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We employ a free energy lattice Boltzmann method to study the dynamics of a ternary fluid system
consisting of a liquid drop driven by a body force across a regularly textured substrate, infused by
a lubricating liquid. We focus on the case of partial wetting lubricants and observe a rich interplay
between contact line pinning and viscous dissipation at the lubricant ridge, which become dominant
at large and small apparent angles respectively. Our numerical investigations further demonstrate
that the relative importance of viscous dissipation at the lubricant ridge depends on the drop to
lubricant viscosity ratio, as well as on the shape of the wetting ridge.

INTRODUCTION

Liquid Infused Surfaces (LIS) are liquid repellent sur-
faces constructed by infusing a lubricant into textured
substrates [1], as illustrated in Fig. 1. Drops placed on
LIS move very easily under small perturbations and will
shed away at a small tilting angle, regardless of their
surface tensions [2]. These surfaces can also be designed
to withstand high pressure and self-heal from physical
damages [2], which distinguish them from other liquid
repellent surfaces such as superhydrophobic surfaces [3].

LIS are relatively easy to fabricate. The primary re-
quirements are a rough solid substrate with strong affin-
ity toward the lubricant, and the drop needs to be immis-
cible to the lubricant [4]. These advantageous features
have given rise to many potential industrial applications,
such as to reduce energy consumption in fluid transports
[5], to simplify cleaning and maintenance processes [6],
to prevent damage due to fouling [7], and to annihilate
product leftover for smart liquid packaging [8]. For many
of these applications, efficient and effective control of the
drop dynamics on LIS is required, yet to date such con-
trol remains poorly understood.

Compared to the more commonly studied cases of
smooth and superhydrophobic surfaces [9–14], the main
distinguishing feature of LIS is the presence of the infus-
ing lubricant, forming a ridge as shown in Fig. 1. Thus
the central aim of this work is to shed light on the role
of the lubricant ridge in the dynamics of drops on LIS.

Based on thermodynamic arguments, Smith et al.
showed that a liquid drop placed on LIS may invade the
corrugation and replace the infusing lubricant, or it can
sit on top of the corrugation with the lubricant present
underneath the drop [15]. If the lubricant is perfectly
wetting the substrate, the drop and the corrugated sur-
face is separated by a thin film, and no pinning of the
contact lines take place. However, closer inspection em-
ploying confocal microscopy revealed that this case is un-
likely for a number of common lubricants, as they form
in contact to the solid with a small but finite contact an-

FIG. 1. (a) Rendering of a quasi 3D setup of an LIS system
where a drop is sitting on a textured substrate infused with a
lubricant. (b) Magnification of the lubricant ridge. γdg, γlg,
and γld are the drop-gas, lubricant-gas, and drop-lubricant
surface tensions; θd, θg, and θl are the Neumann angles of the
drop, gas and lubricant; θCB

ld and θCB
lg are the drop-lubricant

and lubricant-gas contact angles assuming a Cassie-Baxter
approximation.

gle [15, 16]. As such, on one hand, the surface roughness
helps to contain the lubricant; on the other hand, it is
also the source of contact line pinning and contact angle
hyeteresis.

The presence of lubricant meniscus also introduces
competing dissipation mechanisms acting on a drop as it
moves across LIS. For example, Keiser et al. have high-
lighted that viscous dissipation may occur predominantly
in the drop or in the lubricant depending on the ratio be-
tween the drop and lubricant viscosities [17]. However,
most studies to date consider only drops with apparent
contact angles close to 90◦ [15, 17], and the impact of the
shape of the lubricant meniscus on drop mobility remain
unexplored. To cover such gaps, here we will investigate
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these variations systematically using the lattice Boltz-
mann simulation method. In particular, we focus on the
interplay between the contact line pinning induced by the
surface corrugation and the viscous dissipation in the lu-
bricant and drop phases.

NUMERICAL METHOD

Ternary free-energy lattice-Boltzmann method

To simulate liquid drops on LIS, we employ a ternary
fluid model able to account for three bulk fluids (drop,
gas and lubricant), their fluid-fluid interfacial tensions,
and the fluid interactions with a solid substrate. The
free energy is given by [18–20]

F =
3∑

m=1

∫
Ω

[
κm
2
C2
m(1− Cm)2 +

α2κ′m
2

(∇Cm)2

]
dV

−
3∑

m=1

∫
∂Ω

hmCm dS. (1)

By construction the first term in Eq. 1 corresponds
to a double well potential. Taken separately, each dou-
ble well potential has minima at concentrations Cm = 0
(fluid component m is absent) and Cm = 1 (fluid com-
ponent m is present). In our simulations, we initialise

the system such that
∑3
m=1 Cm = 1 at any point in the

simulation box, with three physically meaningful bulk
states corresponding to the drop (C = [1, 0, 0]), the gas
(C = [0, 1, 0]) and the lubricant (C = [0, 0, 1]) phases.

The second term in Eq. 1 is related to the energy
penalty at an interface between two fluid phases. The
interfacial tension between fluid phases m and n, γmn
(m,n = 1, 2, 3 and m 6= n), can be tuned by the κm
parameters via [19]

γmn =
α

6
(κm + κn), (2)

where α =
√

(κ′m + κ′n)/(κm + κn) is a parameter we
can tune to vary the interface width. Typically we choose
α = 1 in our simulations.

The hm parameters in the last term of Eq. 1 allow us to
quantify the fluid-solid surface energies and correspond-
ingly the contact angle of fluid m on a solid surface in
the presence of fluid n, θmn. The contact angle θmn is
given by [19]

cos θmn =
γsn − γsm
γmn

, (3)

where each solid-liquid tension γsm include contribution
from both majority and minority phases, expressed by

the integrals I and J respectively

γsm = Im +
∑
n 6=m

Jn,

Im =
αkm
12
− hm

2
− 4hm + kmα

12

√
1 +

4hm
αkm

,

Jn =
αkn
12
− hn

2
+

4hn − knα
12

√
1− 4hn

αkn
.

For ternary fluid systems in contact with an ideal flat
substrate only two out of the three contact angles are
independent. For example, if θ12 and θ32 are specified,
the remaining contact angle, θ31, is determined by the
Girifalco-Good relation [21]

cos θ31 =
γ32 cos θ32 − γ12 cos θ12

γ31
. (4)

Any choice of the hm parameters fulfills Eq. 4.
In our approach, we apply variable transformations

from C1, C2 and C3 to three equivalent order parame-
ters, ρ = C1 + C2 + C3, φ = C1 − C2, and ψ = C3.
For simplicity, here we have set the density ρ = 1 every-
where. This “equal density” approximation is suitable
for small Reynolds number (Re), which is the case in
this work. At large Re, inertia becomes important, and
the density ratios between the fluid components must be
taken into account [22]. In terms of these order parame-
ters, the equations of motion of the system are described
by the continuity, Navier-Stokes and two Cahn-Hilliard
equations

∂tρ+ ~∇ · (ρ~v) = 0, (5)

∂t(ρ~v) + ~∇ · (ρ~v ⊗ ~v) = −~∇ ·P + ∇̃ ·
[
η(∇̃v + ˜∇vT)

]
,(6)

∂tφ+ ~∇ · (φ~v) = Mφ∇2µφ, (7)

∂tψ + ~∇ · (ψ~v) = Mψ∇2µψ, (8)

where ~v is the fluid velocity, and η is the fluid viscosity
that generally depends on the local order parameters φ
and ψ. The latter allows us to set different viscosities for
the drop, lubricant, and gas components. The thermody-
namic properties of the system, described in the free en-
ergy model in Eq. 1, enter the equations of motion via the
chemical potentials, µq = δF/δq, (q = φ and ψ), and the
pressure tensor, P, defined by ∂βPαβ = φ∂αµφ +ψ∂αµψ.
To solve the equations of motion, Eq. 5 - 8, we employ the
ternary lattice Boltzmann algorithm described in Ref. 19.
More general details on the lattice Boltzmann method,
including how it recovers the continuum equations of mo-
tion, can be found in Ref. 23–25.

Simulation setup

The majority of simulations are performed in a quasi
three-dimensional simulation box, as shown in Fig. 1.
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The dimension of the simulation box is 400×10×150 LB
units with the top surface bounded by a flat wall. The
bottom solid surface is textured with a row of square
posts of height h = 10 LB units, width w = 5 LB units,
and periodicity p = 10 LB units. A periodic boundary
condition is applied in the other two directions.

This quasi three-dimensional setup has the advantage
of reducing the computational cost when compared to a
full 3D simulation, while capturing the key 3D features.
In the case of LIS, it preserves the essential feature of
allowing the lubricant to flow in between the surface tex-
ture underneath the liquid drop. This setup has been
successfully employed to study drop dynamics on flat and
superhydrophobic surfaces [12, 23, 26].

The lubricant phase is initialised to fill the space be-
tween the posts and an additional layer of two lattice
nodes on top of them, in order to allow the formation of a
lubricant ridge at the two sides of the drop. To make sure
the lubricant imbibes the bottom surface, the lubricant-
drop contact angle θld and the lubricant-gas contact angle
θlg have to be smaller than the critical angle θc for hemi-
wicking. From thermodynamic considerations it can be
shown that cos θc = (1 − φs)/(r − φs), where φs and r
are respectively the solid fraction and roughness factor of
the surface pattern [27, 28]. The texture employed in this
work gives φs = 0.25 and r = 3, which leads to θc ≈ 74◦.

A hemispherical drop with radius R = 60 LB units is
placed on top of the posts and is then allowed to reach
equilibrium before a body force is introduced to mobilise
the drops. Unless stated otherwise, we set the horizontal
and the vertical components of body force to be equal,
such that Gz = −Gx. This choice corresponds to an
experimental setup where the substrate is tilted at an
angle of 45◦. Adding a downward body force ensures
the drop to remain attached to the substrate, especially
when it has a large apparent angle. We find the steady
state velocity of the drops to be insensitive to the value
of Gz as long as the drop size is smaller than the capil-
lary length, R < lc =

√
γdg/ρ|Gz|. To characterise the

drop mobility, we will take advantage of two dimension-
less parameters, the Bond number Bo = R2Gx/γdg and
the capillary number Ca = ηdVx/γdg, where γdg, ηd, and
Vx are the drop-gas surface tension, drop viscosity and
drop velocity parallel to the solid surface.

DROP MORPHOLOGIES IN MECHANICAL
EQUILIBRIUM

In this section we will demonstrate that our ternary
lattice Boltzmann approach can accurately simulate drop
morphologies in mechanical equilibrium on LIS. For a liq-
uid drop placed on an ideal smooth surface, the material
contact angle, θYdg, is given by the Young’s law, which
arises from the force balance between the interfacial ten-

sions at the three-phase contact line:

cos θYdg =
γsg − γsd
γdg

, (9)

where γsg, γsd, and γdg are the solid-gas, solid-drop and
drop-gas interfacial tensions respectively. Here we em-
ploy the superscript Y to distinguish the material contact
angle from the effective contact angle under the Cassie-
Baxter approximation (superscript CB).

For a drop placed on LIS, the solid-gas-drop contact
line does not exist, and thus Eq. 9 does not represent a
physically meaningful condition. In contrast there ex-
ist three alternative three-phase lines (see Fig. 1(b)):
drop-lubricant-gas, drop-lubricant-solid, gas-lubricant-
solid. To characterise how much the drop spreads on LIS,
it is useful to introduce the notion of an apparent contact
angle. As illustrated in Fig. 2 (top left), the apparent an-
gle can be defined with respect to the horizontal plane
at the drop-lubricant-gas triple line. In the limit of small
but finite lubricant ridge, we have recently shown that
the apparent angle need to satisfy the following relation
[29]:

sin θg[cos θCBld − cos(θd − θapp)]
sin θd[cos θCBlg − cos(θapp + θg)]

=

(
1− ∆Pdg

∆Plg

)
. (10)

Here θCBαβ is the averaged wettability expressed by the
Cassie-Baxter contact angle [27],

cos θCBαβ = φs cos θYαβ + (1− φs), (11)

which accounts for the fact that the drop and gas
phases lie on top of a composite solid-lubricant inter-
face. The quantity ∆Pdg/∆Plg is the ratio between
the Laplace pressures at the drop-gas and lubricant-
gas interfaces. Since the Laplace pressure is given by
∆Pαβ = 2γαβ/Rαβ , where Rαβ is the mean radius of
curvature for the αβ interface, ∆Pdg/∆Plg is directly re-
lated to the size ratio between the lubricant ridge and
the drop. In the strict limit of vanishing lubricant ridge,
∆Pdg/∆Plg → 0, Eq. 10 can be simplified to

cos θapp =
γlg
γdg

cos θCBlg −
γld
γdg

cos θCBld . (12)

The main advantage of Eq. 12 is that all variables on
the right hand side are material parameters which can
be measured independently. In contrast, the value of
∆Pdg/∆Plg in Eq. 10 is usually not known a priori. How-
ever, it can be inferred from analysing the shape of the
lubricant ridge.

In Fig. 2, we compare the apparent angle, θapp, mea-
sured from our LB simulations once mechanical equi-
librium is reached, against both the full solution in
Eq. 10 and the vanishing lubricant ridge approximation
in Eq. 12. The range of apparent angles are obtained by
varying the surface tensions γlg, γdg and γld, as well as
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FIG. 2. Comparison between θapp obtained from our simu-
lations against the predicted values from both the full solu-
tion (Eq. 10) and the vanishing lubricant ridge approximation
(Eq. 12). The top left inset illustrates how θapp is measured
at the drop-lubricant-gas triple line.

the lubricant’s material contact angles θYlg and θYld. For
comparison against the full solution (Eq. 10), we com-
pute ∆Pdg/∆Plg by measuring the radii of curvature of
the drop-gas and lubricant-gas interfaces once mechani-
cal equilibrium is reached in our simulations.

The measured apparent contact angles in our LB simu-
lations are in very good agreement with the full solution.
When compared against the vanishing lubricant ridge ap-
proximation (Eq. 12), the measured values of the appar-
ent angle has a systematic deviation by several degrees.
This deviation is expected since the size of the lubricant
ridge in our simulations is not negligible compared to the
drop size. Nonetheless, Eq. 12 remains a good first esti-
mate for predicting the apparent angle of drops on liquid
infused surfaces, and the accuracy improves the smaller
the lubricant meniscus is compared to the drop size.

TRANSLATIONAL DROP MOBILITY

Variation in the ratio between drop and lubricant
viscosities

Recent experiment by Keiser et al. suggests that there
is a crossover between bulk drop and lubricant ridge dom-
inated dissipation regimes, as the drop to lubricant vis-
cosity ratio is varied [17]. Here we aim to reproduce this
crossover behaviour to demonstrate that our LB simula-
tion can correctly capture the dynamics of drops moving
across LIS.

FIG. 3. Comparison between our simulation results against
experimental data by Keiser et al. [17]. Here the lubricant
viscosity is fixed at ηl = 10 ηref , while the drop viscosity
is varied. The reference viscosity ηref in the experiment is
water viscosity (1 mPa.s). To ensure correct viscosity ratio
between the drop and the air phases, we set ηref = 50 ηg in
our simulations. Vref is drop velocity when ηd = ηref .

We introduce a surface patterning, surface tensions,
and a body force such that φs = 0.25, θapp = 93◦,
and Bo = 0.115 to mimic the experimental setup in [17]
(φs = 0.23, θapp = 90◦, and Bo = 0.115). The time aver-
aged velocities of the drop’s centre of mass from our sim-
ulations are reported by the blue plus symbols in Fig. 3.
The viscosity of water (about 50 times larger than the
viscosity of air), ηref = 50ηg = 1 mPa.s, is taken as the
reference viscosity. We have also scaled the drop velocity
by Vref , taken to be the drop velocity Vx when the drop
viscosity is ηd = ηref . For comparison, the experimental
data from Keiser et al. [17] are shown as red asterisks in
Fig. 3.

For large drop viscosity, viscous dissipation lies pre-
dominantly inside the drop. In this regime, as the
drop viscosity is lowered, the drop velocity increases as
V ∝ η−1

d [17], until it eventually plateaus to Vx ' Vref .
Both in simulations and experiments, the crossover oc-
curs approximately at ηd ∼ 2ηl. Below this value of drop
viscosity, viscous dissipation in the lubricant ridge be-
comes dominant compared to dissipation in the drop. In
this regime, the drop velocity has a strong dependence
on the lubricant viscosity, while the drop viscosity has
virtually no effect.

There are a number of differences between the exper-
iments in Ref. 17 and our numerical setup. Firstly, our
simulations are in quasi 3-D, rather than full 3-D. Sec-
ondly, the size of the lubricant ridge compared to the drop
size is larger than that in experiments. Thirdly, we have
considered partial wetting lubricant, θwet = 45◦, whereas
the experiments were done using a complete wetting lu-
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FIG. 4. (a) Drop mobility on smooth surface (black dots) and LIS (red triangles, green diamonds, and blue squares) plotted
against θapp. θwet is the wetting angle of the lubricant phase (θYlg = θYld = θwet). The drop mobility is represented by the
capillary number Ca. (b) and (d) drop mobility versus time for the cases indicated in panel (a). The capillary number Ca
increases and decreases periodically due to pinning-depinning events. (c) and (e) drop mobility for cases indicated in panel (a)
as a function of Bo−Boc. Bo is the Bond number. The insets show the critical Bond number, Boc, at which the drops start
moving under external body force.

bricant, θwet = 0◦. Nonetheless, it is clear from Fig. 3
that the crossover between bulk drop and lubricant ridge
dominated dissipation regimes is a robust phenomenon,
which our simulations can accurately capture.

Variation in apparent and wetting angles

In the previous section we numerically verified the
crossover between viscous friction in the bulk drop and in
the lubricant ridge. The similarity between experiments
and numerical simulations is valid despite the fact we
employed partial wetting lubricants, which involve also
pinning and depinning effects. In this section we will
focus on the role of lubricant wettability on the drop mo-
bility, in particular on the interplay between contact line
pinning and viscous friction.

As a reference case, we first consider a drop moving
on a flat surface as illustrated in the top-left inset of
Fig. 4(a). The viscosity of the drop is set to be ηd = 50ηg
to mimic a water drop in a dry air environment. A con-
stant body force with Bo = 0.211 is then applied to mo-
bilise the drop so that the drop moves and reaches a
steady state velocity. The results obtained for drops on a
smooth surface are represented by black dots in Fig. 4(a)
as a function of the contact angle. For a smooth sur-
face, we identify θapp = θYdg. In agreement with previous
studies, the steady state capillary number of the drop
increases monotonically with θapp [13, 14], due to the de-

crease in wedge dissipation at the contact line.

Let us now consider the equivalent setup for drops on
LIS, as illustrated in the bottom-right inset of Fig. 4(a).
The lubricant viscosity ηl is set to be the same as the
drop viscosity, ηl = ηd = 50ηg. To reduce the number
of parameters to be explored in our simulations, we will
assume a symmetric wetting condition for the lubricant,
where θYlg = θYld = θwet.

For a given θwet we systematically vary the drop appar-
ent angle, θapp, by tuning the fluid-fluid surface tensions,
and consequently the Neumann angles, θl, θd and θg. In
Fig. 4(a) we compare the drop mobility, quantified as the
time-averaged capillary number Ca for θwet = 30◦ (red
triangles), θwet = 45◦ (green diamonds), and θwet = 60◦

(blue squares). Similar to the smooth surface case, the
drop mobility increases monotonically with the apparent
angle, but the magnitude of the Ca is generally smaller
than for a smooth surface. Interestingly, when compar-
ing the three datasets for different θwet, we observe that,
while for larger θapp drops with smaller θwet move faster
than those with larger θwet, this ordering is reversed for
lower θapp. The presence of these two regimes (for lower
θapp and larger θapp) is persistent for different values of
Bo, ηd and ηl.

We hypothesise this ordering inversion is due to a shift
in the relative importance between viscous dissipation
and contact line pinning at the lubricant ridge. To bet-
ter characterise the pinning-depinning effects during drop
motion, we plot the instantaneous Ca associated to the
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drop’s centre of mass, as a function of time for three
drops with θapp ∼ 110◦ and θapp ∼ 45◦ respectively
in Figs. 4(b) and 4(d). We observe that the instanta-
neous Ca oscillates periodically, which is due to pinning-
depinning events as the drop moves across the periodic
LIS pattern (see ESI video). For both large (Fig. 4(b))
and small (Fig. 4(d)) θapp, the oscillations with larger
amplitude are always observed for higher θwet. At the
same time, the amplitude of the oscillations is generally
smaller for θapp ∼ 45◦ than for θapp ∼ 110◦, which im-
plies a less pronounced effect of pinning and depinning.

To further assess the relative importance of pinning
versus viscous dissipation, we explore the relation be-
tween the driving force and the drop velocity for both
cases of θapp ∼ 110◦ (Fig. 4(c)) and θapp ∼ 45◦

(Fig. 4(e)). Assuming a linear approximation, the re-
lation between Ca, Bo and Boc can be expressed as
Ca = (Bo − Boc)/β [15, 30, 31]. Boc, the largest Bond
number at which the drop remains stationary, is a mea-
sure of contact line pinning, or alternatively, contact an-
gle hysteresis. β is a function of the shapes of the drop
and lubricant meniscus, and it is related to their rate of
viscous dissipation.

Considering Ca as a function of (Bo − Boc), our
data show an important difference between the large and
small apparent angle drops. For large apparent angles
(Fig. 4(c)), all the curves practically overlap onto a mas-
ter curve. The variations in the results for θwet = 30◦

(red triangles), 45◦ (green diamonds), and 60◦ (blue
squares) can be captured by differences in the value of the
critical Bond number, Boc, as shown in the inset. This
indicates that the ordering observed in Fig. 4(a) for large
θapp is determined by contact line pinning. The prefactor
β is the same for the three datasets in Fig. 4(c), which
suggest that the rate of viscous dissipation is on average
the same once the reduction in the effective driving force
due to pinning forces is taken into account.

In contrast, for small apparent angles (Fig. 4(e)), the
datasets do not overlap onto a master curve. The criti-
cal Bond number, Boc, is also essentially the same – any
differences observed are within the error of the measure-
ments – for the three θwet used. These two observations
suggest that, for low θapp, contact line pinning plays a
minor role. The variations in Ca vs (Bo − Boc) for the
three datasets in θwet further imply that viscous dissipa-
tion is larger for the more wetting lubricant. Inspection
of the drop morphologies supports this observation. We
find that, for large θapp, the lubricant ridges have sim-
ilar shape, regardless of θwet. In contrast for low θapp
the ridge shape is broader for lower θwet (ESI document,
SFig. 1 and SFig. 2).

To further corroborate this hypothesis, we ran three
additional sets of simulations, where pinning and depin-
ning is inhibited by replacing the topography with a flat
substrate, as shown in Fig. 5. The three sets correspond
to θwet = 30◦ (red triangles), θwet = 45◦ (green dia-

FIG. 5. (a) In the absence of contact line pinning, drops
with higher θwet always move faster. (b) Comparison of drop
shapes with the same θapp but different θwet and correspond-
ingly meniscus aspect ratio ARm. (c) Definition of ARm. (d)
Drop mobility against ARm for different θapp. The lines are
the best fit results to Eq. 15. Vref is taken to be the velocity
of drop R in panel (a).

monds), and θwet = 60◦ (blue squares). The amount of
lubricant in both the front and back ridge is the same for
all cases. Accordingly, once pinning is removed, drops
with higher θwet always move faster irrespective of θapp,
showing the same ordering that we obtain only for low
θapp in Fig. 4(a).

Fig. 5(a) compares the morphologies of drops B and
D indicated in Fig. 5(c). The two drops have an almost
identical shape and θapp, but their lubricant ridge shapes
and mobilities are different. For drop B, θwet is smaller,
and therefore the meniscus is broader. We can charac-
terise the meniscus shape by its aspect ratio, defined as
ARm = hm/lm, where hm and lm are its height and
length respectively, see Fig. 5(b).

We now propose a scaling argument to explain how the
drop mobility depends on the lubricant ridge aspect ratio.
We balance the rate of energy injected by the applied
body force with the total rate of energy dissipation in
the drop and lubricant,

FVx ∼ ηd
∫
|∇v|2ddAd + ηl

∫
|∇v|2l dAl. (13)

Here F is the total force acting on the drop. We also
recall that the simulations in Fig. 5 are two-dimensional
simulations; thus the terms on the right hand side are
integrated over the drop and the lubricant ridge area.
Taking |∇v|d ∼ Vx/R and |∇v|l ∼ Vx/hm as the typical
velocity gradient in the drop and lubricant meniscus, as
well as ∆Ad ∼ R2 and ∆Al ∼ hmlm as the typical scales
for the cross-sectional area of the drop and the lubricant,
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we have

F ∼ αdηdVx + αlηlVxlm/hm, (14)

Vx ∼
F

αdηd + αlηl/ARm
. (15)

where αd and αl are positive, dimensionless fitting pa-
rameters. Eq. 15 shows that a smaller ARm results in a
larger energy dissipation in the lubricant meniscus, which
in turn leads to the lower mobility of the drop.

In Fig. 5(d), we consider drops A, B and C indicated
in Fig. 5(c), and increase their ARm by tuning θwet. We
keep all other variables in the simulations the same, in-
cluding the body force, the fluid surface tensions, the
lubricant and drop viscosities, and the total drop and lu-
bricant cross-sectional area. The data points in Fig. 5(d)
correspond to simulation results, while the lines corre-
spond to the best fit results to Eq. 15, where we have
fitted αd and αl separately for each dataset. Consistent
with our scaling argument, for all of the three datasets
in Fig. 5(d), drop mobility increases monotonically with
ARm.

Taking advantage of the results in Fig. 5, we can ro-
bustly conclude that the ordering observed in Fig. 4(a)
for small θapp is due to variations in viscous dissipation
at the lubricant ridge. For the present choice of viscosi-
ties ηl = ηd = 50ηg, the crossover between pinning and
meniscus viscous friction dominated regimes in Fig. 4(a)
occurs at θapp ' 70◦. In ESI SFig. 3, we take the limit
where the lubricant viscosity is very low, equal to the gas
viscosity. In this case viscous dissipation at the lubricant
is weak compared to that in the drop. As expected, for
low apparent angle θapp, we then observe that the drop
mobilities remain very similar as we vary the wetting an-
gle θwet.

CONCLUSIONS

In this work we have employed a computational
method, based on the free energy lattice Boltzmann ap-
proach, to study drop dynamics on LIS. We show that
the drop apparent angle on LIS can be captured accu-
rately. Despite differences compared to typical experi-
ments, namely the cylindrical geometry and the relatively
larger size of the lubricant ridge, the drop mobility com-
puted from our simulations shows a remarkable agree-
ment with the experiments by Keiser et al.[17], as the
drop and lubricant viscosity ratio is varied. Furthermore
we have considered the more complex case of partially
wetting lubricants, and revealed a rich interplay between
contact line pinning and viscous friction. Specifically, we
have shown that for large apparent angles contact line
pinning dominates, and drops with more wetting lubri-
cants move faster. In contrast, for small apparent angles
viscous friction in the lubricant ridge dominates. The
magnitude of the viscous dissipation is determined by

the shape of the lubricant ridge, and as such, drops in
LIS with less wetting lubricants move faster.

To our best knowledge this is the first simulation study
of drops on LIS that accounts for the full dynamics of the
fluid flows. The lattice Boltzmann method we have em-
ployed here is versatile, and there are a number of avenues
of future numerical work. In this work we have assumed
a LIS substrate textured with a regular periodic pattern
of pillars, while many LIS substrates are constructed ex-
perimentally using irregular topographies [2, 15, 16, 32].
The impact of random roughness on the drop dynamics
will be investigated in a forthcoming study. It has also
been pointed out that drainage of the infusing lubricant
is a major source of failure for LIS technology [33, 34].
As such, our approach is suitable for investigating how
the surface topographies can be designed to minimise the
loss of lubricant during drop motion.
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