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ABSTRACT: We report the results of comprehensive experiments and numerical calculations of interfacial morphologies of water 

confined to the hydrophilic top face of rectangular posts that is subject to vertical vibrations. In response to the mechanical driving, 

an initially flat liquid channel is collected into a liquid bulge that forms in the center of the rectangular post if the acceleration ex-

ceeds a certain threshold. The bulge morphology persists after the driving is switched off in agreement with the morphological bi-

stability of static interfacial shapes on posts with large length to width ratios. In a narrow frequency band, the channel does not de-

cay into a bulge at any acceleration amplitude, and displays irregular capillary waves and sloshing instead. On short posts, however, 

a liquid bulge can be dynamically sustained through vertical vibrations but quickly decays into a homogeneous channel after the 

external driving is stopped. To explain the dynamic bulging of the liquid interface, we propose an effective lifting force pulling on 

the drop's slowly moving center of mass in the presence of fast oscillation modes.  

INTRODUCTION 

Resonant oscillations of sessile drops have been the subject of 

recent experimental and numerical studies because of their rel-

evance to microfluidic applications, in particular to mixing 

and actuation. In contrast to electrowetting1 and magnetic ac-

tuation2 which require polar liquids or ferrofluids, respective-

ly, mechanical vibrations couple to drop inertia and, thus, pro-

vide an universal driving mechanism for all types of liquids. 

Taking advantage of the rectifying effect related to a contact 

angle hysteresis, horizontal and vertical vibrations with a con-

trolled phase shift can be utilized for directed drop actuation 

and let drops even climb against gravity.3–10 Similarly, spatio-

temporal modulation of the levitation acoustic field allows 

continuous planar transport and processing of droplets.11 

 

Recent investigations have shown that topographic micro-

pattern of linear grooves and ridges may increase the yield of 

passive fog collectors.12 During growth, the droplets wetting 

the ridges coalesce and may form stretched out, linear mor-

phologies, called filaments, or are collected into larger drop-

lets which facilitates droplet shedding by gravity or other ex-

ternal forces. The transition between the flat channel or fila-

ment-like morphology and the localized, droplet-like bulge 

morphology is controlled by surface wettability13 and the ge-

ometry of the ridges.14  

 

More generally, static interfacial shapes of sessile liquid drops 

wetting chemical or topographic surface patterns have been 

widely studied both at  the applied15,16 and fundamental lev-

els.13,14,17–22 Small drops wetting a rectangular stripe or annular 

ring, in particular, can be morphologically bi-stable in a cer-

tain range of liquid volumes.14,23,24 In the latter cases, the inter-

face of a drop in mechanical equilibrium may be found either 

in a flat, spread-out “channel” morphology or in a localized 

Figure 1 (Top) Sketch of the rectangular post attached to the 

shaft of the shaker (left); side and front views of the channel in 

the bulge state. The post is made out of PDMS. The top face in 

contact with water is covered with a gold layer. PD is the photo-

dector to measure the vertical displacement. (Bottom) Reduced 

height h = H/W of a water layer deposited on rectangular post of 

aspect ratio ℓ = 36 as a function of the reduced volume v = V/W3. 

Full (empty) symbols represent the experimental data during in-

jection (extraction). The snapshots show the side and front imag-

es of the water channels taken at selected points along the height 

curve. The scale bars correspond to 0.5 mm. 
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drop-like “bulge” morphology. Close to the point of instabil-

ity, the energy barrier separating these two interfacial confor-

mations is small, and one can expect that the transition from 

the meta-stable state into the global energy minimum can be 

easily triggered by external stimuli like mechanical vibrations 

of the underlying substrate. 

 

The present work is the natural prosecution of our static study 

on rectangular posts14 and demonstrates that vibrations can 

indeed induce a transition from a flat channel into the local-

ized bulge, but this transition is inhibited under certain condi-

tions. In a small range of vibration frequencies, the liquid in-

terface of the channel does not decay into a liquid bulge but 

instead displays patterns of standing capillary waves with pro-

nounced beating and highly irregular local amplitudes.  

 

Interfacial shapes of the channel and bulge states obtained in 

numerical energy minimizations allowed us to compute the 

spectrum of natural frequencies for small amplitude oscilla-

tions using a boundary integral approach. The numerically 

computed oscillation modes of the bulge state not only agree 

with video recordings of the interfacial contours of forced os-

cillation modes in our experiments but also explain the genera-

tion of an effective dynamic force acting on the liquid during 

vertical vibrations. This upward directed force can be rational-

ized by the de-tuning of resonating oscillation modes during a 

redistribution of liquid in the drop wetting the post. 

 

EXPERIMENTAL METHODS 

Individual posts in polydimethilsiloxane (PDMS) having a 

rectangular cross-section, height  100 m, width W = 500 

m, length L = 7 mm or 18 mm, and with a through hole of 

diameter  150 m in the center, are fabricated following the 

same procedure used before.14 The patterned sample is at-

tached to the moving shaft of an electromagnetic shaker as 

shown in Figure 1. The vibration amplitude A is determined 

with an IR photodetector (PD) that has been calibrated by op-

tically measuring the net displacement of the shaft. The resolu-

tion in A is estimated to be 2 m. The vertical acceleration is 

calculated from the formula a = 42 f 2A, where f is the vibrat-

ing frequency. With a feedback circuit, it is also possible to 

sweep f while maintaining A constant over a frequency inter-

val  500 Hz.  The PDMS posts are hydrophobic with a con-

tact angle for water 0 = 110°. Their top face is covered with a 

thin gold layer.  To protect the vertical walls during the metal-

lic deposition, they are covered with a UV curable optical ad-

hesive, NOA 61.25 Right before each measurement, the gold 

surface is activated in an ozone cleaner and then the cured 

NOA 61 coating is peeled off. As a result, the material contact 

angle on the top face is reduced to 0  15° and remains stable 

for a couple of hours. The central hole is connected to a thin 

tube attached to a syringe pump in series with a flow meter. 

 

RESULTS AND DISCUSSION 

Bistability of equilibrium shapes. Water drops of fixed vol-

ume V deposited on a perfectly wettable rectangular stripe of 

width W and length L ≫ W can assume two mechanically sta-

ble morphological states13,14,17,23 with different height H (for 

the definition of the quantities c.f. also the top panel of Figure 

1). If the vertical extension of the interface is small compared 

to the capillary length 𝐿𝑐 = √𝛾/(𝑔𝜌) ≈ 2.7 mm for water, 

gravity can be neglected and the stability of the shape is con-

trolled only by the reduced volume of the drop, v  V/W 3 and 

the aspect ratio ℓ  L/W, as outlined in Ref.14. For small re-

duced volumes v, the liquid assumes the shape of a channel 

with a uniform cross section while, for large volumes, the liq-

uid interface displays a central bulge. 

 

Figure 2 Energy landscapes of droplets in terms of the height z of the drop's center of mass above the post for a series of reduced liquid 

volumes v for short (a) posts ℓ = 15 and long (b) posts ℓ = 25. For the sake of comparison, each curve is shifted individually on the ordinate 

such that the minimum energy equals to zero. The gray arrows point into the direction of increasing volume. (c): Morphology diagram 

around the bifurcation point at (ℓ,v) ≃ (16, 5.8) (black square). Open circles (short posts) and diamonds (long posts) are the reduced vol-

umes of the drops corresponding to the energy configuration shown in panels (a) and (b), respectively. The bi-stable region of control pa-

rameters is shown in gray. Channels become unstable on the dashed line while the bulges decay when crossing the solid line. 
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The plot in Figure 1 shows the reduced height h  H/W as a 

function of the reduced water volume v  V/W 3. Full (empty) 

symbols represent data during injection (extraction) of water. 

The plot in Figure 1 is complemented by images of the water 

profile taken at particular points as indicated in the graph. The 

observed shape transition is in agreement with a previous ex-

perimental study of water condensing on long posts.14 Starting 

at small, reduced volumes, the water distributes evenly on the 

top face of the post, forming a liquid “channel” with a homo-

geneous, circular cross-section, c.f. Figure 1(i) and (ii). No-

ticeable deviations of this almost homogeneous profile occur 

only in the vicinity of the ends of the post and decay on a 

length scale comparable to the post width. Upon increasing the 

volume further, the radius of the circular segment decreases 

while the water interface forms a central bulge, which grows 

with v (Figure 1(iii)). The bulge formation is characterized by 

a pronounced increase in the reduced height h of the interface 

above the post, c.f. Figure 1(iv). 

 

The transition from the channel to the bulge can be reversed 

upon decreasing the volume. It is apparent from Figure 1 that 

the volume vmin at the point where the bulge state spontaneous-

ly transforms back into a channel is smaller than the volume 

vmax where the channel transforms into the bulge. The bistable 

range of volumes and the corresponding hysteresis of the order 

parameter h is a clear indication that the observed morpholog-

ical transition in Figure 1 is discontinuous. 

However, on short posts with a length-to-width ratio smaller 

than ℓ*  16, a continuous transition from the channel to the 

bulge morphology is observed.14 The transition from a contin-

uous to a discontinuous shape transformation, and the exist-

ence of a mechanically bistable region can be best understood 

by considering the qualitative changes of the energy landscape 

that the confined liquid drop experiences. To this end, we nu-

merically computed local energy minima under the constraint 

of a fixed height of the center of mass z of the liquid drop 

above the top face of the post at z = 0. Our constrained energy 

minimizations show that the maximum height of the drop h is 

a monotonous function of z/W for every length to width ratio 

ℓ and, thus, is equivalently suited as an order parameter. Both 

quantities, h and z/W, distinguish the bulge morphology from 

the liquid channel. To construct an energy landscape of the 

interfacial shapes on the post, the constrained energy minimi-

zations were repeated for a series of reduced volumes v for a 

given value of ℓ. 

 

The examples of the energy landscapes shown in Figure 2 il-

lustrate the qualitative differences between a short post with ℓ 

= 15 ≲ ℓ* and a long posts with ℓ = 25 > ℓ*. Each local mini-

mum on a curve in the plots Figure 2(a) and (b) correspond to 

mechanically stable interfacial shapes for the particular re-

duced volume v. Local maxima in between two local minima 

are saddle points in the energy landscape. The energy differ-

ences between the local minima and the saddle point represent 

the smallest work that needs to be injected to the liquid body 

to transform the shape into the other morphology. It is evident 

from Figure 2(a) that there is only one local minimum for any 

volume v if the length to width ratio is fixed to ℓ =15. 

 

Figure 3 (Left) Dynamic phase diagram of the transition from the channel to the bulge state induced by vertical vibrations of frequency f 

and peak acceleration a. In the red region the system remains in the homogeneous channel state. Dashed lines indicate frequency sweeps 

of constant amplitude. The white region corresponds to oscillation amplitudes too small to be accurately measured. (Center) Side and front 

images of the channel profile taken at selected points in the phase diagram. For (a) and (c) the transition occurred and the system is in the 

bulge state. For (b) the system remains in the homogeneous channel state. The scale bars in the side view and in the front view correspond 

to 1 mm and 100 m, respectively. (Right) Comparison with numerically computed oscillation modes resembling the modes shown in (a) 

and (b). The color map encodes local normal interfacial displacement rescaled by the maximum amplitude of the mode. Note that the sign 

is arbitrary. 
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However, on the long posts with ℓ = 25 we observe a single 

local minimum only for small and large reduced volumes v. 

The plots in Figure 2(b) reveals a range of intermediate vol-

umes where two local minima exist. The local energy mini-

mum at the smaller value of z corresponds to a liquid channel 

while the one for larger z corresponds to a bulge morpholo-

gy. If the reduced volume v exceeds a certain threshold value 

vmax, the local minimum of the channel disappears and the 

bulge morphology represents the only possible stable equilib-

rium state. Similarly, if the volume v falls below a threshold 

value vmin < vmax, the bulge state disappears leaving only chan-

nels as possible stable equilibrium states. The stability dia-

gram shown in Figure 2(c) displays the region of mechanical 

bistability and the lines where channel and bulge morpholo-

gies become unstable during an increase or decrease of the 

volume v. Here, we focus on posts with length ℓ and volumes 

v around the bifurcation point at (ℓ*,v*) ≃ (16, 5.8) computed 

in Ref.14. 

 

 The second derivative of the interfacial energy plotted in Fig-

ure 2(a) and (b) with respect to the coordinate z can be 

thought of as an effective spring constant of the liquid inter-

face. This capillary spring becomes the softer, the closer the 

interfacial shape is to an instability. It is rather self-evident 

that the energy required to cross the energy barrier from the 

channel state to the bulge can be furnished by vertical vibra-

tions of the supporting substrate, provided the channel state is 

sufficiently close to the point of instability vmax. Vertical vibra-

tions applied to liquid channel on short posts, however, cannot 

permanently change the liquid shape because the liquid con-

formation will always return into the single energy minimum. 

Sufficiently close to the bifurcation point in the region of sin-

gle minima for ℓ < ℓ*, the capillary spring is soft while the 

drop cannot decay into another conformation. Hence, any 

force other than the shape restoring capillary force can easily 

deform the interface. 

 

Vibration induced transition. Water channels with reduced 

volumes v corresponding to the upper limit of the bistability 

interval, with an error of 40 nL, (around point (ii) of Figure 1) 

are then prepared on the post. With the liquid in the homoge-

neous channel state, we turn on the vertical oscillations and 

record whether a transition to the bulge state is observed. The 

dynamical phase diagram of Figure 3 summarizes all the data 

taken. Each data point is the result of at least ten complete 

runs taken under the same nominal conditions. Full green cir-

cles (red squares) indicate that at that acceleration and fre-

quency a transition is (is not) found. The dashed parabolic 

lines represent the sweeps of the diagram taken at constant 

amplitude. To facilitate the reading of the diagram, the regions 

where the transition is admitted and prohibited are colored in 

green and red, respectively. The white region corresponds to 

oscillation amplitudes too small to be accurately measured (A 

< 4 m). It is evident from the diagram of Figure 3  that be-

tween 460 Hz and 530 Hz, it is not possible to induce the tran-

sition to the bulge state up to the maximum acceleration 

achievable with our shaker. In this gap of frequencies and am-

plitudes, the interface of the liquid channel undergoes strong 

irregular fluctuations resembling an overlay of several stand-

ing waves. 

 

The transition from the homogeneous channel to the bulge 

morphology in the remaining region is irreversible: once the 

liquid is in the bulge state, it cannot be driven back to the ho-

mogeneous channel state by changing the amplitude or fre-

quency, or even by turning off the shaker. In agreement with 

experimental and theoretical results, the bistability between 

the homogeneous and the bulged channel is not observed on 

relatively short posts.14 

To illustrate this dynamical response of water interface, the 

diagram shown in Figure 3 is complemented with simultane-

ous lateral and frontal images of the channel taken at selected 

points of the phase diagram labeled by letters. Due to the finite 

exposure time, it is evident the complex evolution of the water 

profile and the excitation of oscillation modes, particularly for 

(a) and (c). In both cases, the vibrations induce a transition to 

the bulge state, while in (b) the liquid remains in the homoge-

neous channel state. These images and the movies loaded as 

Supplemental Material suggest that the transition is hindered 

by the excitation of standing capillary waves on the channel. 

Figure 4 (Top) Snapshot of the irregular surface oscillations of a 

liquid channel state whose frequency f  500 Hz lies in the gap of 

the dynamic phase diagram shown in Figure 3 (left). (Bottom) 

Time evolution of the channel profile along the cut indicated as a 

dashed line in the top snapshot. Bottom tics represent time inter-

vals equal to the period T of the imposed vertical vibrations. Top 

tics highlight the intervals of the fast oscillations over slow 

“sloshing” modes in units of T. 

Figure 5 (a) Central part of a liquid drop on a short post with 

length-to-width ratio ℓ ≃ 15 and a reduced liquid volume v  5.5. 

(b) Liquid bulge for the same parameters as in (a) at a frequency f 

= 500 Hz and for an acceleration of a = 255 m/s2. (c) Spatio-

temporal diagrams of vertical cuts of the profile in the center and 

left side of the post, as indicated by solid lines in (b). 
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Inspection of the irregularly oscillating channels in the fre-

quency gap of the dynamical phase diagram of Figure 3 shows 

that the local oscillation frequency of the waves fluctuates 

around the excitation frequency (see top snapshot of Figure 4). 

Hence, the observed standing capillary waves cannot be Fara-

day waves as they would oscillate at a frequency that is exact-

ly half of the excitation frequency.26 A closer look at the time 

slices of Figure  referring to a vertical cut of the channel re-

veals that the oscillations are a superposition of a slow and a 

fast component. The frequency of the fast component corre-

lates to the amplitude of the slow “sloshing” component. Gen-

erally, we find that the local frequency of the fast component 

is the higher, the lower the amplitude of the slow, irregularly 

fluctuating component. 

 

Another example of a coupling of fast and slow degrees of 

freedom was observed on short posts with a length-to-width 

ratio ℓ ≃ 15 < ℓ*. As explained above, the flat channel state 

transforms continuously into a bulge state on short posts dur-

ing volume growth and, consequently, a bistability between a 

bulge and channel state is not possible. In spite of the missing 

bistability, we still encounter a transformation of a flat channel 

into a bulge in response to vertical vibrations. At variance with 

experiments on long posts with liquid drops in the bi-stable 

region, the liquid on the short post is collected into the central 

region only if the vibration are switched on, c.f. the time slices 

shown in Figure 5. In contrast to long posts, this dynamically 

sustained liquid bulge decays quickly and returns to the flat, 

spread-out channel morphology after the vertical vibrations 

are stopped. 

 

Dynamic lifting force. The transition of the vertically vibrat-

ed liquid channel into a permanent bulge on long posts, and 

the formation of a transient bulge on short posts can be cap-

tured in a simple model. In the present approach, we consider 

the coupling of the slow degree of freedom describing the 

transition between a channel and a bulge to fast interfacial os-

cillations in response to the vertical vibrations. Suitable coor-

dinates to parameterize the slow degree of freedom is the ver-

tical position of the center of mass z. The natural frequencies 

of the oscillation modes Ω𝑖 of the liquid interface, as well as 

the corresponding effective masses 𝜇𝑖  and spring constants 𝑘𝑖, 

are numerically computed from triangulated models of the free 

liquid interface obtained by energy minimizations are de-

scribed in Supplemental Material. 

 

For simplicity, we consider the limiting case of an inviscid in-

compressible fluid surrounded by vacuum, which allows us to 

assume potential flows in the bulk of the liquid and a full-slip 

boundary condition on the solid substrate. The decay length of 

the viscous boundary layer on the substrate 𝛿 = √2𝜂/(𝜌𝑓) is 

computed to be 𝛿 ≈ 0.08 mm for the lowest frequency of 300 

Hz, being small compared to the typical vertical extensions of 

the liquid bulges H ≲ 1mm. This estimate is in accord with the 

observation of small damping in our experiments. Hence, it is 

useful to employ the capillary-inertial time scale 𝑇0 =

√𝛾/(𝜌𝑊3) to normalize all physical quantities together with 

the mass unit 𝑀0 = 𝜌𝑊3, and length unit 𝐿0 = 𝑊. 

 

According to our experimental observations, only a few local-

ized modes of the interface are excited on the bulge or within 

its direct vicinity. The majority of natural oscillation modes 

found in our numerical computations extend over the entire 

channel including also the flat regions of the liquid on the ex-

tremities of the bulge. Apart from the particular case of a driv-

ing frequency within the gap, oscillation modes that extend 

over the entire channel are not observed in experiments. Com-

parisons of the spectra for different length to width ratio of the 

post reveal that the oscillations frequencies of the localized 

modes, Ω𝑖, as well as the effective mass and springs constants 

of the oscillators, 𝜇𝑖  and 𝑘𝑖, are mainly governed by the size 

and extension of the bulge. Our minimal model of the oscillat-

ing bulges thus includes only the set of localized modes and 

their coupling to the slow degree of freedom described by the 

vertical center of mass position z. 

 

 

Figure 6 (a) Spectrum of numerically computed natural oscilla-

tion frequencies 𝛺 of a liquid drop on a short post with ℓ =15 and 

reduced volume of v = 5.7 as a function of the vertical center of 

mass position z/W in units of the capillary inertial time scale.  

Filled and open symbols are the natural oscillations modes of the 

liquid interface for z/W = 0.222 (b) and z/W = 0.330 (c), re-

spectively. The local oscillation amplitude shown in the snapshots 

(b) and (c) is displayed by the corresponding color maps, which 

are constructed in terms of the maximum amplitude as described 

in Figure 3. 
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Besides the external forcing and the conservative force −
𝜕𝑉0

𝜕𝑞0
 

related the energy landscape discussed above, we encounter an 

effective force that couples to the amplitude of the standing 

capillary waves and to the derivatives of their respective 

spring constant and effective mass. If we assume that the os-

cillations of the modes are fast compared to the motion of the 

bulge, and display the same harmonic time dependence as the 

external forcing, the effective, time averaged force that acts on 

the bulge can be written in the form: 

 

𝐹(𝑎𝑣) = 𝐹0 −
1

2
∑ (

𝜕𝑘𝑖

𝜕𝑞0

− 𝜔2
𝜕𝜇𝑖

𝜕𝑞0

) 𝑞𝑖
2̅̅ ̅

𝑁

𝑖=1

 (1) 

 

where the over bar denotes the time average. A derivation of 

the time averaged force Eq. (1) is given in the supporting ma-

terial. 

 

A lifting force acting on sessile drops in the presence of verti-

cal vibrations is described in Ref.27 for a viscoelastic fluid. As 

shown in this work, the phenomenon can be qualitatively cap-

tured by a simple model that is in full analogy to Kapitza's 

pendulum28. At variance with Kapitza's model, we find that the 

dynamic force is proportional to the square of the amplitude of 

a resonant oscillation mode and not to the amplitude of the ex-

citation itself. Unlike the model for the inverted pendulum, we 

consider a slow degree of freedom that couples to a number of 

fast degrees of freedom through a de-tuning of the resonances. 

To determine the sign of the dynamic force contribution to the 

effective force 𝐹(𝑎𝑣), as described by the second term in Eq. 

(1) we consider the derivative of the square of the natural os-

cillations frequencies: 

 

𝜕Ω𝑖
2

𝜕𝑞0

=
1

𝜇𝑖

(
𝜕𝑘𝑖

𝜕𝑞0

− Ω𝑖
2

𝜕𝜇𝑖

𝜕𝑞0

) (2) 

 

and notice that we expect to find high amplitudes 𝑞𝑖
2̅̅ ̅ for weak-

ly damped oscillators around resonance 𝜔 ≈ Ω𝑖 and, thus, a 

strong dynamic force. Inspection of Eq. (1) reveals that the 

dynamic force is positive, i.e. promoting the formation of a 

central bulge whenever the inequality 
𝜕Ω𝑖

2

𝜕𝑞0
< 0 holds. 

 

Numerically computed natural frequencies of a drop on a short 

post as a function of the center of mass z shown in Figure 6 

demonstrate that the frequencies of some modes indeed de-

crease strongly as the height z of the center of mass grows. 

Inspection of the examples shown in Figure 6(a) and (b) re-

veals that modes showing only a weak dependence on z ex-

tend over the entire post, while modes whose natural frequen-

cies decay strongly with z display localized oscillation am-

plitudes in the center of the post. 

 

The localized modes, if excited, contribute to a dynamic lifting 

force that pulls the liquid of the initially channel-like drop up 

in the center of the post. Such a dynamically sustained bulge 

forms only as long as the vibrations are switched on. Modes 

that extend over the entire length of the drop interface do not 

contribute to the dynamic lift force. Except for vibrations fre-

quencies in the gap, the excitation of delocalized modes is not 

observed in our experiments, presumably due to significant 

viscous damping in the flat channels extending to either side 

of the central bulge.  

 

The additional dynamic lifting force on the liquid created by 

the fast shape oscillations can trigger a global transition from a 

channel to a bulge morphology. When approaching the largest 

volume of a stable liquid channel on a long post with ℓ > ℓ*  

16, the magnitude of the external force required to overcome 

the barrier between channel and bulge state becomes arbitrari-

ly small,14 as sketched in the force landscape in Figure 7. The 

evolution of the dynamic lifting force during volume growth is 

determined by the sequence of resonances of localized oscilla-

tion modes that appear on the bulge at a given excitation fre-

quency of the vertical vibrations. 

 

SUMMARY AND CONCLUSIONS 

Experiments with drops wetting vertically vibrated long posts 

with ℓ = 36 demonstrate that the channel-to-bulge transition 

can be triggered by vertical vibrations of the support if the liq-

uid volume is close to the maximum volume of a mechanically 

stable channel. For this volume, the reverse transition from a 

bulge to a channel is never observed. This finding is supported 

by numerically computed energy landscapes of a drop on a 

post in terms of the vertical position z of the center of mass. 

In accordance with previous work,14 we find that the energy 

landscape evolves from a single-well potential for short post ℓ 

< ℓ* = 16 into a double-well potential for drops on long posts ℓ 

> ℓ* = 16 and with volume v in the bi-stable range. 

 

Our experiments also show that on a short post with ℓ =15 < 

ℓ*, the liquid may be collected into a central bulge during vi-

brations even though the length-to-width ratio ℓ and reduced 

volume v lies outside the range of mechanically bi-stable static 

shapes. In the latter case, the bulge exists only as long as the 

vertical vibrations of the post are switched on. To explain the 

Figure 7 (Top) Schematic of the force landscape the homogene-

ous channel and bulge morphology experience in terms of the 

slow degree of freedom without oscillations (black solid line) and 

with driving by vertical vibrations (blue dashed line). (Bottom) 

stationary liquid morphologies on the post. Stable liquid channel 

(C), unstable saddle point (B*), stable bulge (B), and a dynami-

cally stabilized bulge morphology (𝐵෨). 
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existence of dynamically sustained bulges, we propose a dy-

namic lifting force acting on the vertical coordinate z of the 

center of mass. A dynamic force arises in the presence of an 

ensemble of linear oscillators, here the standing capillary 

waves that are excited on the interface of the drop, that are de-

tuned by the slow degree of freedom z. A fast oscillation 

mode contributes to a positive force acting on the slow degree 

of freedom 𝑞0 if the corresponding natural oscillation frequen-

cy Ω decreases with an increasing value of the coordinate 𝑞0, 

here the height z of the center of mass above the post. 

 

Numerical computations of the spectrum of natural oscillation 

modes and frequencies do not explain the existence of band of 

frequencies on long posts with ℓ = 36 where the transition into 

a final bulge is not observed. However, in this range of excita-

tion frequencies, our numerical computations are able to cor-

rectly capture the two oscillation modes on the final bulges at 

vibration frequencies above and below the band. These two 

modes display the same discrete symmetry and a superposition 

of them could lead to a scattering of the injected energy into 

various delocalized oscillation modes of the same discrete 

symmetry during the onset of the bulge formation. 

 

ASSOCIATED CONTENS 

Supporting information 

Movie S1: Slow motion side view of channel-to-bulge transi-

tion occurring at f = 640 Hz and a =160 m/s2. Different oscil-

lations modes can be observed as the liquid interface changes 

morphology. Once the forcing oscillations are turned off, the 

system remains in the bulge state. 

Movie S2: Real time front view of channel-to bulge transition 

occurring at f = 640 Hz and a =160 m/s2. A normal oscillation 

mode of the final bulge state can be observed. Once the forc-

ing oscillations are turned off, the system remains in the bulge 

state 

Movie S3: At f = 500 Hz the channel-to-bulge transition does 

not occur and the system remains in the channel morphology. 
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