG used were either 76 x 26 x 1 mm3 or 50 x 50 

x 1 mm3. 

Typically, the Mo, which is used as the back contact in CIGSe and kesterite solar 

cells, is deposited by sputtering. The system used for this deposition was a 3-target 

Nordiko 2000 radio frequency (RF) magnetron sputtering system. The targets used 

in this system were 15 cm in diameter and are facing down above a substrate table 

to enable the deposition downwards as illustrated in figure 3.1. The substrate table 

rotates making the platens holding the samples pass underneath each target. This 

allows the capability of sputtering from the three targets uniformly in depth. The 

rotating speed used for the sputter depositions of this system was 2 rotations per 

minute. This means, that in a normal deposition of 1 hour, the substrates will pass 

120 times underneath each target.  
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Figure 3.1 Schematics of the top view of the Nordiko 2000 sputtering system. The 

three targets are represented in yellow and red and are in a fixed position. 

Underneath the targets, four platens are located that are rotating as indicated by the 

arrows, allowing the substrates located on them to pass underneath the targets. 

For the Mo back contact deposition one elemental high purity target (5N) was used. 

The chamber was evacuated to a base pressure typically of 10-6 Torr prior to 

deposition. During the deposition, the chamber was filled with Argon at a typical 

working pressure of 3 x 10-3 Torr. A voltage was applied between the targets and the 

substrate making the Ar atoms to be ionised. The positively charged Ar ions are 

attracted to the targets which are hit making their component elements be ejected 

towards the substrate table where they were deposited.  

850 nm thick Mo layers were obtained after 2 hours deposition at 300 W. The sheet 

resistance of the layers was typically tested by four point probe technique [97]. 

Sheet resistance values between 0.4 and 0.5 Ohm sq-1 were obtained in these 

samples. 



35 

 

Additionally, SLG/Mo substrates from the Ångström Solar Centre at Uppsala 

University were used for the work described in chapter 7 and chapter 8. The 

experimental details related to these substrates are reported elsewhere [98].  

3.2   Sputtering of the Cu-Zn-Sn precursor layer 

The sputtering of the Cu-Zn-Sn metallic precursor was produced at room 

temperature with a Nordiko 2000 with the same principle explained in part 3.1 and it 

is schematically represented in figure 3.2. High purity (5N) Cu, Zn and Sn elemental 

targets were used for the deposition. The rotation speed of the substrate table was 

kept fixed in 2 rotations per minute. The “multi thin layers” approach used for 

fabricating the metallic precursors allowed fabricating samples where the three 

elements are uniformly distributed in depth as it is possible to see in figure 3.3 in a 

glow discharge optical emission spectrometry (GDOES) elemental profile.  

 

Figure 3.2 Schematics of the top view of the Nordiko 2000 sputtering system. The 

three targets (Cu, Zn and Sn) are in a fixed position. Underneath the targets, four 

platens are located that are rotating as indicated by the arrows, allowing the 

substrates located on them to pass underneath the targets. 
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Figure 3.3 Elemental distribution Cu, Zn, Sn and Mo of a sputtered CZT metallic 

precursor on Mo coated SLG. This GDOES profile was acquired with the help of 

Lars Steinkopf from the HZB. 

Variation of compositions in the films was achieved by varying the power applied to 

each target. An example of how the composition was systematically varied is 

presented in table 3.1 for the precursors used for chapter 6. The characterisation 

methods used for measuring the composition of the films are described in chapter 4. 

In this case a series of CZTSe films were prepared by varying systematically the 

precursor Cu content. It is important to point out that the behaviour of the targets 

has been monitored during the whole project and the power applied to them has 

been continuously adjusted and re-calibrated to obtain the desired compositions. 

The variation of the target behaviour can be attributed to the continuous erosion 

produced in them by the sputtering process as well as slight changes in the physical 

contact with the power supplies, which can be different when the targets have been 

replaced or changed.  The thickness of the precursors can be controlled by 

adjusting the deposition time. In this thesis, the normal deposition time for the 
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precursor layers ranged between 30 and 40 minutes, resulting in films with 

thicknesses between 450 nm and 600 nm. 

Table 3.1. Variation of Cu atomic ratio in relation to the power applied to the targets 

during sputtering deposition. 

 EDX-Precursors Power (W) 

Sample Cu/(Zn+Sn) Cu target Zn target Sn target 

Cu poor 0.90 130 70 140 

Stoichiometric 0.99 150 70 140 

Cu rich 1.12 170 70 140 

3.3   Selenisation of CZT precursor layer 

The conversion of the CZT metallic precursors into the chalcogenide absorber 

CZTSe was identified as a key process to achieve high performance solar cells. 

During the development of the work of this thesis, this process has been in a 

continuous evolution, which has finally led to a progress in the performance of the 

solar cells due to an improvement of the structural and optoelectronic properties and 

a subsequent improvement in the solar cell performance. Two different systems 

were used for selenising the precursors. The samples studied in chapter 5 and 6 

have been selenised in a tube furnace where the heating ramping rate was limited to 

a maximum of 30 ºC per minute and a long natural cooling time. The samples 

presented in chapter 7 and 8 were selenised using a rapid thermal processor that 

allowed heating ramping rates of around 5 ºC per second. Some other differences 

such as the background pressure, the design of the graphite boxes containing the 
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sample or the method of introducing the chalcogen are discussed in the following 

subsections. 

In the development process of the selenisation step many more variables than the 

ones reported in this thesis have been studied. To achieve the selenisation 

conditions for the best devices reported in this thesis, extensive studies in this step 

were carried out such as how much Se should be supplied, the time at the maximum 

temperature or the effect of the heating ramp rate. Although these studies are not 

described in detail in this thesis, they were key experiments that led to the best 

selenisaton conditions for the fabrication of the CZTSe absorbers, and the changes 

between both selenisation processes described below are a result of a continuous 

study. This means that this process has been developed gradually and not as abrupt 

as the comparison between the following sub-sections 3.3.1 and 3.3.2 could 

suggest. The selenisation conditions producing the most efficient devices of this 

project are shown in chapter 10. 

3.3.1 Tube furnace approach 

The process used to selenise the CZT precursor comprises the evaporation of a Se 

cap and a post heating treatment inside a graphite box placed in a tubular furnace. 

The tubular furnace has a maximum heating speed of around 30 oC per minute and 

the cooling of the system is natural, taking several hours from temperatures around 

500 ºC to room temperature. A schematic description of the process is shown in 

figure 3.4. The thickness of the evaporated Se cap was chosen to be 2.3 m. This 

thickness was chosen after an initial assessment of the minimum amount of Se 

required to selenise a 650 nm thick CZT precursor layer and convert it into kesterite 

without the detection of secondary phases by XRD in Bragg Brentano configuration. 
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The same process was used for the conversion of the Cu-Zn and Cu-Sn precursors 

discussed in chapter 5.  

Before starting the reactive annealing, the tube was filled with Ar with a final 

pressure of 1 mbar. These conditions were kept constant for the synthesis of the 

samples presented in chapter 5 and 6. Throughout this thesis, the amount of inert 

gas used to fill the annealing system where the graphite reactors with the samples 

are placed will be referred as “the background pressure”. 

 

 

Figure 3.4. Schematic description of the two stage synthesis process with 

evaporation of Se cap and conversion in a tubular furnace for the samples 

discussed in chapters 5 and 6. 
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Figure 3.5 a) Schematic representation of the quarz tube furnace and b) cross 

section of the graphite boxes used for the selenisation process of the CZTSe 

samples discussed in chapters 5 and 6. The schematic diagram of the tubular 

furnace is courtesy of Dr. Pietro Maiello from Northumbria University. c) Example of 

heating profile of a typical selenisation process used for the synthesis of the CZTSe 

absorbers discussed in chapters 5 and 6 using the tube furnace at a maximum 

temperature of 550 oC. 

Graphite boxes were used to enclose the samples inside the tube furnace. The 

graphite boxes had an internal volume of approximately 12 cm3. 4 samples with 

dimensions of 0.1 x 2.6 x 7.6 cm3 were placed inside each graphite box as shown in 
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the cross section scheme view shown in figure 3.5 along with a schematic view of 

the tubular furnace where they were introduced and an example of a heating profile. 

3.3.2 Rapid Thermal Process approach 

The rapid thermal selenisation of the samples presented in chapters 7 and 8 of this 

thesis has been performed with an “as-one” rapid thermal processor (RTP) from 

Annealsys. An illustration of the RTP is shown in figure 3.6.a. The Cu-Zn-Sn 

precursors were introduced in graphite reactors.  

 

 

Figure 3.6. a) Picture of the “Annelasys As-one”, rapid thermal processor. Image 

taken from www.annealsys.com. The susceptor shown in the photograph is not the 

one used in these experiments b) Schematics of the top view of an open graphite 

reactor indicating the locations of the sample and the crucibles were the Se pellets 

are located. 

In this case, the Se was supplied in pellets that were located around the sample as 

shown schematically in the diagram of figure 3.6.b. Four Se pellets were used for 

each selenisation process presented in chapters 7 and 8. The average weight of 

http://www.annealsys.com/
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each Se pellet was approximately between 60-70 mg. Therefore, in each 

selenisation process with this method the total amount of Se introduced in the 

graphite reactor was around 250 mg. The lid of the graphite reactor (not represented 

in figure 3.6) is fixed with screws, minimising the leakage of vapour inside the 

reactor and therefore, increasing the partial pressure of Se during the heating 

treatment. 
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Figure 3.7. Example of heating profile of a typical selenisation process used for the 

synthesis of the CZTSe absorbers discussed chapters 7 and 8 using the RTP 

system. 

An example of a temperature profile process used for the synthesis of CZTSe 

discussed in chapter 7 is shown in figure 3.7. In chapter 8, the maximum 

temperature of the process was studied, and temperatures of 450, 500 and 550 ºC 

were tested. The temperature profile shows a 5 minutes’ step at 300 ºC. This step is 

kept constant in all the processes. One of the reasons for introducing this first step is 
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because the manufacturer of the rapid thermal processor recommends having a low 

temperature step in the processes. The second reason is to introduce a temperature 

above the melting point of Se (217 ºC). This allows the Se to be melted and 

distributed more uniformly in the crucible rails shown in the scheme of figure 3.6.b. 

The cooling step shown in figure 3.7 is representative and the values are 

approximated. 

3.4   Buffer layer 

In this project, CdS was used as the buffer layer for all the solar cells fabricated. A 

chemical bath deposition (CBD) method was used to deposit an approximately 50 

nm thick CdS layer on top of the absorber layers. All the CZTSe absorber layers 

were etched in a 10 wt% KCN aqueous solution for 30 seconds prior to the CBD 

process.  The CBD process was at 70 ºC in a jacketed beaker heated with water. 

0.028 M of cadmium acetate and 0.374 M of thiourea were used as the Cd and S 

sources respectively in an ammonium hydroxide solution. The samples were 

immersed in the solution for 22 minutes before being rinsed with abundant DI water. 

Further information regarding this process can be found elsewhere [8]. 

3.5   Front contact 

After the chemical bath deposition, a transparent bilayer of ZnO and aluminium 

doped zinc oxide Al:ZnO was deposited by RF magnetron sputtering [99]. All the 

CZTSe solar cells were mechanically scribed to produce individual cells of 0.09 cm2 

in area. The CTS solar cells studied in chapter 9 had an area of 0.5 cm2 and a 

Ni/Al/Ni grid was evaporated on top of them. 
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3.6   Coevaporation of Cu-Sn-S absorber layers 

The synthesis of absorber layers for thin film solar cells by coevaporation methods is 

commonly used, particularly in CIGS technology, where the most efficient devices 

have been synthesised by this method [30]. Also for CZT(Se,S) there are reports by 

several groups of solar cells using this synthesis methods, i.e. [69, 100, 101]. 

 

Figure 3.8 Schematic diagram of the coevaporation chamber used for evaporating 

the Cu-Sn-S absorber layers discussed in chapter 9. Adapted from [102]. 

CTS absorber layers were deposited using a PVD system equipped with elemental 

Sn and Cu thermal evaporation sources and a S evaporator with a cracking unit. 

Molybdenum coated soda-lime glass substrates were used. A sketch of the PVD 

chamber used for the synthesis of the CTS layers is shown in figure 3.8. The total 

pressure of the chamber during the deposition was around 1.5x10-3 Pa (1.1x10-5 

Torr). For all the depositions the substrate temperature was set to a nominal 
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temperature of 400 ºC. Infrared reflectometry was used for in situ process control. 

The temperature of the Cu and Sn source and S cracking unit were 1285, 1295 and 

500 oC respectively. The deposition was stopped after achieving a layer thickness of 

approximately 1 m. More details about coevaporation of CZTS using a similar 

process have been described in the literature [100].   

The evaporation of the CTS absorbers was performed with the help of Lars 

Steinkopf from the Helmholtz Zentrum Berlin (HZB). 
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4 Characterisation techniques and analysis 
methods 

This chapter describes the main characterisation methods used for assessing the 

properties of the CZTSe and CTS absorber layers and solar cells reported in this 

thesis. It includes a description of the experimental setup used for the 

measurements with each techniques and a brief description of the methods used for 

the analysis of the data obtained. Where applicable, the contributions of different 

colleagues to each measurement or analysis have also been indicated.  

Part of the research of this project was carried out in different centres apart from 

Northumbria University within the frame of the KESTCELLS project including: 

 Catalonia Institute for Energy Research (IREC), C. Jardins de les Dones de 

Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain 

 Helmholtz-Zentrum Berlin (HZB) for Materials and Energy, Hahn-Meitner-

Platz 1, 14109 Berlin, Germany 

 Empa – Swiss Federal Laboratories for Materials Science and Technology, 

Laboratory for Thin Films and Photovoltaics, 8600 Dübendorf, Switzerland 

This explains why certain measurements like Raman spectroscopy were performed 

with different systems as described in this chapter. 

4.1 SEM and EDX 

The microstructure and composition of the metallic precursors and the absorber 

layers were analysed by scanning electron microscopy (SEM) using a FEI Quanta 

200 microscope equipped with an Oxford Instruments energy dispersive X-ray 

analyser (EDX). For the composition measurement 20 kV was used as the 
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acceleration voltage corresponding to a penetration depth of approximately 1.2 µm. 

The cross section image of the CTS solar cell in chapter 9 was acquired by Justus 

Just from the Helmholtz Zentrum-Berlin with a LEO 1530 GEMINI SEM of Zeiss.  

4.2 X-ray fluorescence (XRF) 

X-ray fluorescence was used to measure the composition of metal ratios using an 

operating voltage of 40 kV with a rhodium anode. The XRF system was calibrated 

with reference samples measured by inductively coupled plasma mass 

spectroscopy (ICP-MS, Agilent 7500ce). The reference samples were prepared with 

powder from absorber layers carefully scratched from the Mo substrates. The 

powder was dissolved in concentrated HNO3 in a gas tight polyethylene vessel. The 

calibration of the ICP-MS equipment was performed with certified elemental 

standards with an error of ±10%. 

4.3 X-ray diffraction 

X-ray diffraction is possibly one of the most important characterisation techniques 

used for the development of this thesis. Therefore, this section presents a detailed 

description of the theory and analysis of the data acquired using this technique. 

The samples presented in this thesis have been measured with a Siemens D-5000 

diffractometer in the Bragg-Brentano geometry and with a PANalytical X’Pert MPD 

Pro X-ray diffractometer in grazing incidence configuration. Both diffractometers 

operate with a Cu K radiation source (=0.154059 nm).  The measurements with 

the Siemens D-5000 have been carried out with a voltage of 40 kV and current of 40 

mA. The PANalytical X’Pert MPD Pro X-ray diffractometer was operated with a 

voltage of 40 kV and a filament current of 30 mA.  
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In both systems, the X-rays are directed through a Ni filter in order to attenuate the 

Cu Kradiation. In the case of the PANalytical, the Ni filter was allowed to attenuate 

the 99% of the Kradiation. However, in the case of the diffractograms recorded 

with the Siemens D-5000 it was possible to see that the most intense peaks of the 

patterns had a replica due to the Cu K radiation, since in this system, the Ni filter 

was not able to block it completely. 

In this part, the principle of characterization by X-ray diffraction will be briefly 

explained. The two different configurations that have been used to measure the 

samples of this thesis, Bragg-Brentano and Grazing Incidence are also explained in 

this part. Finally, the principles of the analysis of the data acquired by this method 

are also explained. 

4.3.1 X-ray diffraction theory 

In order to understand the basic phenomenon of the principle of the technique, it is 

necessary to consider the interaction of X-rays in the relevant energy range with 

matter. There are three different types of interaction between X-rays and electrons 

[103]: 

 Electrons can be liberated from their bound atomic state in a process of 

photoionisation, where the energy and momentum of the radiation are 

transferred to the excited electron. This is an inelastic scattering process. 

 In Compton scattering, the radiation energy is also transferred to an 

electron which in this case is not released. The wavelength of the scatter 

light is different of that of the incident radiation. This is also another 

inelastic scattering process. 
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 X-rays can be elastically scattered by electrons. When this occurs, the 

electron oscillates at the frequency of the incoming beam becoming a 

source of dipole radiation. This type is called Thompson scattering and 

the wavelength of the incoming X-ray radiation is conserved in the 

scattering process. This type of scattering of X-rays is the one that we 

make use of for structural investigation by X-ray diffraction [103]. 

When the incident X-ray impacts the electrons, the energy of the elastically 

scattered X-rays is equal to the energy of the incident beam, but the intensity is 

determined by the electron density of the scattering centres, therefore by the atoms 

in the lattice. A signal in terms of a diffraction patterns is detected only if the electron 

density centres (atoms) are located in a periodic manner, which is the definition of a 

crystalline material. 

When an X-ray radiation hits an atomic plane in a crystalline material with an 

incident angle θ, a fraction of this radiation is elastically reflected without changing 

the wavelength, λ. Then, the angle of the incident radiation and the reflected 

radiation is equal. Part of this incoming radiation can be transmitted and then can be 

reflected at a second plane of atoms, as shown in figure 4.1, and so on for further 

planes of atoms. If the path difference, L, of the reflected beam in lattice plane array 

is equal to an even multiple (n) of the wavelength λ, where d is the inter-planar 

distance, then constructive interference occurs. This representation of the diffraction 

phenomenon was presented by W. L and W. H Bragg in 1913, which is 

mathematically represented in equation 4.1, and it is known as the Bragg law [104]. 
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Figure 4.1. Diagram illustrating the Bragg law 

 𝐿 = 𝑛 · 𝜆 = 2 · 𝑑 · 𝑠𝑖𝑛𝜃 4.1  

The diffraction angle θ of the reflection depends on the crystal lattice. Taking into 

account also the distribution of the intensities of the reflected radiation and its 

dependence with the angle θ, the crystal structures can be determined. 

4.3.2 Bragg-Brentano geometry 

The Bragg-Brentano X-ray diffraction (BBXRD) configuration is commonly used for 

characterising powder samples. In this type of measurement, both, the X-ray source 

and the detector move at the same angular speed changing the incidence and 

diffracted angle that coincide at every point in the measurement. This is represented 

in figure 4.2. Because of the characteristics of this type of geometry, just the family 

of planes that are parallel to the surface of the sample are measured.  One of the 

most positive characteristics of this type of measurement is its speed. The 

diffractograms for this thesis with this configuration using the Siemens D5000 

system were recorded in 2.5 hours and the ones presented in the chapter 9 
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recorded with the PANalytical system took around 40 minutes each. The 

diffractograms recorded in grazing incidence (GI) configuration took 17 hours each, 

making BBXRD a more practical measurement for phase identification, which can 

be performed using both types of geometries. In contrast, when data for an accurate 

depth resolution and greater surface sensitivity is required, GI configuration is 

needed, as discussed in the next section. In addition to the speed advantage, 

BBXRD offers the possibility of having qualitative information regarding the preferred 

orientation along the z-axis due to the fact that the lattice planes measured are 

parallel to the surface of the film. 

 

Figure 4.2. Simplified diagram representing a Bragg Brentano measurement in a 

polycrystalline CZTSe absorber layer on a SLG/Mo/MoSe2 substrate. Both, the X-ray 

source (S) and the detector (D) move at the same angle speed. Because of the 

position of the detector is always given by 2θ the parallel planes to the surface of the 

films are the only ones detected. As the θ varies, different families of planes with 

different interplanar (d) distances are detected. 
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4.3.4 Grazing incidence geometry 

The grazing incidence X-ray diffraction (GIXRD) configuration is possibly the most 

suitable configuration for accurate analysis of thin films. In this case, and the main 

difference with the BBXRD, is that the incidence angle of the X-ray source (ω) is 

fixed, and the detector is moving along the 2θ space. By doing so, it is possible to 

tune the penetration depth of the X-rays within the films and acquire depth-resolved 

information. In addition, the planes measured with this geometry are no longer 

parallel to the surface of the sample and change with the variation of the position of 

the detector as shown in figure 4.3.  

 

Figure 4.3. Simplified diagram representing a grazing incidence measurement in a 

polycrystalline CZTSe absorber layer on a SLG/Mo/MoSe2 substrate. The X-ray 

source (S) remains at a fixed position with an incidence angle ω. The detector (D) 

moves along the 2θ space. 

Normally, the incidence angle used for thin films varies between 0 and 18 º. By 

increasing the incidence angle, the penetration of the X-rays in the samples also 

increases. The dependence of the penetration of the X-rays in a CZTSe film have 
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been calculated by Gunder [105]. This allows us to discuss the properties of the 

CZTSe films in the near surface region, bulk and at the interface with the MoSe2/Mo 

back contact. This configuration has been used for measuring the samples 

discussed in chapter 7, at 4 different incidence angles of 0.5, 1, 2 and 5º. 

4.3.5 Le Bail analysis  

Le Bail analysis is similar to Rietveld refinement and consists of the comparison of 

the measured data with a given model of the crystal structure of the phases that are 

analysed with the least square method [106]. By doing so, the difference between 

the model and the measured data is reduced iteratively until a point where the 

model fits with great quality. The main difference with Rietveld analysis is that, in the 

model used to fit the pattern, just the space group of the phases are taken into 

account and the atomic positions are not considered. This allows the model to fit the 

intensities of the experimental patterns providing an accurate refinement that allows 

a good microstructural analysis, as discussed in the next part.  

Two indicators of the quality of the refinements are typically the Bragg value RBragg 

defined in equation 4.2 and X2 in equation 4.3. The Bragg value is an indicator of the 

agreement of the phases used to fit the pattern, were Iobs represents the intensity of 

the experimental patterns in each data-point recorded (h) and Icalc the intensity of the 

refined model. The X2 stands for the quality of the pattern as a whole and is defined 

as the ratio between the weighted profile R-factor (Rwp) and the expected R factor 

(Rexp) which stands for the best possible Rwp value [107]. The X2 and the RBragg  will 

be evaluated and used for the Le Bail refinements processed in the GIXRD patterns 

of the samples discussed in chapter 7. 
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Le Bail analysis was performed with WinPlotR software from the FullProf Package 

[108]. Analysis and comparison of the phases in this thesis have been performed 

with Powdercell software using powder diffraction data from the ICSD [109]. After 

having an accurate estimation of the phases measured in the samples, then the 

structural parameters can be introduced in order to perform the Le Bail analysis. 

 𝑅𝐵𝑟𝑎𝑔𝑔 = 100 ∗
∑ |𝐼𝑜𝑏𝑠,ℎ − 𝐼𝑐𝑎𝑙𝑐,ℎ|ℎ

∑ |𝐼𝑜𝑏𝑠,ℎ  |ℎ

 4.2  

 𝑋2 = (
𝑅𝑤𝑝

𝑅exp
)

2

 4.3  

 

Figure 4.4. Le Bail analysis of a SLG/Mo/MoSe2/CZTSe sample recorded with an 

incidence angle of 2º. 

An example of a Le Bail refinement in one of the samples discussed in chapter 7 

can be found in figure 4.4. The red dots represent the measurement of the pattern, 

and the black line represents the model fitted to the patterns. The blue line 

represents the difference between the fitted model and the experiment. In this case, 
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three phases have been considered to fit the model including Mo, MoSe2 and 

CZTSe. The positions of the reflections of the CZTSe, Mo and MoSe2 can be seen in 

blue, red and green below the pattern. Once the model is in close agreement with 

the experiment, then an accurate estimation of the lattice parameters can be 

obtained. Because the shapes of the peaks are accurately fitted, this allows a good 

microstructural analysis as explained in the following subsection. 

4.3.6 Microstructural analysis  

In chapters 5 and 6, the microstructural analysis has been performed with the 

software Powdercell, after Le Bail analysis has been performed.  

Microstructural analysis can provide interesting information about the polycrystalline 

films that were measured by XRD methods.  To do so, one needs to be consider 

that the broadening of the peaks are due to micro-strain and a small average value 

of domain size. The broadening of the peaks can be expressed mathematically as 

the integral breadth β. The integral breath is calculated as a ratio between the 

integral intensity and the full width at the half of the maximum (FWHM) of the peak. 

In order to have a clearer understanding the information that it can be obtained from 

the analysis of our patterns with regards to the microstructure of the films analysed, 

the different type of strains are illustrated in figure 4.5 and described in the text 

below. 
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Figure 4.5. Schematics of different type of strain in the lattice and its influence on 

the peaks observed in the experimental diffractograms. 

 Strain free: the Bragg peak appears at the position corresponding to the 

original interplanar distance d0. 

 Uniform strain or macro-strain: uniform strain can be created by a 

force applied to the lattice inducing its interplanar distance to vary 

uniformly in the whole crystal lattice. If the force is compressive and 

perpendicular to the planes, then the interplanar distances would 

uniformly decrease and the Bragg peak will appear at higher angles. If 

the force is under tension, then the opposite will occur.  

 Non-uniform strain or micro-strain: micro-strain in the lattice could be 

induced by several factors, like planar defects, point defects such as 

vacancies or antisite disorder. In general terms, micro-strain is induced 

by the displacement of the atoms from their ideal positions resulting in 



58 

 

non-uniform values of d in the lattice that leads to a broadening of the 

observed peaks. 

After fitting the experimental patterns to a model with Le Bail analysis, information 

about the shape of the peaks of the whole pattern is acquired, and thus, the integral 

breadth of them. With the values of the integral breadth, now the domain size and 

micro-strain can be calculated.  

The broadening due to domain size can be expressed by the Scherrer formula in 

equation 4.4 [110], where λ is the wavelength of the X-rays, D is the volume 

averaged domain size and KS is the Scherrer constant. At this point, it is important to 

point out that domain and grain size do not necessarily have to be the same thing. 

Domain is defined as a particular crystallite or a particular grain where the 3D is 

perfectly periodic (coherent). Within a grain, this periodicity can be interrupted by 

imperfections such as stacking faults or dislocations, making the grain size larger 

than the domain size.  Larger domains than 100 nm do not contribute a significant 

amount to incoherent scattering and then the broadening of the peaks due to size 

when the patterns are measured with a standard diffractometer cannot be resolved. 

 𝛽𝑠𝑖𝑧𝑒 =
𝐾𝑠𝜆

𝐷 𝑐𝑜𝑠 𝜃
 4.4  

The broadening due to micro-strain can be calculated with the Wilson relation shown 

in equation 4.5, where  the average micro-strain value and KD  is the scaling factor 

that depends on the nature of the lattice distortion [103]: 

 𝛽𝑠𝑡𝑟𝑎𝑖𝑛 = 2𝐾𝐷𝜀 tan 𝜃 4.5  
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By adding both equations it is possible to obtain the total broadening of the peak, 

having previously subtracted the instrumental broadening: 

 𝛽2𝜃 =
𝐾𝑠𝜆

𝐷 𝑐𝑜𝑠 𝜃
+ 2𝐾𝐷𝜀 tan 𝜃 4.6  

Multiplying both sides of the equation by cos θ/λ it is possible to obtain the 

Williamson-Hall linear relation: 

 
𝛽2𝜃 (𝑐𝑜𝑠 𝜃)

𝜆
=

𝐾𝑠

𝐷
+ 𝐾𝐷𝜀

2sinθ

𝜆
 4.7  

By plotting β2θ cos θ vs 2 sinθ/λ it should be possible to obtain a straight line where 

the domain size can be extracted from the intercept and the micro-strain can be 

determined from the slope. This is known as the Williamson-Hall plot [111]. The 

values obtained in chapters 5 and 6 have been calculated automatically with the 

Williamson-Hall plot with the Powdercell software, after performing Le Bail analysis. 

The instrumental broadening could not be measured and it could not be subtracted 

from peak broadening. Therefore, the microstrain values presented in this thesis 

should just be compared qualitatively. 

4.4 Raman Spectroscopy 

Raman spectroscopy is based on the measurement of the scattered light from a 

material. A sample is excited with a monochromatic light beam. This light is mainly 

elastically scattered (Rayleight scattering), but can also interact with the crystal 

lattice of a material and be scattered inelastically, decreasing its energy (Stokes) or 

increasing its energy (anti-Stokes).  The energy shift in the inelastic scattering 

process is that involved in the photon-phonon interaction [112]. The measurement of 

the energy of the scattered light from a sample allows the building of a Raman 

spectrum. From this spectrum a large amount of information can be extracted from a 
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sample such as the phases contained in it [113], the crystal structure [114], chemical 

composition [115] and even information about the defects present in the crystal 

lattice [58, 116, 117].  

The Raman spectra analysed in chapters 5 and 6 were recorded by Jonathan 

Scragg at Uppsala University with a Renishaw inVia system using 532 nm excitation 

wavelength. The Raman spectra presented in chapters 7 and 8 were recorded by 

Mirjana Dimitrievska at IREC with 532 nm excitation using a LabRam HR800 -UV 

spectrometer. Finally, the spectrum discussed in chapter 9 was measured by Sergej 

Levcenko at HZB. These Raman scattering measurements were performed with He-

Ne laser (633nm) excitation using an Andor spectrometer (SR-500i-D2) and CCD 

detector (Princeton Instruments 100Br Excelon). The different measurements were 

a result of collaborations with the groups of the KESTCELLS project. 

4.5 Current density - Voltage (J-V) 

Insight into the electronic transport of solar cells can be acquired by measuring their 

J-V characteristics under illumination and in the dark. To measure the solar cells 

under standard test conditions the illumination source should match the AM 1.5G 

solar spectrum [118]. Since the solar cell parameters are influenced by the 

temperature, during the measurements the sample is kept at 25 ºC to meet standard 

conditions.  

A typical J-V curve of a CZTSe solar cell is shown in figure 4.6. In the figure, the 

points can be identified and can be used to describe some of the characteristics of 

the solar cells: 
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Figure 4.6. Example of a J-V curve of a CZTSe solar cells indicating relevant points 

to identify the characteristics of the device. 

 The open circuit voltage VOC is the voltage when the total current density 

is equal to zero 

 The short circuit current density JSC is defined as the current per unit 

area when there is no bias voltage applied to the solar cell. 

 When the product of J·V is maximum in the fourth quadrant, this defines 

the maximum power output of the solar cells (Jmpo, Vmpo). 

The maximum achievable power point of a solar cell is limited by the values of JSC 

and VOC as shown in equation 4.8. 

 𝑃𝑚𝑎𝑥 = 𝑉𝑂𝐶𝐽𝑆𝐶 4.8  
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This represents an ideal limit that is never achieved in reality. To define the 

proximity of the real J-V curve to the theoretical limit the parameter called fill factor is 

introduced (FF). This parameter defines the ‘squareness’ of the J-V curve. 

 𝐹𝐹 =
𝑉𝑚𝑝𝑜𝐽𝑚𝑝𝑜

𝑉𝑂𝐶𝐽𝑆𝐶
 4.9  

The main figure of merit of the solar cell is the conversion efficiency (ŋ) which can 

be calculated as the ratio between the maximum power output and the power 

density of the incident radiation (Pi) which in the case of the standard test conditions 

is equal to 1000 W/m2.  

 𝜂 =
𝑉𝑚𝑝𝑜𝐽𝑚𝑝𝑜

𝑃𝑖
= 𝐹𝐹

𝑉𝑂𝐶𝐽𝑆𝐶

𝑃𝑖
 4.10  

The J-V characteristics of the solar cells of this thesis have been measured with a 

class A solar simulator under 1000 W/m2 AM 1.5G simulated illumination with a HMI 

light source. The system was calibrated with a certified monocrystalline Si reference 

solar cell from Fraunhofer ISE. The samples were contacted in the front of the solar 

cells directly on the TCO since a metallic grid was not evaporated on them. The 

back of the samples was contacted by probing silver paste on the Mo layer. The 

measurements were performed in a 4-point contacting mode with a Keithley 2400 

source meter. 
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4.6 Quantum Efficiency (QE) 

Ideally, the photons arriving at the absorber layer with energy larger than the 

bandgap generate electron hole-pairs than can be collected at either the back or 

front contact of the device. However, due to a number of different factors, the ratio of 

collected electrons (and holes) per time is reduced by means of recombination or 

optical losses. These losses limit the maximum achievable photocurrent density 

reducing the JSC of the solar cells. 

The ratio of the collected electrons per time Jph (λph) per incident photons Φ(λph)  with 

certain energy can be measured by the external quantum efficiency (EQE).  

 𝐸𝑄𝐸 (𝜆𝑝ℎ) =
1

𝑞

𝐽𝑝ℎ(𝜆𝑝ℎ)

Φ(𝜆𝑝ℎ)
 4.11  

By integrating the EQE spectrum with the AM 1.5G illumination spectrum, it is 

possible to obtain a value for JSC from another characterisation technique to 

compare with the one that was measured in the J-V curve. 

 𝐽𝑆𝐶 = 𝑞 ∫ 𝐸𝑄𝐸(𝜆)Φ(𝜆)𝑑𝜆 4.12  

Optical losses can affect significantly the shape of the EQE. These could arise, for 

example, due to reflection of light from the TCO, or the layers above the absorber 

layer. If the reflectance of the solar cell is known, then the EQE can be corrected 

and one can calculate the internal quantum efficiency (IQE), which refers to the ratio 

of the collected electrons per time per absorbed photon. This will be used to identify 

the origin of a kink feature observed in the EQE spectrum discussed in chapter 9. 

The bandgap (Eg) of the absorber layer can be extracted from the low energy part of 

the EQE. In literature, several methods for extracting the value of Eg have been used 

for kesterite solar cells [119].  
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For an ideal p-n junction, the EQE can be dependent on the absorption coefficient 

(α), the space charge region width (W) and the minority carrier diffusion length (Ln) 

as shown in equation 4.13 [120]: 

 𝐸𝑄𝐸 = 1 −
exp(−𝛼𝑊)

1 + 𝛼𝐿𝑛
 4.13  

Assuming a very short diffusion length of the minority carriers the expression can be 

simplified to equation 4.14: 

 𝐸𝑄𝐸 = 1 − exp(−𝛼𝑊) 4.14  

For direct bandgap semiconductors the dependence of the absorption coefficient on 

the energy of the photons is described by equation 4.15 

 𝛼ℎ𝜈 ∝ (ℎ𝜈 − 𝐸𝑔)
1/2

 4.15  

Therefore, plotting [ℎ𝜈 ∗ ln(1 − 𝐸𝑄𝐸)]2  vs ℎ𝜈  can be used to extrapolate the Eg. 

Examples of this method to extrapolate the bandgap from the EQE can be found in 

literature for the materials studied in this thesis, i.e. [19, 47]. 

In recent years it became very popular to calculate the bandgap from the EQE from 

the inflection point of the low energy decay of the spectrum [121]. This has been 

reported to provide a more robust way to calculate the bandgap than the method 

previously described in this section [121]. The calculation of the bandgap from this 

derivative method normally leads to larger values and depends on the steepness of 

the decay of the EQE at long wavelength.  

The EQE of the solar cells presented in chapter 7 have been measured using a 

lock-in amplifier and a chopped white light source (900W, halogen lamp, 360Hz) 

combined with a grating monochromator calibrated with Si and Ge diodes. The EQE 
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of the CTS solar cell presented in chapter 9 has been measured without white light 

bias and with a lock-in amplifier combined with a 1/4m Oriel monochromator. 

4.7 Capacitance -Voltage (C-V) 

Capacitance - voltage profiling is commonly used to characterise the charge carrier 

concentration one-dimensional profile in thin film solar cells. The capacitance, 

represents the change in charge induced by a small change in the voltage 𝐶 =

𝛿𝑄/𝛿𝑉.  

To estimate the charge carrier concentration from C-V measurements two main 

assumptions need to be taken [122]: 

1. The space charge region (SCR) ends abruptly and it is fully depleted of 

carriers, so called the depletion approximation. 

2. The region outside the SCR is assumed to be neutral. 

The application of a small voltage 𝛿𝑉  will induce charging/discharging 𝛿𝑄  at the 

edge of the SCR and it is defined by equation 4.16: 

 𝛿𝑄 = 𝑞 · 𝐴 · 𝑁𝐴 · 𝛿𝑊 4.16  

Where A is the area of the device, q is the elemental charge, NA is the shallow 

acceptor concentration and 𝛿𝑊 is the change in the SCR width. 

By applying an additional bias voltage, the SCR width increases as the voltage is in 

reverse on the side of the junction with lower doping concentration, which in the 

case of this thesis will always be the absorber layer. Measuring the capacitance by 

sweeping the bias voltage applied 𝛿𝑉𝑑𝑐  the 1D profile of the charge carrier 

concentration 𝑁𝐶𝑉  can be obtained according to equation 4.17 where 𝜖  is the 

dielectric constant of the material and 𝜖0 is the permittivity of the vacuum. 
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 𝑁𝐶𝑉 = −
2

𝑞𝜖𝜖0𝐴2 (
𝑑(𝐶−2)

𝑑𝑉𝑑𝑐
)

−1

 4.17  

A more detailed theoretical description of this principle has been described by Heath 

and Zabierowski [122], where all the theory and details of this measurements for thin 

film solar cells are described. 

Capacitance-Voltage measurements have been performed by Dr. Sergej Levcenko 

from HZB in the CTS device presented in Chapter 9. The measurements were 

performed with an HP4284 LCR meter and four-point probes.  

4.8 Photoluminescence (PL) 

For the photoluminescence analysis of thin films semiconductors, normally, a laser 

is used as an excitation source. The excitation source is focused into the sample. By 

this excitation, the samples emit luminescence radiation that is collected and guided 

through a filter that allows removal of unwanted radiation of higher order.  The 

luminescence light is guided into a monochromator. After leaving the 

monochromator, the luminescence light reaches a radiation detector. Different 

transitions can be detected in PL measurements. The different transitions can be 

distinguished as a function of the excitation intensity and temperature. For 

temperature variation measurements, the samples are normally place in a cryostat. 

More information about the photoluminescence principle, and measurements in thin 

film solar cells can be found in detail elsewhere [123]. 

In chapter 8, the radiative recombination of the absorber layers presented has been 

studied by photoluminescence methods and is compared to the compositional and 

structural data of this set of samples. This allowed a better understanding and 

correlation with the optoelectronic properties of the solar cells, with CZTSe absorber 
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layers synthesised at different temperatures. In addition to this, the identification of 

the different transitions observed in the PL spectra are analysed and discussed.   

The photoluminescence data has been measured by Dr. Michael Yakushev from the 

University of Strathclyde at Glasgow. A 1 m focal length single grating 

monochromator and the 514 nm line of a 300 mW Ar+ laser were used for the 

photoluminescence (PL) measurements. A closed-cycle helium cryostat was 

employed to measure temperature dependence of the PL spectra at temperatures 

from 6 K (-267.15 oC) to 300 K (26.85 oC). The PL signal was detected by an 

InGaAs photomultiplier tube sensitive from 0.9 µm to 1.7 µm. The preliminary 

analysis of the PL data has been performed also by Dr. Michael Yakushev and co-

authors as indicated in the introduction of this thesis. The discussion of the results 

and the correlation with the structural properties of the CZTSe absorbers and the 

optoelectronic properties of the solar cells has been performed in collaboration with 

the author of this thesis. 
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5 The formation of CZTSe by two-stage process 

The aim of this chapter is the exploration of the formation of the CZTSe layer from 

Cu-Zn-Sn metallic precursors via the two stage synthesis method. For a better 

understating of the evolution of the phases during the growth of the CZTSe, the 

selenisation of Cu-Zn and Cu-Sn alloys, formed in the Cu-Zn-Sn metallic precursors, 

is also explored for a wide range of temperatures as explained in the specific 

experimental details.  The results and discussions are presented in this chapter in 

three subsections. Subsequently, the role and use of an evaporated cap in the 

selenisation process is discussed, leading to the final section of the chapter, where 

the main conclusions are addressed. The development of this study allowed a 

deeper insight into the growth of the CZTSe and helped addressing the limitations of 

the process used for the selenisation of the metallic precursors used in this thesis.  

This chapter is in part based on the following publications: 

J. Márquez-Prieto and I. Forbes, "Evolution of Phases in Two Stage Vacuum 

Processed Thin Film Cu2ZnSnSe4 Absorber Layers," Materials Research and 

Innovations, 2014. 

J. Márquez-Prieto, Y. Ren, R. W. Miles, N. Pearsall, and I. Forbes, "The influence of 

precursor Cu content and two-stage processing conditions on the microstructure of 

Cu2ZnSnSe4," Thin Solid Films, vol. 582, pp. 220-223, 2015. 

5.1 Motivation and state of the art 

In this chapter, CZTSe kesterite films are produced using a 2-stage process. 

Sputtered metallic precursor layers of Copper, Zinc and Tin were synthesised. 

These layers have a chalcogen (Se) layer thermally evaporated on to their surface 

before they were placed in a graphite box to be heated in a furnace to convert the 
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metallic layers into a semiconducting absorber as explained in chapter 3 section 

3.3.1.  

The conversion step is a key process for the formation of device-quality absorber 

layers. During conversion, various phases have been identified in the literature as 

taking part in kesterite formation. The narrow stoichiometric region of kesterites 

implies that different secondary phases can also be formed during the growth of the 

absorber layers, this being partly dependent on the composition of the precursors 

used [36, 62, 124]. Decomposition at the surface of the CZT(S,Se) films [125] and at 

the interface with the Molybdenum back contact [73, 91] has been reported as 

another source of secondary phases. 

The sputtered metallic precursors used for synthesizing kesterite absorbers in this 

thesis are mainly formed from Cu-Zn and Cu-Sn alloys as for previous work carried 

out at Northumbria University  [72]. The microstructure of the precursors and their 

variation with the Cu content are studied in chapter 6 section 6.3.1. In order to 

provide a brief summary, the most typical secondary phases to be formed from each 

phase or alloys forming the metallic precursors are compiled in table 5.1. 

The formation of CZTSe and secondary phases can be controlled by varying the 

process conditions as is partly covered in this chapter, and also by variations in the 

composition of the precursors as discussed in chapters 6 and 7. To minimise the 

formation of secondary phases and to gain a greater degree of control over kesterite 

formation, a greater understanding of the relationship between the phase evolution 

process and processing conditions is needed in order to be able to improve the 

design of the synthesis process of CZTSe to achieve device quality absorber layers. 
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Table 5.1. Possible secondary phases formed after the selenisation of Cu-Zn-Sn 

metallic precursors. The phases in the precursors associated with each metal are 

also indicated taken into account the formation process of CZTSe reported by 

Wibowo et al. [126]. 

Metal contained in the  

secondary phase 

Possible phase in  

the precursor 

Secondary phase  

compound 

Cu 
Cu, Cu-Sn alloy, 

Cu-Zn alloy 
Cu2Se, CuSe, Cu1.8Se 

Zn Cu-Zn alloy ZnSe 

Sn Sn, Cu-Sn alloy SnSe, SnSe2 

Cu,Sn 
Cu2-xSe, SnSe, 

SnSe2 
Cu2SnSe3 

 

For the synthesis of device quality CZTSe, it is crucial to avoid certain secondary 

phases, particularly the ones with bandgap narrower than the kesterite phase, which 

if located in the p-n junction interface, would be likely to induce a bandgap reduction 

and therefore reduce the maximum achievable VOC of the solar cell [36]. Bearing this 

in mind, for CZTSe the most detrimental phase to be avoided is Cu2SnSe3 (CTSe), 

with a bandgap of 0.5 eV [54]. The role of several secondary phases such as copper 

selenide binaries and ZnSe are discussed in the following sections. 

Apart from the aim of understanding the detrimental effect of the CTSe phase when 

it is coexisting in CZTSe absorbers, this ternary compound, as well as its pure 

sulphide counterpart Cu2SnS3, has attracted increased interest in the research 

community for several reasons. These will be discussed briefly in this chapter and 

also in chapter 9. 

The following sections correlate materials data on the evolution of phases with 

conversion conditions for the 2 stage process used in this thesis. 
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5.2 Specific experimental details 

In this chapter, the formation of Cu2ZnSnSe4 absorber layers has been investigated. 

In order to do so, the selenisation of the Cu-Zn-Sn ternary and together with binary 

precursors (Cu-Sn, Cu-Zn) has been studied at different conversion temperatures. 

The specific conditions for the synthesis of the precursors of this chapter are 

presented in table 5.2. 

Table 5.2 Sputtering conditions for the Cu-Zn, Cu-Sn and Cu-Zn-Sn precursors. 

 EDX-
Precursors 

Deposition time 
(min) 

Power (W) 

Sample Cu/(Zn+Sn)  Cu target Zn target Sn target 

Cu-Zn 1.9 30 175 70 - 

Cu-Sn 2.1 30 175 - 130 

Cu-Zn-Sn 0.90 30 175 70 130 

 

The binary precursors Cu-Zn and Cu-Sn were prepared with excess of Cu 

(Cu/metal~2) to study the phase formation from the Cu-Zn and Cu-Sn alloys.  

The precursors were selenised at four different conversion temperatures (380, 430, 

520 and 550 ºC). These temperatures were chosen to critically compare with the 

observed phase transitions in an in-situ study proposing the formation mechanism 

shown in figure 5.1, from samples fabricated with a similar synthesis approach [126].  

The selenisation process was carried out as described in chapter 3 section 3.3.1 in 

a tube furnace. 
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Figure 5.1. Phase evolution proposed by Wibowo et al from Cu-Zn-Sn metallic 

precursors to CZTSe. (From [126]) 

The sets of converted precursors were designated as follows: the selenised Copper-

Tin samples will be referred to as Cu-Sn-Se, the Copper-Zinc as Cu-Zn-Se and the 

Copper-Zinc-Tin generally as Cu-Zn-Sn-Se. The binary precursors were produced 

“Cu-rich” to produce films that were limited by the Zn or Sn content. 

5.3 Results and discussion 

5.3.1 Conversion of Cu-Zn precursors: formation of  
Cu2-xSe and ZnSe 

Other workers reported studies regarding the selenisation of Cu-Zn-Sn metallic 

precursors and found that the formation of ZnSe started to be observed at 

temperatures above 300 ºC [126]. Following the formation of ZnSe, Cu2Se started to 

form at about 450 ºC. It was also suggested that these compounds react with 

Cu2SnSe3 to form CZTSe at around 550 ºC [126].  
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In addition to the information regarding the phases formed from these precursors, it 

was also important to gather information about their morphology and how they were 

formed. Copper selenides can be formed at the surface of kesterites as in CIGS 

absorbers, but these can be removed by a KCN etching prior to the chemical bath 

deposition of CdS, being a critical step for the final performance of these solar cells 

[127].  

The presence of ZnSe has also been studied in CZTSe solar cells. It has been 

reported that when ZnSe is present at the surface of CZTSe absorbers this phase 

may act as a current blocker [128]. NREL reported initially that an excess of ZnSe at 

the back contact interface would not be as detrimental as at the surface, yielding 

devices with efficiencies over 9 % with  anti-reflecting coating (ARC) [129]. The 

same group reported later that a controlled excess of Zn at the surface of the 

CZTSe could induce an increase of the bandgap at the interface leading to an 

increase of the VOC and performance of the solar cells [85]. A selective etching route 

for ZnSe has also been developed and can be applied to CZTSe [64]. As for copper 

selenide phases, this chemical etching could be an effective and beneficial process 

to enhance solar cell performance as long as the phases are segregated towards 

the surface. If the secondary phase connects the front and back of the absorber, 

etching could lead to pinholes that would be detrimental to the solar cell 

performance. In fact, in CZTSe films from electrodeposited metallic precursors, 

ZnSe segregation was observed towards the surface but created voids underneath 

its location [130].  

5.3.1.1 XRD of Cu-Zn-Se films 

Figure 5.2 shows the diffractograms acquired for the films resulting from the 

selenisation of Cu-Zn precursors.  
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Figure 5.2. Sections of the XRD patterns of the Cu-Zn-Se samples showing the 

ZnSe peak at 45.2o and the evolution of the Cu-Se binary phases. The peak 

attributed to Cu1.8Se (44.7o) decreases in intensity with increasing conversion 

temperature. For the 520oC and 550oC samples, a peak attributable to Cu2Se is 

observed and its intensity increases with temperature. The position of the peaks 

between 43 and 47o have been attributed to the 220 family of planes by comparing 

with the powder patterns of Cu2Se (ICSD-59955), Cu1.8Se (ICSD-77375) and ZnSe 

(ICSD-77091). 

The presence of ZnSe (ICSD-77091) was observed in all samples from the 111, 220 

and 311 reflections at 2-theta values of 27.2o, 45.2o and 54.0° respectively. The 

patterns also indicated the presence of Cu-binary phases and their evolution with 

conversion temperature. The main Cu-Se phase found in the samples was Cu1.8Se 

(ICSD-77375) with peaks at 2θ values of 27.0° and 44.7° showing a relative 

decrease in intensity with increasing conversion temperature compared to the ZnSe 

and Mo peaks. The peaks attributed to Cu1.8Se are slightly shifted towards lower 

angles as the conversion temperature increases. This shift might be due to a slight 

loss of Se in the Cu1.8Se phase as the conversion temperature increased. For the 

samples converted at 520 °C and 550 °C, a peak attributed to Cu2Se (ICSD-59955) 
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at 44.0° appears, increasing in intensity with temperature. The opposite trend is 

observed for the Cu1.8Se phase (figure 5.2). This trend evidences that an increase in 

conversion temperature, induces a Se loss in the Cu-binary phases, which evolve 

from Cu1.8Se to Cu2Se as the temperature increases. 

5.3.1.2 Composition and morphology of Cu-Zn-Se films 

 

Figure 5.3. EDX map of Cu-Zn-Se sample selenised at 550 oC. High concentrations 

of Cu (b) and Zn (c) are indicated high intensity (white regions) of the measured Cu-

K and Zn-K signals, respectively. The black regions indicate an absence of the 

mapped element. Cu is located where no Zn was recorded and vice versa. Phase 

map reconstruction showing the regions associated with high content of Zn in 

yellow, high content of Cu in blue and the regions where both elements are detected 

in green (d) 
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SEM and EDS mapping characterisation was used to investigate the morphology 

and composition. SEM surface micrographs of the set of Cu-Zn-Se samples showed 

that uniformly distributed, large grains were present in all films. An example of this is 

shown in figure 5.3.a. Mapping and point measurements of the grains showed that 

the composition of the features was consistent with their being composed of ZnSe 

and Cu-Se phases. This is in agreement with the XRD data that indicated the 

presence of these phases. Composition mapping of the sample converted at 550 ºC 

is shown in figure 5.3. A phase map elaborated with the Inca software from Oxford 

instruments shows the location of compositions attributed to Cu2-xSe and ZnSe.  

The observed segregation of phases can lead to incorrect conclusions when 

interpreting absolute compositional data acquired with EDX, which is surface 

sensitive. That means that if there is a proportion of one phase segregating above 

the other, an increase in the counts of the elements composing the phase closer to 

the surface will be detected, and the obtained results could lead to 

misinterpretations of the composition of the whole film. For instance, the presence of 

a ZnSe layer at the surface, overlaying a Cu-Se phase, may lead the EDX analysis 

to indicate Zn-rich compositions, whereas the reality would be that the total 

thickness-averaged composition would not have changed from that of the 

precursors. In order to mitigate this issue, XRF compositional measurements were 

taken in this set of samples to cross check the metal ratios in the films. With this 

technique, the four samples gave the same ratio as the precursor with Cu/Zn equal 

to 2, demonstrating no loss of any of the elements. 
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5.3.1.3 Discussion: the formation of Cu2-xSe and ZnSe binary phases 

from Cu-Zn metallic precursors 

The selenisation of Cu-Zn alloys resulted in the formation of the same phases that 

evolve as intermediate compounds during synthesis of CZTSe absorbers [126]. The 

study presented in this chapter implied that the ZnSe and Cu1.8Se form together in 

large grains. When the formation of CZTSe was produced by the selenisation of Cu-

Zn-Sn metallic precursors, the reaction of liquid Se (from the Se cap) with Cu-Zn 

alloys contained in the precursor could lead to local segregation of secondary 

phases, within the CZTSe absorbers, which may be problematic for the solar cell 

performance. In addition to this, a loss of Se is observed in the copper selenide 

binary phases as the conversion temperature is increased as evidenced by the XRD 

patterns.  A modification of the selenisation process by increasing the Ar ambient 

pressure of the furnace (background pressure) might help to keep the Se vapours 

within the graphite reactor during the conversion. 

5.3.2 Conversion of Cu-Sn precursors: formation of 
Cu2SnSe3  

In table 5.1 it was shown that the phases that we can expect from the selenisation of 

Cu-Sn precursors are Cu-Se binaries, Sn-Se binaries and the ternary compound 

Cu2SnSe3 (CTSe). In the literature, the CTSe phase has been reported to crystallise 

in three different modifications of monoclinc structures (space group Cc) [131-133], 

and this will be explored in the next subsection of the chapter. 
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5.3.2.1 Composition, morphology and Raman spectra of the Cu-Sn-Se 

films. 

The composition of the Cu-Sn-Se layers produced by the selenisation of the Cu-Sn 

metallic precursors was measured by EDX before and after selenisation, and can be 

seen in table 5.3. After selenisation, the compositional values of the layers are close 

to the stoichiometry of the Cu2SnSe3 ternary compound 2:1:3. 

Table 5.3.  Variation of the atomic composition of the Cu-Sn-Se samples with 

conversion temperature. 

Sample Conversion Temperature (°C) Cu (at %) Sn (at %) Se (at %) 

Cu-Sn  RT 68.6 31.4  

CTSe 380 380 33.7 15.7 50.6 

CTSe 430 430 33.0 16.2 50.8 

CTSe 520 520 33.1 16.4 50.5 

CTSe 550 550 32.4 16.0 51.6 

 

The morphology of the layers was studied by SEM at high and low magnification. 

The micrographs acquired for the Cu-Sn samples selenised at the four different 

temperatures are shown in figure 5.4. High magnification images show very uniform 

surface for the samples converted at 380°C and 430°C. As the conversion 

temperature was increased, a number of cracks started to appear in the sample 

selenised at 520°C and this number increased in the sample produced at 550°C. 

High magnification SEM images show the formation of a polycrystalline film. It is 

possible to observe a clear evolution of the size of the grains of the films. For the 

samples selenised at 380 °C and 430 °C a uniform compact material can be 

observed with grain sizes of hundreds of nanometres. The sample converted at 520 
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°C shows the formation of well crystallised 1 m grains and the sample at 550 °C 

shows larger grains of the order of 2-3 m. Small holes can be also observed in the 

samples at the two highest temperatures.  

 

Figure 5.4. a, b, c and d shows SEM surfaces images of CTSe samples at low 

magnification of samples converted at 380oC, 430oC, 520oC and 550oC respectively. 

i, ii, iii and iv show SEM surfaces images of CTSe samples at high magnification of 

samples converted at 380oC, 430oC, 520oC and 550oC respectively. 
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5.3.2.2 XRD of the Cu-Sn-Se films 

XRD patterns of the whole set of samples are shown in figure 5.5. The strongest 

peak observed at 40° corresponds to the Mo used as the back contact layer. In the 

patterns for absorbers synthesised at the two highest temperatures, at 2θ angles of 

14°, 32° and 56°, it is possible to see in the patterns the presence of a broad peaks 

which are attributed to the formation of MoSe2. These peaks increase in intensity 

with temperature, indicating a larger formation of MoSe2 with increasing 

temperature. The intense peaks at 227.17°, 45.15°, 53.42°, 65.63° and 72.35° 

corresponds to the Cu2SnSe3 phase, and are observed in all samples. These peaks 

would overlap with the most intense peaks of the Cu2ZnSnSe4 phase at the same 

Bragg positions, making it difficult to identify this phase in kesterite absorbers by this 

technique when the quantity of CTSe phase is much smaller than the CZTSe phase 

present in the sample. However, additional peaks were observed in the samples 

converted at 430, 520 and 550°C. Figure 5.5.b shows a low angular magnification of 

the XRD patterns of the CTSe set of samples. At 15.5, 20.0 and 30.0° small peaks 

can be observed for the samples produced at 430, 520 and 550 °C, corresponding 

to the reflections 110, 021 and -221, confirming a monoclinic cell for Cu2SnSe3. This 

is  in very good agreement with the structure reported and refined by Delgado et al 

[131]. These peaks increase in intensity with temperature and are not observed in 

the samples produced at 380°C. This does not necessarily mean that the sample 

produced at 380°C does not have a monoclinic structure, but a poorer crystallinity 

for this sample may be responsible for the lack of observed small peaks. 



82 

 

 

Figure 5.5. a. XRD patterns of the CTSe samples converted at 380 °C, 430 °C, 520 

°C and 550 °C between 10° and 80°. b. Magnification of the patterns shown in a, 

between 14° and 31°, which allows observation of the presence of the reflections 

110, 021 and -221 of the Cu2SnSe3 monoclinic phase. 

5.3.2.3 Raman spectroscopy of the Cu-Sn-Se films 

The formation of Cu2SnSe3 was also confirmed by Raman spectroscopy. Figure 5.6 

shows the Raman spectrum of the CTSe sample selenised at 550°C. All the Raman 

spectra acquired for the samples prepared for this study were similar, confirming the 

formation of Cu2SnSe3 from 380°C to 550°C.  The most intense peak observed is at 

180 cm-1 corresponding to the strongest A’ mode [134]. It is possible to observe 

clearly the peaks at 235 cm-1 and 251 cm-1, in good agreement with those reported 

by Altosaar et al [135].  The peak  at 180 cm-1 presents a shoulder between  

190 cm-1 - 215 cm-1 that could be attributed to the modes at 204 cm-1 and 211 cm-1 

calculated by Mortazavi et al [136]. Figure 5.6.b shows the evolution of the 

broadening of the peak at 180 cm-1 of the CTSe samples processed in the whole 

temperature range (380 °C-550°C). The FWHM of this peak was calculated using a 

Lorentzian profile fitting with the software Fityk 0.9.8 [137]. The calculated FWHM 

values progressively decrease with increasing conversion temperature, indicating an 
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improvement of the crystal quality of the films, as was predicted by the increase in 

grain size observed in the SEM images of figure 5.4. 

 

Figure 5.6. a) shows the Raman Spectra acquired with 532nm of the CTSe sample 

selenised at 550 °C indicating the main peaks identified associated with this phase.  

b) shows the FWHM values of the 180 cm-1 peak of the samples converted at 380 

°C, 430 °C, 520 °C and 550 °C, showing a decrease on the broadening of the peaks 

with increasing temperature. The dotted line is visual guidance  

5.3.2.4 Discussion: the formation of Cu2SnSe3 

Recently, the Cu2Sn(S,Se)3 phase, present in the ternary phase diagrams of 

kesterites, [62, 124] is gaining more and more interest, not just because of its 

possible detrimental effect in kesterite solar cells. The potential application of 

Cu2Sn(S,Se)3 in PV and the use of this phase as a precursor for kesterites 

absorbers are being studied, since it was published that the formation of 

Cu2ZnSnSe4 is produced through the reaction of Cu2SnSe3 with ZnSe [138]. In 

addition to this, solar cells have been reported using Cu2SnS3 (CTS) as absorber 

layer, having the study of the formation of these ternary phases as an added value. 

Devices with efficiencies up to 4.6% have been fabricated out of the CTS phase [37] 

and Umehara et al. reported 6% efficient solar cells by introducing Ge in the 
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synthesis of CTS layers [139]. No high efficiencies have been reported for the pure 

selenide Cu2SnSe3 (CTSe) as yet, however its high absorption coefficient of 104-105 

cm -1 and its direct bandgap, has encouraged groups to propose its use as an 

absorber in solar cells [53, 138, 140].  A wide range of values (0.8-2.2 eV) have 

been reported for the bandgap of Cu2SnSe3, obtained with optical absorption 

spectra, and no agreement is easily found in the literature. These values are far 

away from those calculated from a first principles electronic structure approach, 

where it is concluded that the material has similar optical properties to CZTSe but a 

narrower bandgap (0.4 eV) [141]. An ellipsometry study confirmed that CTSe had a 

bandgap of around 0.5 eV [54] which makes the material unsuitable for being used 

as a single absorber for thin film solar cells. The case of CTS, for which the bandgap 

is larger (close to 1 eV), is explored in more detail in chapter 9. 

In this chapter, it has been shown the formation of CTSe layers by a 2-stage 

process consisting of the sputtering of Cu-Sn metal layer followed by a selenisation 

using a Se evaporated cap, with exactly the same process used for CZTSe absorber 

layers as described in section 5.3.3. This resulted in thin films showing the formation 

of Cu2SnSe3 crystallising in the monoclinic system. This result may appear 

contradictory with recent reports for co-evaporated CTSe layers in which, the 

formation of cubic Cu2SnSe3 is presented, observing a polymorphic transition from 

monoclinic to cubic at around 400°C [142]. For the samples presented in this 

chapter, from the characterisation techniques used in this study the presence of any 

other secondary phases was not detected. An improvement in crystallinity was 

found to be promoted by increasing the selenisation temperature, the film quality 

was decreased by the appearance of cracks and subsequent pinholes, for samples 

produced at the two highest conversion temperatures. A similar issue was also 

observed in Cu2SnS3 absorbers that were used for solar cells [47]. In the work of 
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Berg et al., a poor performance of the devices was attributed to losses due to non-

covered areas by the absorber layer and the presence of pinholes, leading to very 

small values of shunt resistance and affecting severely the photovoltaic performance 

in solar cells produced by electrodeposited Cu-Sn precursors followed by 

sulfurisation at 550°C [47]. Voids and pinholes were also observed by Aihara et al in 

their solar cells produced by sulfurisation of electroplated Cu-Sn precursors at 560 

°C [39].   

The results presented in this section suggest that a compromise needs to be 

reached for selecting the optimum temperature for processing CTSe films, if they 

are used as precursors for the synthesis of CZTSe. It has also been demonstrated 

that the CTSe films crystallised in the monoclinic system for a wide range of 

synthesis temperatures. This demonstrates that the formation of this phase it can 

happen under the same conditions used for processing CZTSe absorbers, where its 

presence should be avoided. Although it has been suggested that CTSe is not 

suitable for being used as an absorber layer, theoretical calculations predict that it 

might be a good candidate for thermoelectric applications and the synthesis route 

presented in this section might be used for this application [143]. 

5.3.3 Conversion of Cu-Zn-Sn precursors: formation of 
CZTSe absorbers 

In this sub-section, the formation of CZTSe in a two stage conversion process 

starting from Cu-Zn-Sn precursors and using a Se cap is discussed. The evolution 

of the films as the selenisation temperature varied was studied mainly through 

analysis of XRD, SEM and EDX data. 
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5.3.3.1 Compositional measurements of Cu-Zn-Sn-Se films 

Zn-rich Cu-Zn-Sn precursors were produced for the investigation of the quaternary 

material. The compositions of the CZTSe absorbers obtained by EDX are shown in 

table 5.4. A progressive decrease of the relative Zn content, with increasing 

conversion temperature, can be seen from the Zn/(Cu+Sn) ratios. 

Table 5.4.  EDX composition measurements and Zn/(Cu+Sn) atomic ratios of the 

precursor and absorbers produced at different temperatures. The Zn/(Cu+Sn) ratios 

show a decrease in the relative Zn content with increasing conversion temperature. 

Conversion 

temperature 

(°C) 

Composition (at. %) Zn/Cu+Sn  

Cu Zn Sn 

Precursor 48.1 27.9 24.0 0.39 

380 23.7 17.0 10.8 0.49 

430 24.5 16.0 11.2 0.45 

520 23.9 15.7 11.5 0.44 

550 24.9 14.3 11.9 0.39 

 

When the compositions for the Cu-Zn-Sn-Se samples are compared with the ZnSe-

Cu2Se-SnSe2 pseudo ternary phase diagram, reported by Dudchak et al. [62], the 

composition points would be located in the ZnSe-Cu2ZnSnSe4 region as shown in 

figure 5.7, which implies that ZnSe should be present in the samples. As was 

introduced in the background chapter, in section 2.2.2, this phase diagram 

corresponds to equilibrium conditions at 400 ºC, and it is not well known how the 
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stoichiometric regions vary with temperature. However, it can be used as a 

reference point to clarify how the composition of the samples vary and which phases 

may be formed in each region. 

 

Figure 5.7 Metal ratios of the CZTSe samples synthesized at 380, 430, 520 and 550 

ºC in the pseudo ternary phase diagram reported by Dudchak et al [62]. 

Subsequent XRF analysis was used to check the overall composition. Similarly, as 

reported in section 5.3.1 for the Cu-Zn-Se samples, the technique showed that there 

was no loss of metallic elemental components within the samples. This implied that 

the EDX results indicate compositional variations that are believed to be caused by 

localised microscopic segregation. 
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5.3.3.2 XRD of Cu-Zn-Sn-Se films and microstructure 

 

Figure 5.8. XRD patterns of the CZTSe samples synthesized at different 

temperatures. 

X-Ray Diffraction analysis of these samples showed that Cu2ZnSnSe4 was present 

in all samples (Figure 5.8). The diffractograms were compared with the CZTSe 

powder pattern (ICSD-95117) which shows all the peaks indicating that the phase is 

tetragonal, including the low intensity 002, 101 and 111 peaks at 2theta angles of 

15.6°, 17.2° and 22.0°, respectively. These results are consistent with the formation 

of kesterite over the whole temperature range investigated. This identification has 

been performed in all the patterns of CZTSe film shown in this thesis. No secondary 

phases were detected using this technique. However, ZnSe (ICSD-77091) peaks 

would overlap the Cu2ZnSnSe4 kesterite peaks at 2θ values of 27°, 45°, 54°, 66° 
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and 73° [144], making it difficult to confirm the presence of ZnSe in Cu2ZnSnSe4 by 

XRD alone.  

The micro-strain values of the CZTSe layers were calculated using the Williamson-

Hall analysis described in section 4.3.5 and are shown in figure 5.9. A progressive 

decrease of micro-strain value was observed with increasing temperature. An 

increase in the non-uniform strain would be expected to be a result of the 

displacement of the atoms from their ideal lattice positions and this would result in 

the broadening of the peaks in the patterns. The study confirms that high processing 

temperatures are required to decrease the micro-strain in the CZTSe film. An 

increase in micro-strain in the CZTSe might be related to an increase of the 

concentration of dislocations or point defects such as vacancies or antisite 

disorders. The Cu+ and Zn2+ cations have an identical number of electrons and this 

makes it difficult  to distinguish by conventional X-ray diffraction [55], it is therefore 

not possible to attribute or quantify the contribution of an increase of [ZnCu] or [CuZn] 

antisites to the peak broadening. Therefore, the decrease of micro-strain is 

attributed as a general improvement of the crystal quality of the films, evidenced by 

a greater grain growth, and a possible reduction of planar defects in them.  
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Figure 5.9. Micro-strain values derived from the Williamson-Hall method for the 

CZTSe samples at different temperatures. 

The presence of ZnSe would be expected to be associated with Zn-rich regions. To 

provide evidence for the presence of secondary phases, EDX mapping and point 

measurements were used to measure the elemental distribution. Surface features 

were identified in SEM micrographs of the CZTSe. Generally, the composition was 

uniform, however, the features were associated with Cu-rich and Zn-rich areas, 

where the respective Cu/(Zn+Sn) and Zn/(Cu+Sn) ratios were larger than 2. 

Compositions far from the Cu2ZnSnSe4 stoichiometric region would imply the 

existence of other phases, in this case, the results are consistent with small regions 

of Cu-Se and Zn-Se phases (Figure 5.10). 
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Figure 5.10. SEM surface micrograph of the surface of the Cu-Zn-Sn-Se sample 

selenised at 550 oC showing features with compositions acquired defined as 

“Stoichiometric”, “Cu Rich” and “Zn Rich” by EDX point measurements related to the 

presence of Zn-Se and Cu-Se phases 

The presence of Cu-Se binary phases was not predicted by the pseudo-ternary 

phase diagrams for Cu-poor compositions and the reason for their formation is still 

unclear. However, they may result from intermediate reactions during the formation 

of CZTSe. Segregation of the Zn-Se and Cu-Se phases in large grains was 

observed in the Cu-Zn investigation. These results allow it to be proposed that the 

ZnSe formation is associated with localised formation of Cu-Se binary phases or 

vice versa. Further studies are required to clearly identify the phases and to 

understand the role of intermediate reactions in the formation of CZTSe during the 

2-stage process. 

Morphological evolution for the CZTSe absorber layers was also observed. As the 

conversion temperature increased, the uniformity of the layers and the grain sizes 

increased. For the sample converted at 380°C, the morphology of the grains are 

granular and porous and they evolve as the temperature increases forming more 

compact and large grains as shown in figure 5.11. 
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Figure 5.11. SEM top view micrographs of the Cu-Zn-Sn samples selenised at 380 

oC (A), 430 oC (B) and 520 oC (C) showing an improved morphology with increasing 

conversion temperature.  

EDX measurements result in compositional information related to localised near 

surface regions compared to other techniques, such as XRF. In the Cu-Zn-Sn-Se 

set of samples, a decrease of the Zn relative content was indicated by the evolution 

of the Zn/(Cu+Sn) ratio with increasing conversion temperature. This is consistent 

with a reduction of Zn rich phases, such as ZnSe, at the surface with increasing 

conversion temperature. A similar trend in decreasing ZnSe on the surface was 

found by Fairbrother et al. [113].  

5.3.4 Analysis of the use of a Se cap layer  

In this chapter and also in chapter 6 an evaporated Se cap is used to provide the 

chalcogen needed to react with the metals and form the kesterite. One of the 

advantages of using an evaporated cap is that it should ensure a spatially uniformly 

supply of Se across the whole surface of the precursor layer. Another advantage is 

that the amount of Se used can be controlled. Initially, taking into account these two 

characteristics, one would think that it could be a better solution than other 

conventional ways to provide the Se such as pellets or powder in crucibles.  

After considering the positive effects of using an evaporated cap, the disadvantages 

of this method for delivering the Se to the sample, also need to be evaluated. The 
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first disadvantage is the total usage of the Se. In order to evaporate a cap several 

Se pellets were needed to fill the crucible of the evaporation system used for this 

step. Then, the crucible needs to be heated, and when a uniform evaporation rate of 

Se vapour was achieved, a shutter covering the crucible was opened and the 

deposition started. Each of the Se pellets weight between 50 and 70 mg. The 

thickness used for the experiments was 2.3 m. Aproximately 1g of Se was added 

to the crucible for each m of Se cap evaporated. This cap was evaporated on the 

surface of the whole sample, with an area equal to 19.76 cm2. With the density of Se 

(4.809 g cm-3), it is possible to calculate that the amount of Se supplied with the cap 

with this thickness is approximately 22 mg. By doing this, the ratio between the Se 

consumed during the evaporation and the Se introduced into the graphite reactors is 

significantly high. This suggests that the introduction of 2-4 Se pellets directly into 

the graphite box would appear to enable a significantly more efficient use of Se than 

using between 15-25 Se pellets required for the evaporation of the Se cap. This also 

offers a more efficient possibility to work with high Se partial pressure. 

One of the main disadvantages of the Se evaporated cap technique was not noticed 

at macroscopic level, where the samples showed good uniformity. A comparison of 

a picture of CZTSe absorbers synthesised with the Se cap method (section 3.3.1) 

and with Se pellets around the metallic precursor (Section 3.3.2) is shown in figure 

5.12. It can be observed that the Se evaporated cap provides greater uniformity at 

macroscopic level. The CZTSe films fabricated with Se pellets show non-

uniformities near the edges of the sample, adjacent to the locations of the Se 

pellets. 



94 

 

 

Figure 5.12. Comparison of the visual uniformity of a CZTSe absorber synthesised 

with the method described in section 3.3.1 with an evaporated Se cap (on top) and 

with method described in section 3.3.2 with Se pellets (bottom). The sizes of the 

samples shown in this figure are 25*50 mm2. 

At microscopic level, several localised features in the films, such as those shown in 

in figure 5.10 for the CZTSe films (also observed in figure 5.3 for Cu-Zn-Se films) 

were found when using SEM analysis of the surface of the samples. Selenisation 

experiments were performed in the laboratory at temperatures just above the 

melting point of the Se on Cu-Zn-Sn precursors. At a microscopic level it was 

possible to observe the formation of Se ball-like features on top of the Cu-Zn-Sn 

precursor, it was speculated that this may have been due to high surface tension 

between the Se in liquid phase and the flat surface of the precursor. A detailed study 

about the Se formation balls on Cu-Zn-Sn metallic precursors was being finalised by 

Mehrnoush Mokhtarimehr at Northumbria University at the time that this thesis was 

being written and a more complete study will be reported in future. The segregation 

of Se islands was also observed even at temperatures below the melting point of 

Se, as observed in the EDX mapping shown in figure 5.13 on a sample heated to 

160 ºC. This appears to show a recrystallization of the Se layer and segregation 

onto islands that are believed to then form the ball like features when the melting 

point of the Se has been reached. It is thought that this may result in a localised 
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reaction of the metal precursors and the Se liquid, creating the non-uniformities 

shown in the subsections 5.3.3 in the Cu-Zn-Sn-Se films (and 5.3.1 in the Cu-Zn-Se 

films). 

 

Figure 5.13. EDX phase map created with INCA software of a Cu-Zn-Sn precursor 

layer with a 2.3 m Se cap heated up at 160 ºC for 3 hours. The blue regions 

represent where just Se was detected by EDX and the yellow regions represent 

where just Cu, Zn and Sn was detected. 

5.4 Concluding remarks 

This chapter reports the analysis of the phase evolution in the Cu-Zn-Se, Cu-Sn-Se 

and the Cu-Zn-Sn-Se systems, processed using a two-stage process in which metal 

precursor layers  are sputtered onto glass substrates, selenium is evaporated on top 

of the sputtered metal layers and they are subsequently thermally treated to form 

metal-chalcogen phases. 

The selenisation of Cu-Zn metallic precursors under conditions similar to those used 

for the production of CZTSe absorber layers was studied. The results showed that 

the conversion of Cu-Zn results in the formation of separate Cu2-xSe and ZnSe 
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phases. ZnSe is formed in all the samples, and the evolution of the Cu-Se phases 

with conversion temperature has been presented. The segregation in the form of 

large grains is likely to be produced due to formation of Se balls in the liquid phase, 

which form due to the use of a Se cap, when the temperature is above the melting 

point of Se. 

The selenisation of Cu-Sn metallic precursors resulted in the formation of monoclinic 

Cu2SnSe3, in the whole range of temperatures studied. No ball formation was 

observed in this case. This might be due to the fact that the melting point of Sn 

(231.9 ºC) is close to that of Se. This allowed a good intermixing of the elements 

and led to the formation of the CTSe ternary uniformly. 

The synthesis of CZTSe via the selenisation of Cu-Zn-Sn precursors was also 

studied. XRD patterns confirm the formation of Cu2ZnSnSe4 over the range 380 °C 

to 550 °C. The presence of secondary phases such as ZnSe and CuxSe were 

identified with EDX mapping of the surface. It is possible to speculate that the 

formation of the secondary phases arises in a similar way to the segregation 

observed when selenising precursors in the absence of Sn. A decrease in the 

microstrain in the CZTSe is observed as the temperature increases. This may be 

due to a decrease of secondary phases, which might contribute to the breadth of the 

peaks observed in the XRD patterns. A decrease of the concentration of defects in 

the CZTSe, such as point defects or planar defects can also be responsible for this 

decrease in microstrain. 

As a general conclusion regarding the processing conditions, it has been evaluated 

that the use of a Se cap might not be the best option to incorporate the chalcogen 

into the film. When the Se recrystallizes on top of the sample, it forms islands on top 

of the precursor, which melt and then induces segregation of Cu2-xSe and ZnSe 

phases in the formation process of large grains. 
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These studies provided an insight into the formation mechanisms of CZTSe 

absorber layers. Issues regarding the selenisation process were also identified 

highlighting the problem of using an evaporated cap. This helped in redesigning the 

selenisation process, in which Se pellets were used as the chalcogen source. The 

changes in the selenisation process were not implemented for the set of samples 

discussed in chapter 6, which were fabricated in parallel to the samples presented in 

this chapter. 
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6 The influence of Cu content on CZTSe I: From 
Cu-rich to Cu-poor 

The previous chapter provided an insight into the formation of CZTSe absorbers. 

The crystalline quality of the CZTSe layers was shown to be greater for absorbers 

synthesised at the highest conversion temperature used (550 oC). Chapter 6 

presents the investigation of the influence of the Cu content on the morphology and 

microstructure of the CZTSe thin films synthesized using the 2-stage process and 

the 550oC conversion temperature. The investigation studies variations of the Cu 

content from Cu-rich to Cu-poor CZTSe. This study enabled the identification of 

microstructural properties related to the Cu content of the CZTSe phase of the 

absorber layers synthesised, as observed by XRD and Raman spectroscopy. 

This chapter is based on the following publication: 

J. Márquez-Prieto, Y. Ren, R. W. Miles, N. Pearsall, and I. Forbes, "The influence of 

precursor Cu content and two-stage processing conditions on the microstructure of 

Cu2ZnSnSe4," Thin Solid Films, vol. 582, pp. 220-223, 2015. 

6.1 Motivation and state of the art 

A key requirement for high performance absorber layers is control over their 

composition. In the literature, the best devices have been prepared with Cu-poor 

and Zn-rich compositions while very few devices are reported with high efficiencies 

when the absorber layers have Cu/(Zn+Sn) ratios over 0.9 [14]. A better 

understanding of CZTSe properties with respect to composition will help to identify 

optimum synthesis routes and the reasons why Cu-poor and Zn-rich compositions 

yield higher efficiency solar cells. In this study, the composition of the precursors 
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was varied to study the properties of Cu-rich and Cu-poor CZTSe, also reviewing 

the stoichiometric compositional point. The results compiled in this chapter became 

extremely important for the characterization of the defects in CZTSe, and their 

relevance is also highlighted in chapters 7 and 8. 

6.2 Specific experimental details 

 

Figure 6.1. Equivalent compositions of Cu-Zn-Sn metallic precursors plotted into the 

pseudo ternary phase diagram of Dudchak et al [62].  

Three compositions of the precursors were investigated, from the Cu-rich to the Cu-

poor region passing through the “stoichiometric composition” with reference to the 

CZTSe pseudo-ternary phase diagram of Dudchak et al [62], and they are 

represented in figure 6.1. These sets of samples are referred to as Cu-poor, Cu-

stoichiometric and Cu-rich respectively in this chapter as the Cu content increases. 

The compositions of the precursors produced for the study are compiled in table 6.1 
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with some relevant sputtering conditions. The selenisation process was carried out 

as described in section 3.3.1 at 550 ºC for 30 minutes. 

Table 6.1 Sputtering conditions for the Cu-Zn-Sn precursors used in this chapter. 

 EDX-

Precursors 

Deposition 

time (min) 

Power (W) 

Sample Cu/(Zn+Sn)  Cu tgt. Zn tgt. Sn tgt. 

Cu-poor 0.84 30 130 70 140 

Cu-stoichiometric 0.98 30 150 70 140 

Cu-rich 1.11 30 170 70 140 

6.3 Results and discussion 

The general discussions applied in chapter 5, for the characteristics of the CZTSe 

samples processed at 550 ºC, are also applicable in this chapter. These include the 

presence of ZnSe, and local inhomogeneities found at the microscopic level in the 

absorbers. This chapter will be focused on the influence of the variation of the Cu 

content in the precursor and therefore in the CZTSe rather than repeat the 

discussion of the inhomogeneity results. 

6.3.1 Influence of Cu content in CZT precursors 

The influence of the Cu content in the CZT metallic precursors was also explored by 

means of XRD and SEM analyses. The XRD patterns of precursors with different Cu 

content are shown in figure 6.2. In order to show clearly the evolution of the patterns 

with Cu content, a diffractogram of a precursor layer with a lower Cu content 
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[Cu/(Zn+Sn)=0.7] is also shown. This precursor composition was used for the 

synthesis of CZTSe samples presented in chapters 7 and 8. The main peaks found 

in the patterns were attributed to Cu-Zn and Cu-Sn alloys as reported by our group 

[72]. In addition to these alloys, reflections attributed to elemental Sn increase in 

intensity when the Cu content decreases as observed in the diffractograms of figure 

6.2. This is in agreement with Hutchings studies of  the microstructure of Cu-Zn-Sn 

sputtered precursors [145]. This implies that the availability of Cu limits the alloying 

degree of the precursors.  
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Figure 6.2 XRD patterns of CZT precursors on Mo/SLG substrates with different Cu 

content. The peak unlabelled at 40º corresponds to the Mo back contact as also 

shown in the patterns of chapter 5. 
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Figure 6.3 SEM micrographs of the Cu-poor, Cu stoichiometric and Cu-rich CZT 

precursor layer from the cross sectional (left column) and top view (right column) 

The increase of elemental Sn in the precursor influenced the morphology of the films 

which were rougher when the Cu content was decreased (or elemental Sn 

increased). These changes can be observed in the SEM micrographs presented in 

figure 6.3. An increase in roughness for the Cu-poor sample is clear in the Cu-poor 

cross-section images (left hand side of figure 6.3), which also presents a different 

morphology in the top view micrograph. It is speculated that this may be associated 

with the segregation of elemental Sn in the sample. It can be seen that the 

precursors grow in a near columnar morphology, forming alloys, as shown in the 

XRD patterns, and not in multilayer structure, as was suggested in previous studies 
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or might have been expected when considering the method by which the precursors 

were deposited (described in chapter 3) [19]. 

The influence of the microstructure on the formation of CZTSe is not very clear, at 

present, and is a subject that requires further study. In the literature, for 

electrodeposited precursors, the presence of elemental Sn was proposed as a 

source of blistering in the films [74].  

6.3.2 Composition and morphology 

SEM top view images of the CZTSe samples prepared with different Cu content are 

shown in figure 6.4. An increase in grain size is observed with increasing the Cu 

content in the precursor. The average values of grain sizes measured with the INCA 

software from Oxford from the SEM images of figure 6.4 are plotted in figure 6.5. 

The reasons for the increase are still unclear but  might be due to a liquid-phase 

assisted growth process promoted by CuxSe (x≥1) phases, similar to those found for 

chalcopyrites, which are present in Cu-rich layers even after completion of the 

selenisation process [146]. If this is similar to the growth process in CIGSe, 

introducing a Cu-rich step could lead to beneficial effects in the formation of CZTSe.  

However, it has been reported that similar device performance could be achieved 

with Cu-rich and Zn-rich growth strategies for coevaporated CZTSe [147]. 

Therefore, the potential benefits of introducing a Cu-rich step in the growth of 

coevaporated CZTSe absorbers are not clearly understood yet. 
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Figure 6.4 SEM top view of the CZTSe samples with Cu-poor composition (A), Cu-

stoichiometric (B) and Cu-rich compositions (C). 
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Figure 6.5 Average values of grain size measured on the SEM images plotted for 

each composition showing the standard deviation. 

6.3.3 XRD of the CZTSe absorbers and microstructural 
analysis 

Figure 6.6 shows the XRD patterns acquired from the Cu variation study. The 

diffractograms confirm the formation of CZTSe for all three compositions tested. The 

pattern corresponding to the Cu-rich sample shows a small shoulder on the left hand 

side of the 220/204 peak.  This is attributed to the presence of Cu2-xSe (ICSD- 

59956), in agreement with what is expected from the quasi-ternary phase diagram 

shown in figure 6.1 [62]. 

The Williamson-Hall analysis yielded different values for micro-strain depending on 

the composition of the films. Figure 6.7 shows the calculated values of micro-strain 

with the variation of Cu content. 
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Figure 6.6 XRD patterns of the CZTSe samples with Cu-poor, Cu-stoichiometric 

and Cu-rich compositions. The arrow indicates reflections indicating the presence of 

Cu2-xSe in the Cu-rich sample. 
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Figure 6.7 Plot showing the variation in microstrain values of the CZTSe samples 

with Cu-poor, Cu-stoichiometric and Cu-rich compositions. 
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The analysis shows a clear trend: the micro-strain values increase with decreasing 

Cu content of the precursor. An increase in the non-uniform strain would be 

expected to be a result of the displacement of the atoms from their ideal lattice 

positions and this would result in the broadening of the peaks in the patterns. An 

increase in micro-strain in the CZTSe might be related to an increase in the 

concentration of dislocations or point defects such as vacancies or antisite 

disorders. Considering that the cations Cu+ and Zn2+ have an identical number of 

electrons, making them hard to distinguish by conventional X-ray diffraction [55], it is 

therefore not possible to quantify the contribution of an increase of [ZnCu] or [CuZn] 

antisites to the peak broadening. However, an increase in [VCu] or in the number of 

stacking faults or dislocations could be a source of the increase in the calculated 

microstrain observed when the Cu content is decreased. In fact, it has been 

suggested that in Cu-rich CuInSe2 the concentration of stacking faults is significantly 

reduced compared to Cu-poor [148]. It is also possible to conclude that the 

presence of Cu2-xSe in the Cu rich sample does not lead to an additional increase in 

microstrain in the CZTSe phase, when compared to the samples with less Cu 

content, where this secondary phase was not detected. 

6.3.4 Raman spectroscopy of the CZTSe films  

Raman measurements on the films, shown in figure 6.8, also indicated that the 

crystalline quality of films with Cu-poor composition was poorer, with an 

asymmetrical broadening to the lower wavenumber side of the main Raman peak at 

197 cm-1. It can also be seen that the relative intensity of the modes at 168-173 cm-1 

decreases for the Cu-poor sample, with respect to the mode at 197 cm-1. Djemour et 

al. attributed this asymmetrical contribution to the main Raman A mode to phonon 

confinement because of the presence of lattice defects in the scattering volume 
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[149]. Recently, Rey et al. attributed the broadening of the mode at 197 cm-1 and the 

relative decrease and broadening of the peak at ~170 cm-1 to an order-disorder 

transition of CZTSe, in other words, to an increase of the concentration of [CuZn] and 

[ZnCu] antisite defects. The results presented in the current chapter show that this 

asymmetrical broadening is composition dependent and related to Cu-poor absorber 

layers, which is consistent with these defects being related to a Cu deficit in the 

CZTSe structure. Ab initio calculations predicted that when the material becomes Cu 

poor, the concentration of [VCu + ZnCu] and [ZnSn + 2ZnCu] increases exponentially 

[60]. The presence of these defect clusters might be one of the reasons why Cu-

poor Zn-rich compositions are required for high performance CZTSe solar cells [11] 

and may be associated with an increase in the micro-strain calculated from XRD 

data and with the evolution of the main Raman modes observed for the samples 

with Cu-poor compositions. The peak at 173 cm-1 is a convolution of two A modes 

arising from Se vibrations and two B modes from Cu-Sn and Cu-Zn vibrations, 

whereas the peak at 197 cm-1 corresponds just to Se vibrations. A decrease in the 

relative intensity of the peak at 173 cm-1, as observed for the Cu-poor sample, might 

be associated to Cu deficit in the lattice, and very possibly linked to an increase of 

the concentration [VCu + ZnCu]. This will be discussed in more depth in chapter 7, 

which describes a study of the Cu-poor, and Zinc-rich region of the compositions of 

CZTSe. 
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Figure 6.8 Raman spectra normalised to the A mode at 197 cm-1 with precursor 

composition defined in the text as “Cu-poor” (black), “Cu-stoichiometric” (blue) and 

“Cu-rich” (red) respectively.  

6.3.5 Solar cells properties and limitations of the 
conversion process using a Se evaporated cap 

The standard process for solar cell fabrication described in chapter 3 was used to 

produce devices from equivalent Cu-poor to Cu-rich samples presented in this 

chapter. The devices did not show photo activity which led to a review of the 

synthesis process. It was possible to tentatively attribute the poor performance of 

the devices to several features related to the synthesis observed in the samples 

presented in chapters 5 and 6 and these are discussed below: 

 Local segregation of secondary phases: Cu2-xSe and ZnSe secondary 

phases were observed at the microscopic level, even in Cu poor samples as 

highlighted in section 5.3.3. This could affect the device performance as 
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previously discussed. Among other problems highlighted in chapter 5, the 

removal of copper selenide phases due to localised segregation and through 

the thickness of the absorber layers, may lead to pinholes that would be 

expected to increase the number of shunting paths in the devices. Visual 

inspection of the samples confirmed the presence of pinholes in the as 

converted samples, leading to the conclusion that the synthesis process 

should be reviewed. 

 Low Se partial pressure: A low partial pressure of Se during the selenisation 

process may lead to the surface decomposition of the CZTSe [150], the 

creation of selenium vacancies [151] or other factors that would affect the 

device performance. In conversion that uses graphite reactors, it is very 

difficult to accurately control the partial pressure of Se during the selenisation 

process. This is partly due to the lack of the control over the following: 1) 

leakage of vapour from the graphite boxes, 2) the temperature distribution in 

the tube furnace, and 3) the variation of these parameters with time. All 

these issues, are currently highly system related and make the 

reproducibility between different systems very challenging to achieve. This is 

also highlighted by the fact that in several groups, the best conversion 

parameters of CZTSe from metallic precursors are significantly different, i.e. 

[71, 80, 87, 152]. The leakage of Se vapour from the graphite reactor will be 

enhanced at lower background pressures. For the samples produced in 

chapters 5 and 6 the background pressure was 1 mbar. This parameter was 

one of those selected for review to improve the fabrication process of the 

CZTSe absorbers. 

The actions taken towards improving the conversion process are highlighted at 

the beginning of the next chapter and were described in section 3.3. 
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6.4 Concluding remarks 

The study of the influence of temperature and Cu content on the precursor for the 

synthesis of CZTSe by a 2-stage process has been presented. XRD analysis 

confirms the formation of CZTSe over the whole range of compositions investigated. 

Micro-strain values of the CZTSe phase decreased with increasing the Cu content of 

the precursors. The increase observed in micro-strain with the decreased Cu 

content in the films is consistent with an increase in the concentration of defects. 

Additionally, Raman measurements show that, for the Cu-poor composition, the red 

shift of the main mode at 197 cm-1 with an asymmetrical broadening is also 

consistent with an increase of defect concentration in the lattice and is related to a 

deficit of Cu in the crystal structure. The relative intensity of the Raman peak at 173 

cm-1 to the one at 197 cm-1 depends on the Cu content in the CZTSe lattice. 

SEM images reveal an increase in grain size with increasing Cu content in the 

samples. The present study contributes to the subject field by improving the 

understanding of the influence of the composition on the crystalline properties of 

selenised CZTSe thin film absorber layers.  

Devices processed with the absorbers synthesised for this chapter did not show any 

photoactivity. The potential problems that could explain this were discussed and 

actions to mitigate these problems will be presented in the following chapter.
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7 The influence of Cu content II: Investigation of 
Cu-poor and Zn-rich CZTSe absorber layers 

The aim of this chapter is to explore and answer the question “how Cu-poor do we 

need to grow the CZTSSe based absorbers for maximising the performance of the  

devices?” To do so, the chapter explores how the Cu content in the CZTSe affects 

the microstucture of the aborber layers, and the performance of the solar cells within 

the compositional range required for device quality, commonly known as Cu-poor 

and Zn-rich. In addition, an important change in the synthesis of the CZTSe films, 

related to the selenisation step, is introduced in this chapter in comparison to 

chapters 5 and 6. 

In the previous chapter, several issues were highlighted in relation to the 

selenisation step of the synthesis of CZTSe absorbers that were potentially limiting 

the quality of the films with regards to producing efficient solar cells. Some actions 

were taken to mitigate these issues and are detailed in chapter 3, in a comparison 

between the tube furnace and the rapid thermal conversion processess explained in 

sections 3.3.1 and 3.3.2 respectively. Qualitatively, and for the clarity of the reader, 

some of the main changes in the selenisation process can be summarised in the 

following points: 

 A change in the Se source from a Se capping layer to Se pellets inside the 

graphite reactor. 

 An increase the amount of Se in the reactor from ~22 mg with the Se cap to 

~250 mg by introducing 4 Se pellets in the reactor. 

 The use of a graphite reactor with lid attached with screws. 
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 The increase of the background pressure of the inert gas from 1 mbar to 850 

mbar. 

 A change from a large quartz tube furnace to an Annealsys RTP. 

This chapter is partly based on the following publication: 

J. Márquez, M. Neuschitzer, M. Dimitrievska, R. Gunder, S. Haass, M. Werner, et 

al., "Systematic compositional changes and their influence on lattice and 

optoelectronic properties of Cu2ZnSnSe4 kesterite solar cells," Solar Energy 

Materials and Solar Cells, vol. 144, pp. 579-585, 2016. 

7.1 Motivation and state of the art 

In the previous chapter, the influence of the Cu composition on the microstructure of 

the CZTSe absorbers was studied. It was concluded that when the CZTSe 

absorbers had Cu deficit, the defect concentrations of these samples were 

significantly higher than in the samples without Cu deficit according to the 

stoichiometry of the Cu2ZnSnSe4 compound (2:1:1:4).  

It has been reported several times in the literature that Cu-poor and Zn-rich 

compositions are needed to make high efficiency solar cells [11]. However, more 

experimental data regarding composition is needed in order to determine how the 

variation in the metal ratios affects the crystal structure of CZTSSe compounds in 

thin films and the correlation with the optoelectronic properties of the solar cells 

processed from them.  When different publications where solar cells and their 

compositions are reported and compared, it is difficult to identify trends and 

therefore difficult to conclude why the devices work better within certain values of 

composition. With the addition of experimental errors in the compositional 

measurements, different calibration methods, and different techniques used for 
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measuring, it is even more difficult to define certain values of compositions and 

relate them to the properties of the solar cells. 

 The main parameter that it is being tracked for kesterites is the open circuit voltage 

of the solar cells, since it most significantly differs between CZTSSe and CIGS solar 

cells. The open circuit voltage deficit, defined as Eg/q – VOC, is substantially larger 

for CZTSSe devices with values close to 600 mV compared to CIGSe devices which 

generally present VOC deficits less than 500 mV [15]. There are several possible 

explanations for the VOC deficit that CZTSSe devices currently present. Firstly, 

Cu2ZnSnSe4 (CZTSe) and Cu2ZnSnS4 (CZTS) present a very narrow stoichiometric 

region [62, 124, 153]. In addition, it has been demonstrated that at high 

temperatures, when in contact with metallic Mo which is normally used for the back 

contact in kesterite solar cells, CZTSSe decomposes [73, 154]. It has also been 

proven that  high chalcogen partial pressures are required when crystallising the 

CZTSSe in order to avoid the decomposition of the absorber layer on the surface 

[150] that leads to a decrease in the photovoltaic performance of the devices. In the 

bulk of the absorber layer, many questions are still to be resolved regarding the 

crystal structure of these materials. A better understanding of the formation and 

impact of defects needs to be developed in order to decrease the current VOC deficit 

of the kesterite devices [17]. A combination of neutron and X-ray diffraction analysis 

demonstrated that CZTSe and CZTS crystallises in the kesterite type structure and 

also that CuZn and ZnCu antisites in the (001) planes at z = 1/4 and 3/4  are present 

in high concentration opening the discussion of how ordered are the synthesized 

kesterite type compounds [55]. The order-disorder transition has been studied by 

Scragg et al. for CZTS [58], Kraemmer et al. for CZTSSe [61] and Rey et al. for 

CZTSe [60]. It has been concluded that this transition can change the effective 

bandgap of the material by more than 100 meV, thus affecting the VOC of solar cells 
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synthesized from the same absorbers with different degrees of ordering [155]. This 

chapter also aims to partly address the problem of the Cu-Zn disorder and how this 

is affected by variations in composition. 

First principle calculations have explained theoretically why Cu-poor, Zn-rich 

kesterite solar cells should be of higher efficiency [11]. It was concluded that VCu 

could contribute to p-type conductivity. It was also shown that some self-

compensated defect clusters [VCu + ZnCu], [ZnSn + 2ZnCu] and [2CuZn + SnZn ] have 

low formation energy and can be present in high population either in CZTS and in 

CZTSe. [2CuZn + SnZn ] could induce electron-trapping effects and [VCu + ZnCu ] 

could induce a downshift in the valence band that might be beneficial for the solar 

cell performance, helping the electron-hole separation. 

As introduced in section 2.2.3,  Lafond et al. studied the most realistic substitution 

reactions for Cu-poor CZTS concluding that two types of defects were the most 

likely to be formed: [Zn2+ + VCu] (A-type, presenting Cu poor and Zn rich 

composition) and [2Zn2+
Cu + Zn2+

Sn] (B-type, presenting Cu poor and Sn poor 

composition) [68]. In a solid state nuclear magnetic resonance (NMR) study, Paris et 

al. demonstrated the presence of [VCu + ZnCu] and [2Zn2+
Cu + Zn2+

Sn] for A-type and 

B-Type CZTS respectively [156]. The reader is referred to chapter 2 for the 

explanation of the plot correlating the different defect type lines with composition, 

which is used in the following sections of this chapter. 

7.2 Specific experimental details  

Cu-Zn-Sn metallic precursor layers were deposited on Mo coated SLG glasses as 

described in chapter 3. Three different compositions of precursors were used for this 

study. The sputtering conditions of the production of the set of samples with different 
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Cu content are summarised in table 7.1. The precursor used for the preparation of 

Sample 1 belongs to the same deposition batch as the Cu-poor sample of chapter 6. 

For an easier understanding of this chapter, the samples prepared with the three 

different compositions will be referred as Sample 1, Sample 2 and Sample 3 as the 

Cu/(Zn+Sn) ratio decreases in the films and the composition moves away from the 

stoichiometric point in the pseudo-ternary phase diagram (see figure 7.1). 

Table 7.1 Sputtering conditions for the Cu-Zn-Sn precursors used in this chapter. 

 XRF-

Precursors 

Deposition 

time (min) 

Power (W) 

Sample Cu/(Zn+Sn)  Cu tgt. Zn tgt. Sn tgt. 

Sample 1 0.90 30 130 70 140 

Sample 2 0.70 35 120 70 140 

Sample 3 0.65 40 110 70 140 

 

The selenisation process was carried out by RTP at 500 ºC for 15 minutes as 

described in section 3.3.2. 

7.3 Results and discussion 

7.3.1 Composition of the CZTSe absorbers 

To show a clear comparison, the metal compositions of the absorber layers 

produced in this study are plotted in figure 7.1 in the pseudo-ternary phase diagram 

(TPD) reported by Dudchak et al [62]. The metal atomic composition of the 
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precursors and absorber layers was measured either by EDX at 20 kV from the top 

view or with XRF, and the values can be seen in table 7.2. A comparison of the 

composition between the precursors and the absorbers measured by XRF shows 

that the Cu/(Zn+Sn) ratios increase after the selenisation process. The Zn and Sn 

loss is attributed to the formation of volatile compounds of both constituents [20]. 

The Zn/Sn ratios seen for Sample 2 and Sample 3 increase after the selenisation 

process, indicating an increase of the Sn loss as the Cu content decreases in the 

precursor, as also observed by Collord et al [21]. 

 

Figure 7.1.  Pseudo-ternary phase diagram showing the average composition of the 

CZTSe absorber layers of this study measured with XRF represented with dots and 

EDX represented with crosses. As the points shift away from the stoichiometric 

point, the Cu content decreases moving from the Sample 1 (red), to the Sample 2 

(blue) and then Sample 3 (black). 
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Table 7.2. Compositional atomic metal ratios of the Cu-Zn-Sn and CZTSe absorber 

layers of the study presented. The technique used for measuring the composition is 

specified at the top of each column. 

 

As discussed in chapter 5, EDX compositional measurements could be influenced 

by the presence of secondary phases on the surface such as ZnSe or CuxSe 

providing values that do not necessarily correspond to a representative average 

composition of the absorber layer [157]. Therefore, a combination of EDX and XRF 

measurements could be useful to compare and especially to make sure that the 

trends of composition studied are consistent. Differences are observed between the 

two measurements. Apart for the difference in penetration depth of each technique, 

this variation could be attributed to several factors such as the calibration used for 

each method. The main difference observed between the measurements is that, for 

the samples of this study, in both the precursors and the absorbers, the apparent Cu 

content is higher when measuring with XRF. The average composition of the films 

measured with the two techniques follows the same variation, with the difference 

between them being the variation in Cu content. Qualitatively, it is possible to 

observe that “Sample 2” and “Sample 3” have compositions far from the 

 [XRF-Precursors] [XRF-CZTSe] [EDX-CZTSe] 

Sample Cu/(Zn+Sn) (Zn/Sn) Cu/(Zn+Sn) (Zn/Sn) Cu/(Zn+Sn) (Zn/Sn) 

Sample 1 0.90 1.03 0.99 1.04 0.86 1.00 

Sample 2 0.70 1.09 0.80 1.18 0.75 1.17 

Sample 3 0.65 1.12 0.72 1.28 0.66 1.24 
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stoichiometric region. The reactive annealing process used for the synthesis of the 

CZTSe absorbers uses fast ramping rates. The ternary phase diagram, which 

applies to equilibrium conditions at 400 ºC, might not be the most adequate tool for 

estimating the amount and presence of secondary phases in the film as was 

discussed in chapter 2. However, it can provide an idea of which potential 

secondary phases might be present in the absorber layers. As the Cu content in the 

film decreases, the compositions plotted in the ternary phase diagram are located in 

the ZnSe-SnSe2-CZTSe region so one could predict the possible presence of ZnSe 

and SnSex particularly in “Sample 2” and “Sample 3”. 

7.3.2 Raman spectra and prediction of defects 

The metal compositions of the samples are plotted along the off-stoichiometric type 

lines in figure 7.2.a. As the Cu decreases from Sample 1 to Sample 3, the points 

move towards the A-type line, predicting an increase in the concentration of [VCu + 

ZnCu] [68]. Raman spectra of the CZTSe absorbers measured with 532nm excitation 

are shown in figure 7.2.b. All peaks observed in the spectra are attributed to the 

Raman modes of the CZTSe phase [116]. For the analysis presented here, the 

discussion is focused in two main peaks:  

 The most intense peak centred at ~197 cm-1 which is attributed to A 

symmetry mode and involves purely Se anion vibrations [158]. 

 A broad peak centred at around 170 cm-1 which could be attributed to the 

convolution of two A modes (corresponding to Se vibrations) and two B 

modes (involving mostly Cu/Zn and Cu/Sn  atomic plane vibrations [159]) 

The three spectra are normalised to the most intense peak at ~197 cm-1. When the 

Cu content is decreased in the absorber layers, the relative intensity of the peak at 
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170 cm-1 decreases. In chapter 6, it was observed that the intensity of this peak with 

respect to the A mode at 197 cm-1 was very sensitive to the Cu content in CZTSe 

thin films, decreasing when there was Cu deficit in the structure [117]. When the 

Cu/(Zn+Sn) ratio decreases and the composition moves away from the 

stoichiometric point towards the Cu poor region in the ternary phase diagram shown 

in figure 7.1, the relative intensity of the band at 170 cm-1 also decreases. One 

possible explanation for this decrease is that it is related to an increase in the 

concentration of [VCu + ZnCu], which has been theoretically predicted to be present in 

high population in Cu poor CZTSe [11]. This could decrease the intensity of the B 

modes appearing in this region corresponding to the vibrations of Cu/Zn and Cu/Sn 

atomic vibrations, as reported in [116], which would lead to the overall decrease in 

the intensity of the peak cantered at 170 cm-1. The inset in figure 7.2.b shows a 

magnification of the Raman spectra centred at the A mode at 196 cm-1. When 

looking in detail at the position of this peak, one can observe that for “Sample 2” and 

“Sample 3” it is blue shifted in comparison to “Sample1”. Rey et al. observed a blue 

shift of the A mode that could be related to an increase in the ordering in the 

samples of their study. [60]. In this study, it could be an indication that the two 

CZTSe thin films with less Cu content are more ordered than the one with 

composition near to the stoichiometric point. This is in agreement with the study of 

Paris et al.  where they observed that Cu poor CZTS samples with predominant [VCu 

+ ZnCu] defect clusters presented an increase in the ordering of the Cu and Zn 

cations in the 2c and 2d positions [156]. It is also appropriate to state that the 

opposite has been suggested for CZTS samples grown by flash evaporation and 

subsequent annealing [160]. 

Because of the large deviation of the composition of the CZTSe layers compared to 

the stoichiometric point and that the presence of ZnSe could be expected, Raman 
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spectroscopy measurements with a blue laser were also performed to identify if 

ZnSe was present in the samples [161]. Several spots were probed in each sample 

and it was concluded that within the detection limits of this technique, no ZnSe was 

found in the surface of these set of samples. 

 

Figure 7.2 a) Positions of the samples 1-3 in the Cu/(Zn+Sn)-Zn/Sn plot indicating 

the off-stoichiometric type. b) Raman Spectra of the Sample 1 (blue), Sample 2 

(grey) and Sample 3 (black) acquired with 532 nm excitation wavelength. The inset 

shows a magnification of the main A mode at around 197 cm-1. 

7.3.3 XRD of the CZTSe absorbers 

Le Bail analysis was performed on the XRD patterns acquired at different GI angles 

for the CZTSe absorbers layers in order to have an accurate calculation of the lattice 

parameters. An example of one of the refinements of the patterns was provided in 

section 4.3.4. All the refinements performed for the samples of this chapter had an 

X2 value below 2. This subsection is focused on the results obtained from the 

refinements. The diffractograms acquired at a GI angle of 1o are shown in figure 7.3. 

No secondary phases could be detected with this technique in the absorbers of this 
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study. This is particularly interesting, since the composition of Sample 2 and Sample 

3 are far away from the stoichiometric region of CZTSe and, if there was a 

quantitative presence of SnSex, then this technique should indicate it. The diffraction 

patterns were measured with low incidence angle of 0.5, 1 and 2º acquiring 

information from the near surface and bulk region of the absorbers. This allowed us 

to reduce the potential variations in the lattice parameter calculations induced by 

uniform strain created by the growth of MoSe2 at the interface with the back contact. 

In addition, the acquisition of data from the near surface region ensures a more 

reliable comparison with the penetration depth of the laser used for recording the 

Raman spectra (~100nm).  

 

Figure 7.3 XRD patterns of the CZTSe absorbers acquired for a grazing incidence 

angle of 1o. 
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Figure 7.4 Lattice parameters of the of the CZTSe absorber layers calculated from 

the patterns acquired for different grazing incidence angles. 

Figure 7.4 shows a comparison of the lattice parameters obtained for the CZTSe 

absorber layers of this study. The lattice constant a does not appear to be 

influenced by the variations in composition, although the lattice constant c 

decreases significantly when the Cu content in the samples is decreased. It is 

possible to observe a small shift of the lattice parameters in the three samples for 

the incidence angle (ω) of 0.5º. This could be due to diffraction when close to the 

critical angle. Schorr studied the temperature behaviour of the lattice parameters of 

CZTS, where a monotonic decrease of the lattice parameter a was observed with 

decreasing temperature [55]. A different behaviour was observed for c, where a kink 

indicating a more abrupt reduction of the lattice constant was observed starting at 

around 260ºC. This temperature was estimated to be the order-disorder transition 
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temperature of this compound [58]. Additionally, Cu/Zn disorder has been predicted 

to expand the unit cell volume mainly by an increase in the value of c, suggesting 

that an accurate estimation of the lattice parameters can provide valuable 

information related to order-disorder in CZTSSe materials. These results show that 

the lower the Cu content of the CZTSe samples, the lower is the value of c and 

therefore a lower value of the tetragonal deformation (c/2a). The decrease in the 

value of c is in agreement with the theory of the increase in ordering of Cu/Zn (001) 

planes, as well as the results obtained from Raman spectroscopy.  

7.3.4 Solar cell properties 

The dark and illuminated current density-voltage (J-V) curves are represented in 

figure 7.5.a. Current-voltage characteristics values of the best devices processed 

with the CZTSe absorbers with different compositions within the Cu-poor and Zn-

rich region are shown in table 7.3 and in figure 7.5 c, d, e and f with the average and 

maximum values of 9 cells measured in each sample category. It is possible to 

observe an increase in the performance of the devices when the Cu content in the 

absorber layer is decreased. This increase in performance is mainly driven by an 

increase in VOC, from 367 mV to 434 mV. EQE measurements of the solar cells with 

different compositions are also presented in figure 7.5.b. The three devices present 

EQE values around 80-90 % between 500 and 900 nm. It is also possible to see 

interference in this range that may lead to loss in current. This is attributed to the 

TCO which in the case of these samples is about 700 nm thick with the aim of 

having a safer contact with sharp probes for electrical characterisation, since a front 

grid was not evaporated on these devices. The bandgap, Eg, of the devices is 

calculated from the inflection point of the decay of EQE at long wavelength. The 

values obtained are also shown in table 7.3. This method has already been used in 
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highly efficient CZTSSe solar cells for calculating the bandgap and for evaluating the 

tail profile associated with potential fluctuations and bandgap fluctuations. The 

derivative method was also assumed to be the most robust for the calculation of Eg 

values [121].  It is interesting to observe that a difference in the bandgap of around 

70 meV can be found between Sample 1 and Sample 3. This difference can also 

explain the increase in VOC  of around 70 mV in the case of the best cells and an 

increase of around 50 mV in the average values as shown in figure 7.5.d. VOC varied 

from 367 to 434 mV when changing composition of the best devices from Sample 1 

to Sample 3, the one with the lowest Cu content of the series. A similar trend with 

decreasing Cu content and increasing Zn/Sn ratio has also been identified for the 

CZTSSe solar cells [162]. 

Table 7.3.  Electrical parameters of the best CZTSe solar cells fabricated with 

different compositions. The values of JSC between parentheses are calculated from 

the integration of the EQE with the AM 1.5 solar spectrum. The efficiency values are 

calculated from the measured values of JSC. The corrected efficiency of Sample 3 

with the value of JSC calculated from the EQE is also shown in parentheses. 

Sample Voc 

(mV) 

Jsc 

(mA/cm
2

) 

FF (%) Eff (%) Eg 

(eV) 

Sample 1 367 33.0 (33.3) 56.8 6.9 1.00 

Sample 2 411 34.0 (34.1) 56.2 7.9 1.04 

Sample 3 434 31.2 (32.8) 59.6 8.1 (8.5) 1.07 
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Figure 7.5 a) Current density – voltage (JV) curves and b) EQE of the best solar 

cells of each sample of this study. c), d), e), and f) show a summary of the average 

and standard deviation of the main optoelectronic parameters for the different 

devices (based on an average of 9 representative cells from each sample). 

Maximum values and the values for the best cells (highest efficiency) of each 

sample are also represented. 

Variations in the crystal structure that the CZTSSe material adopts leads to different 

optoelectronic properties.  In order to discuss the VOC increase observed in the 
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devices, several considerations regarding the bandgap dependency with the crystal 

structure of CZTSSe compounds need to be taken into account. Using different 

calculation methods, it is found that there could be a variation of around 150 meV 

between CZTSe in the kesterite or stannite crystal structure [163-165].  Rey et al., in 

an experimental study of the order-disorder transition in CZTSe co-evaporated thin 

films, observed an increase in bandgap from 0.94 to 1.06 eV after an ordering 

procedure. It is also important to consider how different point defects generated by 

differences in composition could induce significant differences in the bandgap. 

Charge compensated defect clusters have been calculated to be present in high 

concentration and to highly contribute to the non-stoichiometry of CZTSe. In 

particular [VCu + ZnCu] induces a downshift of the valence band maximum and an 

upshift of the conduction band minimum [11]. 

In the previous section, it was shown that Raman and GIXRD measurements 

performed in the absorber layers suggest that the concentration of [VCu + ZnCu] 

defect clusters increases with decreasing Cu content. This constrains the disorder in 

the Cu-Zn 2c and 2d positions, thus, increasing the Eg of the CZTSe absorber 

layers leading to an increase in the VOC of the fabricated solar cells. In addition, 

while the Cu content in the CZTSe absorber layers decreases and the Zn/Sn ratio 

increases, in theory, it has been predicted that the concentration of the detrimental 

complex [2CuZn + SnZn] decreases, producing a downshift of the conduction band 

edge and reducing electron trapping, thus increasing the solar cell performance [11]. 

7.4 Concluding remarks 

CZTSe absorber layers with a variation of Cu-poor and Zn-rich content have been 

synthesised in order to investigate the correlation of modifications observed in the 

crystal structure with the optoelectronic properties of CZTSe devices. Raman 
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spectroscopy suggests an increase in [VCu + ZnCu] defect clusters as the 

[Cu/(Zn+Sn)] ratio decreases and [Zn/Sn] ratio increases. This is observed from the 

change in intensity of the band at around 170 cm-1 relative to the band at 197 cm-1. 

Le Bail analysis has been performed for the X-ray diffraction patterns of the CZTSe 

absorber layers in grazing incidence configuration. In the same compositional trend, 

while the lattice parameter a remains constant, c decreases. J-V results showed a 

dependence of the VOC values on the Cu content ranging from 367 to 434 mV as the 

Cu concentration decreased in the absorbers. EQE shows that the increase in the 

maximum achievable VOC appears to be linked to a widening of the bandgap. The 

best solar cell was based on the absorber layer with the lowest Cu content and 

yielded an efficiency of 8.1% with a fill factor of 59.8 %, JSC = 31.1 mA/cm2 and VOC 

= 434 mV. It has been proposed that the widening of the bandgap is attributed to an 

increase of the concentration of the [VCu + ZnCu] defect cluster which induces 

ordering in the Cu/Zn (001) planes of the CZTSe. The results observed in the series 

of the presented devices show a good agreement with theoretical calculations 

regarding the influence of the defect clusters on the optoelectronic properties of 

CZTSSe solar cells. This chapter also demonstrates that the changes implemented 

in the selenisation process with respect to the samples produced for chapter 5 and 6 

led to a significant improvement in the quality of the films, producing highly efficient 

CZTSe devices and introduces the reasonable next step in this research: the 

optimisation of this selenisation process.  The first approach towards a better 

understanding of the influence of the properties of the CZTSe absorbers and how 

they are influenced by the processing conditions after the modifications will be 

covered in the next chapter with a study of the influence of the temperature in this 

process. 
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8 The influence of conversion temperature on the 
synthesis of Cu-poor Zn-rich CZTSe 

The aim of the chapter is to present the investigation that explored the temperature 

of the synthesis process of CZTSe absorber layers used for solar cells. The 

previous chapter discussed the influence of Cu content in Cu-poor and Zn-rich 

CZTSe absorbers synthesized at 500º C that led to an 8.1 % efficient solar cell. In 

chapter 8, the structural and optical properties of the CZTSe absorbers processed at 

different temperatures are presented. This aims to improve the knowledge of the 

influence of processing conditions on material properties. Advanced characterization 

techniques such as PL and photoluminescence excitation (PLE) were used to 

assess the quality of the CZTSe processed at the temperatures investigated. 

This chapter is, in part, based on the publication:  

J. Márquez-Prieto, M. V. Yakushev, I. Forbes, J. Krustok, P. R. Edwards, V. D. 

Zhivulko, et al., "Impact of the selenisation temperature on the structural and optical 

properties of CZTSe absorbers," Solar Energy Materials and Solar Cells, vol. 152, 

pp. 42-50, 2016. 

8.1 Motivation and state of the art 

The conversion process used to form absorber layers is one of the key steps in the 

fabrication of high performance CZTSe solar cells. This has been clearly 

demonstrated throughout this thesis, absorbers produced with the selenisation 

conditions chosen for the samples discussed in chapter 6 yielded non-photoactive 

devices. When significant changes were implemented to optimise this process, high 

performing solar cells were produced, as shown in chapter 7. This chapter 

investigates the influence of the conversion temperature.  
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In literature, a range of selenisation temperatures has been reported to be suitable 

for processing CZTSe absorbers for highly efficient solar cells. The reactive 

annealing process for a 11.2% CZTSe solar cell, reported by IBM [16], was carried 

out at very high temperature (590 oC) whereas for a 10.4% CZTSe solar cell, 

reported by IMEC, the absorber layer was selenised at 460 oC [81]. This large 

variability in the process conditions between different groups, that produce high 

efficiency solar CZTSe solar cells, suggests that the selenisation parameters need 

to be optimised for the specific precursor and selenisation system design used for 

the conversion. Therefore, a comprehensive study of selenisation temperature and 

its relationship to the electronic properties of the absorber layers and parameters of 

subsequent solar cells is needed to optimise the quality of the conversion process. 

In addition to characterisation techniques such as Raman spectroscopy and XRD, 

photoluminescence (PL) is an effective technique for the study of defects in 

semiconductors [166]. Low temperature PL spectra of CZTSe thin films with strong 

Cu deficiency and Zn excess (compositional requirements for the absorber layer in 

high performance solar cells [11, 162, 167]) are dominated by a broad and 

asymmetrical band attributed to band tail related recombination [168-170]. To gain a 

better understanding of the defect properties it is important to study correlations of 

spectroscopic parameters with the knowledge acquired about the microstructure of 

the CZTSe thin films produced for this thesis and fabrication parameters used. The 

spectroscopic parameters presented in this chapter resulted from detailed PL 

analysis. 

To interpret the data gained from PL measurements, it is essential to have reliable 

values of the bandgap Eg.  Photoluminescence excitation (PLE) is one technique 

which can be used to determine Eg and it does not require a p-n junction. However, 
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to the best of our knowledge the use of PLE on kesterites has been reported only for 

the sulphide branch of these materials [171]. 

8.2 Specific experimental details  

Cu-Zn-Sn precursors from the same batch that yielded the highest efficiency device 

presented in chapter 7 (Sample 3 - 8.1%) were used for all the absorbers discussed 

in this chapter. The chapter aims to review the influence of the conversion 

temperature for the precursors giving the best performing devices. The selenisation 

process described in section 3.3.2 was used in all cases, with the only variation 

being that of the temperature of the 15 minutes step. In the previous chapter, the 

samples were selenised at 500 ºC. For this chapter, a series of three CZTSe 

absorbers are studied synthesised at 450, 500 and 550 ºC originated from the same 

precursor batch.  For an easier understanding of the results, these samples with be 

labelled as Sample 1-450, Sample 2-500 and Sample 3-550 respectively. The 

results presented for Sample 2-500 can also apply to Sample 3 in the previous 

chapter. This is because the precursor used for Sample 2_500 in this chapter was 

from the same precursor batch as sample 3 in Chapter 7 and the same selenisation 

process was used. 

8.3 Results  

8.3.1 Microstructure and composition 

The top SEM views of the Samples 1-450, 2-500 and 3-550, are shown in figure 8.1 

(a), (b) and (c), respectively. Qualitatively, a progressive increase of the grain size is 

observed as the selenisation temperature was increased. This is consistent with the 

results observed in section 5.3.3 with the conversion process based on a Se 

evaporated cap layer. In the image corresponding to Sample 1-450, grains with flat 
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plate type morphology are also observed. This type of morphology has been 

attributed in the literature to the presence of Sn(Se,S)2 secondary phases [65] as 

indicated in figure 8.1 (a).      

The elemental compositions of the films, determined by EDX are shown in table 8.1. 

All the CZTSe absorber layers exhibit a strong Cu deficiency and a weak excess of 

Zn. With a similar composition, CZTSe solar cells with high VOC and efficiencies 

exceeding 8% were reported in chapter 7 for a selenisation temperature of 500 ºC 

[90]. In table 8.1, it is can be seen that as the selenisation temperature increased, 

the atomic % of Cu increases. A monotonic decrease of the concentration of Sn and 

Se in the samples is also observed with increase in selenisation temperature. 

 

Figure 8.1 Top view SEM micrographs of the as deposited Sample 1-450 (a), 

Sample 2-500 (b) and Sample 3-550 (c), respectively.  

Table 8.1. EDX elemental composition of Sample 1-450, Sample 2-500 and  

Sample 3-550. 

 Cu (at. %) Zn (at. %) Sn (at. %) Se (at. %) Cu/(Zn+Sn) Zn/(Cu+Sn) 

Sample 1-450 18.8 14.7 13.7 52.9 0.66 0.45 

Sample 2-500 19.3 16.2 13.1 51.3 0.66 0.50 

Sample 3-550 20.5 15.8 12.9 50.8 0.71 0.47 
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Sn and Se loss has been attributed in literature to the decomposition of the CZTSe 

compound, which is enhanced as the temperature increases [150]. In order to see if 

the Sn and Se loss were enhanced near the surface, the composition of the samples 

are measured at lower acceleration voltage (10 kV), therefore, decreasing the 

penetration depth of the electron beam and ensuring that compositional information 

was acquired from the near the surface region of the films.  

 

Figure 8.2  Plots showing the evolution of the mean Sn content (a) and Se content 

(b) as the selenisation temperature was increased with the standard deviations. The 

blue dotted lines are located for guidance at 12.5% of Sn content in (a) and 50% of 

Se content in (b), which correspond to the values of the stoichiometry of CZTSe 

2:1:1:4. 

Figure 8.2 shows the evolution of the Se and Sn content as the selenisation 

temperature increases confirming the loss of these elements towards the surface of 

the samples. In this case, as already mentioned in chapter 5, the interpretation of 

the compositional trends when secondary phases are present in the samples can 

lead to mistakes. In Sample 1-450, features associated with Sn-Se binary phases 

have been found at the surface of the film. This fact could lead to an increase of the 

counts of Se and Sn, and this may also explain why the standard deviation of the 

composition (10 points measured) is greater for the Sample 1-450. The 
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measurements performed at 10 kV, also shows that the Se content for Sample 3-

550 decreases even below 50 at. %. 

8.3.2 XRD of the CZTSe absorbers 

XRD patterns of the absorber layers are shown in figure 8.3. The formation of 

tetragonal CZTSe is confirmed for the whole range of temperatures tested in 

agreement with previous studies [117, 157]. In the diffractogram of Sample 1-450, it 

is possible to observe the most intense peak at 40o, attributed to metallic Mo used 

as a back contact. As the selenisation temperature increases, this peak starts to 

decrease in intensity and it disappears for Sample 3-550 which has been selenised 

at the highest temperature. The opposite trend occurs with the broad reflections 

attributed to the presence of MoSe2 at around 32o showing an increase in intensity 

as the selenisation temperature increases. The total conversion of the metallic Mo 

into MoSe2 is observed, explaining why a good electrical contact with the back of the 

device made from Sample 3-550 could not be reached, making the electrical 

characterization of this sample impossible, as it will be discussed in the following 

sections. The difractogram of Sample 1-450 shows two narrow peaks at 14.4o and 

30.8o which are consistent with the presence of SnSe2 (PDF numbers: 01-089-2939 

23-602) and also in agreement with the presence of grains with the typical flat plate 

morphology of SnSe2 observed in the SEM micrograph of this sample, as shown in 

figure 8.1 (a). 
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Figure 8.3 XRD patterns of CZTSe (phase indexed) films on Mo coated glass 

selenised at different temperatures. 

8.3.3 Raman of the CZTSe absorbers 

Figure 8.4 shows the normalised Raman spectra for the three films. All the peaks 

observed in the spectra, with the exception of a peak at 184 cm-1 observed for 

Sample 1, can be attributed to the CZTSe phase [116]. Different possible phases 

have been considered for assignment of the peak at 184 cm-1. Marcano et al. 

reported Raman spectra of the monoclinic Cu2SnSe3 (CTSe) phase [134], with the 

most intense peak appearing at 180 cm-1. The most intense Raman peak for SnSe2 

has been experimentally observed at 184 cm-1. It was also theoretically predicted at 

187 cm-1 [172] which in addition to the observations of this phase in the XRD pattern 

of this sample clarifies that the peak at 184 cm-1 appears to be due to the presence 
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of SnSe2. The inset of figure 8.4 shows the evolution of the FWHM value of the A 

mode at 197 cm-1 of CZTSe. A progressive decrease in the FWHM values is 

observed as the selenisation temperature is increased. This reduction is associated 

with an improvement of the crystal quality, which reduces the possible presence of 

phonon confinement effect and increases the phonon lifetime (reduction of the 

dispersion in the phonon energies) [173]. 
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Figure 8.4 Raman spectra of the CZTSe samples selenised at ifferent 

temperatures. The inset shows the variation of FWHM of the most intense CZTSe 

mode. 

8.3.4 Solar cell properties 

Devices were produced with the CZTSe absorber layers selenised at different 

temperatures. The electrical parameters of the best solar cells prepared with the 

CZTSe absorber layers at 450oC and 500oC are also shown in table 8.2, with 
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efficiencies up to 3.2% and 7.4% respectively. The best cell fabricated from Sample 

2- 500oC, yielded a VOC value of 421 meV, which is similar to the one achieved for 

the best CZTSe solar cell reported in literature, but the JSC is lower by about 10 mA 

cm-2 [16]. The smaller value of current density compared to the world record CZTSe 

solar cell is partly due to the use of a thick TCO layer of approximately 700 nm, in 

order to protect the solar cells during measurements, since no metallic grid was 

applied. In addition, no antireflection coating was used in the devices reported here 

which would be expected to increase the efficiency by about 1 % of the absolute 

value. 

The efficiency, JSC, VOC and FF values obtained for Sample 2-500 are comparable 

and within the standard distribution bars of the values obtained for Sample 3 of 

chapter 7 (8.1%) suggesting that the selenisation process is reproducible.  

Table 8.2 Electrical parameters of the solar cells prepared with the CZTSe films. 

Sample Voc (mV) Jsc (mA/cm
2

) FF (%) Eff (%) 

Sample 1-450 336 26.5 35.2 3.2 

Sample 2-500 421 30.2 58 7.4 

Sample 3-550 This sample could not be measured 

 

The J-V curves of the solar cells made with film 1-450oC and film 2-500oC are 

shown in figure 8.5. The J-V curves of Sample 3-550 could not be measured due to 

a total consumption of the metallic Mo used as back contact of the devices due to its 

conversion into MoSe2 as evidenced in the XRD patterns. The clear increase in the 
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performance observed for the sample selenised at 500 oC compared to 450oC may 

be due to the fact that, within the detection limits of the techniques used in this 

study, no secondary phases could be detected for that sample. In addition, an 

apparent grain growth with temperature, observed in the SEM top view images and 

the Raman results previously presented, indicated an increase of the crystalline 

quality. 
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Figure 8.5. Current density – voltage (J-V) curves of the best solar cell made with 

Sample 1-450 and with Sample 2-500. 

 

8.3.5 Analysis of the PL recombination mechanisms 

The optical properties of the CZTSe absorbers synthesised at different selenisation 

temperature have been analysed by temperature depend PL spectroscopy. A 

detailed analysis of the PL recombination mechanisms of this series of samples has 
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been published elsewhere [174]. This subsection will highlight the most relevant 

points, focusing on the PL at low temperature, to support the discussion of this 

chapter. 
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Figure 8.6 PL spectra from the films measured at 6 K, 0.053 W/cm2 excitation and 

similar optical alignment for the CZTSe absorber layers converted at 450, 500 and 

550 ºC. 

The PL spectra of the films, measured at a temperature of 6 K and at similar optical 

alignments and laser excitation energy and shown in figure 8.6, revealed a high 

intensity, broad asymmetrical band (P1) with a maximum at 0.934 eV (Sample 1-

450), 0.944 eV (Sample 2-500) or 0.898 eV (Sample 3-550). The high energy slope 

of P1 has a higher gradient than the low energy slope. Features associated with 

water vapour absorption can also be seen at around 0.9 eV.  
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By increasing the selenisation temperature, from 450 oC to 500 oC, the band 

intensity is increased, and a blue shift of about 10 meV in the spectral position is 

observed whilst leaving the full width at half maximum (FWHM) unchanged, at 84 

meV. Further temperature increase to 550 oC decreased the intensity to below that 

at 450oC with an associated red shift in the spectral position by 46 meV with respect 

to that in Sample 2, and broadened the FWHM to 100 meV. Spectral positions and 

FWHM of the P1 bands in the films are shown in table 8.3. 

Table 8.3 Spectral characteristics of the P1 PL band measured at 6 K, bandgaps Eg 

measured by PLE, average depths of potential fluctuations γ and activation energies 

Ea of the P1 band temperature quenching for the Samples 1, 2 and 3. 

 Sample 1-450 Sample 2-500 Sample 3-550 

P1 Emax (eV) 0.934 0.944 0.898 

P1 FWHM (meV) 84 84 100 

P1 j-shift (meV/decade) 11 12 15 

Eg (eV) (PLE) 1.05 1.03 1.05 

Excitation dependency analysis of the PL spectra measured at 6 K was also 

performed and is shown in figure 8.7. The j-shifts extracted from this analysis are 

also indicated in table 8.3. In all cases, the P1 band shows significant shifts to 

higher energies with laser power increase, whereas neither FWHM nor the 

asymmetric shape of the P1 band changes. The shift rate (j – shift) increases from 

11 to 12 meV per laser power decade with selenisation temperature rise from 450 to 

500oC suggesting a slight increase in the compensation level in Sample 2. For 
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further rise of the selenisation temperature, the j-shift increases to 15 meV per 

decade indicating a more significant increase in the compensation level. 
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Figure 8.7 Excitation intensity dependencies of PL spectra in Sample 1 (a), Sample 

2 (b) and Sample 3 (c) measured at 6 K. 

Such significant j-shifts, observed for P1 along with its asymmetric shape at low 

temperatures are characteristic of band tail related recombination mechanisms [175, 

176]. Tails in the electron and hole densities of states, at energies below the 

conduction band Ec, or above the valence band Ev, are formed in highly doped 

semiconductors by spatial potential fluctuations generated by high concentrations of 

randomly distributed charged defects [177]. 
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Figure 8.8 PLE spectra (measured at the maximum of the P1 band) and PL spectra 

of Sample 1 (a), Sample 2 (b) and Sample 3 (c) measured at 4.2 K. Red lines are 

the results of fitting. 

The PLE spectra of the three samples are shown in figure 8.8, along with the 

normalised PL spectra of the samples and the fitting used to calculate the bandgap. 

The PLE spectra show broadening which suggests the presence of  

sub-bandgap absorption states associated with band tails. To take into account such 

a broadening the low energy sides of the PLE spectra, representing 

absorptance α(E), are fitted with sigmoidal shapes α(E)=α0/(1+exp(Eg – E)/ΔE), 

where Eg is the bandgap and ΔE  is a broadening parameter equivalent to the 

Urbach tailing energy . The best fits for each film are shown in figure 8.8 by red 

lines. Further details of the model used to calculate the bandgap have been 

described elsewhere [174]. The bandgap values resulting from the calculations are 

shown in table 8.3. 
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8.4 Discussion 

All the three films show significant copper deficiency with [Cu]/[Zn+Sn] below 0.8. It 

is possible to observe in table 8.1 that the Cu content in the samples increases and 

the Sn and Se content decrease as the selenisation temperature rises. The 

evolution of the Sn and Se content can be clearly seen in figure 8.2, where for 

Sample 1-450, the Sn and Se contents are the highest. For this film, the standard 

deviation is significantly larger than for the other samples. The presence of SnSe2 

near the surface of this sample might induce an increase of the Sn count in this 

analysis, giving an overestimated value of the atomic Sn concentration by this 

method. Within the limits of detection of the XRD and Raman techniques used in 

this study, no secondary phases were detected for these samples near the surface. 

Therefore, it is assumed that the average compositional values mainly come from 

the kesterite grains for Samples 2-500 and 3-550. As in the previous chapter, the 

off-stoichiometric CZTSe will be of the group A-type, where electrically neutral 

defect clusters VCu+ZnCu are expected to be present in high concentration [178] as 

was discussed in the previous chapter in detail.  

Selenisation or annealing of CZTSe results in a loss of tin [150, 162]. This might be 

one of the reasons why a reduction of the Sn content is observed with increasing 

selenisation temperature (table 8.1 and figure 8.2). The decrease of Sn and Se 

content might be associated with an evaporation of Sn-Se binary phases. This is 

consistent with the changes shown in figure 8.3 and figure 8.4, for which the XRD 

patterns and Raman spectra show evidence of the presence of SnSe2 in Sample 1-

450 whereas in Samples 2-500 and 3-550 at higher selenisation temperatures this 

phase is not detected. After the selenisation step, no Se was visually found to be 

remaining in the crucibles in any of the processes. The decrease in the 

concentration of Se observed in figure 8.2 could be associated with the 
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decomposition of the kesterite [179]. For the case of the pure sulphide kesterite, 

Scragg et al. reported that, if the vapour pressure of CZTS is higher than the partial 

pressure of S at the sample, then the kesterite decomposes into the binaries and 

gaseous sulphur [179]. The CZTSe vapour pressure increases with temperature 

meaning that, in order to stabilise the surface of the film, higher Se partial pressure 

should be needed with increasing temperature. Unfortunately, it is quite difficult to 

monitor the Se partial pressure at the surface of the film and its evolution with time. 

Qualitatively, it is possible to predict that, with increasing temperature and time, the 

Se vapour would tend to leave the reactor or be absorbed by the graphite. Bearing 

this in mind, it is expected a higher decomposition of the CZTSe film in this series as 

the temperature increases, since the time, and the amount of Se source have been 

kept constant. 

Within the limits of detection of the characterisation techniques used in this study, 

the formation of binaries could not be detected for Sample 2-500oC and  

Sample 3-550oC. SnSe2 has been detected in Sample 1-450oC and it is possible to 

speculate that its formation is due to the off-stoichiometry of the sample rather than 

from the decomposition of CZTSe. VSe and VS have been reported to be isolated 

deep donor defects according to Chen et al. [11]. At high temperatures, normal for 

reactive annealing, it was reported for the sulphur case that the formation energy of 

VS is low, making concentrations up to 2x1019 cm-3 possible [180]. It is therefore 

possible to conclude that formation of VS and VSe is likely to be prior to the 

decomposition of the CZTSe into the binary phases. The decrease of concentration 

of Se is observed in figure 8.2, which for the case of Sample 3 -550 goes below 

50%, might be an indication of an increase of the concentration of VSe as the 

temperature increases. 
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The Raman data also confirm the presence of SnSe2 in Sample 1-450. The 

selenisation temperature increase from 450 to 500oC results in the disappearance of 

the SnSe2 in Sample 2 leaving all the other features in the spectra almost 

unchanged. The further temperature rise from 500 to 550oC increases the intensity 

of the 172 cm-1 peak, which can be interpreted as a reduction of the probability to 

form the defect complexes VCu+ZnCu  [116, 117]. This is consistent with the increase 

of Cu content shown in table 8.1.  

The structural quality of semiconductors can be compared by the integrated PL 

intensity (IPLI) of their radiative photoemission measured at similar conditions [166]. 

The higher the intensity, the lower is the level of non-radiative recombination and 

scattering on defects of photo-excited electrons and holes. Such a criterion is also 

valid for semiconductors used in the solar cell absorber layer [162, 181]. This 

pattern can be seen in figure 8.6 where the solar cells of Sample 2 - 500 were 7.4% 

efficient, and show a significantly higher PL intensity at 6 K (by a factor of 1.8 in 

terms of IPLI ratios) than Sample 1 - 450. Sample 3 shows significantly lower PL 

intensity than Sample 2 (by a factor of 2.3 in terms of IPLI ratios). This trend 

suggests that a solar cell made from Sample 3, if the problem of contact is solved, 

would be less efficient than those made from Sample 1 and Sample 2. At first sight, 

considering a reduction of the FWHM of the mode at 197 cm-1 in Raman 

spectroscopy shown in figure 8.4 and an increase of the grain size with increasing 

temperature shown in figure 8.1, one would expect an increase of the PL intensity 

with increasing the selenisation temperature as observed from Sample 1-450oC to 

Sample 2-500oC. Since this behaviour is not observed for Sample 3-550oC, further 

considerations should be taken into account to explain the reduction of the PL 

intensity for this sample.   
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Non-radiative recombination can occur via deep defects in the bandgap limiting the 

PL yield [123]. An increase of the concentration of VSe, predicted by a decrease of 

the Se content in this sample as the temperature increases from 500oC to 550oC, 

could explain the strong decrease of the PL intensity that was observed for the 

sample synthesised at the highest temperature. In fact, the same conversion 

conditions at 550 oC were tested with the same batch of precursors but using a 

more resistive Mo back contact, which was not fully selenised. As a result of this 

experiment, the devices fabricated had efficiencies below 2%, confirming the 

predictions based on IPLI analysis. 

The bandgaps of the studied films, determined by PLE measurements, gives values 

over 1.00 eV. This increase of the bandgap might be due to the presence of high 

populations of the defect complex VCu+ZnCu which is consistent with the reported 

restraining effect of such complexes on the Cu/Zn disorder [156], and also in 

agreement with the results shown in chapter 7. The PLE measurements give a value 

of the bandgap for Sample 2- 500 oC of 1.03 eV which is measured at 6K. From the 

inflection point of the EQE of the equivalent solar cell discussed in chapter 7 

(Sample 3 of Ch. 7), which is measured at room temperature, a bandgap value of 

1.07 eV was calculated. If it is assumed that the bandgap increases with the 

decrease of temperature, as reported for Cu-poor Zn-rich CZTSe [182], it can be 

concluded that the inflection point bandgap calculation method from the EQE might 

provide significantly overestimated values.  

8.5 Concluding remarks 

In this chapter, the temperature of the selenisation step has been reviewed after 

implementing the changes in the conversion process for the samples discussed in 

chapter 7. A progressive improvement in the crystal quality of the CZTSe phase was 
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observed according to a decrease of the FWHM of the main A mode of the Raman 

spectra of the absorbers. This was supported by an observed increase in the grain 

size with increasing temperature as observed by SEM, in agreement with the results 

discussed in chapter 5. The films were used to fabricate solar cells with efficiencies 

of 3.2 % (selenisation at 450oC) and 7.4% (selenisation at 500oC). It was not 

possible to measure the solar cell with the absorber synthesised at 550 oC because 

the Mo back contact was fully converted into MoSe2. Analysis of the low temperature 

PL spectra of the samples suggests that the absorber with the best optical quality 

was the one synthesised at 500 oC. The PL spectrum of the absorber processed at 

550 oC indicates that non-radiative recombination was greater in this sample, and 

this might affect the device performance. It has been tentatively attributed that the 

decrease of radiative recombination in the sample fabricated at 550 oC is due to an 

increased loss of Sn and Se that would be detrimental for the device performance.  

The best sample fabricated for this chapter has been processed with the same 

conditions as the best CZTSe device (8.1% efficient) discussed in chapter 7, and the 

J-V parameter of this device are comparable, indicating a certain level of 

reproducibility of the synthesis process. These results suggest that careful control of 

the synthesis conditions needs to be performed to achieve high quality CZTSe 

absorber layers in terms of structural and optical properties. 
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9 Cu2SnS3 as absorber layer for thin film solar 
cells 

In chapter 5, the synthesis of CTSe was reported as part of the study of the phase 

evolution of CZTSe. The experimental findings and the literature research to 

understanding the phase formation of CTSe, allowed the author to gain an interest 

in CTS and its potential as an earth abundant absorber layer. During the 

development of the experimental work for this thesis, particularly during my 

secondment at the Helmholtz-Zentrum in Berlin, under the supervision of Dr. 

Thomas Unold, the author of this thesis had opportunity to synthesise CTS films in a 

co-evaporation chamber that had been prepared for the synthesis of this material. 

This chapter is based on the publication: 

J.A. Marquez Prieto, S. Levcenko, J. Just, H. Hampel, I. Forbes, N.M. Pearsall,  

T. Unold, “Earth abundant thin film solar cells from co-evaporated Cu2SnS3 absorber 

layers”, Journal of Alloys and Compounds, 689 (2016) 182-186.  

9.1 Motivation and state of the art 

Cu-Sn-S derived materials are gaining increasing interest as absorber layers 

produced from earth abundant elements for application in thin film solar cells. 

Efficiencies up to 4.6% have been already achieved using the same device 

architecture used for CIGS and for CZTSSe based materials [37]. In the Cu-Sn-S 

system, several compounds with different stoichiometry have been reported in 

literature, including Cu2SnS3 [41, 42, 47, 183-186], Cu3SnS4 [184, 186-189], 

Cu4SnS4 [183], Cu2Sn3S7 [183] and Cu4Sn7S16 [190]. Particularly, Cu2SnS3 is so far 

the ternary compound of the Cu-Sn-S system that has been studied most for making 

solar cells. 
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The similarity between Cu2SnS3 and CZTSSe allows the groups developing 

kesterite solar cells to be able to quickly adapt their facilities to investigate this 

ternary material, and is another reason for the rapid increase of the number of 

publications on this material. Several synthesis approaches have been proven to be 

suitable for producing Cu2SnS3 films including sputtering [186], reactive sputtering 

[191], electrodeposition [47, 49], pulsed laser deposition [46] and several non-

vacuum routes [38, 192].  

Cu2SnS3, has been reported to adopt several crystal structures including cubic 

zincblende type structure (F-43m) [184, 186], tetragonal stannite type structure  

(I-42m) [184, 186, 190] and monoclinic structure (C1c1) [41-43, 47, 185, 193] 

depending on the temperature used for the synthesis. With increasing temperature, 

a change in the crystal structure has been predicted to unit cells with higher 

symmetry, changing from monoclinic to orthorhombic, then tetragonal and cubic 

[194]. However experimental results in literature suggest that, when the synthesis 

process has a temperature below 550ºC, Cu2SnS3 normally adopts cubic or 

tetragonal structure [184, 186] and when the synthesis temperature is above 550ºC 

the monoclinic structure predominates [42, 193]. A large discrepancy in the value of 

the bandgap of Cu2SnS3 in its different crystal structures is also found in literature. 

For the monoclinic form, the presence of two bandgaps is found, one at 0.92-0.93 

eV and a second one around 0.99 eV [42, 43, 47, 193]. Fernandes et al reported a 

bandgap of 1.35 eV for the tetragonal Cu2SnS3 and 0.96 eV for the cubic structure 

[184].  

Most of the Cu2SnS3 absorber layers that have been used to produce solar cells 

have been synthesised in a two stage process with a reactive annealing step at 

temperatures higher than 550ºC under a sulphur or sulphur and tin atmosphere. 

This high temperature step resulted in Cu2SnS3 adopting the monoclinic structure. 
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However, for low temperature or moderate temperature process, it is difficult to find 

reports of solar cells in which the Cu2SnS3 is not monoclinic. In addition to the fact 

that in low temperature synthesis, the grain growth is more limited, the cubic CTS 

structure might present mid gap states and band tailing, making it difficult to make 

efficient solar cells out of this structure [195]. 

In the work reported in this chapter, the synthesis of Cu-Sn-S absorber layers used 

a single step co-evaporation method and a substrate temperature of 400 ºC. 

Microstructural analysis of the absorber layers based on SEM, Raman spectroscopy 

and X-Ray diffraction analyses is presented. It was found that for these experiments 

Cu2SnS3 crystallises in the cubic structure and the presence of other Cu-Sn-S 

phases in the absorber layers has been identified.  

9.2 Specific experimental details 

The synthesis of the CTS absorbers has been described in chapter 3, section 3.6. 

The optical transmission and reflectance spectra were acquired by Hannes Hempel 

from the Helmholtz Zentrum Berlin with a Perkin-Ellmer UV-Vis spectrometer. The 

absorbers were lifted-off from the Mo coated SLG substrates in order to perform this 

measurement. 

9.3 Results and discussion 

9.3.1 Composition and morphology 

The absorber layers showed a Cu/Sn ratio of around 1.7 and S/(Cu+Sn) ratio 

around 1. Figure 9.1 shows an SEM cross sectional view of the solar cells 

processed for this study. The CTS absorber layer is about 1 m thick and shows 

columnar-like morphology, suggesting that the films are highly textured. A similar 
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morphology was also reported for CTS samples grown by RF sputtered from Cu2S 

and SnS targets and deposited onto substrates heated to around 300º C [186], 

suggesting that this columnar type growth is typical for low temperature synthesis. 

 

 

Figure 9.1 SEM cross section of a complete CTS device. The different layers are 

identified in the right hand side of the image. 

9.3.2 XRD of the CTS absorbers 

Figure 9.2 shows the X-Ray Diffraction (XRD) pattern of the CTS absorber layer 

acquired in Bragg-Brentano configuration. An intense peak observed at 28.3º can be 

attributed to Cu2SnS3 in the cubic (F-43m, ICSD 43532), the tetragonal (I-42m, 

ICSD 50965) or the monoclinic (C1c1, ICSD 91762) structure. No other peaks can 

be observed related to this phase. Therefore, it is difficult to determine the crystal 

structure based only on the information provided by the XRD pattern. The single 

peak suggests that the films are preferentially orientated, which is consistent with 

the columnar growth morphology observed for the cross sectional SEM images in 

figure 9.1. The inset of figure 9.2 shows a magnification of the XRD pattern between 

20 and 50º.  The diffractogram shows the presence of low intensity peaks at 27.4 

and 30.7º that can be attributed to the presence of orthorhombic Cu3SnS4 [189]. The 



155 

 

presence of Cu3SnS4 in films has been already reported to coexist with Cu2SnS3 

[186, 195], however the relatively low intensity of these reflections in comparison 

with the strong peak attributed to Cu2SnS3 suggests that the amount of the Cu3SnS4 

orthorhombic phase is low.  
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Figure 9.2  X-Ray diffraction pattern of the CTS absorber layer. The inset shows a 

magnification of low intensity range between 20 and 50º. The phases assigned to 

each peak are labelled in the plots. 

9.3.3 Raman and optical transmission spectra 

In order to confirm the crystal structure of the CTS absorber layers Raman 

spectroscopy was performed on the sample and it is shown in figure 9.3. The peaks 

observed in the spectrum have been qualitatively fitted with Lorentzian functions to 

determine the position of the observed Raman modes. Two high intensity peaks at 

303 and 359 cm-1 suggest that Cu2SnS3 is mainly present in the cubic structure, in 
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accordance with the studies reported by Fernandes et al. [52, 184]. Unfortunately, 

no calculations of the phonon spectra of the different crystal structures of Cu2SnS3 

have been reported up to now and the assignments for the cubic Cu2SnS3 are made 

based on reported experimental data. In addition, lower intensity peaks at 319 cm-1 

and 337-346 cm-1can be observed. In the literature, peaks at these positions have 

been correlated with the presence of orthorhombic Cu3SnS4 [52, 189], which agrees 

with its identification by XRD presented in figure 9.2. The position of the modes for 

the orthorhombic Cu3SnS4 to perform the fitting for this phase was adjusted 

according to the phonon spectrum calculated by Dzhagan et al [189]. Raman 

measurements with λexc =633nm would potentially be very sensitive to the modes of 

Cu3SnS4, due to near resonant conditions [196], since a bandgap of 1.6 eV has 

been reported for this phase [184]. This would explain the fact that modes related to 

this phase are clearly observed even when its concentration in the film is low, as 

suggested by the low intensity peaks in the XRD patterns corresponding to 

Cu3SnS4. Also a Raman mode at 265 cm-1 is observed, which cannot be attributed to 

a specific phase. Although calculations have predicted Raman active modes close 

to this frequency [189], the experimental data in literature for orthorhombic Cu3SnS4 

does not agree with this mode being the most intense for this phase [189]. 

A bandgap value of 1.02 eV was calculated form the Tauc plot generated with the 

optical transmission spectrum of a lifted-off CTS absorber as shown in figure 9.3. 

Strong sub-bandgap absorption can be observed up to 0.85 eV, in good agreement 

with theoretical calculations of the density of states for cubic disorder CTS that have 

shown strong band tails for this material [195]. 
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Figure 9.3 (a) Raman spectrum of the CTS absorber (dark grey). Lorentzian fitting 

of the Cu2SnS3 cubic modes (red), Cu3SnS4 (blue) and an unidentified mode 

(green). The black line shows the sum of the fits. (b) Tauc’s plot generated from the 

optical transmission and reflection spectrum of a lifted-off CTS absorber. 

9.3.4 Solar cell properties 

The current-voltage (J-V) characteristic of the best performing device is shown in 

figure 9.4.a. The efficiency of the device was 1.8%, with a short circuit current 

density (JSC) of 28 mA/cm2, an open circuit voltage (VOC) of 147 mV and a fill factor 

(FF) of 44% for a total cell area of 0.5 cm2. The reason for the low value of VOC is 

not well understood but several possibilities can be considered. The cubic structure 

of Cu2SnS3 has been reported to be highly disordered implying band tailing, 

compositional inhomogeneities at the nanometre scale and potential fluctuations 

[195].  Also, a cliff-like band offset  has been reported for the CdS-CTS junction 

[197]. Assuming that this is the case for this device, a reduction of the interface 

bandgap would reduce VOC and increase the recombination at the interface of the 

device [36]. In addition, the presence of other phases found in the absorber layer, 
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such as Cu3SnS4, could contribute detrimentally, increasing the metallic character of 

the absorber layers and decreasing the performance of the solar cells due to an 

increase of shunting paths [186]. 

 

Figure 9.4 (a) Dark and illuminated JV curves of the best CTS cell. (b) External 

(black line) and internal (red line) quantum efficiency of the best solar cell. . (c) CV 

profiles measured at 10 kHz, 100 kHz and 1000 kHz 

The External Quantum Efficiency (EQE) and the Internal Quantum Efficiency (IQE) 

are shown in figure 9.4.b. The IQE () was calculated from the ratio of the EQE 

()and the spectral absorbance of the device as IQE () = EQE ()R ()] . A 

step between 650 and 800 nm is observed in the EQE, which is not evident in the 

IQE, suggesting that it is due to interferences of the device layers.  At wavelengths 
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above the bandgap of CdS (510-520nm) both, the EQE and IQE start to decay 

significantly, suggesting that a measurable contribution to the JSC occurs from hole 

generation in the CdS. This contribution ceases for wavelengths with energies below 

the bandgap of CdS in agreement with a small collection function in the bulk of the 

absorber [5]. Nakashima et al. reported the appearance of the same decay when the 

EQE was measured without white light bias [37] as shown in figure 9.5, suggesting 

that the light intensity dependent properties of CTS solar cells should be further 

studied to contribute to the progress of this material. 

 

Figure 9.5 EQE spectra from the world record CTS solar cell. The plot shows the 

difference between the EQE acquired with (red line) and without (blue line) white 

light bias. Image taken from [37]. 

The bandgap was calculated from the inflection point of the EQE and IQE giving a 

value of approximately 1.06 eV.  Strong band tailing is also observed in the QE, in 

agreement with the Tauc plot presented in figure 9.2.b and in accordance with 



160 

 

previously reported theoretical calculations for the disorder cubic structure [195]. 

The presence of this strong band tailing could be a potential issue for the 

development of CTS solar cells when the absorber layer adopts the cubic structure. 

This band tail is not observed in the EQE of devices made out of the monoclinic 

Cu2SnS3 where two transitions are observed at around 0.93 and 0.99 eV [37] (see 

figure 9.5), suggesting that this crystal structure could be a better candidate for CTS 

solar cells.  

JSC has been calculated by integrating the EQE with the AM 1.5 solar spectrum 

yielding a value of JSC (EQE) =16.4 mA/cm2 which is significantly lower than the value 

measured in the JV curve (28.0 mA/cm2). This behaviour has been previously 

observed in other CTS solar cells found in literature when the EQE has been 

measured without white light bias [37], suggesting again that the optoelectronic 

properties of these CTS solar cells are affected by the light intensity.  

CV measurements were performed on the CTS device and are shown in figure 

9.4.c. Charge carrier concentrations of 3 - 5 x 1016 cm-3and a depletion region width 

of around 120 nm were estimated for this solar cell by assuming a static dielectric 

constant ε0=10. The charge carrier concentration values measured for this solar cell 

are significantly lower than has previously been reported for cubic CTS, where the 

lowest values were around 7 x 1017 cm-3 and 1021 cm-3 when Cu3SnS4 was present. 

These values are considered to be too high for a p-type absorber layer in a 

photovoltaic device [186]. 

9.4 Concluding remarks 

In this chapter, the synthesis of CTS absorber layers by single step co-evaporation 

with a nominal substrate temperature of 400ºC has been described. A combination 

of Raman, SEM and XRD analysis leads to the conclusion that the Cu2SnS3 is 
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highly textured and adopts a disordered cubic structure. The presence of Cu3SnS4 

was detected in all the samples and SnS was detected when the absorbers were 

synthesised with a high Sn flux. A 1.8% efficient CTS/CdS/i-ZnO/Al:ZnO solar cell 

was obtained with  JSC of 28 mA cm-2, VOC of 147 mV and a FF of 42.9 %. A 

bandgap value of 1.06 eV was extracted from the inflection point of the EQE. The 

JSC calculated by integrating the EQE with the AM 1.5 solar spectrum shows 

disagreement with the measured JSC indicating that the devices are affected by 

changes in electronic properties that depend on the illumination intensity. A charge 

carrier concentration of 4 x 1016 cm-3 is extracted from C-V measurements with a 

depletion region of approximately 120 nm. The work presented in this chapter 

demonstrates for the first time the fabrication of CTS solar cells with absorbers 

synthesised at a moderate temperature of 400 oC. The limitations of the solar cells 

presented in this chapter has been discussed and it is suggested that although a low 

temperature depositions process can be used for the synthesis of CTS absorbers, 

the properties of higher temperature absorbers crystallising in a monoclinic structure 

might be more suitable for solar cells due to a significant reduction of sub-bandgap 

absorption. 
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10  Summary, Conclusions and recommendations 
for further studies 

This chapter summarises the research performed in this thesis and presents the 

main conclusions. Then, insights are provided about the future of CZTSe and 

derived kesterite materials. The future of the use of Cu2SnS3 as an absorber layer 

for thin film PV is also discussed. 

10.1  Development in CZTSe absorber layers and solar 
cells 

In this thesis a synthesis process for depositing CZTSe thin film absorber layers has 

been developed by a two stage method consisting in the deposition of a Cu-Zn-Sn 

metallic precursor layer by sputtering followed by a selenisation step. Several 

conclusions have been made during the development of this synthesis process, as 

detailed below. 

10.1.1 CZTSe absorbers growth 

 The Cu-Zn-Sn metallic precursors are mainly composed of Cu-Zn and Cu-Sn 

alloys showing a uniform atomic distribution in depth. If the composition of 

the precursor is very Cu poor or very Sn rich, elemental Sn is also present in 

the precursor inducing a rougher morphology of the films as specified in 

section 6.3.1. 

 The selenisation of Cu-Zn precursors resulted in the formation of Cu2-xSe 

and ZnSe phases that segregated forming large grains over a wide range of 

temperatures (380-550 ºC). In the same range of temperatures, the 
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selenisation of Cu-Sn precursors resulted in uniform polycrystalline thin films 

of Cu2SnSe3 crystallising in a monoclinic structure. 

 The formation of the tetragonal CZTSe phase has been demonstrated for 

selenisation temperatures from 380 to 550 ºC. It has also been 

demonstrated that the microstrain in the films decreased with increasing 

selenisation temperature. 

 The influence of the Cu content has also been explored, synthesising CZTSe 

thin films with compositions ranging from Cu-rich (Cu/(Zn+Sn)>1) to Cu-poor 

(Cu/(Zn+Sn)<1). It was concluded that the concentration of defects in Cu-rich 

and stoichiometric films was lower than in Cu-poor films. The grain sizes 

were larger in the Cu-rich films. A relative decrease in the intensity of the 

CZTSe modes in the Raman spectra appearing at 173 cm-1 has been 

correlated with Cu deficient compositions. This feature has been attributed to 

an increase of the concentration of the defect cluster (VCu + ZnCu) which is 

characteristic of the A-type CZTSe off-stoichiometry compositions. 

10.1.2 CZTSe solar cells 

 The influence of the Cu content of the CZTSe absorber layers on the device 

performance has been explored. The best devices were fabricated with 

absorber layers with very Cu-poor and Zn-rich compositions. These 

compositions led to CZTSe absorber layers with high concentration of  

(VCu + ZnCu) defect clusters as shown by Raman spectroscopy 

measurements. Bandgap widening and an increase of ordering in the Cu-Zn 

plane of the kesterite type structure of CZTSe was observed as the 

compositions of the films become more Cu poor. It was also identified that as 
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the CZTSe absorbers become more Cu poor, the tetragonal deformation 

parameter (c/2a) of the CZTSe phase decreases, being in all cases below 1. 

The bandgap widening observed resulted in CZTSe solar cells with 

efficiencies over 8% and VOC values even larger than the current world 

record for CZTSe devices.  

 The selenisation step was also studied during the development of this thesis 

in order to maximise the solar cell performance. The conversion conditions 

leading to the best devices were identified using a high amount of Se in the 

reactor (~240 mg in pellets) with the following heating profile: 
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Figure 10.1 Heating profile used for the synthesis of the best solar cells of this 

thesis. 

 Lower conversion temperatures (450 ºC) produced films with SnSe2 

secondary phases coexisting with the CZTSe phase. This resulted in devices 

showing shunting behaviour. 
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 Higher conversion temperatures (550 ºC) led to films where Sn and Se loss 

from the CZTSe becomes relevant, inducing defects in the film such as VSe, 

which are detrimental for the device performance. Low temperature PL 

analysis of the absorbers synthesised at 550 ºC reveal high level of 

compensation and poorer optical properties compared to CZTSe absorbers 

synthesised at lower temperatures, suggesting that in the type of 

selenisation systems used in this thesis, moderate temperatures might help 

to prevent Se deficit in the films. For these films, the Mo layer was fully 

converted to MoSe2. However, this problem could be assessed in future by 

varying the sputtering conditions of the Mo back contact in order to produce 

a layer less reactive with Se. 

 As a final comment, it is important to clarify that the absolute values of the 

ideal selenisation conditions depend on many factors such as: the type of 

precursor, the composition of precursor, the chalcogen source used and the 

volume and geometry of the reactor. The conclusions presented in this 

section should therefore be interpreted qualitatively when different 

selenisation systems and types of precursors are being compared. 

10.2  CTS absorber layers and devices 

A low temperature co-evaporation process was demonstrated to be feasible to 

produce CTS absorber layers for PV applications. Devices with efficiencies up to 

1.8% were fabricated with these absorbers. The solar cells are limited by a low VOC 

and the possible origins of this have been discussed. The samples produced with 

this low temperature coevaporation process led to absorbers where Cu2SnS3 

coexisted with small amounts of Cu3SnS4. Strong sub-bandgap absorption was 
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observed in these absorbers, which will limit the applicability of this material for high 

efficiency solar cells if this issue is not resolved. 

10.3  Revisiting goals of the project 

In the first chapter, the general goals of this project were established: 

 Synthesis and fabrication of CZTSe thin films with a potentially scalable 

method: sputtering of Cu-Zn-Sn metallic precursors followed by a reactive 

annealing step for the incorporation of Se and the optimisation of this 

process. 

 Study of the phase evolution and formation of CZTSe by the synthesis 

approach described in this thesis. 

 Study of the influence of the composition of the CZTSe absorber layers in its 

microstructural and optical properties 

 Demonstration of the use of CZTSe absorbers in thin film PV devices and 

assessment of the conditions for maximising its performance. 

The previous sections compiled the specific ways describing how these objectives 

have been accomplished, in which a synthesis route for efficient CZTSe devices has 

been proposed and the optimised conditions for this process have been defined. 

Variations of the composition of the CZTSe absorbers have also been studied. 

These variations resulted in the formation of defects on the CZTSe phase that were 

identified experimentally through the development of analysis techniques based on 

Raman spectroscopy and XRD. Correlations between the experimental findings of 

this project and the theoretical calculations related to defects found in the literature 

have been proposed. 
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10.4 Future of kesterites and closing recommendations 

There is an important gap in record efficiencies between kesterite technologies 

(12.6%) [35] and the already commercialised CIGS (22.3%) [25] and CdTe (22.1%) 

[198]  technologies.  This gap makes clear that kesterites are in a continuing 

research and development period and their efficiencies need to be increased 

significantly to be able to become a competitive technology.  In particular, the main 

difference in efficiency arises from a significantly lower value of VOC of the kesterite 

solar cells in comparison to CdTe and CIGS. The difference between the optical 

bandgap of the absorbing material and the VOC is commonly referred in literature as 

the VOC deficit. This VOC deficit is significantly higher for kesterites in comparison 

with CIGS and CdTe. The reasons of this high VOC deficit in kesterites are still 

unclear. Recently, it has been concluded by several experts that the disorder of 

Cu/Zn atoms in the kesterite type structure does not have a major detrimental effect 

in this sense [198]. This was also discussed in chapter 7 where the increase in VOC 

induced by a decrease of Cu content and disorder in the CZTSe was shown to be 

driven by a similar increase of the bandgap of the absorber material. Therefore, 

future work to close the gap in VOC between kesterites and the parental technologies 

should be driven by testing the strategies that brought CdTe and particularly CIGS 

to overcome the 20% efficiency barrier. 

Recent studies in single crystal CdTe devices demonstrated an increase of the VOC 

of the solar cells of more than 100 mV compared to historical CdTe polycrystalline 

record devices [199]. This demonstrated that the bulk properties of CdTe should not 

limit the fabrication of solar cells with efficiencies above 25%. In the same study, 

group V elements were successfully used to dope the anion sites of the crystal 

structure [199], which is a technique that could also be explore for kesterites. Initial 

studies in single crystals are starting to be reported focused in structural, vibrational 
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and optical properties [200-203]. Unfortunately, few studies can be found in the 

literature about single crystal kesterite materials which are focused in how the bulk 

properties could affect the solar cell performances. Hopefully, future reports on 

single crystals would help addressing if the bulk of kesterites will fundamentally limit 

the fabrication of devices with efficiencies above 20%.   

For CIGS, two main research lines have been relevant in the development of this 

technology that have not yet been deeply explored for kesterites. The first one is the 

introduction of external dopants (particularly alkali elements). The second one is the 

fabrication of absorber layers with graded bandgaps.  

In order to prove the relevance of alkali doping and post deposition treatments 

(PDT) in CIGS, solar cell data from Pianezzi’s thesis is compared below to put in 

context the importance of these studies [96]. It was shown that without any alkali 

treatment their devices had an efficiency of 11.5% without antireflective coating 

(ARC), whereas with a controlled Na and K PDT the solar cells had efficiencies 

above 19% with ARC [96]. This is a clear demonstration of how important the control 

of the alkali doping led to massive improvements in the performance of this 

technology and therefore, they should be studied in depth for kesterites. In the case 

of alkali doping for CZTSSe materials, several reports concluded that Na induces 

some positive changes in kesterite solar cells as previously reported for CIGS: 

 Increase of FF and VOC [204] 

 Increase of conductivity and carrier concentration [204] 

 Accumulated at the grain boundaries [205] 

 Improvement of grain growth [206] 

 Increase of radiative recombination [207] 
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In the case of K, there are few reports in literature and this should also be explored 

for kesterites. Initial studies of the introduction of small quantities of other elements 

such as Li [76] and Ge [208] have been achieving promising results. 

The bandgap grading, which has been a key in the success of CIGS solar cells has 

not been explored yet in depth in kesterites. Initial studies in the interface 

modifications by NREL reported that increasing the Zn content at the surface, 

induced an increase of the bandgap at the interface, increasing the VOC of their 

CZTSe devices [85].  

The bandgap of kesterite absorber layers can be tuned by changing the Selenium 

and Sulphur content from 1.0 eV to 1.5 eV respectively [164]. The record solar cells 

are made with the CZTSSe solid solution with an approximate bandgap of 1.1 eV 

[35]. In general terms, most groups report their best devices in the Se rich regime, 

either by making pure selenide kesterites or solid solutions with high Se content. 

However, the CZTSSe solar cells reported in literature shows a uniform distribution 

in depth of Se and S, therefore vertical bandgap gradient has not been clearly 

achieved with these elements. 

Other strategies to change the bandgap of kesterite based devices have been 

successfully proved such as changes in the stoichiometry, as demonstrated in 

chapter 7, or the substitution of Sn by Ge [209]. Si could also be used for to replace 

Sn for bandgap widening. The introduction of Ag in the Cu positions of the kesterite 

type structure has also been tested and devices with efficiencies over 10% have 

been achieved [210]. All of these possible substitutions of elements should allow the 

implementation of strategies to grade the bandgap in kesterite absorbers in a similar 

way that helped the development of CIGS technology to increase the performance 

of the devices. It is also important to highlight that both, the substitutions of Ge and 

Ag induce an increase of the difference in stability between kesterite and stannite 
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type structures [211]. This would reduce the probability of the presence of domains 

with stannite structure in polycrystalline films that might reduce the maximum 

achievable photovoltaic performance.  

10.5  Future of CTS in PV 

The future of CTS for photovoltaic applications remains uncertain. The results 

presented in this thesis demonstrate that devices can be synthesised with what has 

been reported as a disordered-cubic structure in literature [195]. It has also been 

proven that the absorber layers present a strong band tailing effect, which was 

predicted by theoretical calculations for this type of structure. The charge carrier 

concentration profiles extracted from C-V measurements suggest that the values are 

in a good range of values for efficient solar cells. This result does not agree with 

Baranowski et al. studies, which concluded that their CTS absorber layers had large 

values of carrier concentration and this was the main issue limiting the fabrication of 

solar cells with [186]. 

It also demonstrates that low temperature coevaporation could be a viable 

deposition route. And it is suggested that higher substrate temperatures are to be 

tested to prove that the monoclinic CTS can also be synthesised by this method. 

This material has been reported to have a sharper band edge and has led to the 

best device performance in literature [37]. 

The research in CTS still presents several unresolved questions that are needed to 

be answered to be able to provide a critical assessment of the future of this material. 

They can be summarised in the following points: 

 Band alignment: few results can be found in literature about the alignment of 

bands between the CTS and the potential absorber layers. All of the devices 

reported in literature have been fabricated using CdS, and all of them show a 
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low value of the VOC. In order to understand if the CTS solar cell performance 

is strongly limited by interface recombination, more comprehensive studies 

of this need to be developed. This can be assessed by designing 

experiments to measure the band alignment between CTS and different 

candidates to be used as buffer layers. This would help finding appropriate 

materials to solve this issue. 

 Light intensity performance dependence: the results reported in this thesis 

seem to point out that the devices perform differently when the light intensity 

is varied. This can be seen from the great difference in the JSC values 

extracted from EQE without white light bias and the values measured in the 

solar simulator. A similar behaviour has been observed in the record device 

reported by Nakashima et al. [37], but it is the origin of this behaviour is not 

well understood as yet.  

 Need of Ge addition: 6% efficient solar cells have been reported by 

introducing Germanium in the synthesis process of CTS [50]. It was reported 

that the main improvement was associated to a large increase in grain 

growth and bandgap widening. Unfortunately, it is not well understood how 

this affects the defect chemistry of the material, the band alignments and 

other properties, which have been demonstrated to be affected for the case 

of kesterite compounds [208, 209]. The use of Ge in the absorber layers has 

also the drawback of not being an earth abundant element. 

Researchers studying the Cu-Sn-S family should try to answer the questions 

summarised above. This data would help determining if CTS has the potential to 

be used as an absorber layer fabricating solar cells with efficiencies over 10% in 

the next years. 
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Alternatively, some other new materials are starting to gain a great interest. 

Solar cells based on Sb2Se3 have been reported with efficiencies up to 5.6 %, 

this being a result that will guarantee more research in this material as an 

alternative inorganic absorber layer.  

Fe2SiS4 and Fe2GeS4 have also been proposed as ideal alternative inorganic 

compounds containing earth abundant elements for photovoltaic applications 

[212]. This study was based on theoretical calculations and initial experimental 

results on powders [212]. However, there are no reports of solar cells fabricated 

out of these materials yet.  The investigation of these materials is also expected 

to grow.  

An increase of the number of materials available to be used in thin film PV will 

benefit the future development of these technologies. This would also help 

increasing their market share of thin film PV in future, particularly if the materials 

used are composed of earth abundant elements.  
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