
Northumbria Research Link

Citation: Smadi, Sami (2017) Detection of online phishing email using dynamic evolving
neural network based on reinforcement learning. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/36119/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

http://nrl.northumbria.ac.uk/policies.html

Detection of Online Phishing Email
using Dynamic Evolving Neural

Network Based on Reinforcement
Learning

Sami M. Smadi

PhD

2017

Detection of Online Phishing Email
using Dynamic Evolving Neural

Network Based on Reinforcement
Learning

Sami M. Smadi

A thesis submitted in partial fulfilment

of the requirements of the

University of Northumbria at Newcastle

for the degree of Doctor of Philosophy

Research undertaken in the Faculty of

Engineering and Environment

March 2017

Abstract

Phishing has been the most frequent cybercrime activity over the last 15 years and

has caused billions of dollars to be stolen. This happens due to the fact that phishing

attackers always use new (zero-day) and sophisticated techniques to deceive online

customers. The most common way to initiate a phishing attack is by using email.

In this thesis, a novel framework is proposed that combines a neural network with

reinforcement learning for detecting online phishing attacks.

This thesis addresses the effectiveness of phishing email detection, and it makes the

following contributions. Firstly, a novel pre-processing system has been designed to

gather and extract the features and patterns of phishing email. To cover all be-

haviour that phishers use to deceive online customers, fifty features were selected.

Pre-processing is divided into three layers, based on the main types of email content.

Secondly, a novel algorithm has been proposed for the exploration of new phishing be-

haviour. The proposed algorithm has the ability to select the effective list of features

from the list of features extracted in the pre-processing phase. Thirdly, this thesis

proposed a novel Dynamic Evolving Neural Network using Reinforcement Learning

(DENNuRL) algorithm, which can be used to generate the best neural network for

classification problem based on reinforcement learning idea. Finally, a novel frame-

work for Phishing Email Detection System (PEDS) has been proposed. The PEDS has

the ability to adapt itself to generate a new PEDS that reflects changes in behaviour.

Therefore, reinforcement learning is adopted in the proposed framework combined with

neural network to enhance the system dynamically over time in the online mode. The

proposed technique can effectively handle zero-day phishing attacks.

The proposed phishing email detection model was trained, tested and validated in

the online mode using an approved dataset. The promising results showed that the

DENNuRL can provide an effective means of phishing detection. The proposed model

successfully classified and identified approximately 98.6% of phishing emails selected

from the test dataset, with low false positive rates of 1.8%. A comparison with other

similar techniques using the same dataset shows that the proposed technique outper-

forms the existing methods.

- i -

Declaration

I declare that the work contained in this thesis has not been submitted for any other

award and that it is all my work. I also confirm that this work fully acknowledges

opinions, ideas and contributions from the work of others.

Sami Smadi

March 2017

- ii -

Acknowledgements

First of all, I would like to thank God, ALLAH, whose grace has led me to this

important moment of my life. I am truly thankful and appreciative of my supervisors

for their valuable contributions and continuing efforts towards the success of this thesis.

Without a doubt, none of this work would have been possible without their help.

Personal thanks go to my supervisor Dr. Nauman Aslam, who always appreciated

and had a vision for the bigger picture of this project, encouraging me to combine the

ample amount of research available worldwide to form a better understanding of the

study. I also thank him, for the continuous advice, support, and valuable scientific

input. I also want to thank my supervision committee members Dr. Rafe Alasem and

Dr. Li Zhang for advice, management of this study, reviewing my thesis, and providing

constructive comments that help me improve my work. As well, I honoured to have

been supervised by Professor Alamgir Hossain for his excellent guidance throughout

the preliminary stages of my research. Also, I thank my colleagues, PhD researchers of

LAB F7 and LAB F6 for the stimulating discussions, for the sleepless nights we were

working together before deadlines, and for all the fun we have had in the last four years.

Also, I acknowledge all my colleges in the college of science Al-Zulfi, KSA. In addition,

my work has benefited from and has been influenced by discussions with a number

of people over the years. For these discussions, I express my gratitude to my friends

Dr. Mohammad Alauthman, Dr. Majed Alsanea and Dr. Mohammad Alalaween.

They offered a lot of help and advice on my research and wonderful friendship. My

- iii -

deepest appreciation goes to all my friends, who are many and whom each has offered

me unique encouragement and support every step of the way. Finally, my thanks and

affection go to my dear parents, my greatest source of love and affection and my biggest

support system. To my brothers, the providers of an endless amount of friendship and

encouragement throughout this journey. Last but not the least, I am also thankful to

my wife for always being there for me in the ups and downs of my life and tremendous

support.

- iv -

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Research Motivation . 5

1.3 Research Problem . 9

1.4 Research Aims and Objectives . 10

1.5 Research Contribution . 12

1.5.1 Pre-processing algorithm . 12

1.5.2 Feature Evaluation and Reduction algorithm 13

1.5.3 Dynamic Evolving Neural Network using Reinforcement Learning 14

1.5.4 Phishing Email Detection System 14

1.6 Thesis Outline . 15

2 BACKGROUND INFORMATION AND LITERATURE REVIEW 17

2.1 Introduction . 17

2.2 Phishing - Definition, Lifecycle and Methods 18

2.2.1 Definitions related to phishing attacks 18

2.2.2 Phishing attack lifecycle . 22

2.2.3 Phishing attack methods . 23

2.3 History of Phishing Attacks . 23

2.3.1 Origin of the word phishing . 23

2.3.2 First fishing attack registered 24

2.3.3 First phishing attack description 24

2.3.4 The evolution of phishing . 25

2.4 Anti-Phishing Technology . 26

2.4.1 Non-technical anti-phishing solutions 27

2.4.2 Technical anti-phishing solutions 29

2.5 Anti-Phishing Detection Methods . 29

2.5.1 Security toolbars . 31

2.5.2 Black- and white-lists . 35

2.5.3 White-lists . 35

- v -

2.5.4 Black-lists . 36

2.5.5 Virus scanners and firewalls . 37

2.5.6 Heuristic solutions . 38

2.6 Zero-Day Phishing Attacks . 45

2.7 Summary . 46

3 PRE-PROCESSING AND FEATURE EXTRACTION 48

3.1 Introduction . 48

3.2 Main Component of Emails . 49

3.3 Pre-processing . 52

3.3.1 Email header . 53

3.3.2 URLs . 54

3.3.3 HTML . 54

3.3.4 Text . 55

3.4 Feature Extraction . 55

3.5 Feature Evaluation and Reduction (FEaR) 59

3.6 Offline Phishing Email Detection System 63

3.7 Experimental Results and Discussion 65

3.7.1 Dataset . 65

3.7.2 Technical terms in detection . 66

3.7.3 Feature selection using the FEaR algorithm 67

3.7.4 Experimental setup . 70

3.7.5 Comparison of the performance of different classification algo-
rithms . 71

3.7.6 Results and discussion . 71

3.7.7 Comparative analysis . 74

3.7.8 Other finding . 78

3.8 Summary and Conclusion . 78

4 DYNAMIC EVOLVING NEURAL NETWORK USING REINFORCE-
MENT LEARNING 81

4.1 Introduction . 81

4.2 Artificial Neural Network . 82

4.2.1 Neural Network Training . 84

4.2.2 Static neural network . 85

- vi -

4.2.3 Dynamic neural network . 85

4.3 Common Techniques used to Build Neural Networks 86

4.3.1 constructive approach . 86

4.3.2 pruning approach . 87

4.3.3 Constructive-pruning approach 88

4.3.4 Evolution approach . 88

4.4 Reinforcement Learning . 89

4.4.1 Reinforcement learning methods 90

4.4.2 Reinforcement learning problem 92

4.4.3 Markov decision process . 94

4.4.4 Q-Learning and generalization 94

4.5 Dynamic Evolving Neural Network using Reinforcement Learning . . . 96

4.6 Exploration Versus Exploitation . 102

4.7 Experimental Results and Discussion 103

4.7.1 Experimental results . 104

4.7.2 Comparative analysis . 107

4.8 Efficiency analysis . 109

4.9 Summary and Conclusion . 111

5 ONLINE PHISHING EMAIL DETECTION FRAMEWORK 114

5.1 Introduction . 114

5.2 Zero-Day Phishing Attack . 115

5.3 Proposed Framework for Zero-Day Phishing Attack Detection 116

5.3.1 Online system model . 116

5.3.2 RL-Agent algorithm . 117

5.4 Experimental Results and Discussion 122

5.4.1 Dataset . 122

5.4.2 Evaluation metrics . 122

5.4.3 DENNuRL . 123

5.4.4 Online phishing email detection system 124

5.4.5 Comparative analysis . 127

5.4.6 Implementation and execution time 130

5.5 Efficiency Analysis . 131

5.6 Summary and Conclusion . 132

- vii -

6 CONCLUSION AND FUTURE WORK 134

6.1 Summary of This Thesis . 135

6.2 Research Contributions . 137

6.3 Difficulties and Solutions . 139

6.4 Future Work . 140

Bibliography 142

Appendices 154

Appendix A Code Sample 155

Appendix B Publications 162

- viii -

List of Figures

1.1 Typical phishing attack . 3

1.2 Online banking fraud in UK 2004-2014 (UK Cards, 2015) 6

1.3 Number of unique phishing email reports submitted to APWG for the
period from January to September 2015 8

2.1 Phishing email example (OpenDNS, 2016) 20

2.2 Phishing email example with annotations that describe its main parts
(OpenDNS, 2016) . 21

2.3 Phishing website (OpenDNS, 2016) . 21

2.4 Phishing website with annotations (OpenDNS, 2016) 22

2.5 Anti-phishing technology . 30

3.1 Email main components as described by (Khonji et al., 2012) 48

3.2 Main components of parts of the email 50

3.3 Real example of email header . 51

3.4 Pre-processing phase 1 . 56

3.5 Pre-processing phase 2 . 57

3.6 Pre-processing phase 3 . 59

3.7 Regression tree for 200 emails generated by CART algorithm 61

3.8 Offline phishing email detection system 64

3.9 Comparison of classification algorithms in term of TPR, TNR, and
accuracy . 72

3.10 Comparison of classification algorithms in term of FPR and FNR . . . 73

3.11 Comparison of classification algorithms in term of Precision,
Sensitivity, F-Measure, and area under ROC curve 73

4.1 A feed-forward ANN with three layers: one input, one hidden, and one
output layer (Negnevitsky, 2005) . 84

4.2 A standard RL architecture as proposed by (Sutton and Barto, 1998) . 92

4.3 Dynamic evolving neural network using reinforcement learning
(DENNuRL) . 98

4.4 NN enhancements in terms of TER as the number of epochs is increased 106

4.5 NN enhancements in term of accuracy with changes in numbers of
training epochs . 106

- ix -

5.1 Online phishing email detection system 118

5.2 Reinforcement learning agent . 120

5.3 An example of NN enhancement using the DENNuRL in terms of
MSE error . 124

5.4 Detection error tradeoff (DET) for PEDS before and after adaptation . 126

5.5 System enhancements in terms of accuracy 127

- x -

List of Tables

1.1 Facts and financial damage related to phishing 7

3.1 Features extracted from email header 53

3.2 Feature extracted from URLs available in email content 54

3.3 Features extracted from email HTML content 55

3.4 Feature extracted from the email main text 56

3.5 An Example for applying the FEaR algorithm for 200 emails 63

3.6 Important features discovered using FEaR algorithm 69

3.7 Feature ranking evaluated by FEaR algorithm with 4000 emails 70

3.8 Classification results for 10 classification algorithms 72

3.9 Comparison of our approach with previous works 77

4.1 Diabetes dataset description . 103

4.2 An example of NN evolving using DENNuRL 105

4.3 Comparison between DENNuRL, CA, PA, and CPA. The results were
averaged for 50 different run . 107

4.4 Comparison between the DENNuRL, AMGA Islam et al. (2009), VNP
Engelbrecht (2001), OMNN Ludermir et al. (2006), HEANN Oong and
Isa (2011), EANN Oong and Isa (2011), NN-SAGP Ang et al. (2008),
EPNet Yao and Liu (1997), FMM-CART-RF Seera and Lim (2014),
and FEFS-SC Luukka (2011) algorithms. The results were averaged
for 50 independent runs . 109

5.1 An example of the NN adaptation using the DENNuRL algorithm . . . 123

5.2 PEDS enhancements in terms of FNR, FPR, TPR, Accuracy,
Precision, Recall, and F Measure . 127

5.3 Results for the online PEDS averaged over 50 independent runs 127

5.4 Comparison of our approach with previous work 129

5.5 The proposed system execution time 130

- xi -

Acronyms

AIM AOL Instant Messenger

ANN Artificial Neural Network

AOL America Online

APTs Advanced Persistent Threats

APWG Anti-Phishing Working Group

AUC Area Under the ROC curve

AMGA Adaptive Merging and Growing Algorithm

CA Constructive approach

CART Classification And Regression Tree

CPA Constructive-pruning approach

CSV Comma Separated Values

CVC Content Verification Certificates

DENNuRL Dynamic Evolving Neural Network using Reinforcement Learning

DET Detection Error Trade-off

EANN Evolutionary Artificial Neural Network

EER Equal Error Rate

EPNet Evolutionary Programming Neural Network

EA Evolution approach

FEaR Feature Evaluation and Reduction

FNR False Negative Rate

FPR False Positive Rate

HTTP Hypertext Transfer Protocol

HEANN Hybrid Evolutionary Artificial Neural Network

MDP Markov Decision Process

MITM Man In The Middle

- xii -

MSE Mean Square Error

NN Neural Network

NN-SAGP Self-Adaptive Growth-Brobability based Neural Network

OMNN Optimization Methodology for NN

PEDS Phishing Email Detection System

POMDP Partially Observable Markov Decision Process

PA Pruning approach

RL Reinforcement Learning

RL-Agent Reinforcement Learning Agent

ROC Receiver Operating Characteristic

SEP Square Error Percentage

SMTP Simple Mail Transfer Protocol

TD Temporal Difference

TER Testing Error Rate

TNR True Negative Rate

TPR True Positive Rate

VNP Variance Vullity Pruning

URL Uniform Resource Locator

- xiii -

1
Introduction

1.1 Introduction

Criminal activity that targets Internet users has an important effect on computer se-

curity, which is one of the fundamental computer science disciplines. Along with the

evolution of the Internet and information technology applications, many kinds of at-

tacks and security issues started to appear. At the beginning of the 1990s, the Internet

was becoming increasingly popular and accessible across the world, and security threats

also began to evolve. Over the years, online customers started to conduct a new kind

of trade, called electronic commerce (E-commerce). By the end of 2001, E-commerce

represented $700 billion in transactions (Woodley, 2012), and this increased every year.

By 2000, the majority of business companies, including banks, in the United States

and Western Europe had started to provide services for customers through an Internet

website (Keivani et al., 2012). Due to the development of Internet architecture and

online trade, online customers are required to enter their own sensitive data (such as

bank account numbers) on some websites. These sensitive data have been targeted by

attackers, and a specific kind of attack started to appear in the mid-1990s which is

- 1 -

Chapter 1: Introduction

called phishing. Phishing is a kind of online identity theft using socially engineered

attacks, and it forms one of the central issues considered in this thesis.

According to the Anti-Phishing Working Group (APWG) (APWG, 2015), the total

number of unique phishing attack reports collected by this organisation from January

to September 2015 was 1,033,698, which is twice the number of reports for the same in-

terval in 2014. The increase in registered phishing attacks is due to phishers employing

more sophisticated new techniques to lure online customers.

Stealing a person's identity is one of the most popular cybercrime activities. According

to the USA Federal Trade Commission in 2015 (Commission et al., 2015), identity theft

ranks second in frequency at 16% of all customer complaints, and registered at the

highest rank for the last 15th consecutive years. Phishing can formally be defined as“a

criminal mechanism employing both social engineering and technical subterfuge to steal

consumers personal identity data and financial account credentials. Social-engineering

schemes use spoofed e-mails purporting to be from legitimate businesses and agencies,

designed to lead consumers to counterfeit websites that trick recipients into divulging

financial data such as user names and passwords” (APWG, 2015). A typical phishing

attack, as described in Figure 1.1, starts by designing a fake website and then sending

a fake email to an Internet user which tries to convince him to follow a fraudulent link

to a fake website which looks exactly like a legitimate one. If the user follows the spoof

link, the attacker starts to collect user's security information which will later be used

for illegal purposes.

Phishing attacks that use new techniques are called zero-day attacks (Ammar, 2014).

Various classification models are trained to detect phishing attacks using sets of previ-

- 2 -

Chapter 1: Introduction

Figure 1.1: Typical phishing attack

ously known features but these cannot handle zero-day phishing attacks that use new

behaviour. Techniques built using black-lists (Huang et al., 2009; Mohammad et al.,

2015; Raffetseder et al., 2007) and white-lists (Han et al., 2012; Li et al., 2012) fail to

detect new phishing attacks, due to the fact that the lifetime of a phishing website is

on average 46 hours (Na et al., 2014), and since phishing attacks may occur before the

web page has been added to the blacklisting.

Anti-phishing techniques based on a fixed number of features and trained using an

offline dataset will also fail to detect new phishing attacks in the online mode, and

classification errors will increase over time (Ahamid et al., 2013; Hu et al., 2014). The

phisher tries to deceive online customers by using communication channels such as

- 3 -

Chapter 1: Introduction

email (Mohammad et al., 2014), SMS (smishing) (Kang et al., 2014), vishing (voice

phishing) (Collier and Endler, 2013), and instant messaging (Luo et al., 2013). Phish-

ing detection and prevention methods can be applied with any of these communication

channels, or at web page level. According to Abdelhamid et al. (2014), 65% of phishing

attacks use email as the main communication channel to lure online customers (Ab-

delhamid et al., 2014). The authors built a phishing detection and protection model

to handle phishing attacks at email level. The detection of phishing at an earlier stage

(at email level) of the attack will provide a more secure environment for Internet users,

but if the detection happens at late stage like web page level the Internet user will

already be in the middle of the attack, and some malware may have been installed on

his device.

Researchers studying the phishing attack problems have proposed many solutions that

detect attacks at many different levels. Some detect phishing attacks at web page level

such as Aburrous et al. (Aburrous et al., 2009) and Barraclough et al. (Barraclough

et al., 2013). Moreover, some models are built to detect phishing attacks at an earlier

stage at email level, where the phisher is still trying to convince the user to go to the

fraudulent web page (Khonji et al., 2012). This is a better strategy because, firstly,

if the phishing attack is detected at webpage level, it will slow down navigation of

websites by checking every Uniform Resource Locator (URL) the user try to open

before grant access. Secondly, by detecting phishing attack at email level it is more

secure for users since the attack is detected at earlier stage. For example, when the user

opens a web page, some codes maybe downloaded on to the user's device to infect it.

Moreover, phishing email datasets are available at any time, but the average lifetime

- 4 -

Chapter 1: Introduction

of a fraudulent webpage is about 46 hours (Na et al., 2014).

Many solutions have been proposed for phishing detection. These solutions usually

suffer from high false positive rates, and their accuracy still needs to be enhanced.

Some previous solutions depend on data mining algorithms that use a set of features

(Barraclough et al., 2013; Hamid and Abawajy, 2011). Other solutions depend on

black- or white-listings, which are not so effective since the lifetime of a phishing

website is very short. Others use content-based approaches with a lexical URL (Zhang

et al., 2007a).

1.2 Research Motivation

The losses caused by phishing can be divided into direct and indirect losses (Anderson

et al., 2013; Jakobsson and Myers, 2006). Direct losses affect individuals as well as

organizations due to successful attacks, whereas indirect damages include the costs

imposed on society due to a certain type of attack either or not it is successful. Defence

losses include all the money and effort involved in the prevention of phishing attacks,

and costs to society are the sum of all losses from previous attacks.

Direct damage may include money stolen from users bank accounts, the time and

effort required to change account details after detecting attacks, lost bandwidth due

to phishing emails, and the inconvenience caused when a user needs to access his

account, and cannot gain access. Indirect damage may include the online customer's

loss of trust in E-commerce, the closure of some channels of communication with

customers and their banks such as instant messaging and email, and the time and

effort needed to clean PCs from when malware has been installed during attacks.

- 5 -

Chapter 1: Introduction

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

12.2

23.2

33.5

22.6

52.5

59.7

46.7

35.4
39.6 40.9

60.4

Years

£
 M

il
li

o
n

s

Figure 1.2: Online banking fraud in UK 2004-2014 (UK Cards, 2015)

Phishing has become a major problem in online transactions, accounting for £174.4

million lost in the UK in 2015 as reported by Financial Fraud Action UK (FFA UK),

which was an increase of 23% compared to a loss of £142 million in 2013 (UK Cards,

2015). Changes in online banking fraud for the period from 2004-2014 is shown in

Figure 1.2, where the highest registered loss occurred in 2014 with 47% greater loss

than in the previous year (UK Cards, 2015). The increase in amount lost shows

that phishing detection and protection techniques used until now have not solved

the problem and do not properly protect online consumers. This is because phishers

regularly change their techniques and strategies to lure online consumers to access

their websites.

According to the APWG (APWG, 2015) the number of unique phishing emails re-

- 6 -

Chapter 1: Introduction

Table 1.1: Facts and financial damage related to phishing

Facts Related to Phishing

Cost Period Source

Number of unique phishing websites
detected

630,494 1st-3rd quarter 2015 APWG

Number of unique phishing email re-
ports

1,033,688 1st-3rd quarter 2015 APWG

Number of brands targeted by phishing
campaigns

3,774 1st-3rd quarter 2015 APWG

Country hosting the most phishing
websites

USA 1st-3rd quarter 2015 APWG

Number of identity thefts registered in
USA

490,220 January-December 2015 Federal Trade
Commission

Financial Damage

UK Âč 174.4 mil-
lion

November 2014-October
2015

NFIB

Globally $5.9 billion 2013 RSA

Every large organization (more than
10,000-emplyee)

$3.77 million Every year Ponemon
Institute

ported during the period from January to September 2015 was 1,033,688, as shown

in Table 1.1. According to the Ponemon Institute (Ponemon, 2015), every large orga-

nization that has more than 10,000 employees suffers from direct and indirect losses

amounting to about $3.77 million every year. Indirect losses include the amount of

money spent on security program to protect organizations from phishing attacks. The

National Fraud Intelligence Bureau (NFIB) and Get Safe Online have found that phish-

ing attacks cost UK consumers around £174.4 million in 2015 (UK Cards, 2015). For

the interval from November 2014 until October 2015, 95556 new phishing frauds were

registered, which is a 21% increase compared to the same period in the previous year.

Moreover, 25% of victims were scammed using email or telephone calls. Phishing using

email is the most frequently used rout to lure online customers representing 75% of all

phishing scams. Also, phishing by phone calls accounts for 12% of reported attacks.

The Consumer Sentinel Network (Commission et al., 2015) has stated that the annual

number of complaints about identity theft had reached 490,220, which ranks second

at 16% of all complaints received by the FTC (Federal Trade Commission). The

- 7 -

Chapter 1: Introduction

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

JAN FEB MAR APR MAY JUN JUL AUG SEP

49,608

55,795

115,808

142,099

149,606

125,757

142,155
146,439

106,421
N

u
m

b
er

 o
f

p
h

is
h

in
g

 e
m

a
il

s

Months 2015

Figure 1.3: Number of unique phishing email reports submitted to APWG for the
period from January to September 2015

global losses have been estimated by the RSA's fraud report to be $5.9 billion in 2013

(RSA Center, 2013). Phishing attacks target many industry sectors used by billions of

people across the world. The number of phishing email reported shows an increasing

number of phishing attacks over months in 2015 as shown in Figure 1.3.

From these estimates, it is clear that the phishing problem still adversely affects global

online transactions. Furthermore, it may have a long-term effect if customers lose

trust in E-commerce. The facts and statistics listed above lead to the intention to

build an intelligent model that can detect phishing attacks and create a more secure

environment for online customers.

- 8 -

Chapter 1: Introduction

1.3 Research Problem

Phishing problems affect the electronic commerce because online customers trust the

Internet environment less (Kobayashi and Okada, 2013; Verma, 2013). Phishers use

techniques which evolve to lure online customers, creating new phishing websites and

spreading emails that try to convince Internet users to follow fraudulent links to access

their websites. Phishing emails employ sophisticated techniques which direct the online

customers to open a new web page, which has not yet been added to the black-list.

A phishing attack that uses these new types of techniques is called a zero-day attack

(Ammar, 2014).

Anti-phishing strategies can be divided into technical or non-technical solutions. Non-

technical solutions used to protect the user from phishing attack depend on using

awareness and training programmes to teach online consumers how to recognise phish-

ing emails and websites (Alsharnouby et al., 2015). Technical solutions, however,

depend on building detection and protection models based on training datasets. The

non-technical solutions are very important, but they need to keep teaching Internet

users about the new kinds of attack, and users need to read a lot of information. Fur-

thermore, such training programmes may not be applicable for many kinds of users,

such as older people and children. Moreover, this type of solution may be costly in

the long term and it will not respond to new forms of attack immediately. Therefore,

a solution is needed that gives protection to online consumers without their requiring

intervention or action.

Any proposed model to handle zero-day phishing attacks where a new attacks are

launched continuously, needs to have the ability to respond to the fact that the phishing

- 9 -

Chapter 1: Introduction

website life time is very limited (46 hours) where phishers launch a new attack to lure

anti-phishing techniques designed based on black-list. Furthermore, the anti-phishing

technique trained to detect phishing attack based on a fixed number of features will be

lured by new attacks that use new techniques. Therefore, any anti-phishing technique

that can response to zero-day phishing attack need to have the ability to reflect changes

in the environment by making the feature selection a dynamic process.

In the proposed model, a neural network has been used because it gives the ability

to modify the classifier to reflect changes in the environment so as to handle zero-

day phishing attacks. Many issues must be dealt with to produce the best neural

network that can represent a specific problem and how it can evolve to take account

of new behaviour. To address these issues, this thesis proposes a new algorithm called

the Dynamic Evolving Neural Network using Reinforcement Learning (DENNuRL),

which produces a classifier that is modified automatically using a Reinforcement

Learning Agent (RL-Agent). In order to solve the problems caused when a fixed

number of features are used to build the protection model, a Feature Evaluation and

Reduction (FEaR) algorithm is proposed.

1.4 Research Aims and Objectives

The main aim of this thesis is to develop a detection and protection model that will

be able to discover and classify phishing emails in the online mode, with the ability

to handle zero-day phishing attacks. This detection and protection model will be able

to dynamically change to reflect changes in the environment, so that new phishing

behaviours will be detected and utilized in updating the model. To achieve this main

- 10 -

Chapter 1: Introduction

goal, an adaptive neural network for the detection of phishing emails has been devel-

oped which uses reinforcement learning. Furthermore, the proposed model will have

the ability to choose the best possible neural network.

To accomplish this aim, several intermediary objectives are listed below:

1. To conduct a literature review of previous studies in order to determine the gaps

in existing knowledge. What are the current solutions? What are the main

weaknesses?

2. To implement a pre-processing system which will have the ability to extract a

set of features that represents all aspect of the phishing emails, and to determine

its merits in the detection process.

3. To explore AI and data mining tools that could potentially be used in phishing

email detection with high performance and accuracy.

4. To develop an online phishing email detection system using a dynamic evolving

neural network based on reinforcement learning.

5. To show the accuracy and evaluate the performance of the proposed solution

compared to other existing solutions.

6. To determine the ability of the proposed model in the detection of Zero-day

phishing attack.

7. To evaluate the ability of the reinforcement learning approach used in the detec-

tion of phishing attacks.

- 11 -

Chapter 1: Introduction

8. To test the ability of an adaptive NN in the enhancement of the model generated

while the system handles a new attack.

A quantitative research methodology has been developed and implemented to accom-

plish the aforesaid aims and objectives, including all experiments, data collection tools,

and tests of the model and algorithms.

1.5 Research Contribution

Phishers regularly use new and sophisticated techniques to acquire sensitive informa-

tion from online customers for illegal financial gain, and it is a challenging task to

address this issue. Despite state-of-the-art solutions to this problem, there is still a

lack of accuracy in online solutions, which cause loopholes in web-based transactions.

These loopholes can be identified because the solutions used to defend against phishing

attacks do not stop or reduce the losses caused by phishing, as shown in previously

in Table 1.1. This research investigates these loopholes by developing a detection

and protection framework using Artificial Neural Network (ANN) and reinforcement

learning technology. An adaptive environment is developed that can detect zero-day

phishing attacks and which will dynamically adapt itself to handle new phishing be-

haviour. This thesis therefore makes a set of novel contributions in the field of network

security, as described in the following discussion.

1.5.1 Pre-processing algorithm

After investigating a massive number of phishing emails, handling previous phishing

detection strategies, and analysing different phishing studies, technical reports, and

research papers, fifty features have been extracted in this study.

- 12 -

Chapter 1: Introduction

A pre-processing system is proposed which uses the JAVA programming language, and

this system is responsible for feature extraction from the main contents of emails. The

fifty features were chosen from three sources: email headers and content and external

sources. Many techniques and algorithms have been developed to process datasets in

order to extract behaviour that distinguishes between phishing and ham emails.

To show the merits of the proposed pre-processing system, an offline detection model is

proposed to compare between our pre-processing systems and other system. The high

efficiency and low false positive rate registered are due to the pre-processing system

as well as the features used. In the proposed model the same dataset and algorithms

used to conduct the comparison. Furthermore, the proposed model is trained using a

set of data mining algorithms used in the literature to determine the best one to be

used in this field.

1.5.2 Feature Evaluation and Reduction algorithm

A new algorithm is proposed to handle the exploration of new phishing behaviours

available in a selected dataset. This algorithm will be able to increase the performance

of the proposed model, and the vast numbers of potential features will be reduced to

the most effective number of features.

The number of important features will be changed according to changes in the dataset,

which will allow the system to adapt dynamically to such changes. In addition, the

selected most effective features will have an important role in reducing the complexity

of the Neural Network (NN) used, which is the core of the proposed detection model,

by reducing the number of hidden neurons and connections. Finally, an easy way to

rank the selected features will be provided, and determine the rank for every feature.

- 13 -

Chapter 1: Introduction

1.5.3 Dynamic Evolving Neural Network using Reinforce-
ment Learning

Selecting the best NN that can be used to solve the classification problem when clas-

sifying emails as phishing and ham emails has an important role in the classification

process.

The characteristics of the NN include the number of layers, the numbers of neurons

in each layer, and the appropriate number of training epochs. A novel algorithm is

proposed in this study called the DENNuRL to address all of the mentioned above

points in building the best neural network to solve the problem using the best possible

NN architecture. Reinforcement Learning (RL) is used for the first time in this field to

build a NN used to classify email as phishing or ham email. The proposed algorithm

will have the ability to handle common problems encountered when NNs are used,

such as overfitting and underfitting problems.

1.5.4 Phishing Email Detection System

In this thesis, a novel phishing email detection system is proposed that is dynamically

adapted in the online mode. The proposed techniques are based on concepts of data

mining, ANN, supervised machine learning, and RL combined to produce the Phishing

Email Detection System (PEDS). The system generated is a NN will be adapted

automatically without any user intervention to reflect changes and new behaviour in

the up-to-date dataset.

The RL-Agent will control the adaptation process. The development of the PEDS

includes building a new dataset, explore any new behaviours, and change the detection

model which reflect these changes. RL has been used for the first time in this field.

- 14 -

Chapter 1: Introduction

1.6 Thesis Outline

In total, this thesis consists of six chapters, each of which concludes with a summary

and conclusion intended to capture the essence of the material covered respective

chapter and its subsections before moving on to the next one.

Chapter 2 Background Information and Literature Review: This chapter gives an in-

troduction to phishing problems. Relevant terminology is defined and a detailed view

given of the effect of phishing attacks and the losses related to phishing. Detailed

descriptions are given of the anti-phishing strategies used by other researchers, con-

centrating on phishing email detection.

Chapter 3 Pre-processing and Feature Extraction: In this chapter two algorithms are

proposed, which are pre-processing and FEaR algorithms. A selected list of features is

determined and an algorithm is proposed to extract these features. Next the algorithm

proposed to select the list of important features and explore new behaviour is discussed.

Finally, an experiment is designed and carried out to show the merits of the proposed

algorithm and the selected list of features.

Chapter 4 Dynamic Evolving Neural Network using Reinforcement Learning: The

main algorithm responsible for generating the classification model is described in this

chapter. An experiment is conducted to show the ability of the proposed algorithm

to build a classification model, with a detailed comparison made with other strategies

that use neural networks as the core of their detection models.

Chapter 5 Online Phishing Email Detection Framework: The final model used to

generate the online phishing email detection system is described in this chapter. An

- 15 -

Chapter 1: Introduction

experiment has been designed to prove that the proposed algorithm can detect phishing

emails with an acceptable error rate. This chapter ends with a comparison between

the proposed framework and previous techniques used to classify emails into phishing

and ham email.

Chapter 6 Conclusion and Future Work: The ı̈ň ↪Anal chapter concludes this thesis with

a summary of each chapter contents, findings, and provides a brief future outlook on

how the proposed model can be enhance.

- 16 -

2
BACKGROUND INFORMATION

AND LITERATURE REVIEW

2.1 Introduction

Phishing attacks are cybercrimes that affect many online transactions and are increas-

ing in frequency. They are having an adverse effect on electronic commerce by leading

online customers to lose their trust in online transactions. Phishing affects online

transactions due to the insecure nature of most open networks that together consti-

tute the World Wide Web, and, for example, Google bots detect 9500 new malicious

webpages every day (Nguyen and Nguyen, 2016). Phishing attacks are difficult to

trace and prevent and often go unnoticed. Sensitive information, once acquired, can

be used without being detected by security systems and phishing leaves no records

of intrusion into the targeted systems. To avoid such attacks, the user's data need

to be protected from being stolen. The protection mechanism used can apply many

strategies, such as removing phishing emails, warning and notification of inconsistent

links and websites that could potentially harm the user or their computer by jeop-

ardizing the integrity of their information. This chapter gives detailed insights into

what a phishing attack is (Section 2.2) and reports on the history of phishing attacks

(Section 2.3). A detailed discussion is then given of anti-phishing techniques in Section

- 17 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

2.4 which use non-technical and technical solutions. Then more detail is given of the

technical solutions proposed by other researchers (Section 2.5). Section 2.6 discusses

existing solutions that handle zero-day phishing attacks. Finally, Section 2.7 give a

brief summery for this chapter.

2.2 Phishing - Definition, Lifecycle and Methods

The main intention of phishing attacks is to steal the internet user's sensitive data

such as passwords, social security number (SSN) and credit card details. Phishing

is a serious threat which causes billions of dollars of losses to business every year.

Definitions and a taxonomy of phishing attack, lifecycle, and the main methods used

are presented next.

2.2.1 Definitions related to phishing attacks

The terminology related to phishing has many different definitions in the scientific

literature, ranging from merely descriptive to very broad, to scientific and general

definitions. In previous studies, the phishing has not been clearly defined, and is

sometimes described using examples (OpenDNS, 2016), while other authers seem to

suppose that readers already know what phishing is, or that precise definitions would

be too hard for readers to understand (APWG, 2015). Many authors have proposed

their own definitions of phishing, leading to a large number of different definitions in

the scientific literature. The most widely known definitions are presented below:

• The term phishing as defined by Oxford English dictionary is “The fraudulent

practice of sending emails purporting to be from reputable companies to induce

- 18 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

individuals to reveal personal information, such as passwords and credit card

numbers” (Aarts et al., 2014).

• PhishTank is one of the main collaborative clearing houses for data and informa-

tion about phishing on the Internet. Its definition is that “Phishing is a fraud-

ulent attempt, usually made through email, to steal your personal information”

(OpenDNS, 2016).

• A longer definition has been proposed by the APWG, which is the most widely

known organization unifying global responses to cybercrime across industry, gov-

ernment and law-enforcement sectors. There, phishing is a “criminal mecha-

nism employing both social engineering and technical subterfuge to steal con-

sumers'personal identity data and financial account credentials. Social-engineering

schemes use spoofed emails purporting to be from legitimate businesses and agen-

cies, designed to lead consumers to counterfeit websites that trick recipients into

divulging financial data such as user-names and passwords”(APWG, 2015).

The above definitions of the term phishing indicate that each organization has devel-

oped their own description of this term. Lastdrager (2014) tried to solve the problem

of finding a standard definition of the term phishing by gathering 113 distinct defini-

tions and then combining them into one definition using criminal science theory as a

theoretical framework (Lastdrager, 2014). The resulting definition is that “Phishing is

a scalable act of deception whereby impersonation is used to obtain information from a

target”. This definition can be considered to be the most authentic general definition

of phishing, which can cover all kinds of phishing attacks. As shown in all of the

previous definitions a typical phishing attack starts by sending an email to an online

- 19 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

Figure 2.1: Phishing email example (OpenDNS, 2016)

customer, as shown in Figure 1.1.

This is the beginning of the phishing attack, and it is where the approach proposed in

this study tries to stop the attack and protect the Internet user from being deceived.

An example of a phishing email is shown in Figure 2.1, and its main components are

described in Figure 2.2. These examples and their annotations are collected from the

PhishTank website (OpenDNS, 2016). The fraudulent link that the phisher inserts as

a decoy in this email is for a fake website as shown in Figure 2.3. This fake website

is designed by the attacker to convince the email recipient that it is a legitimate site

by looking exactly like the original website. Figure âĂŐ2.4 shows where the email

recipient is expected to enter his/her secret data, and if he does, the attacker will steal

this information and may use it illegally later.

- 20 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

Figure 2.2: Phishing email example with annotations that describe its main parts
(OpenDNS, 2016)

Figure 2.3: Phishing website (OpenDNS, 2016)

- 21 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

Figure 2.4: Phishing website with annotations (OpenDNS, 2016)

2.2.2 Phishing attack lifecycle

The lifecycle of a phishing attack closely resembles the fishing process, from where the

word phishing originated. The fisher starts by preparing the bait that the fish will

voluntarily catch, and the phisher begins in the same way by preparing the bait which

is the phishing website. As the second step in the fishing process, the fisher presents

a hook for the fish and waits until one of them voluntarily catches it. Similarly, in

phishing, the phisher sends an email like that in Figure 2.1, to a large number of

victims (Internet users). The email contains a hyperlink that points to the website

designed in the first step and waits until one of the victims takes the bait and logs

in to the phishing website and starts entering his data. Lastly, the phisher collects

the victim's data (such as bank account information, Facebook account data, and

email login information). Later, the phisher may use these data to steal money or

information from victims.

- 22 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

2.2.3 Phishing attack methods

Phishers use many different techniques to initiate phishing attacks, the main methods

used nowadays are email, SMS, Social network/media, VoIP, advertisements, instant

messaging, search engines and malicious websites (Maurer, 2014). Phishers always

modify their methods to use any communication method available to reach their vic-

tims. According to the APWG most phishers use emails to start their attacks (APWG,

2015). The same text used in phishing emails are also sent via other communication

channels to reach online customers. In this thesis, a detection method is built to de-

tect phishing attacks at the email level, since this is the most popular method used to

spread these attacks.

2.3 History of Phishing Attacks

The term phishing started to appear after the initial period of the use of the Internet.

Such frauds were initiated in 1995 but did not become widely known until nearly ten

years later (Jakobsson and Myers, 2006). However, although many solutions have

been proposed for this kind of attack, the losses caused by phishing still affect online

transactions.

2.3.1 Origin of the word phishing

Phishing fraud uses spoofed emails and websites to deceive online consumers who

voluntarily give sensitive information. As discussed previously, the term “phishing”

comes from its similarities with the procedure of fishing. But there is also another

reason for the use of “ph” in place of the “f”, Some of the earliest hackers commonly

- 23 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

replaced the letter f with ph in the previous form of crime called phone phreaking.

Phreaking was first used by John Draper, aka Captain Crunch, who invented the

infamous “Blue Box that emitted audible tones for hacking telephone systems in the

early 1970s” (Rader and Rahman, 2015).

2.3.2 First fishing attack registered

The term“phishing”was used for the first time on January 2, 1996 (Zhang et al., 2012).

The attack was registered in a Usenet newsgroup “alt.online-service.america-online”.

This first phishing attack targeted America Online customers and was the first form

of what has become the most serious kind of attack that affects E-Commerce over the

Internet. Moreover, this kind of attack has continued to grow and identity theft has

ranked first among all types of cybercrime over the last 15 years according to the USA

Federal Trade Commission (Commission et al., 2015).

2.3.3 First phishing attack description

The first phishing attack started by using algorithms to generate randomized credit

card numbers, and then used these random numbers to open AOL accounts. The at-

tackers used a program called AOHell to distribute the attack to AOL users (Collinson,

1995). The AOL company tried to put an end to this attack by constructing secu-

rity procedures to prevent the use of randomly generated credit card numbers. The

phishers sent instant messages and emails to the AOL users, acting as if they were

an AOL employee. In the message that the AOL user received, the phisher asked the

user to verify some secret information, such as an account number or any other private

information. The problem got worse when attackers created AOL instant messenger

- 24 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

(AIM) accounts over the Internet which could not be traced by the AOL terms of

service (TOS) (Reust, 2006). Finally, AOL tried to increase the awareness of its users,

by sending email and instant messaging warnings not to provide sensitive information

(Dhamija and Tygar, 2005).

2.3.4 The evolution of phishing

Phishers continue to use the same concepts that were employed in the first attack to

lure online costumers. In 2001, attackers started targeting payment systems. Despite

the fact that an attack targeting E-Gold in June 2001 was not successful, it established

new targets for phishers (Almomani et al., 2013a). In 2003, phishers started using a

new group of domains that targeted famous websites like eBay and PayPal. Spoofed

emails targeting PayPal customers were sent, and fraudulent links were inserted in

the email body that would take the email reader to the spoofed websites. When the

user entered his/her information, the phisher would steal the costumer’s data for use

illegal later. By the following year, phishing attacks had registered tremendous success.

These attacks cost online customers billions of dollars every year (Khonji et al., 2013).

Popup windows were used to obtain sensitive information from online customers, but

since that time many other sophisticated techniques have been used by phishers.

In 2006, phishers started to use the voice-over IP to initiate phishing attacks, and this

new kind of attack is called Vishing (voice phishing) (Castiglione et al., 2009). In a

vishing attack, phishers first set up a voice email system using a voice-over IP. Then

the phisher uses an automatic dialler to call a long list of victims and play a recorded

message, or the attack is started by sending an email that tells customers to call a

phone number to update their data. When consumers respond, they hear a recorded

- 25 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

voice message that requests the customer to enter confidential information which the

phisher can use later.

A new kind of phishing attack was launched in the late 2007 which still remains active,

which is called spear phishing (Krombholz et al., 2015). This is a highly targeted

phishing attack. Rather than sending phishing emails to anyone in the usual way, the

phisher sends spoofed emails to consumers that appear to originate from somebody

they know. For example, phishers can send emails pretending that an organization's

manager is asking employees to update their data (like login information) or pretending

that the email has come from a friend on social networks. The extent of spear phishing

increased dramatically between 2009 to 2011, and it has been responsible for some high-

profile corporate data breaches (Caputo et al., 2014). This kind of attack is successful

because the phisher can collect information about consumers easily from the Internet

by the basic mining of company websites. In summary, phishers continue to improve

their tactics using new techniques, targeting specïıň ↪Ac groups, and using alternative

channels to spread their attacks. The present research focuses on detecting phishing

attacks at email level, since most phishers use this channel to initiate their attacks.

2.4 Anti-Phishing Technology

As recently as 2007, the anti-phishing strategies implemented by businesses to protect

individuals, and organization were fairly simple, but did not meet the expectations of

users. To date, many techniques have been developed to fight phishing attacks, includ-

ing legislation and technology developed to protect online customers. The solutions

developed can be used by individuals as well as by organizations, and can be cate-

- 26 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

gorised as technical or non-technical. Non-technical anti-phishing solutions include

awareness programmes that target the user to teach them how to identify phishing

attacks and how to handle them. These solutions are outside of the scope of this the-

sis, but the next section briefly introduces this type of solution. The second type of

solution includes technical anti-phishing solutions such as developing a security system

that protects online customers without the need for their intervention.

2.4.1 Non-technical anti-phishing solutions

The first line of defence against phishing attacks is to teach people how to recognize

phishing fraud and how they should respond to it. Learning among Internet users is

vital to make them aware of the known techniques that phishers use to lure online

costumers. Employees are just like customers targeted by phishers, but it is more

dangerous if the phisher can lure an employee. The loss when a company is targeted

can include direct financial loss, confidential customer data being stolen, or the theft

of intellectual property such as private agreements or company plans, which may cause

losses of millions of dollars. For that reason, employee awareness programmes must be

a part of all organizational training.

Many organizations design awareness programmes that intended to teach internet users

about phishing, such as eBay's spoof email tutorial, The Federal Trade Commission's

“An E-Card for You” game (Commission et al., 2006), “Recognizing Phishing Scams

and Fraudulent Emails” by Microsoft, and the National Consumer League's, Internet

fraud tips on phishing. Kumaraguru et al. (2010) test some of these training pro-

grammes, and showed that training is effective in stopping phishing attacks if online

customers read the training materials (Kumaraguru et al., 2010).

- 27 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

Kirlappos and Sasse (2012) indicate that education will not give users the protection

they need (Kirlappos and Sasse, 2012). The effectiveness of a training system was

evaluated by testing 515 volunteers, and after the training programme was run multiple

times, 17.5% of the participants in the experiment were still being defrauded and

entering their sensitive information in the simulated phishing websites.

Salem et al. (2010) proposed a combined approach using tools and human learning

to avoid and detect phishing email (Salem et al., 2010). To address this problem,

they firstly used a proactive solution by giving users a security awareness programme.

Secondly, a reactive solution used an intelligent system to detect phishing attacks at

email level that started by extracting six features from each email which was then

each classified by using the fuzzy logic based expert system. The main weaknesses

of the method were the number of features selected, which did not fully represent all

characteristics of phishing emails. Moreover, this method is static because the rules

are built manually.

Awareness programmes are important but not adequate to handle the phishing fraud

problem, for the following reasons. Firstly, phishers regularly change the techniques

they use, and so any training programme may not include the new technologies and

strategies used by phishers. Secondly, the cost of those training programmes for both

individuals and organizations is high, and they need to be repeated and updated

frequently. Thirdly, the lifetime of a phishing website is very short, usually less than

2.58 days (Moore and Clayton, 2007) and the median lifetime is much smaller at about

20 hours. Therefore, any trainning programme could not follow the changes in attack

strategies and the number of warning emails issued by the security department of a

- 28 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

company could be huge. Finally, these training programmes cannot be delivered to

large numbers of costumers, for example, non-employees. Therefore, the best solution

to phishing attacks should be an intelligent system which gives online customers the

protection they need without requiring any user intervention. Any such system should

have the ability to adapt itself dynamically to reflect the changes in phishing attack

strategies.

2.4.2 Technical anti-phishing solutions

Technical anti-phishing solutions are tools used for the detection and prevention of,

or response to, phishing attacks. These solutions have the advantage of automatically

detecting a phishing attack without needing user intervention. Many of these tools

are incorporated into anti-virus software and web browsers, others are standalone

programs. In the next section the most widely used technical anti-phishing solutions

are introduced along with a detailed discussion.

2.5 Anti-Phishing Detection Methods

Current phishing detection and prevention tools aim to protect online customers from

phishing using various methods described in this section. However, despite state-

of-the-art solutions to address this issue, online solutions still suffer from a lack of

accuracy, which causes enormous losses every year in online transactions. Technical

methods used for phishing detection and prevention can be further categorised accord-

ing to the techniques used. Additional details of these methods, with their advantages

and disadvantages, and various studies investigating them are discussed in the fol-

lowing sections. An anti-phishing tool can be categorized from the point of view of

- 29 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

Figure 2.5: Anti-phishing technology

lifecycle into phishing detection tools, phishing prevention tools, or correction tech-

niques (Khonji et al., 2013). Correction techniques are responsible for taking down a

phishing attack; for example, in the case of the detection of a phishing website the

cookies installed are removed. Prevention techniques are responsible for stopping a

detected phishing attack in the future. Meanwhile detection tools are responsible for

identifying phishing attacks, and in the following subsections detection methods are

discussed in more detail. The most popular protection methods of blacklisting and

whitelisting are considered first, and then additional security toolbars that can be

installed in the web browser are discussed as shown in Figure 2.5. After that, the con-

tribution of virus scanners in this field is discussed. Finally, heuristic-based solutions

are considered, and then studies that try to solve zero-day phishing attack problems

are covered.

- 30 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

2.5.1 Security toolbars

Security toolbars are a client-side tool embedded into a web browser to detect phish-

ing attacks (Almomani et al., 2013a). Many toolbars have been developed to protect

online customers from phishing, such as the Calling ID Toolbar, EarthLink Tool-

bar, Cloudmark AntiFraud Toolbar, eBay Toolbar and Netcraft Anti-Phishing Toolbar

(Arachchilage and Love, 2014). Noman et al. (2013) examined a set of security tool-

bars attached to the most well-known web browsers to determine the best browser for

the detection of phishing attacks, and it was shown that the best browser for protecting

online customers was Google Chrome (Mazher et al., 2013). The main weakness with

the security toolbar is that it is the user's responsibility to read the warning messages

sent. Furthermore, the user must choose whether or not to proceed after the warning

message has appeared, and Yen et al. (2011) found that 23% of those interviewed

in their study did not read security toolbar warning messages, leading to spoof rates

of 40% (Chen et al., 2011). The following list briefly describes the most widely used

toolbars used to detect phishing attacks:

• PhishTank SiteChecker: a Mozilla Firefox add-on that blocks phishing websites

based on the PhishTank database (DoleÅ¿al, 2008; Maggi, 2010).

• Netcraft toolbar: this depends on blacklist and whitelists maintained by Google,

and it works by not allowing users to enter information at known phishing web-

sites (Likarish et al., 2008).

• eBay toolbar: this protects eBay customers from being attacked by identifying

a legitimate eBay website (eBay, 2016; Zhang et al., 2007b).

- 31 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

• EarthLink Toolbar: this toolbar retrieves visual notification for every website,

which could be saved, neutral or negative (Abu-Nimeh and Nair, 2010; EARTH-

LINK, 2016).

• GeoTrust Trustwatcher toolbar: this server-based toolbar helps customers to

identify trusted websites, and alerts user to unsafe websites (GeoTrust, 2016).

• SpoofGuard toolbar: this is a browser plug-in which watches customer activity

and calculates a spoofed index. If the value calculated exceeds a threshold value,

the spoofGuard warns the user about suspicious activity (Boneh et al., 2007;

Gupta and Shukla, 2015; Kang and Lee, 2007).

• CallingID toolbar: this toolbar embedded in Microsoft Internet Explorer uses 54

verification tests to classify web pages as legitimate, low-risk or high risk (Gupta

and Shukla, 2015).

• Cloudmark Anti-Fraud Toolbar: the evaluation of website legitimacy with this

tool depends on user ratings. The final assessment is shown as a coulor icon; if

the icon is green then it is legitimate, if red it is phishing website, and yellow a

suspicious website (Gupta and Shukla, 2015).

• SpoofStick toolbar: this security toolbar displays the real domain for the web-

site visited, where the phishers try to deceive online customers by using a do-

main that looks like the legitimate one. For example, if the visited URl is

(www.ebay.com.ww21.us) the SpoofStick display the real domain as (ww21.us),

which may decrease the opportunity to deceive online customers (Abu-Nimeh

and Nair, 2008; Mao et al., 2013).

- 32 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

• TrustBar toolbar: this toolbar is based on the idea that a legitimate website uses

a secure web connection SSL to send and receive confidential customer data. It

displays a warning if the website does not use SSL to send or receive user data

(Herzberg and Margulies, 2012).

• DOMAntiphish toolbar: this anti-phishing toolbar compares the Document Ob-

ject Models (DOM) for the web page under investigation and a legitimate one.

If there is no similarity, then the web page is considered to be an illegitimate one

(Medvet et al., 2008; Nguyen et al., 2014).

• PwdHash: this is a browser plug-in that handles Man-In-The-Middle (MITM)

attacks. It uses a hashing algorithm to merge data entered by the user, such as

password for the website domain, which will make the data stolen by phishers

meaningless (Blocki and Sridhar, 2016).

In the fight against phishing many different commercial applications has been devel-

oped. These solutions are developed as a standalone program (such as McAfee and

Norton) or browser add-ons used to detect and block phishing attack (Kim et al., 2015;

Ramzan, 2010). In 2009, Sheng et al., evaluate the major commercial applications to

show their merits in providing zero-hour protection (Sheng et al., 2009). There are

several anti-phishing blacklists, the most famous one is operated by Microsoft, Google,

or PhishTank. The anti-phishing blacklist contains URLs manually detected as phish-

ing. Microsoft's blacklists are embedded in Internet Explorer, and Google's blacklists

are embedded in FireFox and Chrome browsers. where as PhishTank blacklists are

free access lists used by researcher to build and test their solutions.

Sheng et al. (2009) evaluate the performance of several commercial applications to

- 33 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

detect phishing attacks. The assessments include the following applications:

• Microsoft Internet Explorer version 7 (7.0.5730.11), version 8 (8.0.6001. 18241).

• Firefox 2 (2.1.0.16), Mozilla Firefox 3 (3.0.1).

• Google Chrome (0.2.149.30).

• Netcraft toolbar (1.8.0).

• McAfee Siteadvisor (2.8.255 free version).

• And Symantec Norton 360 (13.3.5)).

The above tools depend on blacklists in their decision, except for the Internet Explorer

7 and Symantec, which use heuristic techniques in addition to blacklists to build their

decision. There experiment shows that techniques based on blacklisting were ineffective

in detecting zero-day phishing attacks. These tools detect less than 20% of attacks at

time zero (when the attack was lunched), and after 12 hour from the beginning of the

phishing attacks they can detect 47% to 83% of the attacks. The best result registered

was for Symantec Norton, which is same result at time zero (20%). However, after

one hour from lunching the phishing attacks it detects 73% of the phish which shows

a faster enhancement (2-3 times) than other tools. Finally, this study showed that

zero-hour protection offered by blacklists had a False Positive Rate (FPR) rate of 0%

but a True Positive Rate (TPR) of less than 20%.

The authors in Sheng et al. (2009) recognised a gap between research and commer-

cial applications in terms of TPR. Academic studies have focused on techniques that

based on heuristics (machine learning techniques) which registered high TPR though

- 34 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

somewhat high FPR. The heuristic techniques are preferred at identifying phishing

attacks that have not been seen before (zero-day attacks). On the other hand, com-

mercial applications depend mostly on blacklists, which have average TPR but zero

FPR. In addition, the blacklist techniques do not have the ability to adapt themselves

to adequately handle zero-day phishing attacks. Moreover, a phisher can also exploit

blacklist by automatically generated URLs.

2.5.2 Black- and white-lists

Techniques based on black- and whitelists are used to prevent phishing, using a

database of both trusted (white-list) and phishing (black-list) websites. The databases

can be saved and updated on the client's machine, or the lists are saved centrally on

the server's computer.

2.5.3 White-lists

Whitelists are lists of trusted websites that an Internet user visits regularly. This

technique allows the user to navigate only to a website which has been previously

considered to be legitimate. This method is very efficient in handling zero-day phishing

attacks, and it also produces zero false positive results. The main disadvantage of using

whitelists is that it is hard to manage all the websites that users will navigate in the

future. Basically, when a user chooses to open a legitimate website, and this website is

not listed in the whitelist, the system will consider it to be a phishing website, which

increases the false negative rate. this means that whitelists are not very popular. Li

et al. (2012) proposed a phishing prevention tool called IEPlug, which is based on

whitelist. IEPlug inspects the websites visited by the user, and if a phishing website

- 35 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

is detected it shows the certificate authority dialog and gives a warning to the user

(Li et al., 2012). The main disadvantage of using this technique is that the white-lists

needs to be maintained manually and the visual effects may disturb users.

Han et al. (2012) proposed an Automated-Individual White-list (AIWL), which is a

phishing prevention tool based on the idea of whitelist. The AIWL uses a NaÃŕve

Bayesian classifier to trace user login attempts (Han et al., 2012). If the Internet user

regularly accomplishes a successful login for a specific website, the AIWL then asks

the user to add that website to the white-list. The main disadvantage of this system

is that the user has to take responsibility for considering a particular website to be

legitimate, whereas all other websites are considered malicious.

In conclusion, a white-list method may be very useful when used along with other

methods, such as blackl-ists and heuristic approaches. It can be used to speed up the

other phishing detection methods, where websites known to be legitimate do not need

to be tested.

2.5.4 Black-lists

In black-list phishing prevention approaches the requested URL is compared with

a predefined phishing black-list. Blacklist phishing prevention is a very well-known

technique used to handle phishing attacks. Most famous web browsers, like Google

Chrome and Internet Explorer, use black-lists for phishing prevention. If the Internet

user tries to visit a fraudulent website already saved in the black-list, the web browser

denies access or warns the user about that website. Furthermore, the black-list has

a very low false positive rate, which leads many users to prefer it compared to other

methods. The main reasons for the wide use of black-lists are their low false positive

- 36 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

rate, as mentioned above and also they are very simple to design and implement

(Huang et al., 2009; Raffetseder et al., 2007).

Sheng et al. (2009) evaluated the effectiveness of phishing black-lists in detecting

phishing attacks (Sheng et al., 2009). A number of fresh phishes were used in the

evaluation process, where a fresh phish is a phishing attack initiated within the last

thirty minutes. This study showed that tools based on black-lists are ineffective in the

prevention of zero-day phishing attacks, more than 80% of which were not detected.

The main disadvantage of using a black-list is that it will not contain all phishing

websites at any given moment, because the lifetime of these websites are so short. In

the time between the initiation of the attack and its detection, the phisher may have

deceived many customers and created another fraudulent website (Mohammad et al.,

2015).

2.5.5 Virus scanners and firewalls

Antivirus software has an important role in the battle against phishing attacks, and

many organizations invest large sums of money in antivirus solutions to detect and

prevent phishing. But this investment does not stop the growing losses across the

world due to phishing. Evidence of the success of the attackers as stated by Parmar

(2012), is that 19% of spear-phishing attempts result in successful attacks (Parmar,

2012).

When using firewalls, an additional layer of security is inserted which gives additional

control over the network traffic. The use of firewall programs can protect Internet users

from phishing attacks that use Trojans and key loggers. These kinds of attacks try to

steal the user's sensitive data and send it over the Internet to the phisher. Personal

- 37 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

firewalls are used to prevent the sending of sensitive user data. There are many well-

known firewalls, such as Zone Alarm (Thakur et al., 2015), and Microsoft Windows

Firewall (Izhar et al., 2013; Thiyagarajan et al., 2010). In addition, FraudEliminator

is standalone software that works as a firewall, protecting the online customers from

opening a phishing website (Ramesh and Divya, 2015).

The main disadvantage of using firewall and virus scanner software, as stated by Colin

(Tankard, 2011) that phishing threats are specially designed to overcome controls such

as firewalls and virus scanners. Furthermore, the success of phishing attacks is clear

evidence that the methods used are not effective in detecting such attacks.

2.5.6 Heuristic solutions

Heuristic methods check for one or more feature extracted from the communication

channel used to initiate the attack, such as email, website, SMS, or Instance Messages

(IMs). The heuristic-based detection methods use artificial intellegence to build a

classification model based on a training dataset. Next, that model is used to classify

the data received as legitimate or a phishing attack. It employs the features identified

in the classification process, such as a sender domain or URLs embedded in the email,

or JavaScript code. The complete list of features used in this thesis is discussed later

in Chapter 3. Heuristic techniques can be executed on the server or client machines.

Furthermore, they can be used as part of other applications such as browser toolbars,

firewalls, or antivirus software.

Toolan et al. (2009) used many classification algorithms to build a classifier ensemble

to classify email as phishing or legitimate (Toolan and Carthy, 2009). The proposed

model used five features selected manually by the authors to represent emails. The

- 38 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

detection model was developed in two steps. Firstly, the authors evaluated six different

classifications algorithms, including C5.0, NaÃŕve Bayes, SVM, Linear Regression and

K-Nearest Neighbour. C5.0 was proven to have better accuracy and precision, and a

classifier ensemble was then built which contained a set of the best algorithms. In the

next step, an R-Boost technique was developed that contains two phases. The emails

are first classified using the C5.0 algorithm, and those classified as legitimate in the

previous step are then reclassified using another classifier from the chosen set. This

study proved that the best algorithm combination is C5.0 in the first layer and the

SVM algorithm in the second layer with an accuracy of 93.68%. The main weakness

of this technique is that, the proposed model does not have the ability to adapt itself

to reflect changes in the environment. Furthermore, the features used are too limited

and do not represent all aspects of a phishing email. In addition, the feature set is

static, and will not reflect changes in phishing attacks.

A ternary classification approach has been proposed to filter email, which distinguishes

between three message types of ham, spam and phishing (Gansterer and Pölz, 2009).

Thirty features were used, nine of which were newly introduced by the authors. Fea-

ture extraction and classification are implemented as a plug-in for the Apache James

Server, whereas for feature ranking the ratio gain algorithm in Weka was used. Finally,

the MSN search engine was used to extract online features. An overall classification

accuracy of 97% was achieved, but the main weakness is that further enhancement in

the pre-processing phase is needed to increase the overall metrics. Furthermore, the

authors did not take into consideration important metrics like true and false positives.

A different approach for phishing email detection was proposed by Hamid Abawajy

- 39 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

2011. This uses the Bayes algorithm as a classification algorithm with hybrid features

that combine content-based and behaviour-based features. The hybrid features are,

firstly, those in the email header such as subject-based features, sender-based features

and behaviour-based features (Hamid and Abawajy, 2011). Secondly, the body-based

features include: URL-based, keyword-based, form-based and script-based informa-

tion. An accuracy rate of 96% was achieved, with 4% false positive and false negative

rates. The main weaknesses of this work were the high false positive rate and the lower

accuracy achieved.

A multi-tier classification method was proposed for phishing email filtering by Islam

and Abawajy (Islam and Abawajy, 2013). They also proposed an innovative method

for extracting the features of phishing emails based on a weighting of message content

and message header. A multiple classification algorithm is used including SVM, Ad-

aBoost, and NaÃŕve Bayes. They are divided the email classification on three tiers,

and they use 21 different features. Each email is classified in the first tier and re-

classified in the next tier using another classification algorithm, so that if the email is

correctly classified it will be passed on to the analyser and subsequently sent to the

appropriate folder. Otherwise, it will be reclassified using the classification algorithm

in tier three, and then sent to the right mailboxes folder. The proposed model achieved

97% accuracy, and the main weakness is that the authers did not take into consider-

ation the computing overhead and performance issues of using multiple classifiers in

multiple tiers. Furthermore, their model is fixed and cannot be automatically adapted

to handle new phishing attack behaviour. Finally, the overall metrics also needed to

be enhanced.

- 40 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

A further study tried to determine the right combination of features that would give

higher accuracy and better performance by Olivo et al. (2013). The proposed tech-

nique could be used to optimize detection engines rather than to develop a new one.

The study showed that using six features may give the same rate of false positives and

true positives as when using eleven features, but the use of only six features is more

efficient. The main weakness here was that this system was tested on only a small

dataset of 450 phishing emails, which may not fully represent all kinds of such emails

(Olivo et al., 2013).

Aburrous and Khelifi (2013) proposed a fuzzy logic and data mining algorithm to de-

tect phishing websites (Aburrous and Khelifi, 2013). The proposed model depends

on 27-features that stamp the fraudulent websites and it works as follows. Firstly, in

fuzzification linguistic descriptors are assigned to a range of values for each character-

istic of a phishing email. Secondly, rule generation uses a classification algorithm with

a set of data mining tools implemented in Weka to learn the relationships among the

selected different phishing features. Thirdly, aggregation of rule outputs all discovered

rules are unified. Fourthly, in defuzzification the fuzzy output of a fuzzy inference

system is transformed into crisp output. The final accuracy achieved was only 86%,

which is the one of the main weaknesses of this work. The main disadvantage when

using this technique is that the phishing attacks are only detected when the user tries

to open the phishing website, which is a very late stage of the process. Furthermore,

it is the user's responsibility to read the warning message which may indicate that the

website is suspicious.

A robust server-side model to handle phishing email detection has been proposed

- 41 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

by Ramanathan Wechsler (2012), which is called phishGILLNET (Ramanathan and

Wechsler, 2012). Natural language processing and machine learning techniques were

used in multi-layered method to build the proposed model. PhishGILLNET was tested

with 400,000 emails, 10% of which were phishing, 10% were ham and the rest were

spam. The experiments were conducted using 10-fold cross-validation. The proposed

model achieved 97.7% accuracy for phishGILLNET2 in the classification of emails as

phishing, spam, and ham. The main drawback of the study is that URL processing was

not taken into consideration to determine if a hyperlink is for a phishing or legitimate

website. Furthermore, the detection mechanism was based on a list of topics which

can be avoided easily by new phishing attacks, which means that this solution will

fail to handle zero-day attacks. In addition, the phishing email dataset used was not

a proven and publically available dataset, and instead the author selected a subset of

spam emails and considered them to be phishing emails.

Barraclough et al. (2013) proposed a neuro-fuzzy model incorporating five inputs to

detect phishing websites (Barraclough et al., 2013). These five inputs, which were

introduced for the first time in this paper, are: legitimate website rule, user-behaviour

profile, PhishTank, user-specific site and pop-up windows. Based on these five inputs,

280 features were selected. The proposed system extracts 280 features from each

website and takes these as input to the fuzzy inference system to generate fuzzy rules

and then use it to build neural networks that will detect phishing websites. The main

weakness here is that the set of features is static, and so the system will not have

the ability to detect new phishing attack that uses features not listed in the system.

Furthermore, the detection process happens at a late stage at website level, where the

- 42 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

user of this system will be in the middle of an attack.

Miyamoto et al. (2009) evaluate the performance of different machine-learning algo-

rithms in distinguishing between legitimate phishing websites (Miyamoto et al., 2008).

They used nine machine learning techniques: AdaBoost, Bagging, SVM, Classification

and Regression Trees, Logistic Regression, Random Forests, Neural Network, NaÃŕve

Bayes and Bayesian Additive Regression Trees. these were tested using eight differ-

ent features that best described the phishing websites. They use an F-measure, error

rate, and AUC as performance metrics in the evaluation. The results showed that the

highest F-measure was 0.8581 for AdaBoost, and the lowest error rate was 14.15% for

AdaBoost and the highest AUC was 0.9342 for AdaBoost. The main weakness in this

paper is that the technique works on the website to protect the user from phishing

attacks, which is not a good choice because the lifetime of such a site is so short.

Finally, the overall metrics also needed to be enhanced.

A different heterogeneous system has also been proposed by del Castillo et al. (2007)

to classify email as legitimate or fraudulent (Del Castillo et al., 2007). This system uses

three classification algorithms in three steps. A NaÃŕve Bayes classifier is used that

works on the textual content of the email, and a rule-based classifier then processes

the non-grammatical features of the email content. Finally, if the email is classified

as suspicious, the system visits every hyperlink in the body of the email and analyses

the responses in order to classify the websites as fraudulent or legitimate. The main

weakness of this method is that in the processing of suspicious emails every hyperlink

in the email need to be visited, but many of them may be from legitimate websites.

This is excessively time-consuming and uses large bandwidth.

- 43 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

Kathirvalavakumar et al. (2015) have proposed a model that uses an elimination

pruning neural network technique to classify email as phishing on legitimate (Kathir-

valavakumar et al., 2015). The proposed model extracts 18 feature that represent

different aspects of emails. To evaluate the proposed model, a dataset consisting of

4000 phishing and legitimate emails was used. The evaluation of the proposed model

shows a very high accuracy rate of 99.9%. The main disadvantage of this study it did

not take into consideration the generalisation problem, which is a common problem

when using a neural network as the core of the detection problem.

Pandey and Ravi (2012) proposed a technique based on text and data mining to

detect phishing emails (Pandey and Ravi, 2012). The model extracted 23 keywords

from the email content using text mining. 2500 emails were used to train and test

the proposed model, 1250 of which were phishing emails, and the rest legitimate.

Seven classification algorithms have been used to build the classification model, where

the highest accuracy registered was 97.6% for Genetic Programming (GP). The main

disadvantages of this study are that, firstly, only a small dataset was used to evaluate

the proposed model. Secondly, the features used took into consideration only the list of

keywords extracted from the email content, which therefore omits important features

of other parts of emails such as the email header and other characteristic of the email

body. Furthermore, the keywords can then be avoided by phishers in new attacks

which will not be detected by this model. Finally, the proposed model does not have

the ability to adapt in the online mode to reflect changes in new attacks.

- 44 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

2.6 Zero-Day Phishing Attacks

Phishing email detection has been investigated in many studies; however, only a few

models have been designed to handle zero-day phishing attacks. Techniques using

blacklists and whitelists will fail to detect a new phishing attack, because the average

phishing website lifetime is only 46 hours (Na et al., 2014), and a phishing attack may

thus take place before a new fraudulent web page is added to the blacklist. Moreover,

anti-phishing techniques that are based on a fixed number of features and trained

using offline datasets will fail to detect new phishing attacks in the online mode, and

classification errors will increase over time. The increase in classification error rates will

happen because new phishing behaviour that phishers may use in zero-day phishing

attacks will not be recognized as phishing behaviour by the detection model built using

a static number of features.

Almomani et al. (2013) proposed a novel framework that classifies email in the online

mode into phishing and ham email (Almomani et al., 2013b). The proposed model

is called the phishing dynamic evolving neural fuzzy framework (PDENFF). Here, a

total of 21 features were extracted from each email which are grouped into four groups:

spam, body, URL and header features. The generated set of features is called the short

vector. In the next step, the framework generates basic rules, and then a dynamic

evolving neural fuzzy inference system (DENFIS) is used to produce the fuzzy rules,

which the system is able to add, delete or update in the online mode. Two datasets were

used for training and assessing the proposed model. In the first dataset, 8000 phishing

and ham emails were collected from Monkey.org (Nazario, 2015) and the SpamAssasin

(Mason, 2005) corpora. In the second dataset, 2300 emails were collected from a mail

- 45 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

server at the NAV6 centre at the University of Sains, Malaysia, which contain 300 of

phishing, and 2000 ham emails. An experiment was conducted to show the merits

of the proposed model, and the first two experiments demonstrated the benefits of

using the short and long vectors and compared the output of the PDENFF with other

classification models for the offline dataset. The third experiment was applied to zero-

day phishing attacks and the model tested with a third dataset achieved a performance

level of 98%. The main weaknesses of the proposed model were, firstly, that the dataset

used for assessing the model in the online mode was very small, consisting of 300 emails.

Secondly, the authors did not show how the system evolved in the online mode.

2.7 Summary

This literature review has shown that phishing is a challenging type of attack that is

hard to defend against, even with the highest security solutions, since it targets human

weakness to attain its goal. Phishing is becoming more complex along with develop-

ments in communication channels, and many different phishing types are appearing.

This suggests a wide range of research projects on social engineering and phishing is

possible. However, to keep the research within manageable proportions, this thesis

focuses only on detecting phishing attacks at email level. This chapter has identified

previous research on the vulnerability to phishing threats and discussed the technical

and non-technical anti-phishing methods developed to defend against phishing attacks,

with a particular emphasis on heuristic-based solutions.

The techniques proposed to detect phishing attacks at webpage level are not satisfac-

tory. If detection occurs at webpage level, the online customer will be in the middle

- 46 -

Chapter 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

of an attack. If he ignores the warning messages, which is often the case, the phishing

attack will be considered to be successful. Therefore, the detection of phishing attacks

at email level will be more secure for online customers. In this thesis, the proposed

model detects phishing attacks at email level.

From the literature, the most promising solutions classify emails based on the selec-

tion of hybrid features which combine features from the email content and headers.

Therefore, this study is based on hybrid features that cover all aspects of emails, as

shown in Chapter 3 where the selected list of features is described. The review has

shown that the approaches proposed so far suffer from high false positive rates and

low accuracy. Furthermore, some studies did not use approved datasets or only anal-

ysed a small number of instances which may not fully represent all kinds of phishing

attack. Finally, there is a limited number of studies which tackle zero-day phishing

attacks in the online mode, and in this solution a clear idea is needed of how to explore

new phishing behaviour that may used by phishers. Therefore, this study proposes a

phishing email detection system that handles zero-day phishing attacks in the online

mode.

The next chapter describes the pre-processing proposed to extract the selected list

of features that represent all parts of emails. In addition, it describes the proposed

algorithm used to explore new behaviour.

- 47 -

3
PRE-PROCESSING AND

FEATURE EXTRACTION

3.1 Introduction

This chapter focuses on the following key questions: what are the important features

that can be used to classify a given email into phishing or ham email? What are the

main components of emails? And how can we design feature selection to be a dynamic

process? To answer these questions, a pre-processing system is designed that is capable

Figure 3.1: Email main components as described by (Khonji et al., 2012)

- 48 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

of retrieving a set of features from different email components. The extracted features

are evaluated to identify the most effective list that can be used to classify the emails

in training dataset. An algorithm is developed for this purpose which is called the

FEaR algorithm.

A set of experiments was conducted to measure the performance of the pre-processing

phase in phishing email detection. In addition, ten classification algorithms were used

to build the classification model, and a comparison was performed to decide which of

them are better to solve such a problem. The ten classification algorithms are selected

from the literature as the mostly wide used algorithms used to build classification

algorithms in this field.

3.2 Main Component of Emails

In 1978 VA Shiva Ayyadurai developed email for the first time (Aamoth, 2011). Since

then, a lot of changes and enhancements have been made to the structure and content of

emails to support new forms of usage. To make the exchange of emails between Internet

users an easier process, the Advance Research Projects Agency (ARPA) developed the

first standard RFC822 in 1982, which defined the main email components. Today's

email format is an extension of the RFC822 standard, where the most recent email

format is defined as the RFC5322 (Resnick, 2008). The email formatted using RFC5322

contain two main parts, the TCP/IP header and the Simple Mail Transfer Protocol

(SMTP) mail object, as shown in Figure 3.1.

- 49 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

F
ig

u
re

3.
2:

M
ai

n
co

m
p

on
en

ts
of

p
ar

ts
of

th
e

em
ai

l

- 50 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

The SMTP mail object contains the SMTP envelope and data. The data part will

contain the email header and, optionally, the email body. Once an email is received, the

header is read to get the various details of the components of the message. Typically,

the header fields of the email will contain information such as the sender, recipient,

date, subject, and so on. In the next section a pre-processing system is described

which will process the different email parts to retrieve information, which is then used

later in the detection process.

Figure 3.3: Real example of email header

- 51 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

3.3 Pre-processing

The pre-processing phase contains two steps. The first step selects features to be

extracted from each email text and header; these features describe the different prop-

erties of each email. The second step, includes selecting the most effective features

from the set extracted in the first step. This will reduce the number of feature used in

the proposed model, which will speed up the design and adaptation of the classification

model.

The features are selected from three sources: email headers, email content, and ex-

ternal sources. A total of fifty features were selected, but the effect of each feature

when classifying email into phishing or ham is not static. During the development

of the system, the status of a specific feature could change dynamically to reflect the

nature of zero-day phishing attacks. Four groups of proposed features are extracted

from the different parts of the email: the email headers, URLs, HTML, and text as

shown in Figure 3.2. To accomplish the pre-processing stage, the email is divided

into header and content. From the content, the URLs, HTML, and text are extracted

depending on the email content type. The email is divided into these parts to re-

duce the duration of pre-processing. In the following four sections brief descriptions

of the features selected to represent phishing and ham email are given. The complete

list of features, including those proposed for the first time, are shown in tables 3.1,

3.2, 3.3, and 3.4, where every feature is identified by an ID number to simplify the

reference to each feature in later sections in this chapter. The newly proposed fea-

tures with their IDs are: Textmail (3), MultiPartMail (4), NumberOfReceivers (22),

NumberOfAttachments (23), NumberOfRecipients (47), NumberOfCcRecipients (48),

- 52 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

NumberOfBccRecipients (49), and BlackListURL (50).

3.3.1 Email header

Nineteen features were extracted from the email header, a full email header with all

fields and their values is shown in Figure 3.3. Table 3.1 shows each feature and its ID

for reference in this thesis. Full descriptions of the features extracted from the email

header are shown in Table 3.1.

Table 3.1: Features extracted from email header

ID Feature Description

1 CompareMsgSenderDomain This compares the message ID domain and sender domain and is a
binary feature that determines if the domain names taken from the
email sender are equal to those taken from the message-ID Toolan
and Carthy (2010).

2 HTMLmail Binary feature that determines if the email content type is
TEXT/HTML Toolan and Carthy (2010).

3 Textmail (New) This validates if the email content type is text/plain in the email
header.

4 MultiPartMail (New) A binary feature that validates if the email content type is
multipart Smadi et al. (2015)

22 NumberOfReceivers (New) Counts how many receivers are included in the (from) attribute in
the email header.

23 NumberOfAttachments
(New)

Counts how many attachments there are.

32 SubjectBankWord Checks if the email subject contains the word (bank) and returns
(true) if it exists and (false) otherwise Khonji et al. (2012).

33 SubjectDebitWord Checks if the email subject contains the word “debit” and returns
(true) if it exists and (false) otherwise Khonji et al. (2012).

34 SubjectFwdWord Checks if the email subject contains the word (Fwd:) and returns
(true) if it exists and (false) otherwise Toolan and Carthy (2010).

35 SubjectReplyWord Checks if the email subject contains the word “Re:” and returns
(true) if it exists and (false) otherwise Toolan and Carthy (2010).

36 SubjectVerifyWord Checks if the email subject contains the word (verify) and returns
(true) if it exists and (false) otherwise Khonji et al. (2012).

37 SubjectNumChars Counts the number of characters the subject field contains and
returns that number Toolan and Carthy (2010).

38 SubjectNumWords Counts the number of words the subject field contains and returns
that number Toolan and Carthy (2010).

39 SubjectRichness Calculates the division between the number of words over the
number of characters found in the subject field Chandrasekaran
et al. (2006).

40 SendNumWords Counts the number of words the sender field contains and returns
that number c.

41 SendDiffReplayto Checks if the email sender is not the same as the “Replay to” field,
and returns (true) if they are equal and (false) otherwise Toolan
and Carthy (2010).

47 NumberOfRecipients (New) Counts how many receivers are included in the (To:) attribute in
the email header.

48 NumberOfCcRecipients
(New)

Counts how many receivers are included in the (Cc:) attribute in
the email header.

49 NumberOfBccRecipients
(New)

Counts how many receivers are included in the (Bcc:) attribute in
the email header.

- 53 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

3.3.2 URLs

Table 3.2 shows the list of features related to the hyperlinks available in the email

body. After extract all hyperlinks (URLs) from email content apply each of these

features to the list of URLs. Table 3.2 shows full descriptions of these features.

Table 3.2: Feature extracted from URLs available in email content

ID Feature Name Description

6 NumOfLink Computes the number of hyperlinks which appear in the email
body Fette et al. (2007).

7 NumberOfDiffDomain Counts the number of different domains that are used in the email
content as hyperlinks Fette et al. (2007).

8 NumDiffLinkText Computes the number of hyperlinks that have hyperlink text
which does not contain the domain name of the hyperlink target
Fette et al. (2007).

9 NumDomainNLSender Computes how many hyperlinks use a domain which is not equal
to the sender domain Fette et al. (2007).

10 NumOfDotInDomain Computes the number of dots used in each hyperlink and returns
the maximum number Fette et al. (2007).

11 NumberLinkContain@ Counts the number of links in the email body which contain the
“@” character (Gansterer & Pölz, 2009).

12 NumberOfLinkContainIP Counts the number of URLs in the email which contain an IP
address Fette et al. (2007).

13 NumberOfLinkContainEsc Counts the number of URLs in the email body which contain
hexadecimal numbers or URL-escaped characters (Drake et al.,
2004).

14 NumberOfLinkContainNSPort Counts the number of URLs in the email body which contain a
non-standard port (other than 80 or 443) Drake et al. (2004).

42 urlBagLink A binary feature that returns (true) if any of the following words is
found in the URL; these words are click, here, login, and update
Bergholz et al. (2010).

43 UrlNumPort Counts the number of URLs that contain a port in the authority
section of that URL and returns that number Toolan and Carthy
(2010).

50 BlackListURL (New) A binary feature that returns (true) if there is any of the URL
which exist in the email body exist in the black-list of URLs.
These blacklist URLs are collected from PhishTank, which is a free
community site where anyone can submit, verify, track and share
phishing data. This feature is updated every 60 minutes to ensure
that it contains the most recently registered phishing websites.

3.3.3 HTML

If the email content type is HTML, the preprocessing algorithm will extract the features

described in Table 3.3.

- 54 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Table 3.3: Features extracted from email HTML content

ID Feature name Description

5 HTMLform Checks if the email content contains an HTML form element
Bergholz et al. (2010).

15 ContainScript Checks if the email contains a JavaScript pop-up Bergholz et al.
(2010).

16 CountSSLLink Counts the number of URLs in the email body which point to a
website that encrypts the connection with a self-signed certificate.

17 NumOfLinksUsingImage Computes the number of pictures which are used as hyperlinks
Gansterer and Pölz (2009).

18 NumMapLink Computes the number of pictures with image maps that are used as
hyperlinks Gansterer and Pölz (2009).

19 NumLinkNonASCII Counts the number of URLs that contain non-standard ASCII
characters Gansterer and Pölz (2009).

21 NumOfDNSrDNS Checks if the domain names have a corresponding reverse DNS entry
and return (true) if they are equal, otherwise returns (false) Inomata
et al. (2005).

44 ScriptOnclick A binary feature that checks if an email contains onClick JavaScript
event and returns (true) if it is available and return (false) if not
Khonji et al. (2012).

45 ScriptPopup A binary feature that checks if an email contains a JavaScript pop-up
windows in its content and return true if it is available and false
otherwise Khonji et al. (2012).

46 ScriptStatusChange A binary feature that checks if an email contains a JavaScript that
changes the text which appears in the status bar, and returns (true)
if it is available otherwise returns (false) Gansterer and Pölz (2009).

3.3.4 Text

Extract the text shown to email reader from the email content and apply the features

shown in Table 3.4.

3.4 Feature Extraction

The pre-processing phase is the most important phase of the proposed model because

it handles the extraction of information from the dataset. A JAVA program was built

to conduct automatic information extraction by reading the email. Pre-processing is

divided into three different phases.

To accomplish the pre-processing task, the email is divided into two basic parts, the

email header and body. The header contains information such as the message sender,

receiver, message-ID, and content type. The message content contains the substantive

- 55 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Table 3.4: Feature extracted from the email main text

ID Feature name Description

20 SizeOfDocument Returns the email message size in bytes Gansterer and Pölz (2009).

24 BodyDearWord Binary feature which checks if the email body contains the word
“Dear” and returns (true) if it exists, or otherwise returns (false)
(Khonji et al., 2012).

25 BodyNumChars Counts how many characters are in the email body Chandrasekaran
et al. (2006).

26 BodyNumWords Counts how many words are in the email body Chandrasekaran et al.
(2006).

27 BodyNumUniqueWords Counts the number of unique words in the email body
Chandrasekaran et al. (2006).

28 BodyRichness Calculates the number of words divided by the number of characters
found in the email body (Chandrasekaran et al., 2006).

29 BodyNumFunctionWords Counts the number of function words discovered in the email body.
Function words are account, access, bank, credit, click, identify,
inconvenience, information, limited, log, minutes, password, recently,
risk, social, security, service and suspended Chandrasekaran et al.
(2006).

30 BodySuspensionWord Checks if the email body contain the word “suspension” and returns
(true) if it exists and (false) otherwise Khonji et al. (2012).

31 BodyVerifyYourAccountPhrase Binary feature that checks if the email body contains the sentence
“verify your account” and return (true) if it exists and (false)
otherwise Khonji et al. (2012).

information intended for those who read the message. The content type depends on

the message content-type attribute in the message header. The analysis in the present

study considers the list of attributes shown in Figure 3.2.

Figure 3.4: Pre-processing phase 1

- 56 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

In the first phase, as shown in Figure 3.4, the email header is extracted and apply the

code for features (2, 3, 4, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, and

49). The results for every feature is stored in a Comma Separated Values (CSV) file

which will be used as input to the classification algorithm after completing the feature

extraction process. Then the program start phase 2 by checking if the email content

type is text/plain to determine the features that will be extracted depending on the

email content type. In phase 2, as shown in Figure 3.5, a set of features is extracted

from the email content. The extracted set of features depends on the type of email

content; if the content-type is not text/plain then more features related to HTML

content are extracted and subsequently the features related to the text of the email

are extracted. At the end of phase 2, hyperlinks that may exist in the email body are

extracted, if the number of hyperlinks is zero then the rest of features are initialized to

their default values and phase 3 is ignored. Otherwise the program proceeds to phase

3 to extract features related to hyperlinks which will speed up the extraction process.

Figure 3.5: Pre-processing phase 2

- 57 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

All of these extracted features are stored in the same CSV file as in phase one, and

then all of the hyperlinks located in the email body are extracted before proceeding to

phase 3. As an example of how each feature is processed, Algorithm 1 shows the logic

used for CompareMsgSenderDomain algorithm. The source code for this algorithm

can be found in Appendix B.

Algorithm 1 CompareMsgSenderDomain
Input: Email
Output: Feature value

1: Read email header.
2: Extract the message id from email header.
3: Extract the sender from the email header.
4: Extract the domain of the email from message id
5: Extract the sender domain from the sender email address
6: if messageDomain == senderDomain then

7: Return true
8: else
9: Return false
10: end if

In phase 2, extracting all hyperlinks available in the email body. If the email content

does not contain any hyperlinks, initialized all the remaining features and proceed

with next email. Otherwise the extraction process continues to phase 3 as shown in

Figure 3.6. The rest of the features are related to the hyperlinks located in the email

body, which is the most important information that phishers use to lead victims to

their spoof websites.

Figure 2 shows the pre-processing algorithm that explain how the fifty features are

extracted from the email main content, the steps of the pre-processing algorithm are

explained previously as shown in Figure 3.4, Figure 3.5, and Figure 3.6. the pre-

processing algorithm takes as input the list of emails collected in the dataset and

produces a CSV file which will be taken in later steps as input to train and test the

- 58 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Figure 3.6: Pre-processing phase 3

proposed model. In the proposed algorithm the feature name is replaced by feature

ID, these IDs are shown previously in Table 3.1, 3.2, 3.3, and 3.4.

3.5 Feature Evaluation and Reduction (FEaR)

After applying the pre-processing phase and extracting the fifty features described

in the previous section, the results are sent to the FEaR algorithm. This algorithm

is used to determine the number of actual features that the classification process is

- 59 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Algorithm 2 The pre-processing algorithm
Input: Email
Output: 50 features extracted from each email stored in a CSV file

1: Read one email at a time.
2: Extract the email header.
3: Apply the code of each of the following features to the email header (1, 2, 3, 4, 22,

23, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, and 49).
4: Save the result in the CSV ı̈ň ↪Ale, where every email has one record and every

feature has one column.
5: if ContentType == “text/plain” then
6: Extract the email body, and apply each of the following features (20, 24, 25, 26,

27, 28, 29, 30 and 31). Initialize the default values for features (5, 15, 16, 17, 18,
19, 21, 44, 45, and 46) and go to step 7.

7: end if
8: Apply the following features to the email body (5, 15, 16, 17, 18, 19, 21, 44, 45, and

46). Then extract the text which appears to the email reader and apply features
(20, 24, 25, 26, 27, 28, 29, 30 and 31) and store the results in the output file.

9: Collect all hyperlinks available in the email body and store them in a LINKS array.
10: if the size of the LINKS array == 0 then
11: Store the default values for all of the remaining features and update the CSV ı̈ň ↪Ale,

and go to step 10.
12: end if
13: Apply features (6, 7, 8, 9, 10, 11, 12, 13, 14, 42, 43, and 50) to the list of hyperlinks

(LINKS), then store the result in the output file.
14: if there is any more email then
15: go to step 1
16: else
17: go to step 11.
18: end if
19: Generate the dataset in CSV file format.

applied to. The selected features will depend on the training dataset, which is used

to determine the actual number of features that is necessary to classify the emails in

the training dataset. The features used will change if the training dataset is changed.

Depending on the dataset used to build the detection model, the algorithm will choose

from the fifty features a set of features that is effective in determining email type. The

rest of the features are not considered important and will be excluded from subsequent

analysis, which will speed up the development process while preserving the same level

of accuracy as if the detection model was developed with all fifty features. The steps

- 60 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

 0 0.66667

0.55556

 1 0.5 0.11111 0 0.44444 0

x3 < 0.5

x8 < 13 x29 < 5

x10 < 0.5 x29 < 1.5

x11 < 0.5 x38 < 2.5 x35 < 0.5

 x3 >= 0.5

 x8 >= 13 x29 >= 5

 x10 >= 0.5 x29 >= 1.5

 x11 >= 0.5 x38 >= 2.5 x35 >= 0.5

Figure 3.7: Regression tree for 200 emails generated by CART algorithm

of the FEaR algorithm is shown in Algorithm 3, this algorithm will evaluated the

training dataset to determine the important list of features and exclude the irrelevant

ones. Figure 3.7 shows an example of the regression tree generated by the CART

algorithm (Berk, 2016), the steps of the CART algorithm is described in the first step

of the FEaR algorithm as shown in Algorithm 3. The Cart algorithm start by choosing

from the list of features the one that have best division in terms of email class for the

training dataset. The data is divided based on the selected feature in the first step,

the same process is repeated until the training dataset is best classified. For example

for 200 email feature x3 (Textmail) is chosen as the root of this tree, and the attribute

value x3 = 0.5. The same process is repeated until classify all email in the training

dataset, in the generated regression tree the email is classified as a phishing if x3 > 0.5

and x29 > 5. The leave of the regression tree will be the email class if the final decision

is greater than 0.5 then the email class is phishing, otherwise the email class will be a

legitimate email.

Table 3.5 shows an example of applying the FEaR algorithm to determine the impor-

tant list of features that can be used to classify 200 emails. These values are estimated

using FEaR algorithm for the regression tree shown in Figure 3.6. The feature impor-

- 61 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Algorithm 3 FEaR
Input: Training dataset
Output: List of important features

1: Building a classification and regression tree using the CART algorithm. A brief
description of how the CART algorithm works is as follows:

a. Start with the training dataset.

b. Take into consideration all possible values of all features; in this case, fifty
features.

c. Choose one feature xi with a specific value t1, (xi = t1) that generates the
largest division in the email class, which will be the feature that can have the
best division in relation to the email class.

d. Split the data into two branches: if (xi < t1), then send the data to the left-
hand branch; otherwise, send the data to the right-hand branch.

e. Repeat the same process on these two âĂIJnodesâĂİ. The final output is a
tree as shown in which is used as input to the second step. The nodes in this
tree will be the selected features that can generate the best division of the
training dataset.

2: Evaluate the importance of every feature, where every node in the tree generated
in the first step will represent one feature. The importance of every feature (node
1) that has two children (nodes 2 and 3) is estimated by applying Equation 3.1:

V1 =
(R1−R2−R3)

Num node
(3.1)

where R1,R2 and R3 are the node risks for the parent and children nodes, and
Num node is the total number of nodes in this tree. The risk is defined as shown
in Equation 3.2.

Ri = Pi ∗Ei (3.2)

where Pi is the node probability and Ei is the node error computed by the CART
algorithm for every node in step 1.

3: Create a crisp value for each feature by dividing the importance value of each fea-
ture computed in step 2 by the maximum importance value as shown in Equation
3.3: {

Vi =
Vi

max(v))
∗100|∀i = 1,2,3...n

}
(3.3)

where Vi is the importance of feature i computed in step 2, n is the number of
features, v is the vector of all features, and max(v) is the maximum value in the
vector v.

4: Select the features with crisp values Vi > 0 as important features. The features
with Vi = 0 do not have a corresponding node in the tree constructed in step 1.

5: Reduce the number of features extracted in the pre-processing phase from 50 fea-
tures to the list of important features determined in step 4.

- 62 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

tance is calculated using Equations 3.1, 3.2, and 3.3 will always be positive, because

the CART algorithm will divide the dataset into two parts at every node. When divid-

ing the dataset based on the selected feature the sub dataset at the children node will

be part of the dataset that classified at the parent node. The sum of the dataset for

the two children node will be less than or equal of the parent dataset. The important

of every node (Vi) will always be greater than or equal to the sum of the two child

nodes.

Table 3.5: An Example for applying the FEaR algorithm for 200 emails

Feature Pi Ei Ri (R1−R2−R3) Vi Ranki

3 1 0.2491 0.2491 0.1552 0.0194 100.0000
8 0.525 0.0862 0.0452 0.0215 0.0027 13.8427
29 0.475 0.1024 0.0486 0.0173 0.0022 11.1744
10 0.5 0.0475 0.0238 0.0077 0.0010 4.9564
29 0.43 0.0548 0.0235 0.0173 0.0022 11.1744
11 0.455 0.0109 0.0049 0.0024 0.0003 1.5751
38 0.32 0.0154 0.0049 0.0005 0.0001 0.3076
35 0.11 0.1488 0.0164 0.0053 0.0007 3.3837

3.6 Offline Phishing Email Detection System

Figure 3.8 shows the general components of the proposed model, which is designed

to evaluate the ability of the proposed pre-processing algorithm and FEaR algorithm

to classify email with high accuracy. Ten different classification algorithms have been

used to train the proposed model. These algorithms are the BayesNet (Hamid and

Abawajy, 2011), SimpleCART (Abu-Nimeh et al., 2007), J48 (Gansterer and Pölz,

2009), Decision Table (Chandrasekaran et al., 2006), MultilayerPerceptron (Ma et al.,

2009), NaiveBayes (Ma et al., 2009), PART, Random Forest (Fette et al., 2007), SMO

and Logistic Regression (Ma et al., 2009). A comparison has been conducted to deter-

mine the best algorithm that can be used for this purpose. The classification algorithms

- 63 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Figure 3.8: Offline phishing email detection system

selected from the literature are the most commonly used algorithms in such a classifi-

cation model. The model consists of mbx2eml, which is a free tool used to split emails

grouped in the mbox file format and each email is stored in a separate file. Then the

pre-processing of the dataset is conducted to extract 50 features.

Further training and testing experiments were performed using a 10-fold cross-validation

method based on data mining algorithms, in which system accuracy and robustness

are measured. Cross-validation is used because the cross-validation estimator gives

better results than a single hold-out set estimator, which is very helpful if the size of

the dataset available is limited, as in this thesis. If a single fold out test is used, where

90% of the data is used for training and 10% for testing, then the test set is very small,

and so it will not represent all kinds of phishing email. The performance estimate will

change if the experiment is repeated with different groups of data to form the training

- 64 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

and test sets. The 10-fold validation reduces these changes in performance by taking

an average of 10 different partitions. Therefore, the performance estimate is less sen-

sitive to the partitioning of the dataset (Tsamardinos et al., 2014). The experimental

results show that the proposed model with hybrid features gives the best performance

compared with all previously reported approaches.

3.7 Experimental Results and Discussion

3.7.1 Dataset

Three publically available datasets were used; two of them are email datasets and one

is of phishing URL datasets. These datasets are described as follows:

• PhishingCorpus (Nazario, 2015) The PhishingCorpus is a phishing email dataset.

This dataset was collected manually, and researchers in this field have used this

dataset extensively. The PhishingCorpus was collected from 2004-2007, and the

most recent update was in 2015, where the total number of emails collected was

7315.

• SpamAssassin (Mason, 2005) The SpamAssassin project collected a total of 6047

of which 4951 are ham emails. In the training and testing of the proposed model,

the ham email used is from the SpamAssasin corpus.

• PhishTank (OpenDNS, 2016) The PhishTank URLs dataset was collected by

the PhishTank organization, which is a collaborative clearing house for data and

information about phishing on the Internet. This dataset is used to update

the content of the BlackListURL feature, and the list of blacklisted URLs are

- 65 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

automatically updated every 60 minutes by the PhishTank website. Total of

26722 phishing URL were collected, and this number is updated every 60 minutes.

3.7.2 Technical terms in detection

Throughout this thesis, when evaluating phishing detection, many different technical

terms from signal detection theory are used. As a point of reference, this section gives

a short introduction exploring these properties.

Suppose that M denotes the total number of phishing emails and D denotes the total

number of legitimate emails. Then nm∈M is the number of correctly detected phishing

emails, while nd ∈D is the number of emails correctly detected as legitimate, nf is the

number of legitimate emails detected as phishing, and np is the number of phishing

emails detected as legitimate. For each detected email, the following evaluation method

is applied: True positive (TP): the number of phishing emails correctly classified as

phishing.

T P = nm/M (3.4)

True negative (TN): the number of legitimate emails correctly classified as legitimate.

T N = nd/D (3.5)

False positive (FP): the number of legitimate emails incorrectly classified as phishing.

FP = n f/D (3.6)

False negative (FN): the number of phishing emails incorrectly classified as legitimate.

FN = np/M (3.7)

- 66 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Based on these four rules, other factors can be derived: precision, sensitivity, accuracy,

and F Measure (Ferri et al., 2009; Wickens, 2002; Zhu et al., 2010). Accuracy is the

sum of T P and T N (the number of correct decisions) divided by the total number of

emails. Precision is the ratio of how many decisions were correct, which is T P divided

by the sum of T P and FP. Sensitivity is the number of T P assessments divided by the

number of all positive assessments. The F Measure is a measure of the test's accuracy,

which refers to the balance between precision and sensitivity. These four metrics are

shown in following definitions:

Precision =
|T P|

|T P|+ |FP|
(3.8)

Sensitivity =
|T P|

|T P|+ |FN|
(3.9)

Accuracy =
|T P|+ |T N|

|T P|+ |T N|+ |FP|+ |FN|
(3.10)

F Measure =
2∗Precision∗Sensitivity

Precision+Sensitivity
(3.11)

In the assessment of any phishing email detection system, the goal will be to increase

the percentage of true positive and to keep the percentage of false-positives close to

zero. The false negative and true negative rates are complementary values that can

be calculated depending on the values of T P and FP respectively.

3.7.3 Feature selection using the FEaR algorithm

To evaluate the ability of the FEaR algorithm to detect new behaviour available in

the dataset, many experiments were conducted. After applying the pre-processing

algorithm and extracting the fifty features for all email in the selected dataset (9900

emails), the dataset is divided into a sub dataset, the element of each dataset were

- 67 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

chosen randomly and used as input to the FEaR algorithm to explore the important

list of features.

As shown in Table 3.6, for a dataset with 500 emails, the FEaR algorithm detected 11

features as important features that can be used to distinguish between phishing and

ham emails. With changing in the training dataset, a new phishing email is explored

which could mean a new behaviour used by the phisher to lure online customers. The

FEaR algorithm builds a different regression tree that can best classify the emails

in the training dataset, and in every experiment it changes the tree nodes (features)

from the total list of features. The FEaR algorithm showed the ability to explore

these behaviours, when the algorithm processes datasets of different list of emails, a

different list of features is selected. In the next section, the selected list of features

is used to build the classification model, and the system is evaluated to see if it can

detect phishing emails with high accuracy. In Table 3.6, for the sub dataset of size

1000, the FEaR algorithm explore different set of features, this happen due to the fact

that different set of email where chosen randomly where different phishing email may

include different behaviours user by phishers to lure the online customers. The ability

of the proposed algorithm to dynamically choose different set of behaviours when the

training dataset is changed will be main part of the online phishing email detection

system proposed in Chapter 5.

The proposed algorithm for the selection from a large set of features solves the prob-

lem of selecting the right set of features to be used to build a classification model.

Furthermore, the number of important features changes dynamically when the dataset

changes without any user intervention, whereas other studies (Del Castillo et al., 2007;

- 68 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Table 3.6: Important features discovered using FEaR algorithm

Dataset Size Count of
Important
Feature

Features

500 11 3, 6, 11, 20, 24, 28, 29, 35, 37, 39, 41

1000 17 1, 3, 6, 7, 11, 17, 20, 25, 26, 28, 29, 34, 35, 37, 39, 40, 44

1000 18 3, 6, 7, 11, 20, 21, 24, 25, 26, 27, 28, 29, 35, 37, 38, 39, 40, 41

1000 18 3, 6, 7, 8, 10, 11, 20, 24, 25, 26, 28, 29, 34, 35, 37, 39, 40, 41

1500 19 3, 6, 9, 10, 11, 17, 20, 22, 23, 24, 26, 27, 28, 29, 35, 37, 38, 39, 40

2000 23 1, 3, 6, 7, 10, 11, 16, 17, 20, 22, 24, 26, 27, 28, 29, 34, 35, 36, 37, 39, 40,
41, 42

2500 27 1, 3, 6, 7, 8, 11, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 34, 35, 36,
37, 38, 39, 40, 41, 48

3000 28 3, 4, 6, 7, 9, 10, 11, 12, 20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 35, 36, 37,
38, 39, 40, 41, 42, 43, 48

3500 29 1, 3, 6, 7, 8, 10, 11, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44

4000 30 1, 3, 6, 7, 8, 9, 10, 11, 16, 17, 20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35,
36, 37, 38, 39, 40, 41, 42, 44

9900 33 1, 3, 6, 7, 8, 9, 10, 11, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32,
34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 48

Gansterer and Pölz, 2009; Hamid and Abawajy, 2011; Islam and Abawajy, 2013; Pa-

munuwa et al., 2007; Salem et al., 2010) have used fixed numbers of features to classify

phishing email and the sets of features chosen are changed manually. Moreover, the

proposed algorithm can be used to rank the selected features, as shown in Table 3.7

where the ranks Vi are evaluated in step 3 in the FEaR algorithm. In the online mode

(to be discussed later in Chapter 5), when building a new dataset that contains new

phishing emails, the FEaR algorithm will explore the new behaviours that the new

dataset may contain.

Some of the newly proposed features are selected by the FEaR algorithm. As shown

in Table 3.6, features (3, 4, 22, 23, and 48) are the new features proposed in this study

are selected as important features by FEaR algorithm. The selection of these new

features by FEaR algorithm depends on the size of the dataset, as an example, if the

dataset size is 500 email, then the FEaR algorithm select one new feature (feature 3).

For 3000 email Features (3, 4, 22, and 23) are selected as important. The rank of the

- 69 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Table 3.7: Feature ranking evaluated by FEaR algorithm with 4000 emails

Feature ID Rank Feature ID Rank

3 100 25 0.663486

7 13.96487 17 0.546267

24 6.499948 11 0.498457

35 5.17843 22 0.387983

26 3.771794 23 0.346812

29 2.266412 1 0.341654

28 2.033311 16 0.295951

6 1.810769 38 0.28526

39 1.278216 32 0.282259

41 0.926993 34 0.214601

20 0.914429 36 0.13632

27 0.878601 10 0.06674

44 0.829632 42 0.045931

37 0.702157 8 0.036652

40 0.684341 9 0.036301

newly proposed features shows that such features are part of most important features

when compared with the previously proposed features as shown in Table 3.7. As an

example, feature 3 is selected as the most important feature.

In this section, the FEaR algorithm is evaluated with different sizes of dataset using the

complete list of features as an input and selecting the most effective list of features that

can classify emails in the dataset under investigation. If the dataset size changes, it

contains different groups of phishing and ham email. The FEaR algorithm successfully

selects different features lists for different datasets. The experiments conducted in the

next section shows that the selected list of features by FEaR algorithm can be used to

build a classification model that classify emails with a high level of accuracy.

3.7.4 Experimental setup

The following the experiment is repeated with different classification algorithms used

to train the classification model. In all experiments approved datasets were used (see

Section 3.7.1 for a full description of the dataset used). The phishing email dataset

- 70 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

suggested by Nazario (Nazario, 2015) has been used in many research studies such

as (Hamid and Abawajy, 2011; Ma et al., 2009; Toolan and Carthy, 2009), and for

legitimate emails the SpamAssassin project (Mason, 2005) datasets were used.

The results of the experiment show that the pre-processing phase has the most influence

on the results for all metrics, when compared with previous studies that used the same

classification algorithm to build the detection model for the same datasets. Table

3.8 shows the results for the proposed model with a set of algorithms that have been

used in the literature to solve such problems. Our experiments lead to high accuracy

and true positive rates, with low false positive rates compared to the results of other

studies.

3.7.5 Comparison of the performance of different classifi-
cation algorithms

In the literature, various classification algorithms have been used to classify emails

into phishing and ham email. In this study, 10 different classification algorithms

drawn from previous studies were compared, and these represent the most widely used

algorithms in classification for similar problems. A comparison was performed on the

same dataset of 9900 emails. The results of this experiment are summarized in Table

3.8.

3.7.6 Results and discussion

The result for the classification algorithm that gives the best outcome according to the

chosen metrics, as shown in Figure 3.9, is the Random Forest algorithm. As shown in

Figure 3.9, the highest TPR is 97.98% for Random Forest, followed by 97.31% for the

- 71 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Table 3.8: Classification results for 10 classification algorithms

Algorithm TPR TNR FPR FNR ACC Preci-
sion

Sensi-
tivity

F-
Measure

ROC

Random
Forest

97.25% 98.71% 1.29% 2.75% 97.98% 98.69% 97.25% 97.96% 98.90%

SMO 92.51% 97.84% 2.16% 7.49% 95.17% 97.72% 92.51% 95.04% 95.40%

BayesNet 88.73% 98.00% 2.00% 11.30% 93.36% 97.80% 88.73% 93.04% 98.40%

SimpleCART 96.85% 97.78% 2.22% 3.15% 97.31% 97.76% 96.85% 97.30% 98.30%

J48 96.57% 97.82% 2.18% 3.43% 97.19% 97.79% 96.57% 97.17% 98.20%

Logistic
Regression

93.49% 98.10% 1.90% 6.51% 95.80% 98.01% 93.49% 95.70% 98.10%

Decision
Table

92.22% 97.98% 2.02% 7.78% 95.10% 97.86% 92.22% 92.22% 95.70%

Multilayer-
Perceptron

94.85% 97.27% 2.73% 5.15% 96.06% 97.20% 94.85% 96.01% 98.30%

NaiveBayes 89.39% 90.55% 9.45% 10.60% 89.97% 90.44% 89.39% 89.91% 90.20%

PART 96.83% 97.70% 2.30% 3.17% 97.26% 97.68% 96.83% 97.25% 98.50%

SimpleCART algorithm. The highest accuracy level found was 97.89% for the Random

Forest algorithm as shown in Figure 3.9, and the second highest accuracy was 97.31%

for the SimpleCART algorithm. The lowest registered result for NaiveBayes algorithm

for all metrics since it need a large dataset in order to make reliable approximations of

the probability of each class, which is not available for phishing email detection. The

Algorithm

Ran
do

m F
or

es
t

SM
O

Bay
es

Net

Sim
ple

CART J4
8

Log
ist

ic
Reg

res
sio

n

Dici
sio

n T
ab

le

M
ult

ila
ye

rP
erc

ep
tro

n

Naiv
eB

ay
es

PART

P
er

fo
rm

a
n

ce

0.85

0.9

0.95

1

TPR
TNR
ACC

Figure 3.9: Comparison of classification algorithms in term of TPR, TNR, and accu-
racy

- 72 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Figure 3.10: Comparison of classification algorithms in term of FPR and FNR

Figure 3.11: Comparison of classification algorithms in term of Precision, Sensitivity,
F-Measure, and area under ROC curve

lowest FPR was registered for the Random Forest algorithm at 1.29%, followed by

the Logistic Regression algorithm as shown in Figure 3.10. Furthermore, the highest

area under the receiver operating characteristic (ROC) curve (AUC) was registered

for the Random Forest algorithm as shown in Figure 3.11. The ROC measure helps to

indicate graphically the performance of a binary classifier system as its discrimination

threshold is varied. The classification algorithm that shows the best result according

to the chosen metrics as shown in Table 3.8 are the Random Forest and SimpleCART

algorithms as shown in Figure 3.9, 3.10, and 3.11. Random Forest has the best result

- 73 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

because of its nature, Random Forests built different decision trees to classify a new

mail from an input dataset, Random Forests put the input vector down each of the

trees in the forest. Each tree gives a classification, and we say the tree votes for

that class. The forest chooses the classification tree having the most votes (Breiman,

2001). Random Forest algorithm has a lot of advantages that make it one of the most

powerful classification algorithm, for example it runs efficiently on small datasets where

other algorithm such as NaiveBayes needs a very large training dataset to generate a

classification model with an acceptable error rate. Moreover, it can handle a massive

number of features without ignoring any of them. It can estimate missing data which is

a common problem in this field, where it maintains accuracy when a large proportion

of the data are missing. The missing data problem is addressed well through the

implementation of pre-processing algorithm by insuring that every feature is initialized

with a default value if it is not available in the email under processing. The advantages

of the Random Forests algorithm were discussed in more details by Boulesteix et al.

(Boulesteix et al., 2012).

3.7.7 Comparative analysis

The performance of the proposed offline phishing detection model is compared with

previous studies that make an attempt to solve the phishing detection problem. To

perform the comparison and discuss the advantages and disadvantages of every study,

many criteria should be taken into consideration such as, is the dataset used to assess

the proposed technique benchmarked? Did other researchers use the dataset? What

is the dataset size? Is it balanced or imbalanced dataset? What are the metrics

used in the system evaluation (one metric will not be adequate to evaluate the system

- 74 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

performance)? What are the evaluation methods? Based on the previous questions

the best model will be the one that used benchmark dataset with an acceptable size for

testing. The metrics used, depending on the dataset type (balanced or imbalanced).

Moreover, the validation method that makes the result authentic.

Table 3.9 shows the outcome of the comparison of our results with those of previous

work. Khonji et al. (2012) used 47 features to represent phishing emails and achieved

97% accuracy (Khonji et al., 2012). However this study did not take into consideration

metrics such as true positive, true negative rate, AUC, and false negative rate, despite

the fact that these metrics are extremely significant. Gansterer and Pölz (2009) used

30 features, and applied the J48 and SVM algorithms for classification and achieved

97% accuracy (Gansterer and Pölz, 2009). However, this study depended on a large

number of online features (15 feature) and the extraction of too many online features

may affect the performance and scalability of the email filtering system, the use of

online features increases the pre-processing time and it highly depends on other criteria

like the Internet bandwidth. Chandrasekaran et al. (2006) used a very small dataset

to test the system with 200 emails for phishing and 200 emails for legitimate emails,

which could not fully represent all phishing emails (Chandrasekaran et al., 2006).

Meanwhile Ma et al. (2009) proposed a hybrid approach using seven features. The

authors claim achieving 99% accuracy (Ma et al., 2009). What casts doubt though on

this accuracy is that a highly imbalanced dataset was used where only 7% of emails are

phishing. Additionally, accuracy is the only metric used to assess the proposed model

where such cases need other metrics to assess the proposed model such as Matthews

Correlation Coefficient (MCC) (Matthews, 1975) and the area under the ROC. This is

- 75 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

because if the dataset used is imbalanced (99 to 1), and the system classifies all emails

as legitimate, then the accuracy will be 99%. Moreover, the used dataset in this study

was collected from live emails received by WestPac only; which has not been used by

other studies and not benchmarked.

Abu-Nimeh et al. (2007) examined 43 keywords to detect phishing emails, and the

study achieved 94.5% accuracy (Abu-Nimeh et al., 2007). On the other hand, this

study ignored features related to hyperlinks, which are the most important information

related to phishing attacks.

Toolan and Carthy (2010) used 22 features to test three datasets (Toolan and Carthy,

2010). Approximately 97% accuracy was achieved for the first test which did not

include phishing emails, but for tests 2 and 3 which included phishing emails much

lower accuracy rates of 84% and 79% were achieved. Hamid and Abawajy (2011) also

used seven hybrid features with several datasets and achieved 96% accuracy, but this

accuracy rate was reduced when dataset size increased (Hamid and Abawajy, 2011).

Our approach used 33 hybrid features selected using the FEaR algorithm, and 97.98%

accuracy was successfully achieved with a FP rate of 1.29% for the Random Forest

algorithm. The results for other metrics are summarized in Table 3.1. The proposed

pre-processing algorithm extracted 50 features that contain information from all parts

of emails that may used by phishers to trick online customers. Based on the dataset

used, the FEaR algorithm used the 50 features as input and built a regression tree

that best classified the training dataset. The list of features selected by the FEaR

algorithm was used by the classification algorithm to build the classifiers that were

later employed to classify emails into phishing and ham email. The pre-processing

- 76 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

Table 3.9: Comparison of our approach with previous works

Author Features Algorithm used Feature
approach

Sample Results

Khonji et al. (2012) 47 Random Forest Hybrid Phishing 4116
Ham 4150

Accuracy 97%
FP 0.60%

Gansterer and Pölz
(2009)

30 J48 SVM Hybrid Phishing 5000
Ham 5000

Accuracy 97%

Chandrasekaran et al.
(2006)

25 SVM Content
Phishing 200
Ham 200

Precision 100%
Recall 50%
Accuracy 75%

Ma et al. (2009) 7

DT, Random Forest,
Multi-layer
perception,
NaiveBayes, SVM

Hybrid
Phishing 46,525
Ham 613,048

Decision Tree
Accuracy 99%

Abu-Nimeh et al.
(2007)

43
LR, CART, SVM,
NN, BART

Keyword-
based

2889 Accuracy 94.5%

Toolan and Carthy
(2010)

22 C5.0 Hybrid
Ham 4202
Spam 1895
Phishing 4563

Accuracy Test
1 (97%) Test 2
(84%) Test 3
(79%)

Hamid and Abawajy
(2011)

7 Bayes Net Hybrid
Corpus (1) 1645
Corpus (2) 2495
Corpus(3) 4594

Accuracy for
Corpus (1) 96%
Corpus (2) 92%
Corpus (3) 92%

Proposed approach 33 Random Forest Hybrid Phishing 4950
Ham 4950

Accuracy
97.98% FP
1.29%

- 77 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

and FEaR algorithms in the proposed model increased the overall system performance

when compared with other strategies that used the same classification algorithm and

the same dataset.

3.7.8 Other finding

Experiments were conducted with ten different classification algorithm to show which

of them give the best result in terms of the chosen metrics. The best algorithm

that produces the best result for all metrics is Random Forest as shown previously

in Table 3.8. Some of previous studies such as Gansterer and Pölz (2009) highly

depend on online feature which need an extra information loaded from the Internet

every time a new email is pre-processed (Gansterer and Pölz, 2009). In the proposed

model we eliminate the need of online features where we have only one online feature

(BlackListURL), the database of blacklisted URLs used for this feature is updated

every 60 minutes in an independent way of the pre-processing of email which will not

slow down the pre-processing system.

3.8 Summary and Conclusion

This chapter has presented an offline model for email classification into legitimate and

phishing emails based on hybrid features which depend on the information extracted

from the email headers and content. Data mining algorithms were used to build the

detection mechanism. Using 10-fold cross-validation, the overall results show that the

proposed model with 33 features gives better results than previously published results,

where the highest accuracy registered is 97.98% for the Random Forest algorithm.

One might wonder that features would be different for each algorithm. It should be

- 78 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

emphasised that the selection of the best classification algorithm is independent from

the feature selection. Since selection of the important feature is done using FEaR

algorithm before the model being trained and tested using one of the classification

algorithm as shown in the system model in Figure 3.8.

The pre-processing algorithm extracted a large set of features which cover all aspects

of emails where features are selected and extracted from the email header and content.

Furthermore, the FEaR algorithm solve the problem of selecting the active list of

features that can classify the training dataset with the highest accuracy.

The proposed model was tested with ten data mining algorithms selected from the

literature, and an experiment was conducted to show the merits of the proposed pre-

processing and FEaR algorithms as well as to determine the best algorithm that can

be used for the detection of phishing emails. This hybrid feature selection approach

produced promising results using 33 features, which were reduced from fifty features

using the FEaR algorithm. The algorithm that shows the best result is Random Forest,

when used to build the classification model with an accuracy rate of 97.98%, and the

lowest false positive rate was registered for the Random Forest algorithm at 1.29%.

This improvement is due to the pre-processing and FEaR algorithms proposed in this

thesis.

In summary, the most significant and novel results in this experiment show that the

extraction of features in the pre-processing phase has a most important influence on

the outcome of the classification model. In addition, the study provides the highest

results so far published in terms of accuracy and false positive rate for an approved

dataset. On the other hand, the study used a wider range of metrics than previous

- 79 -

Chapter 3: PRE-PROCESSING AND FEATURE EXTRACTION

research, including true positive, true negative, false negative rates, the F-measure,

ROC, precision, and sensitivity.

- 80 -

4
DYNAMIC EVOLVING NEURAL

NETWORK USING
REINFORCEMENT LEARNING

4.1 Introduction

This chapter discusses in detail the DENNuRL algorithm that will be the core of the

phishing email detection model. An experiment is conducted to prove the ability of

the DENNuRL algorithm to generate the best NN architecture that can be used in

classification problems. To evaluate the performance of DENNuRL, a well known

benchmark classification problem has been used, which is the Diabetes dataset (Bache

and Lichman, 2013). The chapter ends with a comparison of standard techniques used

to adapt NN to be used in a classification problems and the DENNuRL algorithm.

- 81 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

4.2 Artificial Neural Network

An ANN is a network of neurons connected to each other in a layered approach, and

the idea behind the ANN comes from a simulation of how the human brain works.

The ANN was first invented by McCulloch and Pitts (1943), but it could not be put

into practice given the computing power available until the work by Werbos in 1974.

McCulloch and Pitts (1943) developed the back-propagation algorithm (Zhang and

Zhang, 1999), and since that time ANN have been used in many different applications

such as robust pattern detection (Basu et al., 2010), signal filtering (An et al., 2013),

data segmentation (Sowmya and Rani, 2011), data compression and sensor data fusion

(El Faouzi et al., 2011), data mining and associative searching (Chou et al., 2010),

adaptive control (Sun et al., 2011), modelling complex phenomena (Costa et al., 2011),

and designing an adaptive interface for human-machine systems (Hsieh et al., 2010).

An ANN consists of one or more layers, where each layer contains one or more neurons,

and the number of layers depends on the complexity of the problem to be solved. The

ANN is trained by using feed-forward or back-propagation techniques. The most

famous training algorithm is called the back-propagation algorithm where the error

value is propagated from the output neuron to the input neuron, and the connection

weight is modified to reduce the error the next time the NN is trained with other

examples (Negnevitsky, 2005).

The NN is one of the most powerful techniques that has been used to build classifica-

tion models. The ability of a NN model depends on many factors such as the number

of layers, the number of neurons in the hidden layers, the training algorithm used, the

number of training epochs and the problem to be solved. Usually, researchers deter-

- 82 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

mine the architecture of a NN manually, which often means that the model generated

will not be optimal in solving the problem faced. Researchers have proved that a three-

layer NN can solve any linear or non-linear problem (Aggarwal, 2007; Srivastava et al.,

2014; Zhang and Zhang, 1999). The numbers of input and output neurons depend on

the problem to be solved, and so the control of the number of neuron in the hidden

layer will determine the power of the model generated using an ANN.

A multilayer feedforward ANN contains at least three layers, including an input layer,

one or more hidden layers, and an output layer. With a fully connected ANN, all

neurons in the hidden layer are connected to all neuron in the previous and next

layers (see Figure 4.1). The input layer consists of a set of M neurons each of them

is connected to one feature (Z1− ZM), and the output of each neuron in the input

layer is connected to all neurons in the hidden layer N neurons the number of which

depends on the complexity of the problem being solved. The same process is repeated

to connect all neurons in the hidden layer with the output layer K neurons, the number

of neurons in which depends on the number of classes in the proposed classification.

The connections between neurons vnm and wkn have weightings which are modified

during learning and fixed during the testing of the trained model (Negnevitsky, 2005).

Training of the ANN is conducted by reading the inputs from the list of features

at the input layer, and the output of every neuron is calculated depending on the

training algorithm used. The output of every neuron is then propagated through the

connections to the next layer. The same procedure is repeated until the output layer

is reached. The error is computed for the training data depending on the difference

between the expected output and the real output for every record in the training

- 83 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

Figure 4.1: A feed-forward ANN with three layers: one input, one hidden, and one
output layer (Negnevitsky, 2005)

dataset. Later, the connection weightings are modified to reduce the error computed

in further training.

4.2.1 Neural Network Training

There are two types of ANN training methods: supervised and unsupervised training.

With supervised training, the target for the training dataset is already known, but for

unsupervised training the target is not known and the training depends on identifying

the pattern in a group of features inorder to reach a stable state after a certain number

of iterations (Svozil et al., 1997).

The most popular type of training algorithm for supervised training is called a back-

propagation training algorithm, where the training process starts by initializing the

- 84 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

weighting and bias randomly with values between -0.5 to 0.5 (Negnevitsky, 2005).

Adjustment of weight and bias could occur after every record in the training dataset,

which is called incremental training, or modification could happen after the comple-

tion of the training dataset (which is also known as the training epoch) and this kind

of training is called patch training (Gudise and Venayagamoorthy, 2003). The choice

of which kind of training depends on the problem being solved. Each of these two

methods includes a set of algorithms that have been proposed by researchers to speed

up the training process and solve problems such as generalization, local minima, and

overfitting. These kinds of challenges are common when NN is used to build classifi-

cation models. ANN training can also be static or dynamic, as discussed in the next

two sections.

4.2.2 Static neural network

The static NN can adapt weight and bias values only while training using the training

dataset, and after the training process is completed the trained model generated re-

mains unchanged. Well-known types of static NN are the multilayer perceptron, radial

basis function networks, wavelet networks, and fuzzy networks.

4.2.3 Dynamic neural network

In a dynamic , or adaptive NN, the training continues during operation and is a con-

tinuous process. Well-known types of dynamic ANNs are recurrent neural networks

(RNNs), and time-delay neural networks (TDNNs). In this thesis the ANN is consid-

ered to be the core of the classification model, and the choice of NN depends on the

ability to change the generated model to reflect variations in the environment so as to

- 85 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

handle zero-day phishing attacks.

4.3 Common Techniques used to Build Neural Net-

works

In the design process and the choice of which NN architecture is better for a specific

problem, many approaches have been used which include constructive Constructive

approach (CA), Pruning approach (PA), Constructive-pruning approach (CPA), and

Evolution approach (EA). These techniques target the number of neurons in the

hidden layers, because the number of neurons in the input and output layers depend

on the problem being solved. The next four sections briefly discuss these types of

solutions.

4.3.1 constructive approach

An NN built using a constructive technique starts the development process by choosing

a small number of neurons in the hidden layer. The NN generated is trained and tested,

and if the termination condition is satisfied then the adaptation process ends and the

last NN is chosen as the classification model. Otherwise the number of neurons in the

hidden layer is incremented by one, and the new NN is then trained. The new NN is

tested, and if it reaches the termination condition then the process stops; otherwise the

incrementing process continues. Many researchers have used the constructive approach

to choose the best NN architecture (Kwok and Yeung, 1997; Parekh et al., 2000; Wang

et al., 2015). The main advantages of using this technique are firstly that it is easy

to program. Secondly, the complexity of the model generated using this technique

is always the best solution because this approach always searches for the NN with

- 86 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

the lowest number of neurons. Finally, it is straightforward to specify an initial NN

architecture. The main disadvantage of using this technique is that it can become

trapped in local minima where it cannot discover a better solution if adding one neuron

cannot reduce the error (Kwok and Yeung, 1997).

4.3.2 pruning approach

Pruning techniques to build NNs start by selecting a large number of neurons in

the hidden layer. The generated NN is trained and tested, and then the number of

neurons and/or connections is reduced. The newly generated NN is then trained and

tested, and if the new NN has a lower error rate then it replaces the old NN (Dai,

2013; Han and Qiao, 2010; Yu et al., 2011). The pruning process continues until

no more enhancements can be achieved, and the final NN architecture is selected as

the classification model for the problem at hand. To select which neurons and/or

connections are to be removed, the algorithm estimates their importance and selects

the least important for removal. The main advantages of using pruning techniques

compared to a constructive approach is that they have the ability to arrive at the

optimal case sooner. In addition, there is less chance of entrapment in local minima.

However, the disadvantages from pruning algorithms include that it is hard to decide

how big the initial NN should be. Furthermore, when compared with constructive

approach, it involves more complex computation. Additionally, it is still not completely

safe from being trapped in local minima.

- 87 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

4.3.3 Constructive-pruning approach

This technique combines the two previous techniques to avoid the disadvantages of

each. CPA start by applying the CA, and if the generated NN architecture becomes

too large, the PA refines the NN architecture. This technique has been used by many

researchers (including Hirose et al., (1991), Islam et al., (2000), Han et al., (2007),

Puma-Villanueva et al., (2012), Puma-Villanueva et al., (2012), and Yang & Chen,

(2012) (Han et al., 2007; Hirose et al., 1991; Islaml et al., 2000; Puma-Villanueva

et al., 2012; Yang and Chen, 2012). The advantage of using the CPA is the ability to

generate a NN with a compact architecture for the problem to be solved. However, the

main disadvantage is the decision concerning when to halt the construction process

and start the pruning, and how to determine the termination condition for stopping

the pruning process. Additionally, it is still not completely safe from being trapped in

local minima.

4.3.4 Evolution approach

EA using randomized search strategies employ the principle of natural evolution to

solve optimization problems (Ang et al., 2008; Cantú-Paz and Kamath, 2005; Oong

and Isa, 2011; Yao, 1999; Yao and Liu, 1997). EA to build NNs have been introduced

at three different levels to modify the NN: connection weight, NN architecture, and

learning rules. Connection weight evolution targets the modification of the weighting

of connections between neurons in the training phase, while the NN architecture level

targets the number of neurons and/or layers, while learning rules can be modified

during the learning process. All previously reported evolutionary algorithms can be

considered to be population-based techniques, and evolutionary algorithms are a pow-

- 88 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

erful technique that can avoid local optima problems. However, it takes a long time

to complete the learning process, and many parameters need to be configured in order

to define the optimal case. Moreover, it is hard to determine the balance between

exploration and exploitation in finding the optimal solution.

Based on the above discussion of common techniques used to generate NNs, it is

clear that constructive, pruning, and constructive-pruning approaches cannot avoid

problems of local optima which will prevent the design strategies from arriving at the

optimal case. On the other hand, the ability of the EA to avoid local optima problems

depends on the autonomous functioning of the evolutionary process, many parameters

need to be manually configured, and the performance levels of this strategy are major

drawbacks.

4.4 Reinforcement Learning

ANNs use function approximation in the learning process, choosing the optimal be-

haviour based on prior information from the training dataset. For classification prob-

lems where a training dataset is available, the function approximation technique used

in ANN is very helpful in building the trained model.

For some problems where a training dataset is not available, or it is too limited, ANNs

cannot reflect frequent changes in the environment, such as is the case with zero-day

phishing attacks. In such cases a RL approach is suggested. RL can be defined as

“learning what to do (how to map situations to actions) so as to maximize a scalar

reward signal. The learner is not told which action to take, as in most forms of machine

learning, but instead must discover which actions yield the most reward by trying

- 89 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

them” (Sutton and Barto, 1998). RL uses trial-and-error to determine the optimal

behaviour (Busoniu et al., 2008; Kaelbling et al., 1996; Sen and Weiss, 1999). For

classification problems that apply techniques like trial-and-error, the models generated

can overcome the problem of needing a training dataset that describes every situation

that the system may face in the environment at execution time.

The main drawback when using techniques such as function approximation is the upper

limit of the model generated by the training dataset. This means that the model cannot

learn by itself how to deal with situations that are not listed in the training dataset.

Function approximation can be used to design a model that can use a similar level of

expertise as that of the expert involved in the training examples; however, it cannot

be smarter than that expert. RL techniques can overcome this limitation, and can

be used to build a model that is smarter with the ability to enhance itself. RL has

an obvious drawback in that it is harder to learn the optimal behaviour, and high

execution power is needed.

In the next sections terminology related to RL is discussed in more detail. A general

RL problem is first described, and the Markov decision process is then clarified. sub-

sequently, RL is then discussed and finally, how a Q-Table can be used to estimate the

value functions and how generalizations can be achieved with RL is considered.

4.4.1 Reinforcement learning methods

RL is based on the ideas of dynamic programming and supervised learning, where it is

used as a machine learning algorithm that simulates the human mind's way of solving

problems (Schäfer, 2008). It is a method used to determine the optimal behaviour in

certain environments which may be fully or partially observed (Busoniu et al., 2008).

- 90 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

There are many different ways to distinguish between different types of RL methods.

They can be table-based or function-based methods, and could be designed as model-

free or model-based methods. Table based methods store the value of each state-action

combination within a table, and these methods are applied for a low-dimension discrete

state space. Examples of table-based methods are Q-learning and adaptive heuristic

critic. On the other hand, function-based methods learn mapping from state-action

pairs to their respective values. These methods can be effectively applied for high

dimensions and continuous state action pairs. Examples of the function-based methods

are temporal difference (TD) and neural fitted Q-iteration.

Model-based solutions begin by building the model first based on a training dataset,

then that model is used to build the controller (Doya et al., 2002). The other option

does not build a model; it starts directly from the available data, which makes it faster

and easier to implement (Strehl et al., 2006).

Many RL techniques have been proposed to solve different kinds of problems, and

these methods can be grouped into three classes: dynamic programming, Monte Carlo

methods, and temporal difference learning (Sutton and Barto, 1998). Dynamic pro-

gramming techniques use strong mathematical notation, but need a model that rep-

resents the whole environment. Monte Carlo techniques do not require a model and

are easier to implement, but are not suitable for incremental computation. Eventually,

temporal difference (TD) algorithms do not need a model and support applications in

incremental environments, but are harder to implement and analyse.

In this thesis, the proposed framework should be applicable for use with any classifica-

tion problem without the need to modify any of its parameters. A NN architecture is

- 91 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

Figure 4.2: A standard RL architecture as proposed by (Sutton and Barto, 1998)

considered as the environment in which the proposed RL-Agent will apply actions. In

this case, there are a limited number of actions that can be performed to make changes

to the environment, as shown in the next section. Therefore, Q-learning has been cho-

sen to implement the DENNuRL as this method is suitable for a low-dimension discrete

state space.

4.4.2 Reinforcement learning problem

RL models have two main parts: the agent, and the environment. In the first step, the

agent reads the state of the system S from the environment at a given time t, forming

St . In the second step, the agent processes the environment state St and applies some

actions ut that cause changes in the environment. Thirdly, the changes applied by the

agent to the environment produce a new state for the environment at time t +1 which

is called S(t+1). The agent then computes a scalar value at time t called the reward

Rt , and this reward guides the changes in the environment made by the agent, as the

agent tries to maximise the reward which means that the system state is closer to the

goal state as shown in Figure 4.2.

- 92 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

RL has the following main components (Sutton and Barto, 1998):

1. Agent: The controller of the system can, at least, observe the system's state

St by receiving observations Xt ⊆ St . In the proposed model, the observations

are represented by the NN architecture, the email record, and the NN output.

The agent interacts with the system by performing actions ut which give rewards

R(t+1), which can be used to improve the policy. After trying these actions, a

NN is generated for every action, and the reward occuring from these actions is

computed and the Q-table updated.

2. Action: The action selection will influence the development of the environment.

The actions ut will target the NN architecture by changing the number of neu-

rons in the hidden layer to reduce the Mean Square Error (MSE). There is a

list of possible actions such as adding one neuron, merge two neurons, generate

a new random number of neurons, and increase the number of epochs and re-

train the NN. The action with the highest reward will be selected to change the

environment.

3. Policy (π): This is a mapping from the state of the environment to the action to

be taken in this state. The policy is the core of the RL-Agent in the sense that

it alone is sufficient to determine the behaviour (mapping from the state of the

environment to the action to be taken) of the RL-Agent. The RL-Agent controls

changes in the environment by using the rewards computed by using Q-learning

to reach the optimal NN architecture to solve a specified problem.

4. Reward/cost function: The reward function specifies the overall objective of the

RL-Agent; it represents the immediate reward the agent receives for performing a

- 93 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

certain action in a given system state. It is used to assess the system development

and guide the enhancement process, and this is accomplished by maximising the

reward gained from the NN architecture.

4.4.3 Markov decision process

The mathematical basis for most theoretical RL problems is the Markov decision

process (MDP), which describes a development of the fully observable controllable

dynamic system (Puterman, 2014; Schäfer, 2008). The MDP is basically defined by a

tuple: (S,U,Tr,R) where S is the state space which contains all possible states from the

starting state until reaching the goal state. U is the action or control space, and U(St)

is the set of possible actions that can be taken when the system state is St ⊆ S at time

t. Tr is the state transition function which defines the probability of going to state

S(t+1) when starting from state St when applying action Ut . Here state St , S(t+1) ⊆ S

and Ut ⊆U(St). R is the reward function which is the reward for being in state St and

is used to evaluate how much closer that state is to the goal state. When the next state

becomes closer to the goal, the reward becomes larger and when it moves further away

from the goal the reward decreases. The Markov property (Puterman, 2014; Sutton

and Barto, 1998) which guides system development implies that the next state S(t+1)

is determined only by the current state St and the action taken ut at that state.

4.4.4 Q-Learning and generalization

Q-learning is an off-policy temporal difference algorithm and is recognized to be one

of the simplest and most widely used technique in implementing RL. Off-policy means

that the behaviour policy and the estimation policy are unrelated. The benefit of this

- 94 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

separation is that each policy may use a different strategy to handle actions. Q-learning

is based on a table, where rows represent the system states and columns represent the

set of actions which may be taken in every state. The Q-values are re-evaluated based

on Equation 4.1 and stored in Q-table; these values are updated every time the system

advances from state St to S(t+1). Q-learning takes advantage of TD-learning, which

means it is model-free, and no information about system development is needed.

Q(s,a)← Q(st +at)α [rt+1 + γmaxQ(st+1,a)−Q(st ,at)] (4.1)

where α is the learning rate 0 < < 1, which represents a trade-off between ef̈ıň ↪Aciency

and accuracy. Convergence can only be guaranteed with a decreasing value of α . Still,

this is based on the assumption that the number of observations goes to in̈ıň ↪Anity. The

Q-learning algorithm is shown in Algorithm 4. When in use, the Q-Learning value func-

tions are designated as a table with one cell for every state-action pair. This kind of rep-

resentation is simple and straightforward, but it is restricted to problems with a limited

number of states and actions. This is because, when there are a large number of states

and actions, a large table will need a huge amount of memory and in some cases this

becomes a limitation. This problem is known as generalization. For large problems, a

combination of RL methods and a function approximation method such as NN are sug-

gested. This is because function approximation, which is a supervised learning method

depends on a training dataset and tries to generalize from it to build an approximation.

- 95 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

Algorithm 4 Q-learning Algorithm as identified by Sutton and Barto (Sutton and
Barto, 1998)

1: Initialize Q(s,a).
2: repeat(for each step episode)
3: Choose a from s using policy derived from Q (e.g., ε−greedy)
4: Take action a, observe r,s′

5: Q(s,a)← Q(s,a)+α [r+ γmaxdQ(s′,a′)−Q(s,a)]
6: s← s′

7: until s is terminal

In summary, a NN and RL have been chosen as the core of the proposed classification

model, because the NN is one of the most powerful classification algorithms, and it

gives the ability to modify the internal details of the generated model. However, the

other classification algorithms discussed previously in Chapter 3 generate classification

models that must be treated as a black box. The RL approach has been used to

learn the optimal behaviour. It is based on the idea of trial-and-error interaction

with the environment. To simplify the adaptation process for generating the best

classification model, and to make it independent of the problem being solved, the NN

architecture have been chosen as the environment which the RL-Agent will interact

with. In addition, the number of actions that can be performed is very limited (four

actions), which is the main reason for choosing Q-learning in implementing the RL-

Agent. The proposed framework to generate the best NN for any classification problem

is shown in the next section.

4.5 Dynamic Evolving Neural Network using Re-

inforcement Learning

In the proposed algorithm, a NN with three layers was chosen; these are the input,

hidden, and output layers. A three-layer NN was chosen because it can solve any linear

or non-linear problem (Aggarwal, 2007; Srivastava et al., 2014; Zhang and Zhang,

- 96 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

1999). The number of neurons in the input and output layers will depend on the

number of features. The Diabetes dataset contains eight features and two output

classes. Therefore, the input layer will contain eight neurons and the output layer two

neurons, as we are developing a binary classification problem. The main focus in the

algorithm will be to determine the right number of neurons in the hidden layer. A

large number of hidden neurons may overfit the training data, and a small number will

underfit the data. Overfitting and underfitting will generate a NN with a bad level of

generalization, and these issues must be taken into consideration when NN is used as

the core of any classification model.

During the development and enhancement of the NN, the proposed technique takes

into consideration the overfitting and underfitting problems that affect NN efficiency.

The overfitting problem is caused by a large number of neurons in the hidden layer.

It is solved by using the merge operation. As an indication of the scale of overfitting

problems, the early stopping technique (Prechelt, 2012) is used, which is accomplished

by dividing the training dataset into training and validation datasets. At the time

of training, the validation error is computed and if this error cannot be reduced six

consecutive times, then the training process is stopped. If the validation error cannot

be enhanced, this means that the architecture used has led to overfitting in the problem

be solved, even if the training error is reduced. The second issue is called underfitting,

and if too few hidden neurons are chosen the NN generated will not have enough power

to solve the problem. This is solved by adding neurons to the hidden layer.

The steps of the DENNuRL algorithm are shown in Figure 4.3, and the following

contains a full description of all of the algorithm steps.

- 97 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

Figure 4.3: Dynamic evolving neural network using reinforcement learning (DEN-
NuRL)

1. A NN is created that contains a random number of neurons in the hidden layer,

and the numbers of neurons in the input and output layers will depend on the

problem being solved as discussed previously.

2. The NN constructed in the first step is trained for an initial number of epochs

E, and initially only a small number of epochs is chosen (E = 10).

3. The NN trained in step 2 is tested, and the MSE computed as shown in Equa-

tion 4.2. This determines the reward value since it has the advantage of being

independent of dataset size:

MSE =
∑

n
i=1(oi− ti)2

n
(4.2)

- 98 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

where oi is the output for an email, ti is the desired target for the same email,

and n is the number of emails used in the evaluation process.

Reward = 1/MSE (4.3)

4. Check if the termination condition is satisfied (MSE < Φ) or (epoch > 1000) and

if so go to step 14. The value of Φ is manually selected, and depends on the

acceptable error rate for that problem.

5. In the proposed model, three possible actions are explored which change the

system state from one state to another. The actions targeted the hidden layer in

the NN, since the input and output layers depend on the problem being solved.

These actions are as follows:

(a) One neuron is deleted from the hidden layer by merging two neurons. This

was proposed by Islam et al. (2009) with some modifications to simplify

computation (Islam et al., 2009). To choose which neurons to merge, the

following steps are applied. The correlation between hidden neurons is

measured, which is calculated based on the output of the hidden neurons for

the training dataset according to 4.2. The least significant hidden neuron is

merged with the most correlated one, where the least significant neuron does

not affect the classification process. To accomplish this action, two steps

need to be applied. Firstly, the significance of every neuron is computed,

which is evaluated by computing the standard deviation of the output of

every neuron. A neuron's output that does not change for different inputs

is considered to be less significant, as shown in Equation 4.6. Secondly,

- 99 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

the correlation is computed between the most and least significant neurons

using Equations 4.4 and 4.5. The two neurons with the highest correlation

is chosen for merging, by deleting the two correlated neurons and creating

one new neuron. The input weight and bias for the new neuron is the

average of the input and bias for the deleted neurons. The output weight

is sum of weight for the deleted neurons.

R(i, j) =
C(i, j)√

C(i, i)C(j, j)
(4.4)

where i, j are the two neurons whose correlation R(i, j) is measured, and

C = cov(x,y) is the covariance between all hidden neurons which is defined

as described in Equation 4.5:

con(A,B) =
1

N−1

N

∑
i=1

(Ai−µA)∗ (Bi−µB) (4.5)

where (A,B) is the output matrix of two hidden neurons for all the examples

in the training dataset, µA is the mean of A, and µb is the mean of B.

Sd =

√
1

N−1

N

∑
i=1
|Ai−µ|2 (4.6)

where Sd is the standard deviation and A is the output matrix for one neuron

for all examples in the training dataset, and µ is the mean of A:

µ =
1
N

N

∑
i=1

Ai (4.7)

(b) One neuron is added and the NN is retrained. This is done simply by

adding one neuron to the hidden layer and reinitializing the NN with the

new architecture. A new NN is generated with a random number of hidden

- 100 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

neurons; this step is added to avoid being trapped in local minima.

(c) A new random number of hidden neurons s generated and the NN is re-

trained. This action has a crusual effect in avoiding being trap into local

minima, where a new architechture is invistigated which is away from the

local NN architecture.

6. Each of the NNs explored in step 5 is trained and the reward table is updated,

where the reward from each NN is computed based on Equation 4.3.

7. RL has been used to explore the different possible actions in the modification

of the NN, and the NN that returns the maximum rewards will be chosen. The

Q-learning algorithm (Sutton and Barto, 1998) has been used to determine the

action to be exploited using Equation 4.8:

Q(s,a)← Q(st +at)α [rt+1 + γmaxQ(st+1,a)−Q(st ,at)] (4.8)

where rt+1 is the received reward computed for every NN explored using Equation

4.3, α is the learning rate, γ is the discount factor, and Q(s,a) is a table of s

rows representing the system states and a columns representing the actions to

be taken. The values of the learning rate is 0 < α ≤ 1 and the discount factor

0< γ ≤ 1 are manually selected by the user. In RL, how to choose the right action

to be taken is crucial. This is performed by using a trial-and-error paradigm.

The system tries the list of actions defined previously, and evaluates the reward

from every action. The action that returns the maximum reward is taken.

8. The reward for the new NN is compared with that of the old one, and if the new

NN has a higher reward, go to step 9. Otherwise go to step 10.

- 101 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

9. The old NN is replaced by the new one that has the higher reward.

10. The number of epochs is increased by a small amount, T = 10, and create a new

NN which is the old NN with the new number of epochs.

11. The new NN is trained and the reward computed.

12. If the reward from the new NN is greater than the reward from the old NN, then

go to step 13. Otherwise, go to step 4.

13. Replace the NN with the NN that has the highest reward.

14. The adaptation process is stopped and the final NN is used as the classification

model.

4.6 Exploration Versus Exploitation

The RL-Agent is controlled by two kind of actions, which are exploration and ex-

ploitation. Exploration is the process of determining the set of possible actions that

can be taken to change the system's state from one state to another. Exploitation is

the process of choosing which action will be taken to modify the environment. The

RL-agent learns optimal behaviour by evaluating the rewards gained when a specific

action is taken. The RL-agent follows the technique of trial-and-error and tries differ-

ent actions, evaluating the rewards from these actions and choosing actions that lead

to maximizing the reward (Sutton and Barto, 1998). One of the difficulties that occurs

in RL is the trade-off between exploration and exploitation. To choose the best action,

an RL-Agent prefers actions that have been checked before and found to be effective

in producing higher reward. For exploration action, the trial-and-error paradigm is

- 102 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

used, where the system must try different actions and progressively favour the action

that returns the maximum reward. However, the RL technique can use many strate-

gies to try to guarantee that there is a balance between exploration and exploitation.

Many techniques can be used to achieve an equilibrium between exploration and ex-

ploitation, such as value-difference based exploration (VDBE) (Tokic, 2010), a greedy

technique (Sutton and Barto, 1998), softmax action selection (Worthy et al., 2007),

and optimistic initial values (Sutton and Barto, 1998).

4.7 Experimental Results and Discussion

To evalute the performance of DENNuRL, a well known benchmark classification prob-

lem has been used, which is the Diabetes dataset from the University of California at

Irvine (UCI) machine learning repository (Bache & Lichman, 2013). The Diabetes

dataset, as shown in Table 4.1 contains 768 records, which will be divided into 50%

for training, 25% for validation, and 25% for testing as in the other studies that the

comparison will be conducted with. The Diabetes dataset is known to be difficult to

classify in the machine learning and NN field (Jayalakshmi and Santhakumaran, 2010;

Perez and Rendell, 2016).

Table 4.1: Diabetes dataset description

Problem
Number of

Input
attributes

Output
classes

Traning
examples

Validation
examples

Testing
examples

Diabetes 8 2 384 192 192

In addition to the evaluation meterics mentioned previously in Section 3.7.2 the Testing

Error Rate (TER) and Square Error Percentage (SEP) (Prechelt et al., 1994) are used

to measure the performance of the generated model. The TER is described as shown in

- 103 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

Equation 4.9 and it refers to the percentage of items wrongly classified by the generated

NN for the testing dataset. The SEP has the advantage of being independent of the

dataset size, and is described in Equation 4.10.

T ER =
100
|P|
∗∑

y∈p
E(y) (4.9)

where |P| is the number of examples in the testing dataset, and E(y) is the error for

record y, such that the error will be 1 if wrongly classified and 0 if it is correctly

classified.

SEP = 100∗ Omax−Omin

N ∗P
∗

P

∑
p=1

N

∑
i=1

(Opi−Tpi)
2 (4.10)

where Omax is the maximum output, Omin is the minimum output, N is the number of

output nodes in the NN, N is the number of records used in the evaluation process,

Opi is the output of output node p for input record i, and Tpi is the target for record i.

4.7.1 Experimental results

An experiment was conducted to show the performance of the DENNuRL. Table 4.2,

shows an example of how the NN evolved to generate the optimal NN as evaluated

for the Diabetes problem. The DENNuRL algorithm keeps changing the NN archi-

tecture, as shown in numbers of neurons and epochs columns, in order to reach the

best combination that solves the problem with a good level of generalization. As the

MSE error guides the NN adaptation process, all of the other evaluation metrics are

enhanced, which proves that the DENNuRL algorithm changes the NN architecture

in the right direction. The numbers of neurons in the hidden layer are changed by

exploring the different kind of actions taken to reach the goal state. In enhancement

2, a new random number is explored, in enhancement 3, one neuron is added, and

- 104 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

in enhancement 6, two neurons are merged. The system reaches the goal state after

8 enhancements, which gives clear evidence of the algorithm's efficiency, as discussed

later in more detail.

Table 4.2: An example of NN evolving using DENNuRL

NN ACC Precision Recall F Measure Hidden
neurons

Epoch MSE SEP TER

1 76.43% 79.48% 86.00% 82.61% 22 10 15.74% 16.80% 31.3

2 76.43% 79.48% 86.00% 82.61% 8 30 15.74% 15.74% 26.96

3 77.34% 79.74% 87.40% 83.40% 9 70 15.19% 15.19% 26.09

4 77.60% 79.82% 87.80% 83.62% 9 170 14.98% 14.98% 23.87

5 78.91% 80.73% 88.80% 84.57% 12 170 14.45% 14.45% 21.74

6 78.39% 81.39% 89.00% 83.91% 11 250 14.38% 14.38% 20.87

7 79.43% 81.20% 91.00% 84.92% 19 390 14.16% 14.16% 19.13

8 81.25% 83.58% 91.50% 86.02% 19 400 13.79% 13.79% 18.26

Figure 4.4 shows the enhancement process for the NN generated by DENNuRL in

terms of TER, while increasing the number of training epochs. This example shows

that the best value of TER of 18.26 is produced when the number of training epochs

is 400. The best TER value registered by the DENNuRL algorithm looks bad, but

when compared with other studies of the same problem, the proposed algorithm in fact

registers the lowest level of TER for the Diabetes dataset averaged for 50 independent

runs of the algorithm as in the next section.

The accuracy of the generated NN is enhanced as the training process continues, as

shown in Figure 4.5. However, in some cases, accuracy is reduced by a small amount

when applying the merge operation. This is because, when the algorithm applies the

merge operation, the number of neurons is reduced which will decrease the power of

the model with the same numbers of training epochs. It is clearly shown that the

system recovers to the previous level of accuracy as the system evolves during the

development process.

- 105 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

0 50 100 150 200 250 300 350 400
Epochs

18

20

22

24

26

28

30

32

T
E

R

Figure 4.4: NN enhancements in terms of TER as the number of epochs is increased

0 50 100 150 200 250 300 350 400

Epochs

0.76

0.77

0.78

0.79

0.8

0.81

0.82

A
cc

u
ra

cy

Figure 4.5: NN enhancements in term of accuracy with changes in numbers of training
epochs

- 106 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

Table 4.3: Comparison between DENNuRL, CA, PA, and CPA. The results were
averaged for 50 different run

Algorithm TER Epochs Hidden
neurons

DENNuRL 19.44 322.4 21.06

CA 26.04 467.5 5.96

PA 26.25 406.1 5.56

CPA 26.22 501.3 5.8

SVM 30.82 - -

k-NN 29.06 - -

C4.5 37.42 - -

BP-ANN 25.87 100 -

4.7.2 Comparative analysis

Islam et al. (2009) evaluated the standard algorithms that can be used to develop

the best NN architecture, (including CA, PA, and CPA) discussed in Section 4.2. He

evaluated these techniques in order to compare them with his evolutionary model,

which he called the Adaptive Merging and Growing Algorithm (AMGA) (Islam et al.,

2009).

In this section a comparison is conducted between the proposed DENNuRL model and

the standard CA, PA, and CPA methods used to generate NNs. In addition to the

standard methods used to adapt NNs the comparison was conducted against modern

classification benchmarks like the back-propagation NN (BP-ANN), k-NN, SVM, and

C4.5. The ability of these benchmark algorithms to classify the Diabetes dataset

was evaluated by Hee and Mat (2011) (Oong and Isa, 2011), and the same dataset

with the same number of training, validation, and testing examples was chosen. The

evaluation metrics used in the comparison are TER, epochs, and number of neurons in

the hidden layer. All results were averaged for 50 different runs, each of them starting

from a random initial case.

By looking at Table 4.3 it is clear that the DENNuRL algorithm outperforms other

- 107 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

techniques in terms of TER and the number of training epochs required to train the

classification model. A lower number of training epochs mean that the proposed

algorithm can reach the goal state (building the trained model) in less time, as it stops

training earlier. This enhancement in the TER and the number of training epochs

is due to the fact that other models always try to minimize the number of neuron

in the hidden layer. These techniques are not looking for the best number of hidden

neurons that can solve the classification problem with a minimum error rate, and the

previous techniques fall prey to local minima problems which decrease their ability to

find optimal solutions. The proposed model avoids this problem by using RL, where

a set of actions is explored using a trial-and-error technique. In every enhancement,

the DENNuRL tries to adapt the NN by adding or deleting one neuron, or increasing

the number of epochs. In addition, to avoid local minima problems it tries to create

a new NN with a random number of neurons. After trying these actions, the best one

is for the next enhancement until the termination condition is reached.

To show the merits of the proposed algorithm, Table 4.4 compares the results with

those of state-of-art algorithms where their models were evaluated with the same

dataset. In addition to AMGA, the algorithms used in the comparison are the Variance

Vullity Pruning (VNP) (Engelbrecht, 2001), Optimization Methodology for NN (OMNN)

(Ludermir et al., 2006), the Hybrid Evolutionary Artificial Neural Network (HEANN)

(Oong and Isa, 2011), Evolutionary Artificial Neural Network (EANN) (Oong and

Isa, 2011), Self-Adaptive Growth-Brobability based Neural Network (NN-SAGP) (Ang

et al., 2008), Evolutionary Programming Neural Network (EPNet) (Yao and Liu, 1997),

a hybrid intelligent system that consists of the Fuzzy MinâĂŞMax neural network, the

- 108 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

Table 4.4: Comparison between the DENNuRL, AMGA Islam et al. (2009), VNP
Engelbrecht (2001), OMNN Ludermir et al. (2006), HEANN Oong and Isa (2011),
EANN Oong and Isa (2011), NN-SAGP Ang et al. (2008), EPNet Yao and Liu (1997),
FMM-CART-RF Seera and Lim (2014), and FEFS-SC Luukka (2011) algorithms. The
results were averaged for 50 independent runs

Algorithm TER Hidden neurons Epochs Accuracy

DENNuRL 19.44 21.06 322.4 81.25%
AMGA 21.97 4.14 390.7 -

VNP 30.9 8 - -

OMNN 25.87 4.53 - -

HEANN 21.33 - - -

EANN 21.91 - - -

NN-SAGP 24.16 1.4±0.69 - 75.84±2.57

EPNet 22.38 3.4 - -

FMM-CART-RF - - - 78.39%
FEFS-SC - - - 75.97%

Classification and Regression Tree, and the Random Forest model (FMM-CART-RF)

(Seera and Lim, 2014), and the fuzzy entropy-based feature selection combined with

similarity classifier (FEFS-SC) (Luukka, 2011).

The results for DENNuRL, HEANN, EANN, FMM-CART-RF and AMGA were aver-

aged for 50 runs starting from an initial random case, while they were averaged for 30

runs for the FMM-CART-RF and FEFS-SC algorithms. Moreover, it is not specified

if the VBN and OMNN algorithms were averaged or that these were the best results

achieved. The proposed algorithm gives the best performance when compared with

the other algorithms, while the second best algorithm is the AMGA.

4.8 Efficiency analysis

To show the efficiency of the DENNuRL algorithm, the worst case time complexity

is evaluated. The algorithm, described previously in Figure 4.3, contains two basic

operation: the merge operation (step 5) and NN training (steps 6 and 7). These two

basic operations are executed in the worst case 100 times, as shown in the termination

- 109 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

condition where the initial value for the number of epochs starts from 10 and is in-

cremented in every iteration by 10, until it reaches the final value of 1000 epochs. To

train the NN resilient back-propagation (Rprop) training algorithm is chosen because

it has the following advantages (Adeoti and Osanaiye, 2013; Igel and Hüsken, 2003):

• The Rprop algorithm is a very fast and accurate training algorithm when com-

pared with other supervised training algorithms.

• The training parameters are very intuitive and can easily be adjusted.

• The time complexity of the Rprop algorithm is O(W), as determined by Igel et

al. (2003), where W is the numbers of connection weights in the NN (Igel and

Hüsken, 2003).

For a NN with three layers that has M input neurons, N hidden neurons, and K output

neurons, the number of connections between neurons that the Rprop algorithm needs

to modify through the learning process is W = N(M +K) = N(8+2), which M = 8 is

the number of inputs (features), and K = 2 is the number of classes. The NN training

is repeated for E epochs, and from the above discussion the time complexity for NN

training using the Rprop training algorithm is O(E10N), and the number of epoch is

a constant value where the final time complexity is O(N) (Adeoti and Osanaiye, 2013;

Igel and Hüsken, 2003). The second basic operation is the merge operation, which is

executed in step 5 in the DENNuRL. In this step the standard deviation is computed

for every hidden neuron, as shown in Equation 4.6, and the time complexity for this

operation is O(N), where N is the number of neurons in the hidden layer. The worst

case analysis for the DENNuRL algorithm is that Y = 100(410+N), where the number

- 110 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

of iterations (100), and number of NNs is trained (4) are relatively small. Therefore,

the time complexity for the DENNuRL is O(Y) =O(N). From the previous discussion

it is clearly shown that the DENNuRL is a first-order method and the time complexity

is scaled linearly with the number of neurons in the hidden layer.

4.9 Summary and Conclusion

This chapter has investigated the capability for NN adaptation using the DENNuRL

algorithm. The proposed algorithm shows the ability to dynamically evolve the NN

architecture to reach the optimal NN that can be used for a classification problem

with a minimum error rate. RL ideas have been used to control the adaptation of the

NN architecture to reach the optimal solution. Despite the fact that there are many

algorithms which can be used to generate optimal NNs for classification problems, our

algorithm shows promising results and a better generalisation ability (lower error rate)

in building the classification model.

The proposed algorithm registers an average TER of 19.44 for 50 independent runs,

which is registered better TER than those achieved in previous studies for the Diabetes

dataset. Moreover, the highest average accuracy registered so far is 81.25% for the

proposed algorithm. The ability of NNs is greatly dependent on their architecture

(number of layers, number of neurons in the hidden layer, and connection weight).

This chapter has explained a new algorithm, the DENNuRL, which produces NNs

without user intervention. The idea behind the DENNuRL is to create a NN using a

modified adaptive strategy that can specify the right number of training epochs, the

number of neurons in the hidden layer, and the connection weight, that can be used

- 111 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

in classification problems with a minimum error rate. The proposed strategy is better

suited than others for these problems due to its ability to modify the NN architecture

that can be used to solve classification problems with a better generalization ability.

This strategy also has a lower likelihood of being trapped in architectural local optima,

which is a common problem suffered by previously designed algorithms.

The proposed algorithm chooses the appropriate number of retraining epochs that

is suitable for decreasing the effect of overtraining, which has a crucial effect on the

generalization ability of NNs. The adaptive strategy of the DENNuRL shows that it

explores the different kind of possible actions during system development. The choice

of which action should be performed for NN adaptation depends on the training error

associated with the designed NN. A merging operation is used in the DENNuRL to

delete one hidden neuron at a time. The merge operation produces one new neuron

by merging two correlated ones in such a way that a NN is produced which has the

same generalisation ability as before.

The core of this merging mechanism is that it helps to remove a hidden neuron that

does not affect the output of the NN, which leads to the production of more compact

NN architectures. When adding hidden neurons, the DENNuRL also retrains NN to

determine if the NN needs more processing power to process the training data in order

to reduce the training error. Moreover, a new NN architecture is explored by creating

a new NN with a random number of hidden neurons, which will allow the proposed

model to overcome the problem of local optima that other solutions suffer from. RL

is used in the proposed algorithm to explore the previous actions and to choose the

best action that yields a better NN during the training process until the termination

- 112 -

Chapter 4: DYNAMIC EVOLVING NEURAL NETWORK USING
REINFORCEMENT LEARNING

condition is met.

All these techniques are adopted in the DENNuRL to design the best NN architectures

with good generalisation ability. The extensive experiments reported in this chapter

have been carried out to evaluate how well the DENNuRL performs on a benchmark

dataset (the Diabetes dataset), and a comparison was conducted with other algorithms.

The DENNuRL outperformed the other solutions for the same database with the same

conditions. In its current implementation, the DENNuRL has a few user-specified

parameters, although this is unusual in this field. These parameters, however, are not

very sensitive to moderate changes. We can conclude from the previous discussion that

the DENNuRL algorithm is a promising solution to adapt NN to solve any classification

problems.

- 113 -

5
ONLINE PHISHING EMAIL

DETECTION FRAMEWORK

5.1 Introduction

In this chapter an online Phishing Email Detection System (PEDS) is proposed. The

proposed model is developed based on the ideas developed previously in Chapters 3

and 4. The intelligent model helps to identify zero-day phishing emails efficiently and

dynamically. The PEDS includes a pre-processing system using Java to extract 50

features from emails. These features are reduced to an active list of features using the

FEaR algorithm and is used to explore new behaviour that may exist in new datasets

investigated by the PEDS. The DENNuRL algorithm use the active list of features

exploited by the FEaR algorithm to build the detection model; this model uses a NN

as the core of the model.

- 114 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

5.2 Zero-Day Phishing Attack

One of the primary goals of this thesis is to detect zero-day attacks of phishing email.

Current methods do a reasonable job of identifying known phishing emails, but there

is a time delay before those newly identified phishing sites are added to blacklists. A

user who visits a new phishing site is vulnerable until that site is added to blacklists.

Using heuristics such as the FEaR, DENNuRL, PEDS, and RL-Agent algorithms will

provide the ability to detect new phishing emails.

Detecting zero-day phishing attacks has a crucial effect on online transactions, but

only a limited number of studies have designed methods to handle such attacks. Any

model that is supposed to detect zero-day phishing attacks needs to have the ability

to dynamically adapt the detection model to reflect changes found in new phishing

emails. In addition, it should have the ability to explore new behaviours in newly

received email in the online mode. None of the previous studies give a clear idea of

how to explore these new behaviours in zero-day phishing emails.

Any detection model that is designed to handle zero-day phishing attacks should have

the following properties:

• The model should give a low FPR, which means that a legitimate email should

not be identified as a phishing email. This is the most important variable in

the field of phishing email detection, because the legitimate email classified as

phishing may contain important information for the user, and it may cause a

loss of important information.

• The model should provide a high TPR and therefore detect the majority of

- 115 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

phishing emails.

• With a high TNR, the model should identify legitimate sites and correctly verify

that the email is legitimate.

5.3 Proposed Framework for Zero-Day Phishing At-

tack Detection

The proposed model called PEDS has the ability to explore new behaviours in any

new dataset using a novel algorithm called the FEaR. The PEDS will incrementally

enhance itself to handle new attacks depending on the idea of RL. A NN is used as the

core of the detection model and a novel algorithm called the DENNuRL is proposed

to provide the best NN that can be used to solve the problem at hand. Moreover,

the detection model is automatically changed to reflect changes in zero-day phishing

attacks.

The PEDS is an online phishing email detection method based on supervised and unsu-

pervised machine learning techniques. The supervised machine learning technique uses

a training dataset to build the detection model, while unsupervised machine learning

tries to adapt the detection model using emails newly delivered to the system. The

proposed model combines NN, RL, data mining associative classification techniques

and a set of algorithms to detect phishing attacks.

5.3.1 Online system model

The proposed online PEDS, as shown in Figure 5.1, starts by extracting fifty features

from the offline dataset, and then the FEaR algorithm described in Section 3.5 is

applied. Applying the FEaR algorithm involves the following benefits. Firstly, it will

- 116 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

discover phishing behaviours used in the offline dataset. Secondly, it will decrease the

complexity of the generated model by minimizing the number of input neurons and

the number of connections between the input and hidden layers. Thirdly, it will speed

up the adaptation process to generate the best NN, and the speed of adaptation will

have a crucial effect on the performance of the online system. Finally, it will accelerate

the classification process. In the next step, the DENNuRL, as shown in Section 4, will

be used to generate the PEDS which will be utilized in the online mode to classify

emails. Later the RL-Agent will be used to continuously adapt the PEDS to reflect

newly explored behaviour in the online mode.

5.3.2 RL-Agent algorithm

After producing the first PEDS using the DENNuRL algorithm based on the training

dataset in the offline mode, the system starts the development process by reading

unclassified email in the online mode. Figure 5.2 shows the RL-Agent algorithm, the

system classifies emails into phishing and ham email.

The RL-agent keeps watching the output of the PEDS in the online mode and works

as follows:

1. Emails are classified one at a time and passed to the evaluation system as shown

in Figure 5.2, and are then passed to step 2.

2. If an email is classified with a very high accuracy Accuracy≥α and Accuracy≤

β , go to step 3. Otherwise the next email is read,returning to step 1.

3. Email classified using the PEDS are collected in a new dataset (NewDataset),

and all features originally extracted in the pre-processing phase are considered

- 117 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

Figure 5.1: Online phishing email detection system

in this step.

4. If the number of emails collected in the NewDataset = δ , go to step 5. Otherwise

the next email is read, returing to step 1. The value of δ is dynamically changes

which is 10% of the upToDateDataset, which is initially equal to the offline

dataset.

5. The system merges the NewDataset with the upToDateDataset, and the result

is stored in the NewDataset.

6. The FEaR algorithm is applied to the NewDataset to explore new phishing

- 118 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

behaviours in the NewDataset.

7. The list of important features is determined.

8. The list of important features from the NewDataset is extracted.

9. A new PEDS is generated using the DENNuRL algorithm to reflect changes in

the dataset.

10. The newly generated PEDS is tested for the reference dataset (offline dataset)

and the upToDateDataset.

11. If the new PEDS is better than the previous PEDS, then replaces the PEDS with

the new one, the upToDateDataset is replaced with the NewDataset and the list

of important features is updated. Elseif the reference PEDS (the first PEDS

generated for the offline dataset) is better than the new one over the reference

dataset the reinitialize the hole system. Else, the adaptation process is ignored

and the previous PEDS is used.

The proposed technique to adapt the PEDS has a limited number of user-defined

parameters (α,β ,δ), which is not usual in this field. The values of these parameters

are manually configured after conducting a preliminary test run, and they are not

intended to be the best possible values. However, the values of these parameters are

not sensitive to moderate changes in the environment. In addition to the RL-Agent

used to control the behaviour of the DENNuRL described previously in Section 4.4,

the following section describes the main part of the RL-Agent used to control the

adaptation of the PEDS as shown in Figure 5.2:

- 119 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

Figure 5.2: Reinforcement learning agent

1. Agent: In the proposed model, the observation will be the output of the PEDS,

and this is the new email detected as phishing or legitimate email with high

accuracy. These email will be collected in the newDataset, when the number of

email in the newDataset is 10% of the upToDateDataset merge these two dataset

in the newDataset.

2. Action: After building the newDataset, the system will explore any new be-

haviour which may exist in the newDataset by using the FEaR algorithm, and

then the DENNuRL algorithm is applied to design the new phishing email detec-

tion system. At this stage, the RL-Agent will compare the new detection system

with the old one. If the new detection system gives better results, it replaces the

old PEDS, the upToDateDataset dataset is updated, and the list of important

features is updated. Otherwise, the adaptation process is ignored.

- 120 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

3. Policy (π): This is a mapping from the state of the environment to the action

to be taken in this state. The policy is the core of the RL-Agent in the sense

that it alone is sufficient to determine the behaviour of mapping from the state

of the environment to the action to be taken by the RL-Agent.

4. Reward/cost function: The reward function specifies the overall objective of the

RL-Agent. The reward will depend on the ouput of the PEDS, where the system

with lower MSE will be better.

To handle the possibility of reinforcing a wrong result, the proposed model tests the

new PEDS for a reference dataset which is the offline dataset that is used to gener-

ate the first detection model. If the new PEDS cannot achieve better performance

compared with the first PEDS, then we assume that the system is reinforcing a wrong

classification. In such a case the enhancement is ignored and the system is reinitialised.

After all there is a possibility of miss-classification for some email that the model is

not trained on (zero-day attacks); the proposed model try to solve this problem using

exploration-exploitation mechanism as shown in step 2 in the RL-Agent Algorithm.

The RL-Agent Algorithm explores adding a group of emails (10% of the offline dataset)

to the NewDataset. These emails are classified by the current PEDS with high accuracy

(≥ 95%). The NewDataset will contain the old dataset plus the new group of email.

The RL-Agent will generate (exploit) a new PEDS and compare it with the previous

one. In this case, the new PEDS will advance one step in every enhancement towards

the new kind of attacks (zero-day attack). Since the email is classified by the previous

PEDS with 95% accuracy as phishing will be classified by the new PEDS with 100%

accuracy. Furthermore, the expert can enhance the system ability to handle a new

- 121 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

kind of attacks by manually classifying suspicious emails and adding any new available

dataset to the offline dataset. Lastly, as we discussed previously, the new PEDS will

always be experimented with the reference dataset and the upToDateDataset to make

sure that the new model does not reinforce the wrong results.

5.4 Experimental Results and Discussion

5.4.1 Dataset

The experiments were conducted using a dataset combined from three publicly avail-

able datasets which were described previously in Section 3.7.1.

To train and test the PEDS, the dataset has been divided into offline and online

datasets. The online dataset was assumed to be unclassified, and the total number of

emails used was 4951 for ham emails and 7315 for phishing emails. From the phishing

emails in every experiment, 4951 were chosen randomly. The total number of emails

was 9902, and 4000 were selected randomly as an offline dataset. The rest of the emails

were used as an online dataset to assess the system's development in response to a

zero-day phishing attack. The experiment was conducted and repeated fifty times, and

in every iteration the offline dataset was chosen in a random order and divided into

70% for training, 15% for validation and 15% for testing. The results were recorded

for every iteration and then the average was computed for all iterations to ensure the

reliable performance of the system.

5.4.2 Evaluation metrics

The set of evolution metrics described previously in Section 3.7.2 were used to evaluate

the performance of the proposed model.

- 122 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

5.4.3 DENNuRL

As discussed before, the DENNuRL algorithm, as shown in Figure 5.1, is used to

generate the first PEDS employed in the online mode. Later in the online mode, the

same algorithm is utilized as part of the RL-Agent as shown in Figure 5.2. In both

cases, it will be used to automatically choose the best NN to solve the problem at

hand.

Table 5.1: An example of the NN adaptation using the DENNuRL algorithm

NN No. Number of
neuron in
the hidden

layer

Number of
epoch

MSE error

1 27 10 0.024355

2 37 10 0.023192

3 38 10 0.023105

4 39 10 0.023026

5 6 10 0.022724

6 7 10 0.022211

7 7 60 0.012845

8 8 60 0.01118

9 8 360 0.010688

10 20 610 0.010609

11 19 610 0.010607

12 19 1010 0.009976

The first PEDS is built by using the DENNuRL algorithm based on the offline dataset

of 4000 emails. As an example of the usage of the DENNuRL, Table 5.1 shows the

enhancement of the NN from the NN randomly generated in the first step to the final

version to be used as a PEDS. The level of MSE error guides the enhancement process,

where the NN with the lowest MSE error will be better. The benefits from these small

changes in MSE error will be clearly seen when the rest of the evaluation metrics are

taken into consideration as shown in the next section.

Table 5.1 and Figure 5.3 shows the enhancement performed by the DENNuRL algo-

rithm in terms of MSE error, according to the system's development. MSE error is

- 123 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

1 2 3 4 5 6 7 8 9 10 11 12
NN Enhancements

0.01

0.015

0.02

0.025

M
S

E
 E

rr
o

r

Figure 5.3: An example of NN enhancement using the DENNuRL in terms of MSE
error

computed based on Equation 4.2 as described previously in Chapter 4. In the first NN

shown in Table 5.1, the number of 27 neurons is selected randomly by the algorithm,

and then the system tries the different actions and selects the NN network that returns

the maximum rewards (minimum MSE error). In the second enhancement, a new ran-

dom NN is selected, and at the third enhancement one more neuron is added to the

hidden layer. At step 11, two neurons are merged in the hidden layer, and finally in

the last enhancement the training epoch is increased in order to reduce the MSE error.

5.4.4 Online phishing email detection system

After building the first PEDS using the DENNuRL algorithm, the system start clas-

sifying the online dataset described previously in section 3.7.1 while PEDS classifies

email in the online mode the RL-agent keep track of the output of the system. To

compare the ability of the PEDS to detect phishing emails for the system before and

after the adaptation, a Detection Error Trade-off (DET) curve (Adler and Schuckers,

2005; Martin et al., 1997) is used. The DET curve is a graphical representation that

shows a trade-off between the two types of error: missed detections (y-axis) and false

alarms (x-axis). Missed detection (false negative) is where a phishing email is clas-

- 124 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

sified as legitimate, and a false alarm (false positive) is where a legitimate email is

classified as phishing. The two kinds of error were evaluated for the two FEDS for

the same dataset selected randomly from the original dataset. The first system is the

PEDS developed initially before applying the adaptation process, and the second is

the PEDS after applying the adaptation using the RL-Agent. The DET gives a good

indication of the efficiency of the system at different operation points. The DET curve

shown in Figure 5.4 clearly indicates that the adapted system has lower probabilities

of false rejection and false acceptance rates at all operation points.

The DET curve is generated by sweeping the decisions threshold over the range of

scores produced by the detection system, and performance is evaluated at small, suc-

cessive intervals (Yang et al., 2000). Then the normal deviations of the miss versus

false alarm rates at each interval are plotted. The detection error trade-off function,

which takes in a list of prediction values and a list of truth values, produces output

containing the false alarm (FPR) and missed detection (FNR) for all threshold values.

The DET curve, which is the line showing the trade-off between FPR and FNR, is

typically viewed in logarithmic coordinates. The DET curve shown in Figure 5.4 shows

that the two kinds of error, false alarms (x-axis) and miss detection (y-axis) are re-

lated. The nature of this relationship is determined using Equation 5.1 (Auckenthaler

et al., 2000):

y =−(1
σT

x+
µT

σT
) (5.1)

where (µT ,σT) are the parameters of the target distribution, which is assumed to be

Gaussian. A special point in the DET curve, where the probability of false alarms is

equal to the probability of missed detection of (the targeted email) is called the Equal

- 125 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

Error Rate (EER) as shown in Figure 5.4. The EER can be evaluated using Equation

5.2.

x = y =− µT

1+σT
and PEER =

1√
2π

∫ x

−∞

e−t2/2dt (5.2)

By visual inspection of the DET curve, we can confirm that the PEDS after adaptation

is better taking into consideration the two kinds of error. A weighted average of missed

detection and false alarm rates may be used as a kind of figure of merit or cost function.

The point on the DET curve where such an average is minimized is called the EER. In

Figure 5.4 these points are indicated by arrows. Table 5.2 summarizes the enhancement

Figure 5.4: Detection error tradeoff (DET) for PEDS before and after adaptation

of the PEDS. To show how the system evolves in the online mode, eight different

metrics were computed, which were accuracy, precision, recall, F Measure, TPR, FPR,

TNR, and FNR after every adaptation of the FEDS in the online mode. Figure 5.5

show how the system evolves in terms of accuracy, where fifteen enhancements have

been conducted throughout the processing of the online dataset of 5902 emails, and

the results clearly show an enhancement in all metrics over time. Finally, to show the

reliable performance of the proposed model, the experiment was repeated fifty times.

Every experiment started from a random case and the final PEDS was produced after

the enhancements were tested. Table 5.3 shows a summary of the different metrics

- 126 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

Table 5.2: PEDS enhancements in terms of FNR, FPR, TPR, Accuracy, Precision,
Recall, and F Measure

Enh. FNR FPR TPR TNR ACC Precision Recall F Measure

1 1.89% 5.15% 98.11% 94.85% 96.49% 95.06% 98.11% 96.56%
2 1.89% 4.82% 98.11% 95.18% 96.65% 95.36% 98.11% 96.72%
3 1.52% 5.15% 98.48% 94.85% 96.67% 95.08% 98.48% 96.75%
4 1.52% 5.15% 98.48% 94.85% 96.67% 95.08% 98.48% 96.75%
5 1.52% 5.11% 98.48% 94.89% 96.69% 95.11% 98.48% 96.77%
6 1.56% 5.11% 98.44% 94.89% 96.67% 95.11% 98.44% 96.75%
7 1.60% 4.36% 98.40% 95.64% 97.02% 95.79% 98.40% 97.08%
8 1.60% 4.48% 98.40% 95.52% 96.96% 95.68% 98.40% 97.02%
9 1.48% 3.57% 98.52% 96.43% 97.48% 96.53% 98.52% 97.52%
10 1.07% 2.82% 98.93% 97.18% 98.06% 97.25% 98.93% 98.08%
11 1.07% 2.82% 98.93% 97.18% 98.06% 97.25% 98.93% 98.08%
12 1.11% 2.82% 98.89% 97.18% 98.04% 97.25% 98.89% 98.06%
13 0.99% 2.62% 99.01% 97.38% 98.20% 97.45% 99.01% 98.22%
14 1.03% 2.03% 98.97% 97.97% 98.47% 98.00% 98.97% 98.49%
15 1.15% 1.74% 98.85% 98.26% 98.55% 98.28% 98.85% 98.56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
System Enhancement

0.96

0.965

0.97

0.975

0.98

0.985

0.99

A
cc

u
ra

cy

Figure 5.5: System enhancements in terms of accuracy

Table 5.3: Results for the online PEDS averaged over 50 independent runs

FNR FPR TPR TNR ACC Precision Recall F Measure AUC

0.93% 1.81% 99.07% 98.19% 98.63% 98.21% 99.07% 98.64% 99.43%

used in the assessment of PEDS performance; the experiment was repeated fifty times

and an average is taken.

5.4.5 Comparative analysis

Table 5.4 shows the outcome of the comparison of the present results with those of pre-

vious work. Islam and Abawajy (2013) proposed a multi-tier classification model that

used a combination of three classification algorithms (SVM, AdaBoost, and Naive-

- 127 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

Bayes) (Islam and Abawajy, 2013). In that study, twenty-one features were extracted

from email header and content. The highest accuracy registered was 97% with the

arrangement (C1−C3−C2) where C1 was the support vector machine, C2 as Boost-

ing (AdaBoost) and C3 as Bayesian (Naive Bayes). However, the proposed algorithm

could not be modified to handle new types of attacks and the classifier combination

did not have the ability to be adapted to reflect changes in online emails. Almomani

et al. (2013b) proposed a novel model to handle zero-day phishing attacks (Almomani

et al., 2013b). Twenty-one features were used in building the detection model and 98%

accuracy was achieved, but the proposed model was tested in the online mode with

only a tiny dataset of 300 phishing emails and 2000 legitimate emails.

Ramanathan and Wechsler (2012) used the PLSA topic trainer to build their trained

model, and a high accuracy was achieved at 97.7% while using the largest dataset in

comparison with other studies (Ramanathan and Wechsler, 2012). The main disad-

vantages of this study included ignoring many features related to URLs, which are the

main connections between emails and phishing websites. Furthermore, in the selection

of the dataset it was assumed that the Enron email dataset was free from spam and

phishing email, which has not been proven by the dataset producer. Finally, they did

not consider redundancy in this vast dataset.

The offline FEDS proposed previously in Chapter 3 was found to be better than pre-

viously proposed phishing email detection systems (for example: Khonji et al. (2012),

Gansterer and PÃűlz (2009), Chandrasekaran et al. (2006), Ma et al. (2009), Abu-

Nimeh et al. (2007), Toolan and Carthy (2010), and Hamid & Abawajy (2011)), and

a full discussion of these techniques is explained in Section 3.7.7. The main disadvan-

- 128 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

Table 5.4: Comparison of our approach with previous work

Author
No. of

features
Algorithm

used

Feature
approach

Sample Results

Islam and
Abawajy
(2013)

21

SVM,
AdaBoost, and

NaiveBayes
Hybrid

Undetermined
size, but the same

source as the
proposed approach

ACC 97% FP 2%
FN 9%

Almomani
et al.

(2013b)
21

ECM &
DENFIS

Hybrid
Phishing 4300

Legitimate 6000
ACC 98%

Ramanathan
and

Wechsler
(2012)

200 topics AdaBoost Content 400,000 email ACC 97.7%

Offline
PEDS

proposed in
Chapter 3

33 Random Forest Hybrid
Phishing 4559

Legitimate 4559
ACC 97.98%

Online
PEDS

50

Neural
Network &

Reinforcement
Learning

Hybrid
Phishing 4559

Legitimate 4559
ACC 98.6%

tage of the offline PEDS developed using The Random Forest classification algorithm

is that it does not have the ability to adapt to reflect changes in the environment.

Furthermore, the proposed online PEDS outperforms the offline PEDS in terms of all

metrics used to evaluate the proposed model.

The present online PEDS approach uses fifty hybrid features which are reduced to

a lower number of effective features by using the FEaR algorithm depending on the

new dataset explored in the system developments. The number of important features

changes dynamically to reflect changes in the dataset. The dataset grows dynamically

by running the proposed model in the online mode. The PEDS is dynamically adapted

- 129 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

to reflect changes in the online environment using the RL-Agent. Only a few studies

have so far considered the handling of zero-day phishing attacks, and yet our model

has been proven to have the capability to handle these attacks with high accuracy,

Table 5.3 shows a summary of the evaluation metrics used to evaluate the proposed

model averaged over 50 independent runs.

5.4.6 Implementation and execution time

The proposed model was tested on Intel(R) Core(TM) i7-3537U CPU @ 2.00GHz (4

CPUs), with 8 GB RAM and Window 10 operating System. The pre-processing system

was implemented using JAVA programming language (NetBeans 8.0 IDE). The PEDS,

DENNuRL, and RL-Agent were implemented using MATLAB R2015a. In addition to

the computation complexity shown in the next section, Table 5.5 shows the actual time

needed to execute the different parts of the proposed model. The long time needed to

execute the RL-Agent does not affect the overall system performance since this step

is done in parallel with the classification process. The RL-Agent observe the output

of the PEDS and tries to develop a new one. The current PEDS is replaced by a new

one when the RL-Agent finish the enhancement process.

Table 5.5: The proposed system execution time

Program Component Execution Time

Pre-processing Average of 3.11 Seconds for each email.

PEDS Average of 7.2∗10−3 seconds for each
email.

RL-Agent Average of 2.5∗103 seconds to develop an
enhanced PEDS.

- 130 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

5.5 Efficiency Analysis

In this section, the time complexity for the operations of the online PEDS is evaluated.

PEDS is generated from the offline dataset only once, the first time the adaptation

process is applied when classifying the online dataset. Emails in the online mode are

fed into the system one at a time, and the preprocessing system extracts the list of

features from each email and sends it to the PEDS for classification. Then the output

of the classification is sent for evaluation to determine the right action corresponding

to that email. Also, the RL-Agent takes the output of classification to adapt the

PEDS, as shown previously in Figure 5.1. Since the first PEDS generated the first

time is executed only once, it will be excluded from the analysis. Then each email will

be subject to three phases: pre-processing and FEaR, classification using PEDS, and

RL-Agent.

The first phase is relatively light weight where each feature is extracted directly from

the email header or content, which means that it could be accomplished in linear time

O(M), where M is the number of emails. In the second phase, email classification is

conducted using the NN, which uses the value of features computed in the first phase

as input to the input layer and the output for every neuron is computed using Equation

5.3.

Y =
n

∑
i=1

xiwi−Θ (5.3)

where n is the number of neurons in the previous layer, Θ is the bias applied to that

neuron, and xiwi is the input and connection weight for that input. The result is

passed to the activation function to bound the result between [0≤ Y sigmoid ≤ 1]. The

- 131 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

activation function used in this case is the sigmoid activation function as shown below:

Y sigmoid =
1

1+ e−Y (5.4)

The output for the neurons at the output layer is computed using Equation 5.3 for

every email. The time complexity for the NN is O(N), where N is the number of

neurons in the NN.

In phase three, the main operation executed in the RL-Agent is the call for the DEN-

NuRL algorithm, and the complexity of this algorithm has been evaluated previously

in Section 4.8. The time complexity for DENNuRL is scaled linearly with the number

of neuron in the hidden layer O(N).

Based on the above discussion, the time complexity for the online phishing email

detection system is O(M ∗ (N +N)) = O(M ∗N). The main conclusion is that the

adaptation mechanism used in this chapter provides linear adaptation capability.

5.6 Summary and Conclusion

Phishing is one of the most serious cybercrime threats that reduces customer trust in

e-commerce. This research shows how a NN with RL can be used to build a powerful

model to detect zero-day phishing attacks with high performance levels and acceptable

error rates. A novel algorithm has been proposed for developing a classification model

based on a NN, as well as an algorithm to explore new behaviour and adapt the phish-

ing email detection system dynamically, with the capability to explore new behaviours.

The significance of the proposed model lies in following respects. Firstly, the PEDS

is capable of online detection with the ability to adapt itself to reflect changes in the

- 132 -

Chapter 5: ONLINE PHISHING EMAIL DETECTION FRAMEWORK

environment. Secondly, the FEaR algorithm is used to determine the list of important

features in a dynamic environment. Thirdly, the RL methodology which has been used

for the first time in this field, used in the proposed approach to increase the ability of

the system to evolve based on changes in the environment. Fourthly, a NN is used as

the core of the detection model, and the RL-agent is used to adapt the NN to build

the best possible NN for use in the detection model. Finally, the performance of the

online PEDS was evaluated using a set of metrics and compared with previously pro-

posed approaches for phishing email detection. The proposed approach registers high

accuracy, TPR, and TNR at 98.63%, 99.07%, and 98.19% respectively. In addition, it

shows low FPR and FNR, at 1.81% and 0.93% respectively, and the rest of the metrics

used to evaluate the proposed approach are summarized in Table 5.3.

- 133 -

6
CONCLUSION AND FUTURE

WORK

This thesis focuses on developing a novel online phishing email detection system. This

chapter gives a short look back on what has been discussed so far. Considering the

research questions related to the aim and objectives of the study and whether or not

they are having been answered as well as suggesting how research in this area could

perhaps develop in the future. This concluding chapter introduces the research contri-

butions and assumptions, accomplishments and limitations. Finally, recommendations

are made for future work.

- 134 -

Chapter 6: CONCLUSION AND FUTURE WORK

6.1 Summary of This Thesis

The problem of phishing attacks is growing in scale and complexity, since phishers use

new zero-day phishing attacks and continuously adapt their strategies to lure victims.

The following discussion summarizes the thesis chapters and in the next section a brief

discussion is given of its accomplishments and contributions.

In Chapter 2, the phishing problem was discussed to lay the basis for the subsequent

chapters. What exactly is phishing? What is its history and the current situation

and how do previously proposed solutions cope with these attacks? From the different

levels where phishing attacks are launched, phishing attacks at email level are the

subject of the proposed model, as this is a bottleneck where most phishing attacks

start from, and where changes can be most easily made and tested. Moreover, a more

secure environment can be produced if phishing attacks are detected at an earlier stage

such as at email level. Afterwards this chapter discussed a number of previous studies

about the phishing problem itself, the reasons why current systems fail and why users

are blinded by the attacks.

Chapter 3 investigated the list of features that represent the different aspects of emails

which include email headers and content. The list of features includes features de-

scribed in previous studies and seven more are newly proposed in this thesis. One of

these newly proposed features is dynamically updated every sixty minutes from the

PhishTank blacklisted URLs. Moreover, a new pre-processing program has been pro-

posed to extract the list of features using the JAVA programming language so as to be

platform-independent. To explore the active list of features that accurately represents

the phishing email in an offline dataset, a new algorithm is proposed which is called

- 135 -

Chapter 6: CONCLUSION AND FUTURE WORK

the FEaR algorithm. Finally, to evaluate the ability of the pre-processing system and

the FEaR algorithm, an experiment was performed using 10 different classifiers used

previously in the literature.

Before presenting the main phishing email detection system in Chapter 5, Chapter 4

presents a new algorithm to build a dynamically evolving neural network that can be

used to generate a classification model. A benchmark dataset (the Diabetes dataset)

is used to test the ability of DENNuRL algorithm to generate the best NN as a

classification model and to compare the results with those of state of the art algorithms

used previously for the same purpose. The results of the comparison (see Section 3.7.5)

prove that the DENNuRL algorithm can generate a better classification model than

previous techniques.

Finally, Chapter 5 shows the final phishing email detection model, the PEDS. This

model encompasses firstly, a pre-processing algorithm that extracts fifty features from

the main email components. Secondly, the FEaR algorithm determines the list of most

relevant features in the offline dataset and it explores any new important features

from zero-day attacks introduced in the up-to-date dataset collected by the RL-Agent.

Thirdly, the DENNuRL is responsible for generating the first phishing email detection

system based on the offline dataset, and later it is used to adapt the model to reflect

any changes in the environment. Finally, the reinforcement learning agent (RL-Agent)

is used to control the environment by exploring and adding new email data to the

up-to-date dataset and updating the phishing email detection system to reflect these

changes.

- 136 -

Chapter 6: CONCLUSION AND FUTURE WORK

6.2 Research Contributions

Many contributions have emerged from this research investigation which can be very

helpful for all researchers engaged in the field of machine learning and phishing de-

tection using the NN and RL. A summary of the study's main contributions is as

follows:

• Fifty features and patterns represent different aspects of emails; these features

are extracted from three different sources which are email content, header, and

external sources. The selected list of features is chosen based on previous studies,

while seven of them are newly proposed in this thesis. The extraction process

is divided into three different layers to simplify the process, depending on the

feature types and sources. The proposed pre-processing algorithm was evaluated

using ten classification algorithms used previously in the literature. The offline

detection model was compared with a set of previous studies as shown in Table

3.9, and it shows better results in terms of all metrics considered. The highest

accuracy registered was 97.98% for the Random Forest algorithm, and the rest

of the evaluation metrics are summarized in Table 3.8. The results of the offline

detection model show that the proposed pre-processing algorithm is better than

other strategies, where the same classification algorithm and the same dataset

were used in the evaluation.

• A feature evaluation and reduction (FEaR) algorithm has been proposed for

two purposes. Firstly, it has been applied to reduce the number of selected

features to give a list of features which is the most important and capable of

- 137 -

Chapter 6: CONCLUSION AND FUTURE WORK

detecting the desired class of objects with an acceptable error rate. Secondly, in

the online PEDS it is responsible for the exploration of new behaviour that may

be available in the up-to-date dataset constructed by the system. Table 3.6 shows

that the FEaR algorithm can discover different behaviours when the dataset

used to explore these behaviours is changed. Furthermore, the FEaR algorithm

can be used to dynamically rank the list of selected features to determine their

importance in the selection process, as shown in Table 3.7.

• A dynamic evolving neural network using reinforcement learning (DENNuRL)

algorithm has been proposed. This algorithm is the core of the phishing email

detection system and is responsible for building and dynamically adapting the

classification model based on the NN and RL. The DENNuRL algorithm has

been tested with a benchmark dataset (Diabetes dataset) and it was proven that

it can generate a classification model with good generalization (low testing error

rate) when compared with other algorithms that build classification models using

NNs. The proposed algorithm registered a value of TER of 19.44, which is the

lowest testing error rate registered for the Diabetes dataset, as shown in Table

4.4. In this experiment the DENNuRL algorithm showed the ability to generate

the best NN to be used as the classification model for any problem, where the

only parameter which needs to be modified is the termination condition for that

problem.

• Finally, an online phishing email detection system (PEDS) has been proposed to

handle zero-day phishing attacks in the online mode. The proposed algorithm

encompasses the pre-processing, FEaR, and DENNuRL algorithms discussed

- 138 -

Chapter 6: CONCLUSION AND FUTURE WORK

previously in Chapters 3 and 4. An RL-Agent is used to control the system

development in the online mode, where it explores new behaviours that may be

available in any newly explored dataset. The proposed algorithm registers high

accuracy with a very low false positive rate while showing an enhancement of the

overall system in terms of a set of metrics in development in the online mode.

The experiment has been repeated fifty times, starting in every experiment from

a random case, and an average was taken to show the steady performance of the

proposed system. The average accuracy registered is 98.6% and the average false

positive 1.81%. A full summary of results for all metric is reported in Table 5.3,

an example of system development in terms of accuracy is shown in Figure 5.5.

6.3 Difficulties and Solutions

In this study three principal difficulties have been addressed in the phishing email

classification. Firstly, the available phishing email dataset is limited, which is very

important for the training of the NN to generate PEDS and to assure generality of the

proposed model. The proposed model handles this issue by exploring a new behaviour

for the correctly classified email with low MSE, and adding that email to upToDate-

Dataset which is always growing to reflect the new phishing attacks. Secondly, the

phisher is always modifying his techniques to lure the online customer's using new

techniques the existing models are never trained how to handle them. Therefore, the

proposed model extracts a large number of features that represent most of information

available in the email header and content, then the FEaR algorithm is executed to de-

termine the important list of features that can classify emails in the available dataset

with acceptable performance. In this strategy, any new behaviour that a phisher tries

- 139 -

Chapter 6: CONCLUSION AND FUTURE WORK

to use, the proposed model will be reflected by enabling or disabling a specific feature

in the important list of features. Lastly, the performance of our system in the online

mode will be very hard to estimate, due to the number of emails being received, where

it needs to handle a large number of emails in a short duration. Therefore the proposed

framework in the online mode contains two main parts. The first part is the PEDS,

responsible for email classification it also determines the right action for each email.

The second part is RL-Agent, responsible for monitoring the PEDS output, exploring

the new behaviour and deciding whether to replace the existing PEDS with a more

powerful one or not.

6.4 Future Work

Based on the research in this thesis, a number of possible future research directions

can be identified. These are as follows:

• The adaptation of the NN which used as the core of the detection model can

be implemented using Deep Neural Network (DNN). DNN is machine learning

framework that can model complex non-linear relationship by using multiple

hidden layers. The main Advantages of using DNN are: Firstly, it has the

best performance on problems that outperform other techniques. Secondly, it

reduces the need for feature engineering, which is one of the most important

tasks in the field of phishing email detection. Lastly, the architecture of DNN

can be adapted to new problems relatively easily. However, the DNN has some

disadvantages that yield to not using it in this thesis such as. DNN is extremely

computationally expensive to train. Where the phishing email detection need to

- 140 -

Chapter 6: CONCLUSION AND FUTURE WORK

be online that response within a small amount of time. In addition, to use this

technique you need to have a very large dataset which is not available in the field

of phishing email detection. So, if we can comprehend these two disadvantages

the DNN will be a very promising solution in future work.

• After developing the online phishing email detection system, the proposed frame-

work could be used to enhance existing anti-phishing system and it could be

employed in email servers to detect phishing attacks.

• The dataset used in developing the PEDS has an important role in building the

detection model, and therefore any newly available dataset should be used to

enhance the detection model automatically by adding it to the offline dataset.

• The same detection model could be extended from binary classification (phishing

and ham email) to a ternary classification model that can classify to spam,

phishing, and ham email. This enhancement could be performed by adding

more features that represent spam email and the dataset could be updated to

include examples of spam emails.

• Finally, the pre-processing algorithm can be enhanced by adding new features

to the list of features, which will increase the system's ability to explore any

new behaviour using the FEaR algorithm. In conclusion, there are many en-

hancements that could be taken into consideration in future studies, whether to

look more closely at a particular property of phishing email or in extending the

classification model for larger domains.

- 141 -

Bibliography

Aamoth, D. (2011). The man who invented email. Time, November, 15.

Aarts, B., Chalker, S., and Weiner, E. (2014). The Oxford dictionary of English
grammar. Oxford University Press.

Abdelhamid, N., Ayesh, A., and Thabtah, F. (2014). Phishing detection based associa-
tive classification data mining. Expert Systems with Applications, 41(13):5948–5959.

Abu-Nimeh, S. and Nair, S. (2008). Bypassing security toolbars and phishing filters via
dns poisoning. In Global Telecommunications Conference, 2008. IEEE GLOBECOM
2008. IEEE, pages 1–6. IEEE.

Abu-Nimeh, S. and Nair, S. (2010). Circumventing security toolbars and phishing
filters via rogue wireless access points. Wireless Communications and Mobile Com-
puting, 10(8):1128–1139.

Abu-Nimeh, S., Nappa, D., Wang, X., and Nair, S. (2007). A comparison of ma-
chine learning techniques for phishing detection. In Proceedings of the anti-phishing
working groups 2nd annual eCrime researchers summit, pages 60–69. ACM.

Aburrous, M. and Khelifi, A. (2013). Phishing detection plug-in toolbar using intelli-
gent fuzzy-classification mining techniques. Int. J. Soft Comput. Softwa. Eng.(SCSE
2013), 3.

Aburrous, M. R., Hossain, A., Dahal, K., and Thabatah, F. (2009). Modelling intel-
ligent phishing detection system for e-banking using fuzzy data mining. In Cyber-
Worlds, 2009. CW’09. International Conference on, pages 265–272. IEEE.

Adeoti, O. A. and Osanaiye, P. A. (2013). Effect of training algorithms on the perfor-
mance of ann for pattern recognition of bivariate process. International Journal of
Computer Applications, 69(20).

Adler, A. and Schuckers, M. E. (2005). Calculation of a composite det curve. In Inter-
national Conference on Audio-and Video-Based Biometric Person Authentication,
pages 860–868. Springer.

Aggarwal, C. C. (2007). Data streams: models and algorithms, volume 31. Springer
Science & Business Media.

Ahamid, I., Abawajy, J., and Kim, T. (2013). Using feature selection and classification
scheme for automating phishing email detection. Studies in Informatics and Control,
22(1):61–70.

Almomani, A., Gupta, B., Atawneh, S., Meulenberg, A., and Almomani, E. (2013a).
A survey of phishing email filtering techniques. IEEE communications surveys &
tutorials, 15(4):2070–2090.

- 142 -

Almomani, A., Wan, T.-C., Manasrah, A., Altaher, A., Backlizet, M., and Ramadas, S.
(2013b). An enhanced online phishing e-mail detection framework based on evolving
connectionist system. International Journal of Innovative Computing, Information
and Control (IJICIC), 9(3):169–175.

Alsharnouby, M., Alaca, F., and Chiasson, S. (2015). Why phishing still works:
user strategies for combating phishing attacks. International Journal of Human-
Computer Studies, 82:69–82.

Ammar, A. (2014). Dynamic evolving neural fuzzy framework for phishing e-mail
detection. ACM.

An, N., Zhao, W., Wang, J., Shang, D., and Zhao, E. (2013). Using multi-output
feedforward neural network with empirical mode decomposition based signal filtering
for electricity demand forecasting. Energy, 49:279–288.

Anderson, R., Barton, C., Böhme, R., Clayton, R., Van Eeten, M. J., Levi, M., Moore,
T., and Savage, S. (2013). Measuring the cost of cybercrime. In The economics of
information security and privacy, pages 265–300. Springer.

Ang, J. H., Tan, K., and Al-Mamun, A. (2008). Training neural networks for classifica-
tion using growth probability-based evolution. Neurocomputing, 71(16):3493–3508.

APWG (2015). Phishing activity trends report, 1st âĂŞ 3rd quarters 2015. Report,
APWG.

Arachchilage, N. A. G. and Love, S. (2014). Security awareness of computer users: A
phishing threat avoidance perspective. Computers in Human Behavior, 38:304–312.

Auckenthaler, R., Carey, M., and Lloyd-Thomas, H. (2000). Score normalization for
text-independent speaker verification systems. Digital Signal Processing, 10(1):42–
54.

Bache, K. and Lichman, M. (2013). Uci machine learning repository [http://archive.
ics. uci. edu/ml]. university of california, school of information and computer science.
Irvine, CA.

Barraclough, P., Hossain, M. A., Tahir, M., Sexton, G., and Aslam, N. (2013). In-
telligent phishing detection and protection scheme for online transactions. Expert
Systems with Applications, 40(11):4697–4706.

Basu, J. K., Bhattacharyya, D., and Kim, T.-h. (2010). Use of artificial neural net-
work in pattern recognition. International journal of software engineering and its
applications, 4(2).

Bergholz, A., De Beer, J., Glahn, S., Moens, M.-F., Paaß, G., and Strobel, S. (2010).
New filtering approaches for phishing email. Journal of computer security, 18(1):7–
35.

Berk, R. A. (2016). Classification and regression trees (cart). In Statistical Learning
from a Regression Perspective, pages 129–186. Springer.

- 143 -

Blocki, J. and Sridhar, A. (2016). Client-cash: Protecting master passwords against
offline attacks. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, pages 165–176. ACM.

Boneh, D., Mitchell, J., Ledesma, R., Chou, N., and Teraguchi, Y. (2007). Spoofguard.
Technical report, Technical report, http://crypto. stanford. edu/SpoofGuard.

Boulesteix, A.-L., Janitza, S., Kruppa, J., and König, I. R. (2012). Overview of random
forest methodology and practical guidance with emphasis on computational biology
and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 2(6):493–507.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey of mul-
tiagent reinforcement learning. IEEE Transactions on Systems Man and Cybernetics
Part C Applications and Reviews, 38(2):156.

Cantú-Paz, E. and Kamath, C. (2005). An empirical comparison of combinations
of evolutionary algorithms and neural networks for classification problems. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(5):915–
927.

Caputo, D. D., Pfleeger, S. L., Freeman, J. D., and Johnson, M. E. (2014). Going spear
phishing: Exploring embedded training and awareness. IEEE Security & Privacy,
12(1):28–38.

Castiglione, A., De Prisco, R., and De Santis, A. (2009). Do you trust your phone?
In International Conference on Electronic Commerce and Web Technologies, pages
50–61. Springer.

Chandrasekaran, M., Narayanan, K., and Upadhyaya, S. (2006). Phishing email de-
tection based on structural properties. In NYS Cyber Security Conference, pages
1–7.

Chen, Y., Zahedi, F. M., and Abbasi, A. (2011). Interface design elements for anti-
phishing systems. In International Conference on Design Science Research in In-
formation Systems, pages 253–265. Springer.

Chou, P.-H., Li, P.-H., Chen, K.-K., and Wu, M.-J. (2010). Integrating web mining
and neural network for personalized e-commerce automatic service. Expert Systems
with Applications, 37(4):2898–2910.

Collier, M. and Endler, D. (2013). Hacking Exposed Unified Communications & VoIP
Security Secrets & Solutions. McGraw-Hill Osborne Media.

Collinson, H. (1995). America online girds against hacker break-ins. Computers and
Security, 14(6):519.

Commission, F. T. et al. (2006). An e-card for you game.

- 144 -

Commission, F. T. et al. (2015). Consumer sentinel network data book for january–
december 2014.

Costa, L. d. F., Oliveira Jr, O. N., Travieso, G., Rodrigues, F. A., Villas Boas, P. R.,
Antiqueira, L., Viana, M. P., and Correa Rocha, L. E. (2011). Analyzing and
modeling real-world phenomena with complex networks: a survey of applications.
Advances in Physics, 60(3):329–412.

Dai, Q. (2013). A competitive ensemble pruning approach based on cross-validation
technique. Knowledge-Based Systems, 37:394–414.

Del Castillo, M. D., Iglesias, A., and Serrano, J. I. (2007). Detecting phishing e-mails
by heterogeneous classification. In International Conference on Intelligent Data
Engineering and Automated Learning, pages 296–305. Springer.

Dhamija, R. and Tygar, J. D. (2005). The battle against phishing: Dynamic security
skins. In Proceedings of the 2005 symposium on Usable privacy and security, pages
77–88. ACM.

DoleÅ¿al, B. R. (2008). Anti-phishing firefox plug-in.

Drake, C. E., Oliver, J. J., and Koontz, E. J. (2004). Anatomy of a phishing email. In
CEAS.

EARTHLINK, I. (2016). Earthlink toolbar.

eBay (2016). Using ebay toolbar’s account guard.

El Faouzi, N.-E., Leung, H., and Kurian, A. (2011). Data fusion in intelligent trans-
portation systems: Progress and challenges–a survey. Information Fusion, 12(1):4–
10.

Engelbrecht, A. P. (2001). A new pruning heuristic based on variance analysis of
sensitivity information. IEEE transactions on Neural Networks, 12(6):1386–1399.

Ferri, C., Hernández-Orallo, J., and Modroiu, R. (2009). An experimental comparison
of performance measures for classification. Pattern Recognition Letters, 30(1):27–38.

Fette, I., Sadeh, N., and Tomasic, A. (2007). Learning to detect phishing emails. In
Proceedings of the 16th international conference on World Wide Web, pages 649–
656. ACM.

Gansterer, W. N. and Pölz, D. (2009). E-mail classification for phishing defense. In
European Conference on Information Retrieval, pages 449–460. Springer.

GeoTrust, I. (2016). Geotrust trustwatcher toolbar.

Gudise, V. G. and Venayagamoorthy, G. K. (2003). Comparison of particle swarm
optimization and backpropagation as training algorithms for neural networks. In
Swarm Intelligence Symposium, 2003. SIS’03. Proceedings of the 2003 IEEE, pages
110–117. IEEE.

- 145 -

Gupta, R. and Shukla, P. K. (2015). Performance analysis of anti-phishing tools
and study of classification data mining algorithms for a novel anti-phishing system.
International Journal of Computer Network and Information Security (IJCNIS),
7(12):70.

Hamid, I. R. A. and Abawajy, J. (2011). Hybrid feature selection for phishing email
detection. In International Conference on Algorithms and Architectures for Parallel
Processing, pages 266–275. Springer.

Han, H. and Qiao, J. (2010). A self-organizing fuzzy neural network based on a
growing-and-pruning algorithm. IEEE Transactions on Fuzzy Systems, 18(6):1129–
1143.

Han, M., Guo, W., and Mu, Y. (2007). A modified rbf neural network in pattern
recognition. In Neural Networks, 2007. IJCNN 2007. International Joint Conference
on, pages 2527–2532. IEEE.

Han, W., Cao, Y., Bertino, E., and Yong, J. (2012). Using automated individual white-
list to protect web digital identities. Expert Systems with Applications, 39(15):11861–
11869.

Herzberg, A. and Margulies, R. (2012). Training johnny to authenticate (safely). IEEE
Security & Privacy, 10(1):37–45.

Hirose, Y., Yamashita, K., and Hijiya, S. (1991). Back-propagation algorithm which
varies the number of hidden units. Neural Networks, 4(1):61–66.

Hsieh, C.-C., Liou, D.-H., and Lee, D. (2010). A real time hand gesture recognition
system using motion history image. In Signal Processing Systems (ICSPS), 2010
2nd International Conference on, volume 2, pages V2–394. IEEE.

Hu, W., Gao, J., Wang, Y., Wu, O., and Maybank, S. (2014). Online adaboost-based
parameterized methods for dynamic distributed network intrusion detection. IEEE
Transactions on Cybernetics, 44(1):66–82.

Huang, H., Zhong, S., and Tan, J. (2009). Browser-side countermeasures for decep-
tive phishing attack. In Information Assurance and Security, 2009. IAS’09. Fifth
International Conference on, volume 1, pages 352–355. IEEE.

Igel, C. and Hüsken, M. (2003). Empirical evaluation of the improved rprop learning
algorithms. Neurocomputing, 50:105–123.

Inomata, A., Rahman, M., Okamoto, T., and Okamoto, E. (2005). A novel mail filter-
ing method against phishing. In Communications, Computers and signal Processing,
2005. PACRIM. 2005 IEEE Pacific Rim Conference on, pages 221–224. IEEE.

Islam, M. M., Sattar, M. A., Amin, M. F., Yao, X., and Murase, K. (2009). A new adap-
tive merging and growing algorithm for designing artificial neural networks. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(3):705–
722.

- 146 -

Islam, R. and Abawajy, J. (2013). A multi-tier phishing detection and filtering ap-
proach. Journal of Network and Computer Applications, 36(1):324–335.

Islaml, M., Shahjahan, M., and Murase, K. (2000). An algorithm for automatic de-
sign of two hidden layered artificial neural networks. In Neural Networks, 2000.
IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference
on, volume 6, pages 467–472. IEEE.

Izhar, M., Shahid, M., and Singh, V. (2013). Network security issues in context of
rsna and firewall. International Journal of Computer Applications, 82(16).

Jakobsson, M. and Myers, S. (2006). Phishing and countermeasures: understanding
the increasing problem of electronic identity theft. John Wiley & Sons.

Jayalakshmi, T. and Santhakumaran, A. (2010). A novel classification method for
diagnosis of diabetes mellitus using artificial neural networks. In Data Storage and
Data Engineering (DSDE), 2010 International Conference on, pages 159–163. IEEE.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning:
A survey. Journal of artificial intelligence research, 4:237–285.

Kang, A., Lee, J. D., Kang, W. M., Barolli, L., and Park, J. H. (2014). Security
considerations for smart phone smishing attacks. In Advances in Computer Science
and its Applications, pages 467–473. Springer.

Kang, J. and Lee, D. (2007). Advanced white list approach for preventing access to
phishing sites. In Convergence Information Technology, 2007. International Con-
ference on, pages 491–496. IEEE.

Kathirvalavakumar, T., Kavitha, K., and Palaniappan, R. (2015). Efficient harmful
email identification using neural network. British Journal of Mathematics & Com-
puter Science, 7(1):58.

Keivani, F. S., Jouzbarkand, M., Khodadadi, M., and Sourkouhi, Z. K. (2012). A
general view on the e-banking. International Proceedings of Economics Development
& Research, 43.

Khonji, M., Iraqi, Y., and Jones, A. (2012). Enhancing phishing e-mail classifiers: a
lexical url analysis approach. International Journal for Information Security Re-
search (IJISR), 2(1/2).

Khonji, M., Iraqi, Y., and Jones, A. (2013). Phishing detection: a literature survey.
IEEE Communications Surveys & Tutorials, 15(4):2091–2121.

Kim, D. W., Yan, P., and Zhang, J. (2015). Detecting fake anti-virus software distri-
bution webpages. Computers & Security, 49:95–106.

Kirlappos, I. and Sasse, M. A. (2012). Security education against phishing: A modest
proposal for a major rethink. IEEE Security & Privacy, 10(2):24–32.

- 147 -

Kobayashi, T. and Okada, H. (2013). The effects of similarities to previous buyers on
trust and intention to buy from e-commerce stores: An experimental study based
on the svs model. In IT Enabled Services, pages 19–38. Springer.

Krombholz, K., Hobel, H., Huber, M., and Weippl, E. (2015). Advanced social engi-
neering attacks. Journal of Information Security and applications, 22:113–122.

Kumaraguru, P., Sheng, S., Acquisti, A., Cranor, L. F., and Hong, J. (2010). Teaching
johnny not to fall for phish. ACM Transactions on Internet Technology (TOIT),
10(2):7.

Kwok, T.-Y. and Yeung, D.-Y. (1997). Constructive algorithms for structure learn-
ing in feedforward neural networks for regression problems. IEEE Transactions on
Neural Networks, 8(3):630–645.

Lastdrager, E. E. (2014). Achieving a consensual definition of phishing based on a
systematic review of the literature. Crime Science, 3(1):9.

Li, L., Helenius, M., and Berki, E. (2012). A usability test of whitelist and blacklist-
based anti-phishing application. In Proceeding of the 16th International Academic
MindTrek Conference, pages 195–202. ACM.

Likarish, P., Jung, E., Dunbar, D., Hansen, T. E., and Hourcade, J. P. (2008). B-apt:
Bayesian anti-phishing toolbar. In Communications, 2008. ICC’08. IEEE Interna-
tional Conference on, pages 1745–1749. IEEE.

Ludermir, T. B., Yamazaki, A., and Zanchettin, C. (2006). An optimization method-
ology for neural network weights and architectures. IEEE Transactions on Neural
Networks, 17(6):1452–1459.

Luo, X. R., Zhang, W., Burd, S., and Seazzu, A. (2013). Investigating phishing
victimization with the heuristic–systematic model: A theoretical framework and an
exploration. Computers & Security, 38:28–38.

Luukka, P. (2011). Feature selection using fuzzy entropy measures with similarity
classifier. Expert Systems with Applications, 38(4):4600–4607.

Ma, L., Ofoghi, B., Watters, P., and Brown, S. (2009). Detecting phishing emails
using hybrid features. In Ubiquitous, Autonomic and Trusted Computing, 2009.
UIC-ATC’09. Symposia and Workshops on, pages 493–497. IEEE.

Maggi, F. (2010). Are the con artists back? a preliminary analysis of modern phone
frauds. In Computer and Information Technology (CIT), 2010 IEEE 10th Interna-
tional Conference on, pages 824–831. IEEE.

Mao, J., Li, P., Li, K., Wei, T., and Liang, Z. (2013). Baitalarm: detecting phishing
sites using similarity in fundamental visual features. In Intelligent Networking and
Collaborative Systems (INCoS), 2013 5th International Conference on, pages 790–
795. IEEE.

- 148 -

Martin, A., Doddington, G., Kamm, T., Ordowski, M., and Przybocki, M. (1997).
The det curve in assessment of detection task performance. Technical report, DTIC
Document.

Mason, J. (2005). The apache spamassassin public corpus.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary struc-
ture of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure,
405(2):442–451.

Maurer, M.-E. (2014). Counteracting phishing through HCI: detecting attacks and
warning users. PhD thesis, München, Ludwig-Maximilians-Universität, Diss., 2014.

Mazher, N., Ashraf, I., and Altaf, A. (2013). Which web browser work best for de-
tecting phishing. In Information & Communication Technologies (ICICT), 2013 5th
International Conference on, pages 1–5. IEEE.

Medvet, E., Kirda, E., and Kruegel, C. (2008). Visual-similarity-based phishing de-
tection. In Proceedings of the 4th international conference on Security and privacy
in communication netowrks, page 22. ACM.

Miyamoto, D., Hazeyama, H., and Kadobayashi, Y. (2008). An evaluation of machine
learning-based methods for detection of phishing sites. In International Conference
on Neural Information Processing, pages 539–546. Springer.

Mohammad, R. M., Thabtah, F., and McCluskey, L. (2014). Predicting phishing web-
sites based on self-structuring neural network. Neural Computing and Applications,
25(2):443–458.

Mohammad, R. M., Thabtah, F., and McCluskey, L. (2015). Tutorial and critical
analysis of phishing websites methods. Computer Science Review, 17:1–24.

Moore, T. and Clayton, R. (2007). Examining the impact of website take-down on
phishing. In Proceedings of the anti-phishing working groups 2nd annual eCrime
researchers summit, pages 1–13. ACM.

Na, S. Y., Kim, H., and Lee, D. H. (2014). Prevention schemes against phishing attacks
on internet banking systems. International Journal of Advances in Soft Computing
& Its Applications, 6(1).

Nazario (2015). Phishing corpus.

Negnevitsky, M. (2005). Artificial intelligence: a guide to intelligent systems. Pearson
Education.

Nguyen, H. H. and Nguyen, D. T. (2016). Machine learning based phishing web sites
detection. In AETA 2015: Recent Advances in Electrical Engineering and Related
Sciences, pages 123–131. Springer.

Nguyen, L. D., Le, D.-N., and Vinh, L. T. (2014). Detecting phishing web pages based
on dom-tree structure and graph matching algorithm. In Proceedings of the Fifth
Symposium on Information and Communication Technology, pages 280–285. ACM.

- 149 -

Olivo, C. K., Santin, A. O., and Oliveira, L. S. (2013). Obtaining the threat model for
e-mail phishing. Applied soft computing, 13(12):4841–4848.

Oong, T. H. and Isa, N. A. M. (2011). Adaptive evolutionary artificial neural networks
for pattern classification. IEEE Transactions on Neural Networks, 22(11):1823–1836.

OpenDNS, L. (2016). Phishtank: An anti-phishing site. Online: https://www. phish-
tank. com.

Pamunuwa, H., Wijesekera, D., and Farkas, C. (2007). An intrusion detection system
for detecting phishing attacks. In Workshop on Secure Data Management, pages
181–192. Springer.

Pandey, M. and Ravi, V. (2012). Detecting phishing e-mails using text and data
mining. In Computational Intelligence & Computing Research (ICCIC), 2012 IEEE
International Conference on, pages 1–6. IEEE.

Parekh, R., Yang, J., and Honavar, V. (2000). Constructive neural-network learn-
ing algorithms for pattern classification. IEEE Transactions on neural networks,
11(2):436–451.

Parmar, B. (2012). Protecting against spear-phishing. Computer Fraud & Security,
2012(1):8–11.

Perez, E. and Rendell, L. A. (2016). Using multidimensional projection to find rela-
tions. In Proc. of the Twelfth International Conference on Machine Learning, pages
447–455.

Ponemon, L. (2015). The cost of phishing & value of employee training. Report,
Ponemon Institute.

Prechelt, L. (2012). Early stopping-but when? In Neural Networks: Tricks of the
Trade, pages 53–67. Springer.

Prechelt, L. et al. (1994). Proben1: A set of neural network benchmark problems and
benchmarking rules.

Puma-Villanueva, W. J., Dos Santos, E. P., and Von Zuben, F. J. (2012). A con-
structive algorithm to synthesize arbitrarily connected feedforward neural networks.
Neurocomputing, 75(1):14–32.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons.

Rader, M. and Rahman, S. (2015). Exploring historical and emerging phishing tech-
niques and mitigating the associated security risks. arXiv preprint arXiv:1512.00082.

Raffetseder, T., Kirda, E., and Kruegel, C. (2007). Building anti-phishing browser
plug-ins: An experience report. In Proceedings of the Third International Workshop
on Software Engineering for Secure Systems, page 6. IEEE Computer Society.

- 150 -

Ramanathan, V. and Wechsler, H. (2012). phishgillnetâĂŤphishing detection method-
ology using probabilistic latent semantic analysis, adaboost, and co-training.
EURASIP Journal on Information Security, 2012(1):1.

Ramesh, R. and Divya, G. (2015). Dynamic security architecture among e-commerce
websites. International Journal of Advanced Computer Research, 5(19):184.

Ramzan, Z. (2010). Phishing attacks and countermeasures. In Handbook of information
and communication security, pages 433–448. Springer.

Resnick, P. (2008). Rfc 5322: Internet message format.

Reust, J. (2006). Case study: Aol instant messenger trace evidence. digital investiga-
tion, 3(4):238–243.

RSA Center, R. A.-F. C. (2013). 2013 a year in review.

Salem, O., Hossain, A., and Kamala, M. (2010). Awareness program and ai based tool
to reduce risk of phishing attacks. In Computer and Information Technology (CIT),
2010 IEEE 10th International Conference on, pages 1418–1423. IEEE.

Schäfer, A. M. (2008). Reinforcement learning with recurrent neural networks.

Seera, M. and Lim, C. P. (2014). A hybrid intelligent system for medical data classi-
fication. Expert Systems with Applications, 41(5):2239–2249.

Sen, S. and Weiss, G. (1999). Learning in multiagent systems. Multiagent systems: A
modern approach to distributed artificial intelligence, pages 259–298.

Sheng, S., Wardman, B., Warner, G., Cranor, L. F., Hong, J., and Zhang, C. (2009).
An empirical analysis of phishing blacklists. In Proceedings of Sixth Conference on
Email and Anti-Spam (CEAS).

Smadi, S., Aslam, N., Zhang, L., Alasem, R., and Hossain, M. (2015). Detection of
phishing emails using data mining algorithms. In Software, Knowledge, Information
Management and Applications (SKIMA), 2015 9th International Conference on,
pages 1–8. IEEE.

Sowmya, B. and Rani, B. S. (2011). Colour image segmentation using fuzzy clustering
techniques and competitive neural network. Applied Soft Computing, 11(3):3170–
3178.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(1):1929–1958.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman, M. L. (2006). Pac model-
free reinforcement learning. In Proceedings of the 23rd international conference on
Machine learning, pages 881–888. ACM.

Sun, T., Pei, H., Pan, Y., Zhou, H., and Zhang, C. (2011). Neural network-based sliding
mode adaptive control for robot manipulators. Neurocomputing, 74(14):2377–2384.

- 151 -

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction,
volume 1. MIT press Cambridge.

Svozil, D., Kvasnicka, V., and Pospichal, J. (1997). Introduction to multi-layer feed-
forward neural networks. Chemometrics and intelligent laboratory systems, 39(1):43–
62.

Tankard, C. (2011). Advanced persistent threats and how to monitor and deter them.
Network security, 2011(8):16–19.

Thakur, K., Qiu, M., Gai, K., and Ali, M. L. (2015). An investigation on cyber security
threats and security models. In Cyber Security and Cloud Computing (CSCloud),
2015 IEEE 2nd International Conference on, pages 307–311. IEEE.

Thiyagarajan, P., Venkatesan, V. P., and Aghila, G. (2010). Anti-phishing technique
using automated challenge response method. In Communication and Computational
Intelligence (INCOCCI), 2010 International Conference on, pages 585–590. IEEE.

Tokic, M. (2010). Adaptive ε-greedy exploration in reinforcement learning based on
value differences. In Annual Conference on Artificial Intelligence, pages 203–210.
Springer.

Toolan, F. and Carthy, J. (2009). Phishing detection using classifier ensembles. In
eCrime Researchers Summit, 2009. eCRIME’09., pages 1–9. IEEE.

Toolan, F. and Carthy, J. (2010). Feature selection for spam and phishing detection.
In eCrime Researchers Summit (eCrime), 2010, pages 1–12. IEEE.

Tsamardinos, I., Rakhshani, A., and Lagani, V. (2014). Performance-estimation prop-
erties of cross-validation-based protocols with simultaneous hyper-parameter opti-
mization. In Hellenic Conference on Artificial Intelligence, pages 1–14. Springer.

UK Cards, F. F. A. (2015). Fraud the facts 2015.

Verma, A. (2013). Effects of phishing on e-commerce with special reference to india.
Interdisciplinary Perspectives on Business Convergence, Computing, and Legality,
page 186.

Wang, J.-H., Wang, H.-Y., Chen, Y.-L., and Liu, C.-M. (2015). A constructive algo-
rithm for unsupervised learning with incremental neural network. Journal of applied
research and technology, 13(2):188–196.

Wickens, T. D. (2002). Elementary signal detection theory. Oxford University Press,
USA.

Woodley, A. E. (2012). Resolving the worldâĂŹs commercial disputes: an integrated
model for e-learning and odr. International Journal of Technology Policy and Law,
1(2):217–233.

Worthy, D. A., Maddox, W. T., and Markman, A. B. (2007). Regulatory fit effects in
a choice task. Psychonomic Bulletin & Review, 14(6):1125–1132.

- 152 -

Yang, S.-H. and Chen, Y.-P. (2012). An evolutionary constructive and pruning algo-
rithm for artificial neural networks and its prediction applications. Neurocomputing,
86:140–149.

Yang, Y., Ault, T., Pierce, T., and Lattimer, C. W. (2000). Improving text catego-
rization methods for event tracking. In Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development in information retrieval, pages
65–72. ACM.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447.

Yao, X. and Liu, Y. (1997). A new evolutionary system for evolving artificial neural
networks. IEEE transactions on neural networks, 8(3):694–713.

Yu, H., Xie, T., Paszczynski, S., and Wilamowski, B. M. (2011). Advantages of radial
basis function networks for dynamic system design. IEEE Transactions on Industrial
Electronics, 58(12):5438–5450.

Zhang, J., Du, Z.-h., and Liu, W. (2007a). A behavior-based detection approach
to mass-mailing host. In 2007 International Conference on Machine Learning and
Cybernetics, volume 4, pages 2140–2144. IEEE.

Zhang, L. and Zhang, B. (1999). A geometrical representation of mcculloch-pitts neural
model and its applications. IEEE Transactions on Neural Networks, 10(4):925–929.

Zhang, Y., Hong, J. I., and Cranor, L. F. (2007b). Cantina: a content-based approach
to detecting phishing web sites. In Proceedings of the 16th international conference
on World Wide Web, pages 639–648. ACM.

Zhang, Y., Xiao, Y., Ghaboosi, K., Zhang, J., and Deng, H. (2012). A survey of cyber
crimes. Security and Communication Networks, 5(4):422–437.

Zhu, W., Zeng, N., Wang, N., et al. (2010). Sensitivity, specificity, accuracy, associated
confidence interval and roc analysis with practical sas implementations. NESUG
proceedings: health care and life sciences, Baltimore, Maryland, pages 1–9.

153

Appendices

- 154 -

Appendix A Code Sample

1 package gnusmail . f i l t e r s ;
2

3 import gnusmail . datasource . Document ;
4 import gnusmail . datasource . mai l connect ion . MailMessage ;
5 import gnusmail . datasource . mai l connect ion . MessageInfo ;
6 import java . u t i l . S t r ingToken ize r ;
7

8 import javax . mail . Message ;
9 import javax . mail . MessagingException ;

10

11 pub l i c f i n a l c l a s s CompareMsgSenderDomain extends S i n g l eA t tF i l t e r {
12

13 @Override
14 protec ted St r ing ge tS ing l eVa lue (Document document)
15 throws MessagingException {
16 St r ing r e s = ”Fal se ” ;
17 i f (document i n s t an c e o f MailMessage) {
18 Message m = ((MailMessage)

document) . getMessage () ;
19 MessageInfo mi = new MessageInfo (m) ;
20 St r ing contentType= mi . getContentType () ;
21 St r ing messageID , messageIDDomain = ”” ;
22 St r ing from , fromDomain = ”” ;
23

24

25

26 from = mi . getFrom () ;
27 messageID = mi . getMessageId () ;
28

29 Str ingToken ize r s t = new Str ingToken ize r (from , ”@
”) ;

30 whi le (s t . hasMoreTokens ()) {
31 fromDomain = s t . nextToken () ;
32 }
33

34 Str ingToken ize r s t2 = new Str ingToken ize r (
messageID , ”@”) ;

35 whi le (s t2 . hasMoreTokens ()) {
36 messageIDDomain = st2 . nextToken () ;
37 }
38 i f (messageIDDomain . conta in s (

fromDomain . toLowerCase ())) {
39 r e s = ”True ” ;
40 }
41 }
42 re turn r e s ;
43 }
44 }

Listing 1: Implementation of CompareMsgSenderDomain

- 155 -

1 f unc t i on r e s u l t = Feature eva lua t i on (input , t a r g e t)
2 t = c l a s s r e g t r e e (input ’ , ta rget ’) ;
3 f eature imp = varimportance (t) ;
4 %Transpose in column
5 f eature imp = featureimp ’ ;
6 featurenumber = length (feature imp) ;
7 %Sh i f t 1 p o s i t i o n to dx
8 f eature imp (: , 2) = feature imp (: , 1) ;
9 f eature imp (1 : end , 1) = 1 : featurenumber ;

10 %Sort f e a t u r e s from the major to the minor .
11 f eature imp = −sor t rows (− feature imp , 2) ;
12 %Calcu la te percentage
13 maximportance = feature imp (1 , 2) ;
14 f eature imp (: , 2) = feature imp (: , 2) / maximportance ∗100 ;
15 FeatureImportanceList = feature imp ;
16 % view (t)
17 [nof , ˜] = s i z e (FeatureImportanceList) ;
18 impor tant f ea ture = [] ;
19 f o r i = 1 : nof
20 i f FeatureImportanceList (i , 2) == 0
21 break ;
22 e l s e
23 impor tant f ea ture = [important f eature , FeatureImportanceList (i , 1)

] ;
24 end
25 end
26 impor tant f ea ture = so r t (impor tant f ea ture) ;
27 r e s u l t = {} ;
28 r e s u l t = { input (important f eature , :) ; impor tant f ea ture } ;
29 end

Listing 2: Implementation of FEaR Algorithm

156

1 [x , xt] = s i z e (ce l l 2mat (net . b (1))) ;
2 net . trainParam . showWindow = f a l s e ;
3 net . trainParam . showCommandLine = f a l s e ;
4 net . d iv ideFcn = ’ d iv iderand ’ ;
5 t r a i n i ng Ind = [] ;
6 t r a i n i ng Ind = t r . t r a in Ind ;
7 t r a i n ing Input = inputs (: , t r a i n i ng Ind) ;
8 t r a in ingTarge t = ta r g e t s (: , t r a i n i ng Ind) ;
9 [xn , x s e t t i n g s] = mapminmax(t r a in ing Input) ;

10 [tn , t s e t t i n g s] = mapminmax(t ra in ingTarge t) ; % SAVE t s e t t i n g s
11 % hidden l ay e r input
12 b1 = ce l l 2mat (net . b (1)) ;
13 IW = ce l l2mat (net .IW(1 , 1)) ;
14 [I , N] = s i z e (xn) ;
15 B1 = b1∗ ones (1 ,N) ;
16 % OUTPUT OF INPUT LAYER FOR THE TRAINING DATASET
17 h idden laye r = tan s i g (B1+IW∗xn) ; % SAVE h
18 LW = ce l l2mat (net .LW(2 ,1)) ; % SAVE LW
19 h idden laye r = hidden layer ’ ;
20 % compute the s i g n i f i c a n t o f hidden neuron
21 Sig h idden = std (h idden laye r) ;
22 Sig h idden = Sig h idden / (epoch counter ˆ (1/3)) ;
23 [I , N] = s i z e (S ig h idden) ;
24 f o r i = 1 : N
25 i f S ig h idden (1 , i) < 0 .1
26 Sig h idden (2 , i) = 1 ;
27 e l s e
28 Sig h idden (2 , i) = 0 ;
29 end
30 end
31 % Measure the c o r r e l a t i o n between hidden neuron based on the output o f

the hidden neuron f o r the t r a i n i n g datase t
32 c o r r c o f f = c o r r c o e f (h idden laye r) ;
33 [I1 , N1] = s i z e (c o r r c o f f) ;
34 f o r i = 1 : N1
35 c o r r c o f f (i , i) = 0 ;
36 end
37 % merg l e a s t s i g n i n f i c a n t h iddin neuron with t h i e r most c o r r e l a t e d one
38 % Determine the neuros that w i l l be merged
39 M1 = 0 ;
40 In = 0 ;
41 f o r i = 1 : N
42 i f S ig h idden (2 , i) == 1
43 [M, index] = max(c o r r c o f f (: , i)) ;
44 i f M > M1
45 M1 = M;
46 In = index ;
47 end
48 end
49 end
50 % Explore the merging proce s s
51 % the merge
52 % input to hidden l ay e r
53 i f and (In ˜= 0 , h > 1)
54 inputWaight = IW (i , :) + IW (In , :) ;
55 b1 = b1 ’ ;

157

56 ba i s = (b1 (i) + b1 (In)) /2 ;
57 i f i < In
58 IW (i , :) = [] ;
59 IW (In − 1 , :) = [] ;
60 b1 (i) = [] ;
61 b1 (In − 1) = [] ;
62 e l s e
63 IW (In , :) = [] ;
64 IW (i − 1 , :) = [] ;
65 b1 (In) = [] ;
66 b1 (i − 1) = [] ;
67 end
68 IW = [IW; inputWaight] ;
69 b1 = [b1 ba i s] ;
70 b1 = b1 ’ ;
71 % output from hidden l ay e r
72 LW = ce l l2mat (net .LW(2 ,1)) ;
73 outputWeight = (LW (: , i) + LW(: , In)) . / 2 ;
74 i f i < In
75 LW (: , i) = [] ;
76 LW (: , In − 1) = [] ;
77 e l s e
78 LW (: , In) = [] ;
79 LW (: , i − 1) = [] ;
80 end
81 LW = [LW outputWeight] ;
82 % Create the modi f i ed neura l network
83

84 % Fi r s t l a y e r
85 [n ,m] = s i z e (b1) ;
86 l a y e r 1 b a i s = mat2ce l l (b1 , [n] , [m]) ;
87 [n ,m] = s i z e (IW) ;
88 l aye r1 we igh t = mat2ce l l (IW, [n] , [m]) ;
89

90 % Second l ay e r
91 l a y e r 2 b a i s = net . b (2) ;
92 [n ,m] = s i z e (LW) ;
93 l aye r2 we igh t = mat2ce l l (LW, [n] , [m]) ;
94

95 % % Third l ay e r
96 [h merg , ˜] = s i z e (ce l l 2mat (net . b (1))) ;
97 h merg = h merg − 1 ;
98 adapt net merg = patte rnnet (h merg) ;
99 adapt net merg . trainParam . goa l = 1e−3;

100 adapt net merg . tra inFcn = ’ t r a i n rp ’ ;
101 adapt net merg . trainParam . max fa i l = 6 ;
102 adapt net merg . trainParam . epochs = epoch counter ;
103 adapt net merg . div ideFcn = ’ d iv iderand ’ ; % Divide data randomly
104 adapt net merg . divideParam . t ra inRat i o = 70/100;
105 adapt net merg . divideParam . va lRat io = 15/100;
106 adapt net merg . divideParam . t e s tRa t i o = 15/100;
107 adapt net merg . trainParam . showWindow = f a l s e ;
108 adapt net merg . trainParam . showCommandLine = f a l s e ;
109 adapt net merg . trainParam . epochs = 1 ;
110 [adapt net merg , t r1] = t r a i n (adapt net merg , inputs , t a r g e t s) ;
111 adapt net merg . trainParam . epochs = epoch counter ;

158

112 adapt net merg . performFcn = ’mse ’ ;
113 adapt net merg = con f i gu r e (adapt net merg , inputs , t a r g e t s) ;
114 adapt net merg .IW(1 ,1) = laye r1 we igh t ;
115 adapt net merg . b (1) = l a y e r 1 b a i s ;
116 adapt net merg .LW(2 ,1) = laye r2 we igh t ;
117 adapt net merg . b (2) = l a y e r 2 b a i s ;
118

119 va l i da t i on Ind = [] ;
120 va l i da t i on Ind = tr1 . va l Ind ;
121 va l i da t i on Input = inputs (: , v a l i da t i on Ind) ;
122 va l i da t i onTarge t = ta r g e t s (: , v a l i d a t i on Ind) ;
123 va l idat ionOutput = adapt net merg (va l i da t i on Input) ;
124 % Sequre Error Percentage
125 sum = 0 ;
126 [r , numberOfExample] = s i z e (va l idat ionOutput) ;
127 f o r i 2 = 1 : 2
128 f o r i = 1 : numberOfExample
129 sum = sum + (va l ida t i onTarge t (i2 , i) − va l idat ionOutput (i2 , i))

. ˆ 2 ;
130 end
131 end
132

133 merg sep = 100 ∗ sum ∗(max(va l idat ionOutput (:)) − min(
va l idat ionOutput (:))) /(2∗numberOfExample) ;

134 SEP = [SEP; merg sep] ;
135

136 y = adapt net merg (inputs) ;
137 merg mse error = mse (adapt net merg , ta rge t s , y) ;
138

139 R(cu r r en t s t a t e , 2) = 1/merg mse error ;
140 e l s e
141 R(cu r r en t s t a t e , 2) = − i n f ;
142

143 end
144

145 %
∗∗∗

146 %
147 %
148 % Expore Neuron add i t i on proce s s
149 % Neuron add i t i on
150 % Take the avearge weight and ba i s
151 addWeight layer1 = ce l l 2mat (net .IW(1 , 1)) ;
152 addBai s layer1 = ce l l 2mat (net . b (1)) ;
153 addWeight layer2 = ce l l 2mat (net .LW(2 ,1)) ;
154 addWeight layer1 = [addWeight layer1 ; mean(addWeight layer1)] ;
155 addBai s layer1 = [addBai s layer1 ; mean(addBai s layer1)] ;
156 addWeight layer2 = [addWeight layer2 mean(addWeight layer2 . ’) ’] ;
157 addBai s layer2 = net . b (2) ;
158 [n ,m] = s i z e (addWeight layer1) ;
159 addWeight layer1 = mat2ce l l (addWeight layer1 , [n] , [m]) ;
160 [n ,m] = s i z e (addBai s layer1) ;
161 addBai s layer1 = mat2ce l l (addBais layer1 , [n] , [m]) ;
162 [n ,m] = s i z e (addWeight layer2) ;
163 addWeight layer2 = mat2ce l l (addWeight layer2 , [n] , [m]) ;
164 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

159

165 [h add p] = s i z e (ce l l 2mat (net . b (1))) ;
166 h add = h add + 1 ;
167 adapt net add = patte rnnet (h add) ;
168 adapt net add . trainParam . goa l = 1e−3;
169 adapt net add . tra inFcn = ’ t r a i nb r ’ ;
170 adapt net add . trainParam . max fa i l = 6 ;
171 adapt net add . div ideFcn = ’ d iv iderand ’ ; % Divide data randomly
172 adapt net add . divideParam . t ra inRat i o = 70/100;
173 adapt net add . divideParam . va lRat io = 15/100;
174 adapt net add . divideParam . t e s tRat i o = 15/100;
175

176 adapt net add . trainParam . showWindow = f a l s e ;
177 adapt net add . trainParam . showCommandLine = f a l s e ;
178 adapt net add . performFcn = ’mse ’ ;
179 adapt net add . trainParam . epochs = 1 ;
180 [adapt net add , t r2] = t r a i n (adapt net add , inputs , t a r g e t s) ;
181 % Set wait and ba i s o f the new neura l network
182 adapt net add .IW(1 ,1) = addWeight layer1 ;
183 adapt net add . b (1) = addBai s layer1 ;
184 adapt net add .LW(2 ,1) = addWeight layer2 ;
185 adapt net add . b (2) = addBai s layer2 ;
186 adapt net add . trainParam . epochs = epoch counter ;
187 va l i da t i on Ind = [] ;
188 va l i da t i on Ind = tr2 . va l Ind ;
189 va l i da t i on Input = inputs (: , v a l i da t i on Ind) ;
190 va l i da t i onTarge t = ta r g e t s (: , v a l i d a t i on Ind) ;
191 va l idat ionOutput = adapt net add (va l i da t i on Input) ;
192 % Sequre Error Percentage
193 sum = 0 ;
194 [˜ , numberOfExample] = s i z e (va l idat ionOutput) ;
195 f o r i 2 = 1 : 2
196 f o r i = 1 : numberOfExample
197 sum = sum + (va l ida t i onTarge t (i2 , i) − va l idat ionOutput (i2 , i)) . ˆ 2 ;
198 end
199 end
200

201 add sep = 100 ∗ sum ∗(max(va l idat ionOutput (:)) − min(va l idat ionOutput (:))
) /(2∗numberOfExample) ;

202 SEP = [SEP; r e t r a i n s e p] ;
203 y = adapt net add (inputs) ;
204 add mse error = mse (adapt net add , ta rge t s , y) ;
205 R(cu r r en t s t a t e , 3) = 1/ add mse error ;
206 %

∗∗∗
207 % add new neuron and r e l e a r n neura l network
208

209 % new random NN
210 %
211 %
212 %

∗∗

213 rng (’ s h u f f l e ’) ;
214

215 h1 = (40−5) .∗ rand + 5 ;
216 h1 = f i x (h1) ;

160

217 new net = patte rnnet (h1) ;
218 new net . trainParam . goa l = 1e−3;
219 new net . tra inFcn = ’ t r a i nb r ’ ;
220 new net . d iv ideFcn = ’ d iv iderand ’ ;
221 new net . trainParam . epochs=epoch counter ;
222 new net . divideParam . t ra inRat i o = 70/100;
223 new net . divideParam . va lRat io = 15/100;
224 new net . divideParam . t e s tRat i o = 15/100;
225 new net . trainParam . showWindow = f a l s e ;
226 new net . trainParam . showCommandLine = f a l s e ;
227 new net . trainParam . max fa i l = 6 ;
228 new net . performFcn = ’mse ’ ;
229 new net = con f i gu r e (new net , inputs , t a r g e t s) ;
230 new net = i n i t (new net) ;
231 [new net , t r3] = t r a i n (new net , inputs , t a r g e t s) ;
232 y = new net (inputs) ;
233 new mse error = mse (new net , t a rge t s , y) ;
234 va l i da t i on Ind = [] ;
235 va l i da t i on Ind = tr3 . va l Ind ;
236 va l i da t i on Input = inputs (: , v a l i da t i on Ind) ;
237 va l i da t i onTarge t = ta r g e t s (: , v a l i d a t i on Ind) ;
238 va l idat ionOutput = new net (va l i da t i on Input) ;
239 % Sequre Error Percentage
240 sum = 0 ;
241 [r , numberOfExample] = s i z e (va l idat ionOutput) ;
242 f o r i 2 = 1 : 2
243 f o r i = 1 : numberOfExample
244 sum = sum + (va l ida t i onTarge t (i2 , i) − va l idat ionOutput (i2 , i)) . ˆ 2 ;
245 end
246 end
247

248 new sep = 100 ∗ sum ∗(max(va l idat ionOutput (:)) − min(va l idat ionOutput (:))
) /(2∗numberOfExample) ;

249 SEP = [SEP; new sep] ;
250 R(cu r r en t s t a t e , 4) = 1/ new mse error ;

Listing 3: Bart of the implementation of RL-agent that explore a list of actions

161

Appendix B Publications

Portions of the work within this thesis have been documented in the following publi-

cations:

JOURNAL

• Smadi, S., Aslam, N., & Zhang, L. Detection of Online Phishing Email using

Dynamic Evolving Neural Network Based on Reinforcement Learning, submitted

to Decision Support Systems.

CONFERENCE

• Smadi, S., Aslam, N., Zhang, L., Alasem, R., & Hossain, M. A. (2015, 15-17

Dec. 2015). Detection of phishing emails using data mining algorithms Paper

presented at the 2015 9th International Conference on Software, Knowledge,

Information Management and Applications (SKIMA).

- 162 -

	Introduction
	Introduction
	Research Motivation
	Research Problem
	Research Aims and Objectives
	Research Contribution
	Pre-processing algorithm
	Feature Evaluation and Reduction algorithm
	Dynamic Evolving Neural Network using Reinforcement Learning
	Phishing Email Detection System

	Thesis Outline

	BACKGROUND INFORMATION AND LITERATURE REVIEW
	Introduction
	Phishing - Definition, Lifecycle and Methods
	Definitions related to phishing attacks
	Phishing attack lifecycle
	Phishing attack methods

	History of Phishing Attacks
	Origin of the word phishing
	First fishing attack registered
	First phishing attack description
	The evolution of phishing

	Anti-Phishing Technology
	Non-technical anti-phishing solutions
	Technical anti-phishing solutions

	Anti-Phishing Detection Methods
	Security toolbars
	Black- and white-lists
	White-lists
	Black-lists
	Virus scanners and firewalls
	Heuristic solutions

	Zero-Day Phishing Attacks
	Summary

	PRE-PROCESSING AND FEATURE EXTRACTION
	Introduction
	Main Component of Emails
	Pre-processing
	Email header
	URLs
	HTML
	Text

	Feature Extraction
	Feature Evaluation and Reduction (FEaR)
	Offline Phishing Email Detection System
	Experimental Results and Discussion
	Dataset
	Technical terms in detection
	Feature selection using the FEaR algorithm
	Experimental setup
	Comparison of the performance of different classification algorithms
	Results and discussion
	Comparative analysis
	Other finding

	Summary and Conclusion

	DYNAMIC EVOLVING NEURAL NETWORK USING REINFORCEMENT LEARNING
	Introduction
	Artificial Neural Network
	Neural Network Training
	Static neural network
	Dynamic neural network

	Common Techniques used to Build Neural Networks
	constructive approach
	pruning approach
	Constructive-pruning approach
	Evolution approach

	Reinforcement Learning
	Reinforcement learning methods
	Reinforcement learning problem
	Markov decision process
	Q-Learning and generalization

	Dynamic Evolving Neural Network using Reinforcement Learning
	Exploration Versus Exploitation
	Experimental Results and Discussion
	Experimental results
	Comparative analysis

	Efficiency analysis
	Summary and Conclusion

	ONLINE PHISHING EMAIL DETECTION FRAMEWORK
	Introduction
	Zero-Day Phishing Attack
	Proposed Framework for Zero-Day Phishing Attack Detection
	Online system model
	RL-Agent algorithm

	Experimental Results and Discussion
	Dataset
	Evaluation metrics
	DENNuRL
	Online phishing email detection system
	Comparative analysis
	Implementation and execution time

	Efficiency Analysis
	Summary and Conclusion

	CONCLUSION AND FUTURE WORK
	Summary of This Thesis
	Research Contributions
	Difficulties and Solutions
	Future Work

	Bibliography
	Appendices
	Appendix A Code Sample
	Appendix B Publications

