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Introduction

With high demands on reliability, safety, and availability 
in industrial automation systems, fault-tolerant control 
(FTC) has been an important research topic during the last 
four decades. An early holistic view of FTC was given in 
Blanke et  al.,1 and recent surveys and overviews were 
documented in Gao et  al.,2 Yu and Jiang,3 Zhang and 
Jiang,4 and Yin et  al.5 FTC techniques are divided into 
passive FTC and active FTC. Compared with the passive 
FTC, the capabilities of which diminish as the number of 
fault scenarios increases, the active FTC is more flexible 
to deal with different types of faults.6 Fault diagnosis 
methods can be categorized into model-, signal-, and 
knowledge-based methods.2 As a possible solution to 
ensure safe and reliable operation of the system, the 
model-based fault detection and isolation (FDI) and FTC 
techniques have achieved fruitful results.7–12 The sliding 
mode control,8 adaptive decentralized control,9 and 
coprime factorization techniques10 have been applied suc-
cessfully. Youla parameterization–based FTC was devel-
oped in Ding et al.11 and Yin et al.12 to solve a nonlinear 
system.

Modern automation industries enable the availability of a 
large amount of historical data. As a result, data-driven mod-
eling, diagnosis, and FTC have become a hot research topic. 
Data can be used for learning to extract the knowledge base 

such as using fuzzy approximation,13 neural network (NN)-
based methods,14 K-clustering,15 and support vector machines 
(SVM).16,17 Moreover, fault feature can also be exploited 
from the collected data, such as using principal component 
analysis (PCA),18,19 empirical mode decomposition 
(EMD),20,21 and so forth.22–25 It is the performance indicators 
(PIs) that are very important in the industrial process. Both 
sensors and control system will target on the plant to obtain 
the benefits of maximization by optimizing the performance 
indicator within the scope of safety. FTC is a good alterna-
tive that has the capability of approaching to performance 
indicator without any fault by adjusting the system variables. 
In Yin et  al.,12 a gradient-based optimization method was 
given to optimize the system performance by means of dis-
turbance rejection. In Macgregor and Cinar,22 a recursive 
total principle component regression (R-TPCR)-based 
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design and implementation approach was proposed for effi-
cient data-driven FTC and optimization.

Strongly motivated by keeping the performance indicator 
fault free, it is of interest to seek an FTC approach in order to 
preserve the normal performance indicator under all kinds of 
unexpected fault scenarios. The performance indicator with-
out any fault is a reflection of the system’s real ability and 
easy to be gained from the obtained data. However, it 
becomes a challenge in the case of fault because the unex-
pected fault has changed the maps of system states and made 
the original controller unavailable; meanwhile, there are not 
enough valid data to develop an FTC controller for an early 
fault. Reinforcement learning provides an inspiration to 
solve the above problem. Reinforcement learning is about 
learning from the interaction on how to behave in order to 
achieve a goal.26–28 The reinforcement learning agent and its 
environment interact over a sequence of discrete time steps 
and gain a series of optimal actions finally. If an unexpected 
fault is considered as the environment, and the performance 
of the system under fault-free condition is regarded as the 
desired goal, the controller can be designed by reinforcement 
learning to achieve the optimal behavior. In this paper, a 
novel structure of FTC is proposed based on reinforcement 
learning, and the advantages are given as follows:

1.	 This approach is a data-driven method without 
knowing the mechanism model of plant;

2.	 This approach is an online method which is suitable 
for unexpected faults without prior fault 
information;

3.	 The controller has the ability to take optimal actions 
to mitigate the adverse influences from faults.

Problem description and 
preliminaries

Problem description

Suppose a time series of the plant { ( ), , , , }x k kp = … ∞1 2  with 
inputs { ( ), , , , }r k kp = … ∞1 2  and outputs { ( ), , , , }y k kp = … ∞1 2  
where the dynamics of the plant is stable using a pre-
designed controller. In addition, the system states are 
assumed to be measurable. We use a descriptive definition 
instead of mathematical expression in order to highlight the 
data of time series without considering any additional 
parameters.

The addressed FTC system is composed of three units: 
the plant, the reference model, and the fault-tolerant con-
troller. The plant works well under fault-free condition with 
a pre-designed controller, which is represented as a form of 
time series of the data { ( ), , , , }x k kp = … ∞1 2 . A reference 
model is used to provide information of states under fault-
free condition, and the reference model is built based on the 
healthy data series that will work parallel to the plant, and 
its dynamic performance is consistent with that of the plant 
under fault-free scenario. The FTC will produce a control 
variable based on the real-time system states of the plant 
and the reference model. Their relations will be discussed 
below.

Reference model

For a system, the reference model can be expressed in the 
form of

	
x k f x km m+( ) = ( )( )1 � (1)

where x x x xm m m m n
T n= … ∈( , , , ), , ,1 2   is the state vector of 

the reference model and f ( )⋅  is the state transition function 
obtained from the time series of the plant.

There are various methods for system identification 
such as least square method (LSM), maximum likelihood 
method (MLM), and NN. A reference model can be 
obtained using the data of the time series of the plant under 
fault-free condition, as depicted in Figure 1.

Performance index

The stage costs J p  of the plant are given as

	
J x k Mx k r k Nr kp p

T
p p

T
p

k

= ( ) ( ) + ( ) ( ) 
=

∞

∑
1

� (2)

where xp
n∈  and rp

m∈  are the state vector and the 
reference input of the plant, respectively, and M  and N  
are the selected weighted matrices.

The stage costs Jm  of the reference model are given as

	
J x k Mx k r k Nr km m

T
m

T

k

= ( ) ( ) + ( ) ( ) 
=

∞

∑
1

� (3)

where xm
n∈  and rm

m∈  are the state vector and the 
reference input of the reference model, respectively.

Define the performance index V x xp m( , )  as the error in 
stage costs between the plant and the reference model, that 
is, V x x J Jp m p m( , ) = − . It is the goal of reinforcement 
learning sub-section D. Notice that r rp = , so we get the 
performance index V x xp m( , )  of stage

	
V x x x k Mx k x k Mx kp m p

T
p m

T
m

k

,( ) = ( ) ( ) − ( ) ( ) 
=

∞

∑
1

� (4)

Figure 1.  Obtaining the identification for the reference model.
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and the performance index V x xk p m( ),  of stage from time k

	
V x x x i Mx i x i Mx ik p m p

T
p m

T
m

i k

,( ) = ( ) ( ) − ( ) ( ) 
=

∞

∑ � (5)

It is obvious when x k x k V x xp m p m( ) ( ), ( , )= = 0 , that is, 
the reference model and the real-time process have the 
same performance index under fault-free condition.

Remark 1
1.	 The stage costs J p  of the plant should be consistent 

with those of the reference model Jm  under fault-
free condition.

2.	 Under faulty condition, one can regulate the real-
time states/outputs by tracking the reference model 
performance using learning algorithms.

Reinforcement learning method

In fact, it seems that we know little about real-time dynam-
ics after the fault occurs. The traditional controllers often 
struggle to provide an effective control due to the lack of 
information on real-time dynamics. The reinforcement 
learning that is motivated by statistics, psychology, neuro-
science, and computer science is a powerful tool to deal 
with uncertain surrounding by interacting with its environ-
ment. As in Bhatnagar and Babu,29 Watkins and Dayan,30 
Sutton and Barto,31 Bradtke and Ydstie,32 and Ngia and 
Sjoberg,33 the basic theory and methods of the reinforce-
ment learning are simply introduced here. The basic frame 
of reinforcement learning is shown in Figure 2.26

An agent will get the evaluation of good or bad behavior 
on the environment and learn through experience without a 
teacher who teaches how to do. In each training session, 
named episode, the agent explores the environment by 
changing action u k( )  and receives the state x k( )+1  and 
the immediate cost R x k u kk+ +1 1( )( ), ( ) . The purpose of the 
training is to enhance the ‘brain’ of the agent. The goal of 
an agent is to minimize the immediate cost Rii k=

∞∑  which 
is received in the long run.

Consider a Markov decision process MDP ( , , , )X U P R , 
where   is a set of states and   is a set of actions or con-
trols. The transition probabilities P X U X: [ , ]× × → 0 1  rep-
resent for each state x∈  and action u∈  the conditional 
probability P x k x k u k x k x k u k( ( ), ( ), ( )) { ( ) | ( ), ( )}+ = +1 1Pr  
of transitioning to state x( )k + ∈1   where the Markov 
decision process MDP is in state x k( )  and takes action 

u k( ) . The cost function R X U X R: × × →  is the 
expected immediate cost R x k x k u kk ( )( ), ( ), ( )+1  paid after 
transition to state x k( )+ ∈1  , given that the Markov deci-
sion process MDP starts in state x k( )∈  and takes action 
u k( )∈ .

The value of a policy Vk
p ( )( )x k  is defined as the condi-

tional expected value of the future cost 
E R Ri k

ii k

k T

iπ γ{ },−
=

+∑ ∈  when starting in state x k( )  at 
time k  and following policy p( , )x u  thereafter
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where T P x k x k u k= ∞ +, ( ( ), ( ), ( ))1  represents the transi-
tion probability from x k( )  to x k( )+1  under an action 
u k( ) . For all the x k( )+1  starting in state x k( )  at time k , 
the whole transition probability following an action u k( )  is 

P x k x k u k
x k

( ( ), ( ), ( ))
( )

+
+∑ 1
1

. The term π ( , )
( )

x u
x k+∑ 1

 
P(x(k+1), x(k), u(k)) is defined as the transition probability 
following policy p( , )x u . For all the actions u k( ) , the 
value function V x kk

p ( )( )  for the policy p( ( ), ( ))x k u k  satis-
fies the Bellman equation

V x k
x k

u k
P x k x k u k

R

k
u x k

k
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Therefore, the optimal actions can be gained by alternat-
ing the value iteration (equation (8)) and policy iteration 
(equation (9)) according to the following two equations

V x k
x k

u k
P x k x k u k

R

k k
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where γ  is a discount factor with 0 1< <γ  in order to be 
convergent.

Figure 2.  A basic frame of reinforcement learning.
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To a deterministic system π ku x k
x u( ),∑ ∑ +( )1  P(x(k+1), 

x(k), u(k)) = 1, the formulae (8) and (9) are written as

V x k R x k x k u k V x kk k k( )( ) = +( ) ( ) ( )( ) + +( )( )1 1, , γ � (10)

π

γ
π

k k

k

x k u k R x k x k u k

V x k

( ) ( )( ) = +( ) ( ) ( )( )
+ +( )( )

, argmin , ,1

1
� (11)

There is only state information in formulae (10) and 
(11). One can obtain the optimal action only using the cur-
rent state, but without knowing the system dynamics.

S Bradtke and BE Ydstie32 presented the stability and 
convergence results for dynamic programming–based rein-
forcement learning applied to linear quadratic regulation. 
Here, reinforcement learning is used to design a tolerant 
controller for systems subjected to faults.

Reinforcement learning–based FTC 
design

Reinforcement learning–based FTC

The first thing to apply in reinforcement learning is to 
determine the cost function weight  at time k . Here one 
can define the cost function R x kk ( )( )D  at time k  as the 
quadratic form of x k x k x kp m∆ ( ) ( ) ( )= −

	
R x k x k Mx kk

T
∆ ∆ ∆( )( ) = ( ) ( ) � (12)

The function V x kk ( )( )D  after time k  is defined as

	
V x R x ik

i k
i

i k
∆ ∆( ) = ( )( )−

=

∞

∑γ � (13)

where γ  is a discount factor, 0 1< <γ .
As a result, we have

	
V x k R x k V x kk k k∆ ∆ ∆( )( ) = ( )( ) + +( )( )+γ 1 1 � (14)

Following the Bellman optimal equation,29–31 the opti-
mal value function V x k* ( )( )D  is obtained according to the 
following formula

V x k R x k u k V x k
u k k k

* min ,∆ ∆ ∆( )( ) = ( ) ( )( ) + +( )( ){ }
( ) +γ 1 1  (15)

where V * ( )⋅  and u k( )  are the optimal value function and 
the control variable at time k, respectively. R x kk ( )( )D  in 
equation (14) is denoted as R x k u kk ( )( ), ( )D  in equation 
(15) in order to highlight the effect of u k( )  because 
R x kk ( )( )D  can be adjusted by changing u k( ) .

It is noticed that equation (15) cannot be used online 
because one cannot know the cost function of the future 
time, that is, V x kk+ +1 1( )( )∆ . A Q-algorithm29 provides an 

effective solution by substituting function Q in equation 
(15).

The evaluation function Q x k u kk ( )( ), ( )D  instead of 
V x kk ( )( )D  is defined as the minimum discounted cumula-
tive reward that can be achieved from state x∆(k) and u k( )  
as the first action

	

Q x k u k R x k u k

V x k u k

k k∆ ∆

∆

( ) ( )( ) = ( ) ( )( )
+ ( ) ( )( )( )

, ,

,*

def

δ
� (16)

where V x k u k* ( )( ( ), ( ))δ ∆  is the optimal value function of 
V x kk+ +1 1( ( ))∆  and δ ( ( ), ( ))x k u k∆  expresses the state 
x k∆ +( )1  that comes from x∆(k) and u k( ) , that is, 
x k x k u k∆ ∆( ) ( ( ), ( ))+ =1 δ . We denote δ ( ( ), ( ))x k u k∆  in 
order to stress the relation between x k∆ ( )+1  and x∆(k) 
and u k( ) .

If Q x k u kk ( )( ), ( )D  achieves its optimization under some 
action u k( ) , the function V x k u kk ( ( ), ( ))D  can also achieve 
its optimization with the same action. As a result, 
V x k u kk ( )( ), ( )D  may be replaced by Q x k u kk ( )( ), ( )D . This 
implicates that the optimal action can be obtained only by 
the evaluation function Q x k u kk ( )( ), ( )D  without using the 
value function V x k u kk ( )( ), ( )D .

Denote the optimum of Q x k u kk ( )( ), ( )D  as 
Q x k u kk
* ( )( ), ( )D ; therefore, one has

	

Q x k u k R x k u k

V x k u k

k u k k
*

*

, min ,

,

[
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∆ ∆
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( ) ( )( ) = ( ) ( )( )
+ ( ) ( )( )( )
=

( )

δ

RR x k u k

V x k

V x k u k

k

k
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,

,

∆
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∆

( ) ( )( )
+ +( )( )

= ( ) ( )( )
1

� (17)

where the superscript * expresses the optimal values.
It is seen from formula (17) that Q x k u kk

* ( )( ), ( )D  is 
equivalent to V x k u kk

* ( )( ), ( )D  with the same action. 
Therefore, the value iteration formula (10) of a determinis-
tic system is transformed to a form of Q according to x∆(k) 
and a fixed u k( )

	

Q x k u k R x k u k

Q x k u k

k k

k

∆ ∆

∆

( ) ( )( ) = ( ) ( )( )
+ +( ) +( )( )+

, ,

,γ 1 1 1
� (18)

The policy iteration formula (11) of a deterministic sys-
tem is transformed to formula (19)

	
π k

u k
kx k u k Q x k u k∆ ∆( ) ( )( ) = ( ) ( )( )

( )
, argmin , � (19)

The optimal action π k x k u k* ( )( ), ( )∆  can be solved by 
alternating with two procedures: policy evaluation and pol-
icy improvement.

The policy evaluation is to find the optimal value in the 
case of current policy pk x k u k( )( ), ( )  by iteration. Select an 
initial policy p0 ( )( ), ( )x k u k  randomly. Denote j as the 
number of iterations and starting with j = 0, iterate on j 
according to formula (20) until convergence
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Q x k u k R x k u k

Q x k

k
j

k

u k k
j

+( )

+( )
( )

( ) ( )( ) = ( ) ( )( )
+ +( )

1

1
1

∆ ∆

∆

, ,

min ,γ uu k +( )( )1 � (20)

The policy improvement is to find another policy that is 
better, or at least no worse according to equation (19) by 
greedy method.

The alternation procedures are given as follows31

π π π ππ π0 1 20 1
→ → → → → → →
E I E I E I E

Q Q Q

* *

where E and I are the policy evaluation and policy improve-
ment, p p0 0

and Q  are the initial policy and Q value, 
p pj Q

j
and  are the policy and Q value at the iteration time j, 

and p* and Q* are the end policy and Q value, respectively.
It is important for the iteration to be convergent, and the 

convergence of the Q learning for deterministic Markov 
decision process (MDP) is given in Sutton and Barto,31 
shown as follows:

Lemma 1.  Consider a Q learning agent in a deterministic 
Markov decision process MDP with bounded reward 
( ( ), ( )) ( ), ( )( )∀ ≤x k u k R x k u k ck .31 The Q learning agent 
uses the training rule of the equation

Q x k u k R x k u k

Q x k u k

k k

u k k

( ) ( )( ) ← ( ) ( )( )
+ +( ) +( )( )

+( ) +

, ,

min ,γ
1 1 1 1

initializes its Q x k u kk ( )( ), ( )  to arbitrary finite values, and 
uses a discount factor γ  such that 0 1≤ <γ . Let 
Q x k u kk

n( ) ( ( ), ( ))  denote the agent’s hypothesis 
Q x k u kk ( )( ), ( )  following the nth update. If each state–
action pair is visited infinitely often, then Q x k u kk

n( ) ( )( ), ( )  
converges to Q x k u kk ( )( ), ( )  as n→∞ , for all x k u k( ), ( ) .

Remark 2.  Lemma 1 provides a guarantee on convergence 
of reinforcement learning–based FTC. Using policy itera-
tion which includes alternation procedures of policy evalu-
ation and policy improvement, the Q learning agent will 
finally converge to the steady state and control π*(x(k), 
u(k)) can be obtained readily.

Performance index compensator

The fault-tolerant reinforcement learning-based (RL) con-
troller π*(x(k), u(k)) has the capability of approaching to 
healthy performance index within its ranges. If the reinforce-
ment learning-based controller (RLC) cannot achieve the 
goal of performance index, for instance, due to the actuator 
saturation, the compensator will enhance the FTC perfor-
mance. The schematic block diagram with compensator is 
depicted in Figure 3.

The reference model works parallel to the plant unit and 
yields the healthy state variable x km ( )  that is used to get 
the stage costs Jm  under fault-free condition. The state 
variable x kp ( )  of the plant is used to get the stage costs 
J p  which include the fault and fault-free cases. The com-
pensator is designed according to the error between J p  
and Jm . The plant prevents its stage costs J p  from increas-
ing by adjusting the set signal r to rp  via the compensator 
output rc .

Denote by ∆J the error between the stage costs J p  from 
the plant and the stage costs Jm  from the reference model. 
One has

	

∆J J J

x k Mx k r k Nr k
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p p
T
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= ( ) ( ) + ( ) ( )( )

− ( ) ( ) +
=

∞

∑
1

(( ) ( )( )
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∞
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k 1

� (21)

From Figure 3, one can have

	
r r rp c= − � (22)

Substituting equation (22) into equation (21), one has
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Substituting x k x k x kp m∆ ( ) ( ) ( )= −  into equation (23) 
yields

	
∆ ∆ ∆J x k Mx k r k Nr kT

c
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c
k

= ( ) ( ) − ( ) ( )( )
=

∞

∑
1

� (24)

Figure 3.  The schematic block diagram with compensator.
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For an online system, what we focus on is the error ∆J 
(k) of the performance index at every sampling time k

	
∆ ∆ ∆J k x k Mx k r k Nr kT

c
T

c( ) = ( ) ( ) − ( ) ( ) � (25)

Letting ∆J k( ) = 0 , one has

	
r k Nr k x k Mx kc
T

c
T( ) ( ) = ( ) ( )∆ ∆ � (26)

There exists a nonsingular matrix W m∈  such that

	
W NW diag m

− = = …( )1
1 2Λ λ λ λ, , , � (27)

where Λ  is a diagonal matrix and λ λ λ1 2, , , m  are the 
eigenvalues of N .

Based on equations (26) and (27), one has

	
r k W W r k x k Mx kc
T

c
T( ) ( ) = ( ) ( )−Λ ∆ ∆

1
� (28)

Let b x k Mx kT= ∆ ∆( ) ( )  and denote

	
y r k W y W r kc

T
c1 2

1= ( ) = ( )−and � (29)

where y y y y m1 11 12 1= [ , , , ]  and y y y y m
T

2 21 22 2= [ , , , ] .
As a result, equations (28) and (29) imply

	 λ λ λ1 11 21 2 12 22 1 2y y y y y y bm m m+ + + = � (30)

Suppose that the first item is determined to compensate; 
therefore, [ , , , ]y y y m11 12 1  is chosen as a vector [ , , , ]1 0 0  
and [ , , , ]y y y m

T
21 22 2  is computed as [ / ,*, ,*]b Tλ1 …  

according to equation (30).
From equation (30), we can have

	
r Wy W

b
c

T

= = 





2 1
0 0

λ
, , , � (31)

Remark 3
1.	 Equation (31) is a special solution of equation (26), 

which means ∆J = 0 .
2.	 A compensation rc  is determined by b , λ1 , and W  

according to formula (31). Therefore, the compen-
sation r kc ( )  is regulated according to x∆(k) for any 
given M  and N .

3.	 The compensation aims to make the performance 
index of the real-time system under faulty condi-
tions track the performance index of the reference 
model.

4.	 In the fault-free case, x k x kp m( ) ( )=  if the refer-
ence model is accurate enough to ignore an error. 
Therefore, x k x k x kp m∆ ( ) ( ) ( )= − = 0 . Furthermore, 
b x k Mx kT= =∆ ∆( ) ( ) 0  and rc = 0  according to for-
mula (31). This means that it does not need any 

compensation. Summarily, the compensator is 
equipped online for both scenarios: fault or fault 
free.

The reinforcement learning-based fault tolerant control 
(RL-FTC) algorithm can be summarized as follows:

Step 1. Calculate x∆(k) according to x∆(k) = 
x k x kp m( ) ( )−  ;

Step 2. Initialize Q x k u k( ( ), ( ))D  to zero;

Step 3. Select an action u k( )  randomly;

Step 4. Compute the compensation rc  according to for-
mula (31);

Step 5. Receive immediate reward R x k u k( ( ), ( ))D  
according to

R x k Mx k r k r k N r k r kT
c

T

c= ( ) ( ) + ( ) − ( )( ) ( ) − ( )( )∆ ∆ ;

Step 6. Observe the new state x k∆ +( )1  and update 
Q x k u k( ( ), ( ))∆ + +1 1  based on the current state x∆(k) 
according to formula (18);

Step 7. Set the next state x k∆ +( )1  as the current state 
x∆(k);

Step 8. Find the best action π* according to the formula 
(19);

Step 9. Repeat Steps 5–8 until it is convergent.

Further analysis on compensation

Actually, the proposed FTC method does not need any 
detailed information on the system dynamics. However, for 
the purpose of further analysis, we adopt the model expres-
sion to the theoretical analysis and assume that the time 
series of the plant can be described by the following dis-
crete time form

x k Ax k Br k k x r f k u kp p p p p+( ) = ( ) + ( ) + ( ) + ( ) + ( )1 ω , ,
	

� (32)

where x kp
n( )∈  is the state vector, r kp

m( )∈  is the 
control input vector, A and B are the parameter matrices 
with appropriate dimensions, f k( )  represents a fault, u k( )  
is the control signal produced by reinforcement learning, 
and ω( , , )k x rp p

n∈  is a real nonlinear vector function 
with Lipschitz constants α1  and α2 , that is

	
ω ω α αk x r k x r x x r r, , , , 

 ( ) − ( ) ≤ − + −1 2 � (33)

	
∀( ) ( )∈ × ×k x r k x r n m, , , , ,˘   
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It is noticed that x k x k x kp m∆ ( ) ( ) ( )= −  and 
r k r k r kp c( ) = ( ) + ( ).  Therefore, equation (26) can be 
rewritten as

	

x k Ax k B r k r k

x k Ax k f k

u k k

m m c+( ) = ( ) + ( ) − ( ) 
− +( ) + ( ) + ( )
+ ( ) +

1

1∆ ∆

ω ,, ,x rp p( )
� (34)

The reference model dynamics can be extracted as 
follows

	
x k Ax k Br k k x rm m m m+( ) = ( ) + ( ) + ( )1 ω , , � (35)

Therefore, from equation (34), we can have

	

x k Ax k Br k f k u k

k x r k x r

c

p p m m

∆ ∆+( ) = ( ) − ( ) + ( ) + ( )
+ ( ) − ( )

1

ω ω, , , , � (36)

Subtracting x∆(k) from both sides of equation (36), one 
has
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k x
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If
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then one has
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Furthermore, one has
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u k f k A I x k Br k

k x r k x r

A I
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which is equivalent to

	

A I x k u k f k

B r kc

− +( ) ( ) ≥ − ( ) − ( )
− +( ) ( )

α

α

1

2

∆

� (41)

As a result, there is x k∆ ( ) = 0  if

	
− ( ) − ( ) ≤ +( ) ( )u k f k B r kcα2 � (42)

Clearly, x k∆ ( ) = 0  indicates the real-time plant after the 
compensation/control should be equivalent to the reference 
model. The reference model is assumed to be stable, and 
therefore the real-time plant under control/compensation is 
also stable.

Remark 4.  The inequity (equation (42)) indicates that a 
controller u k( )  and a compensator r kc ( )  should be found 
to mitigate the adverse influences from the fault f k( ) . 
When without compensation, that is, r kc ( ) = 0 , formula 
(42) becomes

	
− ( ) − ( ) ≤u k f k 0 � (43)

When comparing equation (42) with equation (43), it is 
clear that u k( )  in equation (43) can be easier to mitigate 
the fault with the aid of the compensator: r kc ( )¹ 0 . It indi-
cates that a system with compensation has more fault-toler-
ant ability than that without compensation.

Figure 4.  The system scheme of flux cored wire.



356	 Measurement and Control 51(7-8)

Experimental results

Flux cored wire, also called tubular welding wire, is an 
important welding material that is used for different appli-
cations by adjusting alloy composition and type. The pro-
cess scheme is shown in Figure 4. First, the raw steel strip 
of pay-off machine is preprocessed by washing and drying. 
After that, the post-processed steel strips that are mixed up 
with the given powder using the powder feeding servo sys-
tem begin to roll. After several rolling stages, the flux cored 
wires are produced. Finally, they are synchronously col-
lected as the product by a wire winding machine. All the 
processes are controlled by the computer control system. 
There are some restrictions in the production process for 
flux cored wire such as the maximum tension of 0.4 mm/m 
and the error of powder content should be equal to or less 
than 1%. These performance criteria are realized by quality 
speed control. False or mistakes may cause wire break or 
quality rejection.

We focus on the rolling system because it is the core of 
the system. Moreover, we also abandon the preprocessing 
and the powder feeding servo system because they have 
little influence on the rolling system. The rolling system 
consists of a driven subsystem by several gear motors and 
an oppression subsystem that has an independent control 
system which provides proper pressing force according to 
tension detection. The oppression subsystem is considered 
as a disturbance to the driven subsystem for the target of 
speed control in the flux cored wire process. Therefore, the 
oppression subsystem is not considered in our test. The test 
bed of flux cored wire shown in Figure 5 is driven by four 
AC motors (M1, M2, M3, and M4) with a MultiQ PCI Data 
Acquisition board, a control board, and a data acquisition 
and control board (DACB) interface board from Quanser. 
The character of test bed depends on the AC motors. Every 
single motor has its independent control channel in order to 
imitate a split drive-type system. All motors work well by 
the proportional–integral–derivative (PID) speed output 
feedback in the healthy state and the rollers also operate 
well.

The motor M4 is selected to test our approach under the 
condition that the motors M1–M3 operate normally. The 
motor M4 within a range of 0–2000 r/min is driven by a 
frequency transformer with a control input of voltage. The 
computer provides a controllable speed range of ±250 r/min 

which converts to the voltage signal of −5 to 5 V by an 
analog conversion channel from Quanser. The target of the 
driven subsystem is to keep the roller rotational speed nroll  
following a reference speed nr  that is specified by the craft 
with considerations of prescription, filling rate, materials, 
and productivity. It is manually input through the computer 
as the reference input of the system. The state variables of 
the system are selected as the motor speed na  and the arma-
ture current ia  which are measurable and collected by sen-
sors. The output variable of the system is the roller rotational 
speed nroll

	
n K nroll gear a= � (44)

where Kgear  is the transmission ratio and Kgear =12  in the 
test bed. There is no sensor installed to measure nroll  
because it keeps pace with the motor speed na  and is also 
easy to be obtained according to equation (44). The FTC is 
to recover the rotational speed of the roller to the reference 
speed in the condition of fault, that is

∆J n nroll r= − → 0

where ∆J is the performance index that indicates the differ-
ence of the roller speed between nroll  and nr .

For a flux cored wire system, the reference speed nr  is 
fixed. Once the reference speed nr  is determined, the 
control system will make a contribution to the system 
with little fluctuation in the fault-free condition. These 
fluctuations depend mainly on the load variation and the 
tracing delay of the frequency transformer that are consid-
ered as the inner disturbances. As a result, the states have 
enough information to forecast the next state for the 
driven subsystem even under the function of the control-
ler. In this condition, the objection and the controller can 
be regarded as an integer system and their interactions are 
considered as inner events. As a result, the motor speed 
na  and the armature current ia  are chosen as the inputs 
and outputs of the NN at the previous sampling k  and at 
the next sampling k +1 , respectively. The output variable 
nroll  is abandoned because it is proportional to the motor 

Figure 5.  Test bed of flux cored wire.

Figure 6.  The estimated states by FNN and the actual state 
data (from 60 to 80).
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speed na  and has no measure. A reference model is 
described in the form of a feedforward neural network 
(FNN) with 2-10-2 structure. There are a sample set of 
1000 data collected in the fault-free case to apply to train. 
The FNN is trained offline by Levenberg–Marquardt 
algorithm.33

A period from 60 to 80 is selected randomly to test the 
effect of FNN. The estimated states by FNN and the origi-
nal healthy data are shown in Figure 6. The blue line repre-
sents the original data and the red line represents the output 
of NN. The estimated states by FNN is consistent with the 
original data.

The estimated states by FNN and the original healthy 
data of another period from 600 to 620 are shown in 
Figure 7. One can see that the two curves show good con-
sistency. Therefore, the well-trained FNN can be used as a 
black box reference model.

FTC: sensor fault scenarios

A speed step fault with an amplitude of 180 r/min.  A step 
fault of speed sensor with an amplitude of 180 r/min that is 
within the controller’s regulations added to the control sys-
tem with the sampling number of 1000. The controller is 
designed by reinforcement learning and its output is 
u £ 5V  with the consideration of saturation. The step of 

episode is chosen as 10 and γ  as 0.9.
Figure 8 shows the evolution of error ∆J of the perfor-

mance indices. The curves with and without control coin-
cide before a fault occurs. Without tolerant control, one 
can see that the performance index has a significant dif-
ference after the fault occurs. Conversely, with tolerant 
control, the performance indices derive small errors after 
the fault occurs. The RL learning control is shown in 
Figure 9. Compared with the scenario without the RL con-
trol, the performance index has been improved much. The 
system states are shown in Figure 10. It is seen from 
Figure 10 that FTC can mitigate the adverse influences 
from the faults, which can be seen more clearly for the 
motor speed.

Figure 7.  The estimated states by FNN and the actual state 
data (from 600 to 620).

Figure 8.  The error ∆J of the performance indices.

Figure 9.  The output of RL controller.

Figure 10.  State evolution.

Figure 11.  The error ∆J of the performance indices.
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A speed step fault with an amplitude of 600 r/min.  The ampli-
tude of the fault is enlarged to 600 r/min which means that 
it is out of the range of the controller, that is, 250 r/min. The 
error ∆J of the performance indices, the output of RLC, and 
the state evolution are shown in Figures 11–13, respec-
tively. From Figure 11, one can see that the steady error ∆J 
values of the performance indices are, respectively, 50 (red 
curve: without control) and almost 0 r/min with fluctuation 
(blue curve: with control). From Figure 13, one can see that 
tolerant control can make the motor speed recover from 
1600 down to 1000 r/min after the fault occurs.

FTC: actuator fault scenario

An error of speed actuator with an amplitude of 60 r/min is 
also tested (the control signal has the voltage of 1.2 V). 
Figure 14 shows the evolution of error ∆J of the perfor-
mance indices, implying a better performance index with 
RL control than without control. The output of RL control-
ler is shown in Figure 15. The state evolution is depicted in 
Figure 16. With the function of RL learning control, the 
motor speed is keeping the trace fault free (red line and 
green line) compared to the motor speed without control 
(blue line) when a speed actuator fault occurs. The arma-
ture current without any load changes is also keeping stable 
except suffering a transient process caused by the distur-
bance of actuator false.

Conclusion

The reinforcement learning is a data-driven online method 
which directs to the goal by iterating value evaluation and 
policy improvement, which can achieve an optimal action 
without knowing any system dynamic characteristics that 
are difficult to know at the beginning when a fault occurs. In 
this paper, we have shown that reinforcement learning is an 
effective approach to solve the FTC problem when the 
faulty information is unavailable to the designers. The pro-
posed reinforcement learning–based FTC controller has 
been applied to a flux cored wire system, and the effective-
ness has been well demonstrated. It is worthy to point out 

Figure 12.  The output of RL controller.

Figure 13.  State evolution.

Figure 15.  The output of RL controller.

Figure 14.  The error ∆J of the performance indices.

Figure 16.  State evolution.
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that the proposed FTC is real-time RL learning with the aid 
of the reference model to track the performance index with-
out any fault. The reference model was identified by FNN 
instead of difficult mechanism modeling. As a result, the 
method used is data driven in essence. If an explicit refer-
ence model cannot be obtained for a complicated system, an 
implicit model could be obtained by data-driven learning 
which can be used as the reference. It would be of interest to 
develop a reference model–free data-driven FTC algorithm 
at the cost of the system performance in the future.
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