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Abstract 

Small water bodies (SWBs) are an important biogeochemical sub-compartment of the 

global carbon cycle that has been given little or no attention. They have similar 

capabilities to oceans, large lakes and river systems to exist in flux and could store more 

carbon in their sediments than the above systems. This research is aimed at determining 

the number and surface area of inland water bodies in Northumberland, the carbon stocks 

in the sediments of those water bodies and the microbial influence on the carbon stocks. 

These further define the Northumberland regional carbon stocks, the level of 

allochthonous and autochthonous carbon influence in the regional carbon stocks and the 

effects of surrounding vegetation, sediment wetness, dry bulk density, microbes, anoxia, 

pond permanence and temporariness on carbon stock variations.  

The importance of SWBs is in their abundance and the ability to estimate this will aid the 

understanding of their actual contributions to the global carbon cycle as a net source or 

sink. Using Landsat-8 and World Imagery data, number and surface area of water bodies 

in Northumberland were identified by manual digitising of water bodies on ArcGIS 10.0. 

This showed variation in number and surface area of water body abundance with respect 

to imagery types, time and scale of analysis. The correctness of estimating water body 

abundance is subject to the continuous temporal change of small water body abundance. 

The continuous changes are associated with the nature of water bodies, regional/sub-

regional landscape (hypsometry), precipitation and land use. 

Carbon stock in Northumberland was determined by Total Elemental Analyser (TEA) 

combustion of sediment from various types and sizes of ponds collected from Druridge 

Bay, Northumberland. Carbon stocks varied in each ponds type and size range. These 

variations were influenced by the prevailing environmental/physical, biological and 

chemical/biochemical factors in pond sediments.  

The microbial community drives carbon stock by altering the microbial community 

structure, allochthonous and autochthonous carbon processes and the oxygenation in the 

ponds. PCR pyrosequencing targeted at the 16s rRNA gene showed diversity in the 

microbial composition of the Northumberland pond sediments and the results showed a 

varying level of anoxia triggered by factors such as anoxic Proteobacteria, Bacteroidetes, 

Chloroflexi, Cyanobacteria and Chlorobi dominance. These dominant phyla also 

influenced other phyla to develop anoxic ecological relationships and produce 

predominantly anoxia based processes like methanogenesis and fermentation. Anoxic 

pond bottoms were also triggered by high terrestrial inputs amongst other factors. 

This research shows for the first time that carbon stock in a region’s SWBs varied because 

of numerous physical/environmental, chemical and biological factors. Also, SWBs stock 

carbon from the terrestrial environment and in-situ aquatic processes. Northumberland 

water body distribution has shown that more carbon is stocked in the small sized water 

body systems than larger water body system and their global abundance places them as 

an important carbon capture mechanism.  
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Chapter 1 - Introduction 

The increase in global temperature, melting of the polar ice caps, desert encroachment, 

changes in biodiversity and wildlife are recent climate change observations that have been 

related to elevated atmospheric CO2
 concentrations and other Green House Gases 

(GHGs). There is an urgent need to quantify the global carbon cycle and create a holistic 

carbon budget that fully comprehends the various processes and interactions across the 

various sub-compartments of the cycle (Michmerhuizen and Striegl, 1996 and Cole et al., 

2007). The identification and quantification of carbon sinks and stores have been 

recognised as high importance to carbon budgeting (Downing et al., 2006, Downing et 

al., 2008 and Downing, 2010). Cole et al. (2007) referred to a “missing carbon sink”, 

which despite well-constrained estimates of anthropogenic CO2
 release and oceanic 

uptake suggest around 1.9 Pg per year of carbon remains unaccounted for. Siemens 

(2003) and Janssens et al. (2003) speculate that the imbalance in the European carbon 

budget is accounted for in the export of carbon to rivers and storage in sediment. Stallard 

(1998) and Smith et al. (2001) argued much of the missing sink (0.6 - 1.5Pg per year) 

may be largely in human-made aquatic and semi-aquatic environments such as farm 

ponds, stating that these environments may be quantitatively significant. There is the need 

for research on a regional and global scale in determining the carbon cycle flux 

compartments and sub-compartments, as this would help to create the much need changes 

in policy and human attitude towards climate change related issues. 

Recent attempts to create a holistic global inventory of terrestrial water bodies estimate 

that 304 million water bodies cover around 3.4 million sq. km, and that this is dominated 

by small lakes and ponds, correcting a century-long misconception that large lakes are 

more significant (Downing, 2010, Downing et al., 2006, Lehner and Doll, 2004 and 
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Tranvik et al., 2009). Downing (2010) suggests a negative correlation between water 

body size and global frequency. If this correlation were to be applied to small water 

bodies (SWBs), there would undoubtedly be more globally abundant smaller water bodies 

than large lakes. The potential importance of smaller water bodies as carbon sinks has 

been highlighted further by the analysis of organic carbon burial rates in aquatic systems, 

suggesting a disproportionately greater intensity of carbon processing occurring within 

smaller aquatic systems (Downing, 2010).  

SWBs have been identified as miscellaneous freshwater features such as small lake, 

spring, marsh, pond, watered gravel pit, drainage ditch or any other individual part of an 

ecosystem where water is a dominant environmental factor (Battin et al., 2009, Downing, 

2010, Downing et al., 2006, Lehner and Doll, 2004, Seekell and Pace, 2011, Seekell et 

al., 2013, Seekell et al., 2014 and Tranvik et al., 2009). For this research, small water 

bodies are defined as land depressions seen in map or satellite imagery that are <0.1 sq. 

km in size area, capable of holding water seasonally and process carbon and other bio-

elements (Seekell and Pace, 2011 and Seekell et al., 2013). This research also categorise 

water bodies into size ranges of: 

1 – 10 sq. m  

10 – 100 sq. m 

100 – 1,000 sq. m  

1,000 – 10,000 sq. m  

10,000 sq. m – 0.1 sq. m   

SWBs such as small lakes, ponds and temporary pools have previously been ignored in 

audits and all major global reports, under the assumption that systems of this size would 
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not play any major role, and that large lakes and reservoirs dominated terrestrial 

limnological processing (Alonso, 2012, Downing, 2010 and UNEP, 2008). Nowhere is 

this more evident than the global carbon cycle, where there has been substantial research 

into the role of forests, wetlands and larger inland water bodies such as lakes and 

reservoirs as global carbon sinks but SWBs remain almost completely ignored (Boyd et 

al., 2010, Dean and Gorham, 1998, Downing, 2010, Gilbert et al., 2014, Oertli et al., 

2009 and Smith et al., 2001). Predictions of the number and global coverage of natural 

water bodies in the range of 1 sq. m to 1 sq. km are restricted due to constraints in satellite 

imagery and limited regional data. With the recent and proven effectiveness of satellite 

imagery and UAVs (mapping to the centimetre scale), it is now possible for the first time 

to produce high-resolution maps of the spatial distributions of SWBs between 10 sq. m – 

1 sq. km. This will be invaluable in addressing the ‘missing gap’ in water body 

distribution below 1 sq. km. Spatial distribution of water bodies can further be combined 

with carbon levels to develop regional or sub-regional carbon stocks in water bodies. 
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1.1 Research content 

In determining the importance of SWBs to carbon capture in Northumberland, this 

research uncovers the total number and surface area of water bodies, the carbon stocks in 

water bodies’ sediments, their carbon source and some factors that control carbon stocks 

dynamics in water body sediments. The whole of Northumberland served as the site for 

determining water body distribution and then selected ponds in Druridge Bay, South East 

Northumberland were analysed for carbon stocks and microbial contents. 

1.1.1 Chapter Structure 

Chapter 1 sets the scene for the thesis, by introducing carbon capture, 

SWBs and their potential carbon storage, and states the research aims 

Chapter 2 review the literature on carbon capture and climate change, the 

dynamics of various carbon cycle compartments, small water bodies’ 

carbon stocks and their omission from the global carbon budget. The 

literature review also explores factors controlling carbon stock and the 

importance of microbes in SWBs. 

This chapter also reviews the geological, landscape, vegetation and 

anthropogenic activities of Northumberland region and Druridge Bay, 

South East Northumberland. 

Chapter 3 presents methods for estimating Northumberland inland water 

body distribution (NWBD) with a focus on lentic systems. It uses high and 

low-resolution imagery for estimating number and surface area of water 

bodies in Northumberland.  

Chapter 4 explores the carbon stocks in ponds and carbon stock variations 

with respect to pond size and pond type. It also identifies the influence of 

sediment wetness and dry bulk density on carbon stock.  
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Chapter 5 explores microbial communities within the pond sediments 

analysed for carbon stock. It also explores allochthonous and 

autochthonous carbon processing and oxygenation in the ponds.  Potential 

metabolic processes associated with the microbial community structures 

in different ponds are discussed. 

Chapter 6 combines the carbon stocks identified in Chapter 4 NWBD in 

Chapter 3 to estimate carbon stock in Northumberland water bodies. In 

this chapter, an estimate of the allochthonous and autochthonous carbon 

inputs was also determined from the microbes that utilise and produce 

carbon in pond sediments. 

This chapter also discusses the importance of SWBs in carbon capture, 

identifies the research limitations and recommends potential future small 

water body research. 

Finally, it summarises findings on the importance of SWBs for carbon 

capture in Northumberland. 
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1.2 Research Aims 

The research aim is to determine the number and surface area of inland water bodies in 

Northumberland, the carbon stocks in the sediments of those water bodies and the 

microbial influence on the carbon stocks. These further define Northumberland carbon 

stocks, the level of allochthonous and autochthonous carbon influence in Northumberland 

water bodies and the effects of surrounding vegetation, sediment wetness, dry bulk 

density, microbes, anoxia, pond permanence and temporariness on carbon stocks 

variations.  

The research aim is achieved by: 

  Chapter 3: 

estimating the number and surface area of water bodies in Northumberland 

and investigating the size distribution 

  Chapter 4:  

quantifying the carbon in SWBs, and its variation according to size and 

type of pond and down the sediment profile  

  Chapter 5: 

identifying key microbial processes occurring within pond sediments and 

how they drive carbon stock 

  Chapter 6: 

estimating the importance of SWBs in carbon capture by using 

Northumberland water body distribution (NWBD) to establish a regional 

carbon stock and carbon stock proportions from allochthonous and 

autochthonous sources.  

Chapter 3, 4 and 5 present research questions to help address the research aims. 
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Chapter 2 - Literature Review and Background 

2.1 Inland water bodies distributions  

Before research in the hydrological contributions of inland water bodies to climate 

change, lakes and other water bodies were mainly considered important as sources for 

water and agricultural land (Lehner and Doll, 2004). Inland water bodies were also 

defined based on their ability to be seen in imagery, and these included natural and 

manmade lakes and impoundments (Downing et al., 2006, Downing, 2010 and Lehner 

and Doll, 2004), with the exception of lotic systems such as streams, rivers and their 

tributaries which connect to oceans and seas. SWBs were usually overlooked or seen as 

part of the terrestrial ecosystem (Battin et al., 2009). It has been suggested that there are 

around 8 million water bodies, with sizes >0.01 sq. km (Meybeck, 1995). Recent research 

has shown that the number of lakes and other inland water bodies is a lot more than 

previously thought (Verpoorter et al., 2014). This is associated with the distribution and 

identification of more SWBs of different polygonal shapes, sizes and depths on a global 

scale with improving imageries (Downing et al., 2006). 

The Caspian Sea (~438,000 sq. km) is the world’s largest lake based on surface area and 

the second largest is Lake Superior. Other large lakes include Lake Victoria, the Aral Sea, 

Lake Huron, Lake Michigan and Lake Tanganyika. They account for 10 - 12% of the 

total global surface area of inland water bodies (Liu, 2013 and Scheffers and Kelletat, 

2016). Inland water bodies differ by numerous factors such as depth (Lake Baikal with 

depths >1700 m and Lake Patos, a Brazilian floodplain), elevation (Lake Titicaca with 

3,810 m above sea level (Juengst et al., 2017)), ice/ice-free state, salinity, temperature 

and watershed area (Fluet-Chouinard et al., 2016 and Winslow et al., 2015). Inland water 

bodies can exist because of the change in natural tectonics and geology or anthropogenic 
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land usage. The distribution of water bodies below 10 sq. km are poorly understood 

because of diverse geologic and anthropogenic factors that control the abundance of water 

bodies <10 sq. km compared to water bodies >10 sq. km, which are more geologically 

influenced (Downing et al., 2006, Lehner and Doll, 2004 and Scheffers and Kelletat, 

2016).  

2.1.1 Historical assessments of water body abundance and size 

The earliest inventories of global lakes in modern records were published by Halbfaß 

(1922) and Thienemann (1925). Halbfaß (1922) identified lakes in Germany and 

Thienemann (1925) expanded the Halbfaß (1922) database to include European lakes. 

Thienemann (1925) showed that 1.8% of the land surface is made up of inland lakes and 

ponds. In that database, the Caspian Sea accounted for about 15% and Lake Superior 

accounted for 3.3% of earth’s inland water bodies. The database suggested around 2.5 

million sq. km as the total surface area of lakes and ponds. The databases also showed 

high levels of accuracy for water bodies that were seen on the available global maps at 

that time but poorly identified details for lakes and other water bodies <2,000 sq. km 

(Downing and Duarte, 2009 and Downing, 2010). Also, Schuiling (1977) first presented 

the concept of a relationship between numbers of lakes and surface area. Schuiling (1977) 

characterised the distribution of lentic water systems which improved Halbfaß (1922) 

database by 800 planimetered lakes.  

Wetzel (1990) showed the earliest interest in the importance of SWBs abundance stating 

that there are more small lakes globally than large lakes. The Wetzel perception was 

regarded as a conceptual analysis rather than quantitative (Downing et al., 2006). He 

postulated, “small lakes dominate the area of inland surfaces covered by water and the 

earth contains so many small, shallow lakes with small lacustrine ecosystems that cover 
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more land than large lakes”. This postulation opened research into determining the actual 

abundance of SWBs, which were previously unacknowledged in almost 100 years of 

research in limnology since Halbfaß (1914).  

2.1.2 Global distribution of water bodies 

Several authors have used mathematical extrapolations to estimate the number of water 

bodies that cannot be identified on classical maps. Meybeck (1995) adopted an orthogonal 

regression system that calculates the number of lakes in many geographical regions that 

showed a consistent decrease in the number of water bodies with increasing size range. 

Meybeck (1995) sampled selected lakes in different sub-regions globally to define his 

orthogonal regression database. The database suggested few large lakes with smaller 

lakes being numerically abundant. The database is limited because mathematical 

extrapolation techniques do not consider changes across regional hypsometry and other 

factors that control small water body abundance (Seekell and Pace, 2011, Seekell et al., 

2013 and Tranvik et al., 2009). Thus, Meybeck (1995) and other mathematical 

extrapolations of water body abundance are potentially flawed in their representation of 

water bodies <0.1 sq. km (Seekell and Pace, 2011 and Seekell et al., 2013). Lehner and 

Doll (2004) inventoried lakes and other water body sizes >0.1 sq. km using satellite 

imagery and suggested a Pareto distribution pattern could estimate the abundance of 

water bodies with surface areas down to 0.001 sq. km (Downing et al., 2006). The Lehner 

and Doll (2004) global lake and wetland distribution (GLWD) database contained 17,357 

natural lakes >10 sq. km, around 250,000 wetlands, floodplains, lakes, rivers, and 

reservoirs (See Appendix A.1).  

Estimates of the abundance of large water bodies identified from mathematical 

extrapolations and classical maps have good accuracy due to the availability of multiple 
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but similar data sources (Lehner and Doll, 2004). However, there are wide variations in 

the SWBs abundance obtained from mathematical extrapolations because of temporal 

change of SWBs and varying data sources used in estimating SWBs. Also, classical maps 

are limited by imagery quality and resolutions used in identifying SWBs. The need to 

improve accuracy for estimating small water body abundance are further intensified by 

global biogeochemical cycling importance of SWBs (Battin et al., 2009 and Gilbert et 

al., 2014). 

2.1.3 Small water bodies (SWBs) distribution 

The suggestions of a Pareto distribution of inland water bodies to estimate the rest of the 

global inland water bodies distribution (<0.1 sq. km) has been discussed during the last 

18 years to address the shortfall of most databases and wide variations in estimating water 

bodies <0.1 sq. km (Downing et al., 2006, Lehner and Dolls, 2004, Seekell and Pace, 

2011 and Verpoorter et al., 2014). Downing et al. (2006) used mathematical 

extrapolations to suggest that the GLWD database (Lehner and Doll, 2004) can be drawn 

even further to estimate SWBs <0.1 sq. km. Given a paretian increase in lake abundance 

as lake sizes decrease between the Caspian Sea and lakes with sizes > 10 sq. km. This 

approach gave high levels of goodness-to-fit for a log-abundance (size range)-log-size 

area regression of water bodies as seen in Figure 2.1, without consideration of factors that 

influence SWBs abundance (Seekell and Pace, 2011). The database was used to estimate 

around 304 million water bodies that cover around 4.2 million sq. km of earth surface 

with sizes from the Caspian Sea (378,119 sq. km) to 0.0001 sq. km (Lehner and Doll, 

2004). The Pareto pattern was also favoured by the existing notion of a relationship 

between the increase in the number of lakes and decrease in the surface area as suggested 
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by Schuiling (1977) and Wetzel (1990). Although, Wetzel idea was purely conceptual 

and was not scientifically proven.  

 
Figure 2.1: Pareto distribution of natural water bodies globally by Downing et al. (2006) 

and Downing (2010) (where the black bars represent the number of water bodies and the 

grey bars are the size area of water bodies) 

 

Seekell and Pace (2011) showed that regional water body distribution did not necessarily 

follow the Pareto distribution and so advocated for a more regional estimate approach. 

Regional deviation from the Pareto distribution was seen in the analyses of water 

abundance in Adirondack Mountains of New York and the Northern Highland Lake 

District of Wisconsin, USA. Seekell and Pace (2011) analysis suggested a lognormal 

regional water body distribution would be one of many better approaches to estimating 

global water body abundance instead of the Pareto distribution. In the analyses of ponds 

in lowland Northumberland, Jeffries (2016) also showed that water body size 

distributions do not follow a Pareto distribution.  

Water body abundance follows patterns defined by regional environmental, physical, and 

climatic factors and an extrapolation model should consider regional influences as 
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constraints. Otherwise, there will be inaccuracies and the potential to overestimate the 

global abundance of water bodies <0.1 sq. km (Seekell and Pace, 2011 and Jeffries, 2016). 

Therefore, deriving theoretical databases for SWBs’ size-distribution (Pareto, lognormal 

or otherwise) comes with levels of uncertainty as seen in Downing et al. (2006) and 

Seekell and Pace (2011). Thus, recalculation of the Global Lakes and Wetland Database 

(GLWD) (Lehner and Doll, 2004) and any other databases has shown the need for more 

regional field data to improve mathematical extrapolations.  

Other recent methods for SWB abundance estimations include GLOWABO (Verpoorter 

et al., 2014) and a sub-regional/regional database by Jeffries (2016) and McDonald et al. 

(2012) respectively. What is clear is that limnology research into water body abundance 

has come a long way with improving methodologies since Halbfaß (1922). However, 

limnology research should focus on developing a more accurate database based on actual 

field data of SWBs <0.1 sq. km with awareness of constraints of land use, hypsometry 

and other environmental variations. This would be best achieved through aerial imagery, 

remote sensing and ground survey for water bodies in fine detail. It should also be noted 

that the calculation of global small water body distributions will also be complicated by 

regional weather and climate variations (Downing et al., 2006). Thus, SWBs abundances 

are continuously changing due to precipitation (Jeffries, 2016).  
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2.2.1 Climate change and carbon cycle 

It was well established in the 20th century that climate change is the biggest threat to 

humanity in the modern times (Crowley, 2000, Fritz, 1996 Lamb, 2002, IPCC 1995). The 

effects of climate change such as the increase in sea levels, loss of wildlife diversity, 

melting of the ice caps and extreme weather conditions are believed to be more frequent 

and disastrous than previously expected (Butman and Raymond, 2011, Crate, 2011, 

Fankhauser, 2013 and Watkiss et al., 2005). These effects are associated with increased 

carbon emission from land and water bodies into the atmosphere and have led ecosystems 

and biomes to adapt and adjust to changes affecting biological – environmental 

interactions (IPCC 1995, IPCC, 2001 and IPCC, 2014). 

There has been no complete compilation of carbon stock from all sub-compartments of 

the global carbon cycle. Le Queré et al. (2015) and Cole et al. (2007) identified an uneven 

distribution of carbon amongst the atmosphere, aquatic and land environments, with land 

and aquatic environments being mainly reservoirs in the carbon cycle while the 

atmosphere serves as gaseous exchange points. There are uncertainties associated with 

the land’s carbon sinks as their location and magnitude are largely unknown. These 

carbon sources and sinks continually vary as they exist in a flux state (Battin et al., 2009, 

Canadell et al., 2007, Cole et al., 2007, Downing et al., 2006, Lal, 2004, Le Queré et al., 

2015, Raymond et al., 2013 and Verpoorter et al., 2014), with atmospheric CO2 being on 

the continuous increase from ~280 ppm during the pre-industrial revolution to levels over 

384 ppm in 2008 (Battin et al., 2009) and has risen around 400 ppm between 2008 to 

2015 (NOAA/ESRL, 2016). Half of this CO2 emission was from anthropogenic sources 

while the rest is sourced from oceans and land (Canadell et al., 2007). 

Le Queré et al. (2015) and Sabine et al. (2004) showed the different sub-compartments 

of the carbon cycle between 2004 – 2013 and the 1990s respectively and their 

interactions. The general overview was that more atmospheric carbon was being 
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deposited because of anthropogenic carbon processes or land use. Land use and 

anthropogenic activities such as agriculture, fossil fuel combustion and cement 

production increased the atmospheric carbon cycle by 165 GTC per year, with fossil fuel 

contributing 6.4 GTC per year in the 1990s (Sabine et al., 2004) and fossil fuel and 

cement production accounting for 8.9 GTC per year between 2004 – 2013 (Le Queré et 

al., 2015) (Figure 2.2 & 2.3). Land use and anthropogenic processes make the terrestrial 

or land compartment of the carbon cycle become more of a net carbon source as it loses 

more carbon than it sequesters annually (Figure 2.3). These land carbon excesses end up 

in the atmosphere and water bodies, and atmospheric carbon levels are known to affect 

the biosphere (IPCC 1995, IPCC, 2001, IPCC, 2014) 

Le Queré et al. (2015) and Sabine et al. (2004) (Figure 2.2 & 2.3) also identified 

compartments of the global carbon cycle and their net source, sink and reservoir value. 

But carbon in the various compartments does not equate to a net carbon source or sink. 

Thus, there is the need for detailed carbon estimations, projections and identification of 

knowledge gaps in calculating the carbon budget of compartments and sub-compartments 

of the carbon cycle (IPCC, 2014). 
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Figure 2.2: The global carbon cycle in the 2004 – 2013 showing the main annual fluxes 

in GTC per year (Le Queré et al., 2015) 

 

Figure 2.3: The global carbon cycle in the 1990s, showing the main annual fluxes in GTC 

per year: natural sources (black) and anthropogenic sources (red), (Sabine et al., 2004) 
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2.2.2 Aquatic and atmospheric compartments of the carbon cycle 

Carbon mainly enters the biosphere through photosynthesis by phototrophic assimilation 

of CO2 (Lorenz and Lal, 2010). Other bio-elements enter the biosphere through less 

effective chemotrophic mechanisms and biological assimilation (Wang et al., 2016). The 

assimilated CO2 via photosynthesis serves as gross primary productivity (GPP) of the 

global carbon budget. Other GPP processes involve oxidation or non-oxidation such as 

respiration, combustion and pyrolysis, and these processes are referred to as 

mineralisation. The un-mineralised GPP accounts for the net ecosystem production 

(NEP) which is stored in the ecological niche to form carbon reservoirs or exported by 

fluvial processes (Falkowski et al., 2000, Larouche, 2015 and Roley, 2013). Also, abiotic 

CO2 have been found to be stored in the aquatic environment directly from the 

atmosphere by a partial pressure increase of CO2 to go into solution (Falkowski et al., 

2000). The rates of accumulation or sequestration of carbon are dependent on the nature 

of the depositional environment (Cole et al., 2007).  

Cole et al. (2007) discussed the dynamics of the carbon cycle compartments as 

continuously exchanging carbon through oxidation, storage and transport of terrestrial 

carbon in streams, lakes, wetlands, rivers and estuaries. It is estimated that 1.9 Pg per year 

of carbon are transported from land with only 0.9 Pg per year entering into oceans as 

organic and inorganic carbon. During the transport, ~0.2 Pg per year are buried in inland 

aquatic sediments and ~0.8 Pg per year enter into the atmosphere as gas exchange. Rivers 

are also important sources of CO2 into the atmosphere via biological gaseous exchange. 

Rivers also connect with groundwater systems to increase CO2 availability. Groundwater 

is both an anthropogenic and a natural source of CO2 and water can physically weather 

carbonate rocks during fluvial transportation to release inorganic CO2 into the 
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atmosphere. Groundwater has also been known to discharge inorganic carbon directly 

into the oceans. 

Lal et al. (2004) estimated global carbon emission at over 400 Pg because of increased 

fossil fuel, deforestation and biomass burning. Also, over 78 Pg of soil organic carbon 

depletion has been lost to atmospheric CO2 causing an increase by 31%. These losses can 

easily be associated with poorly managed land usage between the 1750s and the present 

day (IPCC, 2001) with an increase in global atmospheric CO2 averaging 1.76 ppm per 

year between 1979 – 2015 and CH4 averaging 11.5 ppb per year between 2014 – 2015. 

Trace atmospheric gases or GHGs of CO2, CH4 and N2O are on the steady rise globally 

while CFC, HFC and HCFC are still in low abundance globally (NOAA/ESRL, 2016) 

(Figure 2.4). These GHGs could remain in the atmosphere for decades causing the rapid 

increase in radiative forcing and global surface temperature by 0.6 0C. The warming rate 

is currently estimated at ~0.17 0C/decade (IPCC, 2001, IPCC, 2013 and NOAA/ESRL, 

2016). And the increase in atmospheric emissions and temperature pose indelible socio-

economic and health risks (IPCC 2013).  
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Figure 2.4: Changes in the trace atmospheric gases, NOAA/ESRL, 2016 

2.2.3 Terrestrial or land compartments of the carbon cycle 

2.2.3.1 Peatland and Forest 

Global soil organic carbon was estimated at 4,000 Tg with 33% buried in peatlands 

(Premke et al., 2016). Peatland occupies 3% of the earth land area (mostly located in the 

Northern hemisphere) and it is characterised by carbon-rich wetlands. Forest land 

accounts for ~30% of earth’s land area and provides an effective carbon sink that absorbs 

30% of the CO2 from fossil fuel and deforestation emissions (Canadell et al., 2007). The 

forest holds its carbon reserves in both trees and soils and interacts with the atmosphere 

through photosynthesis and surrounding small ponds, lakes and soil through deposition 

of detritus (Premke et al., 2016 and Couwenberg et al., 2011). 
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2.2.3.2 Cropland, Grassland and Large Lakes 

Cropland and grassland account for 34% of the earth’s non-glaciated landscape and are 

mainly used for agricultural purposes (Ramankutty et al., 2008 and Smith, 2008). 

Croplands are classified as carbon neutral because the level of CO2 emission and soil 

organic carbon stock are relatively constant (Sommer and Bossio, 2014). Grasslands can 

be carbon neutral or carbon sinks and their change in net carbon flux is dependent on 

variation in rainfall and temperature. High rainfall and low temperature lead to more 

carbon storage and low rainfall and high temperature balances out the net source and 

sinks (Leifeld and Fuhrer, 2009 and Smith, 2014).  

Large lakes are CO2 rich and are net heterotrophic systems with carbon loss into the 

atmosphere. Factors that contribute to increased heterotrophy are the excess dissolved 

organic carbon (DOC) and water pH, lake surface vegetation, drought rewetting, lake 

stratification, DOC colour change and increased temperature (Cole et al., 1994. Evan et 

al., 2005 and Premke et al., 2016). 

2.2.3.3  Small water bodies  

It has been shown that rivers deliver terrestrial carbon into oceans and large lakes. River 

systems are also able to process carbon derived from terrestrial and aquatic sources. Little 

significance is given to SWBs. They are usually considered as ‘carrier pipes’ (Battin et 

al., 2009 and Cole et al., 2007), or transport intermediates into lakes, rivers and ocean 

(Downing et al., 2006), or a part of the terrestrial ecosystem (Battin et al., 2009 and 

Tranvik et al., 2009). Tranvik et al. (2009) showed that land export of organic carbon 

into inland lakes equates to ~1.4Pg per year. During transport, ~0.6Pg per year enter 

inland water bodies for storage and oxidation (outgassing) while only 0.9Pg per year of 

organic carbon originating from land end up in the oceans.  
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SWBs are involved in more efficient phototrophic and chemotrophic carbon processing 

compared to larger water bodies due to high nutrients and bio-elements dilution in the 

small sizes of the water body feature (Downing, 2010, Kortelainen et al., 2004 and 

Shirokova et al., 2013). SWBs’ autochthonous carbon production by microbes has not 

been estimated in literature. Also, Battin et al. (2009) approximately estimated 20% of 

carbon buried in the terrestrial ecosystem (trees and soils) is adjacent to inland water 

bodies. If this is equated as 0.6 Pg per year of carbon buried in inland water bodies 

(Tranvik et al., 2009), SWBs (a compartment of inland water bodies) would have more 

importance than previously thought because of their proximity to access terrestrial carbon 

and ability to produce autochthonous carbon. Some SWBs have prevalent anoxia which 

aid efficient carbon burial (Battin et al., 2009, Briée et al., 2007 and Gilbert et al., 2014). 

In stable sedimentary basins and over thousands of years, carbons can be permanently 

stored in the lithosphere as reservoir carbon. Thus, SWBs can serve as short and long 

term carbon sinks amongst other earthly features of the lithosphere (Battin et al., 2009). 
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2.3 Carbon stores, sinks and the missing carbon budget 

Like Le Queré et al. (2015) and Sabine et al. (2004) (Figure 2.2 & 2.3), Lal et al. (2004) 

discussed dynamics of the carbon cycle reserves, source and sinks. Lal et al. (2004) 

showed that land usage (1.6 Pg), fossil fuel combustion and cement production (6.3 Pg) 

were the major carbon sources into the environment. Their report also identifies that the 

atmosphere and oceanic environment were only able to re-capture 4.9 Pg (as sinks). This 

leaves a deficit of 3.0 Pg of a 7.9 Pg carbon cycling system unaccounted for in the 1990s 

(Table 2.1). The report suggests that the unaccounted carbon budgets are recaptured in 

the terrestrial environment. The general assumptions are that the major chunk of these 

carbon budgets exist as soil organic/inorganic carbon (Lal et al., 2004), forest plants 

(Luyssaert et al., 2008), buried in streams and rivers, buried in the world’s large lakes, 

glaciers, ground water, deltas, bays and estuaries. But it is also possible that SWBs are “a 

missing link” or the ”missing link” that store the unaccounted carbon in Table 2.1. 

Table 2.1: Sources, sinks and missing links in the calculation of carbon budget (Lal et al., 

2004) 

Source/Sink 1980s (Billion ton) 1990s (Billion ton) 

Source   

1.Fossil fuel utilisation    

2.Land use change 
5.0 

1.7 

6.3 

1.6 

Total  6.7 7.9 

Known sinks   

Atmosphere 

Oceans 
3.3 

1.9 

3.2 

1.7 

Total 5.2 4.9 

Missing sinks (probably in terrestrial sinks) 1.5 3.0 
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2.4.1 Productivity of small water bodies 

The net ecosystem production (NEP) of water bodies is the sum of the carbon budget 

cycling in the ecosystem from aquatic primary productivity and allochthonous entry with 

the deduction of carbon loss to atmospheric emissions. NEP varies in different 

environments (Crooks et al., 2014, Falkowski et al., 2000, Larouche, 2015, Matthews, 

2013 and Roley, 2013). Lentic lake systems have better carbon retention capacity over 

lotic (river-like) ecosystems due to their confined nature, a high concentration of 

nutrients, rewetting, autochthonous and allochthonous carbon entry, reduced perturbation 

and anoxia amongst other features (Cole et al., 2007). Downing (2010) suggested that 

biogeochemical processes are 115 times greater in lake systems compared to the oceanic 

environment and biogeochemical processes are 33 times more in lake systems compared 

to the terrestrial environment (soil). Also, carbon and bio-element storage commonly 

increase with increasing lake productivity and decreasing lake size (Kortelainen et al., 

2004, Mulholland and Elwood, 1982 and Shirokova et al., 2013). 

2.4.2 Carbon storage in small water bodies  

Shirokova et al. (2013) showed that there were significant eutrophic and oligotrophic 

bacterial activities occurring across different SWBs studied in Western Siberia. There 

was high gross primary productivity (GPP) in all shallow SWBs studied with 75 - 92% 

oxygen consumption by bacterioplankton which connotes high organic matter 

mineralisation, respiration and water column activities. The storage of organic carbon 

was identified as particulate organic carbon (POC) in sedimentary bottoms of lakes but 

carbon storage did not show direct correlation with varying levels of gross primary 

productivity in individual sample areas. This was because high oxygenation of water 
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bodies reduced carbon storage (Shirokova et al., 2013) but storage improves with the 

increase in anoxia (Gilbert et al., 2014). 

Paleo-environmental study of the world’s large lakes showed a general trend of carbon 

burial rate increasing with decreasing surface area (Einsele et al., 2001). Inland water 

bodies found in the terrestrial environment are numerically more abundant in nature and 

can store carbon over a long period through drainage from the surrounding terrestrial 

environments (Downing et al., 2006, Shirakova et al., 2013, Sobek et al., 2005 and Sobek 

et al., 2011). Alongside fluvial transport, SWBs can store carbon from in-situ biological 

processes. Generally, inland water bodies have high terrestrial inclusion and high primary 

productivity, even with little or no transportation and this is because of in-situ vegetation 

growth, microbial phototroph and heterotroph activities with nutrient supply. SWBs have 

been estimated to store as much as 30 – 60% more organic carbon than oceans, despite, 

world oceans covering over 70% of the planet while SWBs account for ~3% (Cole et al., 

2007, Downing, 2010 and Downing et al., 2006).  

2.4.3 Carbon flux in small water bodies 

Carbon fluxes in inland water bodies relate to the nature of physical, chemical and 

biological processes that transform terrestrial and aquatic carbon into source or sink. 

Carbon entry is either used up as a nutrient and/or buried in sediment via aquatic 

transformation by microorganisms (Aufdenkampe et al., 2011 and Scharnweber et al., 

2014), POC sedimentation, or photosynthetic plant burial (Boyd et al., 2010 and 

Raymond et al., 2013). In agricultural land and densely vegetated areas, entry of 

terrestrial carbon has direct impact on carbon stock in the receiving aquatic system and 

its allochthonous transport is largely aided by water or aeolian transport (Frielinghaus et 

al., 1998) into the geomorphic depressions and water bodies. Also like oceans, inland 
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water bodies source inorganic carbon as products of rock weathering and ground water 

(Cole et al., 2007 and Marce et al., 2015), and some of these are loss to the atmosphere. 

Atmospheric CO2 contributions from SWBs pose a new question on the heterogeneity of 

carbon sink/source, that is, which of terrestrial and/or aquatic carbon in SWBs are the net 

source or sink?  

Premke et al. (2016) discussed variability in the landscape, landscape composition and 

extents of landscape elements as factors that constantly vary globally and they alter 

carbon flux estimates. These coupled with other factors such as nature of organic carbon, 

microbial loads, nature of water bodies sediment, regional climate, water depth, oxic and 

anoxic conditions influence physical transport and sedimentation into/within SWBs and 

activities of natural and adaptive microorganisms in SWBs, and consequently carbon flux 

(Cole et al., 2007, Emerson and Hedges, 2003, Gilbert et al., 2014, Grabowski et al., 

2011, Shirokova et al., 2013 and Sims et al., 2013). 
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2.5 Microbes and microbial interaction in water bodies 

Microbial diversities widely vary in water bodies and the connections between trophic 

levels are usually complex in the ecosystem. The main microbial components of an inland 

water body’s food web generally include autotrophs, omnivores, heterotrophs, 

decomposers and phagotrophs (Maiti, 2013, Misra, 2009 and Sharma, 2009). They 

provide pathways for entry of soluble organic and inorganic nutrients into the biotic 

ecosystems (Maiti, 2013 and Teoh et al., 2016). Cell density estimates indicate not just 

diversity but ubiquity in marine and freshwater ranging from 104 – 107 cells per ml of 

water. Freshwater lakes, saline lakes and rivers contain 10 x 105 cells per ml of water and 

open ocean and continental shelf contains 5 x 105 cells per ml of water (Whitman et al., 

1998).  

Various microbes exhibit a combination of hetrotrophism, decomposition, autotrophism 

and phagotrophism strictly or obligatorily based on their taxonomic classification, trophic 

relationship with other microbes and environmental influence (Maiti, 2012 and Maiti, 

2013). Producers utilise sunlight, inorganic and organic matter in the environment for 

energy. They usually replicate rapidly and form the primary biomass for other trophic 

levels’ growth and development. These replications tie to nutrient supply and favourable 

environmental conditions (Pearce, 2016, Ramaraj et al., 2015 and Teoh et al., 2016). 

Consumers are feeders of algal and bacterial picoplankton, larger algae, protista and 

metazoans (Bärlocher and Boddy, 2016 and Crump et al., 2013). Mixotrophs also exist 

in the inland water body ecosystem with abilities to create nutrients as producers and prey 

on other organisms as consumers. Decomposers scavenge dead small and large organisms 

and break them down to release nutrients (Bärlocher and Boddy, 2016 and Falkowski and 

Raven, 2013). 
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In SWBs, most naturally occurring bacteria are heterotrophs and they are ubiquitous in 

the natural environments. Heterotrophic bacterioplankton with range in size from ranges 

0.2 - 1.0 µm. Coccoid cyanobacteria and small green algae with size range 0.5 – 2.0 µm 

are mainly autotrophic. Protista are mainly flagellate, amoeba and ciliates. Their size 

ranges from 2 – 200 µm and taxa vary as mainly autotrophs and heterotrophs. Pigmented 

ciliates and flagellates are known to be primary producers and consumers of organic 

matter. Rotifers range from 50 – 200 µm and are mainly heterotrophic particulate feeders 

of algae, phytoplankton and picoplankton. They are also known to predate other rotifers 

and ciliates (Bärlocher and Boddy, 2016, Falkowski and Raven, 2013 and Trebilco et al., 

2013).  

Figure 2.5 typifies the transfer of energy in the food web, and the fate of DOC and POC 

in water bodies. The energy transfers within a typical inland water body system start off 

with small organisms and then energy moves through the food web by larger organism’s 

consumption. Energy transfer ends at decomposition which leads to mineralisation or 

carbon storage or re-entry into the food web (Dray, 2014, Grant, 2013 and Nanda et al., 

2016). Overall, movement of energy is not 100% effective with the loss of energy through 

respiration and other cell metabolic processes. As energy gets transferred to higher 

trophic levels from primary production, energy supplied to more complex structured 

organisms reduces with varying efficiency. These processes create atmospheric carbon 

sources and settling of dead microbes and organic carbon from allochthonous sources in 

lake bottoms, that is, carbon sinks (Aufdenkampe et al., 2011, Falkowski and Raven, 

2013, Frielinghaus et al., 1998, Grossart and Rojas-Jimenez, 2016, and Scharnweber et 

al., 2014). 
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Figure 2.5: Energy transfer and fate of allochthonous and autochthonous carbon source 

in an aquatic system (Grossart and Rojas-Jimenez, 2016) 
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2.6 Other factors controlling processes in SWBs 

Some notable other factors that control carbon stock in SWBs are outlined below. 

2.6.1 Food web 

The structure, composition and access to terrestrial deposition in inland water body 

systems allow for high biotic richness and gross primary productivity. In combination 

with prevailing physical and chemical factors, the abundance of microbes (algae, 

phytoplankton, zooplanktons and macrophytes) are the baseline for the creation of a 

widely-diversified food web and feeding mechanisms of higher life forms (Maiti, 2013, 

Misra, 2009, Sharma, 2009 and Vadeboncoeur et al., 2011). Thereafter, higher life forms 

(birds, amphibians, fish and invertebrates) serve as a source for organic matter supply in 

bottom sediments. The ecological abundance of higher life forms is strongly controlled 

by the abundance of the prey in the predator-prey relationship and energy transfer 

decreases with increasing trophic level (Baum and Worm, 2009, Chiang et al., 2014 

Grossart and Rojas-Jimenez, 2016 and Hairston Jr and Hairston Sr, 1993). 

2.6.2 Material transport, nature of organic carbon and pond depths 

Material transport, organic matter size and gravity determine the material resident time 

and transport within the water column. Shirokova et al. (2013) described low weight 

organic matter with particle size <0.45 µm as DOC. This matter is prevalent in all water 

columns because of their low resident time and this makes them bio-available for 

microbes’ utilisation. There is the tendency for DOC to form colloidal DOC which 

enhances gravitational pull to lake bottoms and this is also influenced by pond depths and 

currents. The resulting colloidal DOC in bottom sediment can be remobilized or stored. 

Shirokova et al. (2013) also confirmed that the percentage of colloidal DOC ranges from 
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30 – 90% in small short columned SWBs and is lowest in large lakes with longer water 

columns. These further stress the importance of water depth in carbon capture. Aquatic 

sediments have been found to contain more POC than DOC. This can be related to the 

shorter resident time required for larger sized particulates to travel down the water 

column. Therefore, there is a direct relationship between total organic carbon (TOC) and 

stored POC in aquatic sediment in SWBs, and POC supply could either be aquatic and/or 

terrestrial sources (Dunalska et al., 2003 and Scharnweber et al., 2014). 

2.6.3 Light penetration and temperature  

Processes of photosynthesis, other energy transfer mechanisms utilised microbes and 

environmental conditions provide the baseline for determining for nature and source of 

carbon in SWBs (Bärlocher and Boddy, 2016 and Briée et al., 2007). But sunlight through 

photosynthesis is the main source for energy entry into the food web (Chyba and Hand 

2001 and Dimijian, 2000). Phytoplankton and phototrophic bacteria play a major role as 

the primary producers in an aquatic system through photosynthesis. Therefore, light 

penetration and turbidity are important in the development of biodiversity and trophic 

relationships in an aquatic ecosystem, as high light penetration begets high productivity 

of phototrophs which will be utilised by heterotrophs. Although, these dynamics can vary 

depending on other factors/influences in the water body environment (Bidle and 

Flakowski, 2004, Field et al., 1998 and Tissot and Welte, 2013). 

SWBs’ temperature determines the adaptive survival of existing organisms. At constant 

temperature, existing microbes are more effective in carbon processing than in 

temperature extremes or flux. In lower trophic levels, temperature has a direct effect on 

the productivity of heterotrophic and autotrophic picoplankton while microplankton are 

less affected by temperature change. In higher trophic levels, temperature strongly 
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regulates biochemical activities within and between cells/organisms (Agawin et al., 2000 

and Porter et al., 1988).  

2.6.4 Water body stratification 

Water body stratification is related to oxygenation and temperature. Oxygenation 

decreases with water column depth, with the top pond or part closest to the pond surface, 

known as the epilimnion zone, being oxygen rich. Epilimnion zones are highly productive 

environments with planktonic communities and predating larger organisms. In summer, 

stratification and oxygenation of water bodies favours sedimentation and sequestering of 

POC and DOC burial. The thermocline reverses in lower temperature conditions. 

Productivity is based on in-situ oxygenation and microbes’ ability to survive temperature 

change (Figure 2.6). Oxygen depleted lake bottoms reduce activities of highly oxygenic 

microbes and encourage burial of organic carbon (Dunalska et al., 2003 and Shirokova 

et al., 2013). Similarly, the epilimnion is filled with DOC that is readily utilised by the 

microbial communities in oxic conditions and this results in high CO2 excursion 

(Isidorova et al., 2016).  

 
Figure 2.6: Pond Stratification and oxygenation in water bodies 
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In winter, stratification occurs due to the expansion of the oxygen rich zone and lower 

temperature. Microbial activities are generally slowed but autotrophic productivity 

increases for well-adapted microbes. Irrespective of seasons, POC settles to the bottom 

but winter is associated with slowed microbial utilisation. DOC is least utilised in the 

winter and settles into water body bottoms with reduced microbial perturbation (Dunalska 

et al., 2003 and Shirokova et al., 2013). The fate of DOC resets partially in springtime 

with the increase in temperature, erosion and increased microbial productivity. Situations 

can exist where excess autotrophic summer productivity and terrestrial carbon entry into 

the water body sustain stratification through the winter and into the new season. It 

involves the combined adaptability of microbial primary producers to respond to physical 

environmental changes and relatively insignificant changes in water body column depths 

(Stockner, 1988), amongst other prevailing environmental factors and this is consistent 

with eutrophic lakes.  

2.6.5 Bio-elements 

There are variations in the bio-elemental concentration of all aquatic systems. These 

variations are based on the nature and source of bio-elements, material transportation 

(aeolian and fluvial), burial, utilisation by microorganisms and prevailing environmental 

conditions. The combination of these factors directly affects carbon productivity and 

storage. Bio-elements activities in SWBs are best identified by interactions with carbon 

productivity. This can be achieved by measuring organic and inorganic biogeochemical 

activities such as trace elements, organic and inorganic carbon activities, nitrogen, 

sulphur, iron, potassium and phosphorus activities (Baker et al., 2015, Briée et al., 2007, 

Chapelle, 2001, Coby et al., 2011, Kluber and Conrad, 1998, Shirokova et al., 2013 and 

Weber et al., 2006) and biochemical interactions amongst microbes. Within water bodies 
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that experience stratification, bio-element distribution can vary in concentration and this 

creates variation in microbial processes within ponds (Briée et al., 2007, Isidorova et al., 

2016 and Shirokova et al., 2013). 

Agricultural activities have also been associated with increased availability of bio-

elements through run-off into SWBs and this has been associated with microbial blooms 

in SWBs (Cai et al., 2014 and Xiao et al., 2017). A high dilution factor of nutrients in 

large lakes and marine systems are responsible for the low productivity of such 

ecosystems. However, shorelines possess high gross primary productivity (GPP) given a 

higher concentration of nutrients from land before they are diluted into the open ocean. 

In summary, it has been established that storage, gaseous exchange and recycling of 

carbon in water bodies are in constant interaction and flux with each other and they are 

controlled by several physical/environmental, biological and chemical/biochemical 

factors (Aufdenkampe et al., 2011, Bärlocher and Boddy, 2016, Falkowski and Raven, 

2013 Grabowski et al., 2011, Jeffries, 2016, Premke et al., 2016 and Sobek et al., 2005). 

Other factors include vegetation entry, precipitation, sediment type and aggregation, 

hypsometry, and land use. The level of influence of an individual factor is interdependent 

on others in determining carbon source or sink and the way an ecosystem responds to 

carbon or bio-elemental cycling processes. Small water body systems have banks or pond 

edges and shorter water columns which access an active supply of allochthonous 

materials, minerals, and microbes and this creates high nutrient concentrations and 

biological processing compared to large lakes and oceans (Cole et al., 2007). 
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2.7.1 Northumberland 

Northumberland is in the North East of England, bordering Scotland to the North and 

West and the North Sea to the East. It has a diversity of physical geographies with flat 

land near the North Sea (Elliott, 2011, Jeffries, and 2008, Lunn, 2004) and increasingly 

upland elevation toward the West. It elevation ranges from sea level in the East to ~800 

m in the North West (Figure 2.7a).  

 

Figure 2.7a: Map of Northumberland (map created with SRTM) 
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The North to South Northumberland hard geology dates from the Palaeozoic era from 

~440 million to ~250 million years ago. It features igneous andesite and granite of the 

Cheviots Hills in the North and Carboniferous dolerite intrusion in the Hadrian’s Wall 

area in South Northumberland (Figure 2.7b). In the Quaternary era, between 25,000 and 

12,000 years ago, the landscape of Northumberland and North of England were glacially 

shaped. Coastal Northumberland near the Farne Islands has dolerite outcrops (Bird, 2016, 

Lunn, 2004 and Oswald et al., 2013). The south-east Northumberland area are 

characterised by coal fields.  

 
Figure 2.7b: North to South geological sections of Northumberland (Sourced from 

Northumberland National Park) 

 

Northumberland lies wholly or partially in the following National Character Areas (NCA)  

(Natural England, 2012): 

 North Northumberland Coastal Plain 

 South East Northumberland Coastal Plain 

 Mid NorthumberlandBorder Moors and Forests 

 Cheviots 



35 

 

 Cheviot Fringe 

 Northumberland Sandstone Hills 

 Tyne Gap and Hadrian's Wall 

The North Northumberland Coastal Plain consists mainly of arable and pasture land with 

sparse woodland confined to a river valley. It is a narrow and windswept strip located on 

the England –Scotland border. The coastline also contains sandy beaches, dunes and 

Whin Sill outcrops. The South-East Northumberland Coastal Plain lies south of the North 

Northumberland Coastal Plain. It is a low-lying strip with large fields, restored and active 

open cast coal mines, coastal rocky headlands and farmlands. Like the North, it has sand 

dunes as well as coastal flood plains and the rivers Blyth, Wansbeck, Coquet, Pont and 

Seaton Burn. Mid Northumberland features include a gently undulating plateau with 

farmlands, ridges and river valleys. Border Moors and Forests are an extensive and 

sparsely populated upland plateau dissected by the rivers North Tyne, Rede, Lyne and 

Irthing. Border Moors and Forests have an underlying geology of carboniferous deposits 

and subsequent glacial and fluvial depositions that formed peat. Cheviots NCA is part of 

an upland chain of Northumberland moors. The uplands rise steeply above the lowland 

belts of the Cheviots Fringe. Its features include some hill tops, rocky outcrops and scree 

slopes of igneous geology. Cheviot Fringe are undulating landscapes formed by glacial 

processes and weathering of underlying bedrocks deposited into river valleys. It also 

consists of arable farmland, pasture and meadow. Northumberland Sandstone Hills is 

located in the middle of Northumberland, with distinctive flat-topped ridges. Its ridgetop 

and grass moorland are covered by conifers. Tyne Gap and Hadrian’s Wall are underlain 

by sedimentary carboniferous rocks, limestone, sandstones, shales and igneous rock 

dolerites. It is covered in arable and pasture land, conifers and wooded valleys as well as 

being drained by the River Tyne (Natural England, 2012 and Natural England, No date). 
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The Northumberland coast has a temperate climate with a summer mean maximum 

temperature of ~20 0C and rainfall of ~800 mm per year (Gilbert et al., 2014 and Lunn, 

2004). Coastal Northumberland is characterised by salt marsh and extensive dunes. There 

are also rocky reefs and sea caves which house marine communities and seabirds (Gilbert 

et al., 2014, Jeffries, 2008, Jeffries, 2012, Jeffries 2016 and Lunn, 2004). Mainland 

Northumberland is characterised by grasslands, and woodlands found in the steep-sided 

valleys of the Rivers Coquet, Aln and Wansbeck. The rivers are also home to a wide 

variety of trout, crayfish, salmon and other river dwellers. Subsidence wetland post-

mining in South East Northumberland are home for plants, invertebrates, amphibians and 

birds. The upland of Northumberland is characterised by heath, blanket bog and hay 

meadows with wader, raptor, pignut and globeflower populations. Some of the main land 

uses in Northumberland are arable and pasture agricultural land, and urban development 

(Abraham, 2016, Bird, 2016, Elliott, 2011 and Groom et al., 2012).  

2.7.2 Druridge Bay  

Druridge Bay is an area of coastal Northumberland situated between the towns of Amble 

and High Hauxley to the north and Cresswell and Lynemouth to the south (Figure 2.8). 

Geological development of Druridge Bay and the whole of Northumberland can be dated 

back to the early Carboniferous (350 million years ago) which is responsible for the coal 

deposition in the entire region. In the 20th century, open cast mining was replaced with 

deep mining processes with massive excavation (and then subsidence) which changed the 

landscape. The shoreline areas were exploited for their sands which led to erosion and 

accretion (Bird, 2016). However, site restoration is currently in advanced stages from the 

previous anthropogenic induced subsidence (Elliott, 2011, Jeffries, 2008, Lunn, 2004 and 

Waddington, 2010). The deep mining restorations created opportunities for land 



37 

 

conservation and tourism including wetland conservation at Hauxley and East 

Chevington and Druridge Bay Country Park. Druridge Bay land features include sandy 

beaches, intertidal rock platforms, narrow dune ridge, dune grassland and flat coastal 

plain farmland (Jeffries, 2008, Jeffries, 2011 and Lunn 2004). Ponds within this area have 

been predominantly associated with changes in dominant species with changing seasons 

(Jeffries, 2008).  The ponds are dried out in summer and increase in surface area during 

the winter, thus, have more surface area for carbon sequestration and material draining. 

Figure 2.8 shows the area where the cores were collected in Druridge Bay, 

Northumberland for carbon and microbial content analyses. 
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Figure 2.8: Research site location for carbon and microbial analysis at Druridge Bay, Northumberland (on Google ™ Maps
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2.8 Why Druridge Bay was chosen as the research site 

Druridge Bay was selected for researching the carbon and microbial contents of ponds 

because of the various pond types present including arable, pasture, sand dune and natural 

ponds (Figure 2.9). These are the main types of water body features that are found in 

Northumberland aside lotic systems and wetlands (Gilbert et al., 2014, Groom et al., 

2012, Jeffries, 2011 and Lunn, 2004). Although water bodies associated with peatland 

are dominant in the Cheviots, the general distribution of inland waters are arable or 

pasture ponds associated with agricultural processes, dune formed ponds or water 

channels of the Northumberland coastline, and natural ponds formed from coal mine 

subsidence or geologic depressions (Abraham, 2016, Bird, 2016, Elliott, 2011 and Groom 

et al., 2012). And these systems are found in Druridge Bay. These water bodies also are 

of different shapes and sizes (Gilbert et al., 2014). From physical observation of the 

ponds, arable ponds are found on arable farms with land depressions or subsidence of 

predominantly clay sediments. The arable ponds have fine sediment that limits water 

penetration. Pasture ponds are  found on livestock farms and usually surrounded by green 

pasture vegetation; the pond sediments are usually dark and organic rich with little sandy 

sediment. Natural ponds have even darker rich organic sediments but are formed in 

natural depressions or subsidence. Sand dune ponds are ever-changing features of the 

Northumberland coastline. They are made of highly porous sandy sediments which 

continuously change sand dune pond’s physical structure. These four pond types typify 

the majority of ponds and adjacent environments found in all NCAs of Northumberland. 

Other significant water body features found in Northumberland are flood plains and river 

environments (Bird, 2016, Lunn, 2004 and Oswald et al., 2013), but these systems are 

lotic in nature. 
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Druridge Bay was also selected so that the research  was in continuation of work done by 

Gilbert et al. (2014), Gilbert (2016), Jeffries (2008), Jeffries (2011), Jeffries (2012), 

Jeffries (2016) and Taylor (2017 unpublished) in developing sub-regional carbon cycle 

activities in SWBs, and the processes that influence carbon stock in water bodies. These 

authors also sampled ponds similar to those used in this research. This research also 

embarks on classifying carbon stocks in ponds based on water body size ranges (10 – 100 

sq. m, 100 – 1,000 sq. m and 1,000 – 10,000 sq. m) with each sampled pond  falling into 

one of the sethree size categories (Figure 2.9). The work on regional water body 

abundance studied all lotic systems in Northumberland with surface area ranging from of 

1 sq. m to ~11 sq. km (Kielder Dam). Therefore, understanding carbon cycle and water 

bodies abundance at sub-regional level will enhance the development of a regional carbon 

stock associated with inland water bodies, in line with Seekell and Pace (2011), Seekell 

et al. (2014) and Verpoorter et al. (2014). Alongside the  extensive knowledge of the 

carbon activities in Druridge Bay by Gilbert et al. (2014), Gilbert (2016) and Taylor 

(2017 unpublished), this research site also provided a good baseline for researching the 

microbial influence of carbon activities in the three water body size ranges of 10 – 100 

sq. m, 100 – 1,000 sq. m and 1,000 – 10,000 sq. m (Figure 2.9).  

Finally, site access to Druridge Bay water bodies was easier to obtain compared to other 

area in Northumberland. 
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Figure 2.9: Water bodies selected to analyse carbon stock and microbial influence on 

capture in Northumberland (World Imagery on ArcGIS)  
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2.9 Chapter Summary  

Inland water bodies are diverse in size and they are difficult to globally quantify below 

10 sq. km. Numerous models have been developed to quantify SWBs <10 sq. km but they 

are limited by influence of localised or regional land use, hypsometry and climate. It is 

important to quantify number and size of SWBs because this further improves knowledge 

of their contribution to carbon cycle estimates. To combat the negative effects of climate 

change, it is important to identify all the contributors to atmospheric GHGs and reduce 

anthropogenic GHG emission sources.  

The land carbon cycle sub-compartments widely vary compared to the atmosphere. 

Amongst the sub-compartments, SWBs are the least understood or researched. They are 

capable of processing allochthonous and autochthonous carbon but are influenced by 

physical/environmental, biological and chemical/biochemical factors. These factors 

determine the source or sink potentials of SWBs. Microbes in SWBs are one of the most 

important influencers of carbon stocks in ponds Their abundance and diversity in ponds 

are influenced by similar physical/environmental, biological and chemical/biochemical 

factors that drive carbon processing. In small ponds, microbial abundances are fostered 

by the high concentration of bio-elements and they can determine autotrophism, 

heterotrophism and decomposition levels in water bodies amongst other processes. These 

and other factors make SWBs more efficient at carbon processing than large lakes and 

oceans. 

Northumberland is characterised by numerous landforms, features and vegetation. Some 

ponds in coastal Northumberland were developed from mining-related land subsidence 

and agricultural processes while others exist as a result of landscape. Druridge Bay, 

Northumberland was selected as the research site for carbon and microbial analysis 
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because of the presence most of the pond types found in Northumberland, previous 

research done in the area and site access permission. 
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Chapter 3 - Northumberland Water Body Distribution (NWBD) 

3.1 Background 

Research into inland water bodies has shown that carbon capture processes are 

heterogeneous and SWBs have wider importance than being water reservoirs for 

agriculture, human and animal use (Battin et al., 2009, Cole et al., 2007, Gilbert et al., 

2014 and Jeffries, 2012). This research focuses on determining water body abundance 

and distribution for carbon capture from a regional perspective. The methodology 

involves combining existing knowledge on water body distribution, digitising water 

bodies on high resolution satellite imageries at varying scales and comparing them with 

known databases to estimate Northumberland regional water body distribution. 

3.1.1 Mapping water bodies 

Section 2.1 covered the global abundance of water bodies, the inconsistency in 

identifying and estimating SWBs abundance. The section also highlighted the global and 

regional perspective of estimating water body abundance and identified that inland water 

bodies are of different shapes and sizes (Downing et al., 2006 and Lehner and Doll, 2004). 

Northumberland is similar to other regions of the world in that its SWBs are not seen on 

classical maps or identified accurately using extrapolation techniques. And the factors 

that influence SWBs abundance vary (Downing et al., 2006 and Seekell and Pace, 2011). 

Methodologies such as Pareto and regional/sub-regional water body counts have their 

strengths and weaknesses in estimating water body abundance (as reviewed in Section 

2.1) but the reality is water body abundance are in continuous flux due to precipitation 

and changes in anthropogenic land use (Jeffries, 2016). And these needs to be accounted 

for. 
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3.1.2 Identifying Northumberland water body abundance and distribution 

Identifying water bodies in Northumberland can either be done through manual or 

automated algorithms/techniques to retrieve water bodies from remote sensing data (Ryu 

et al., 2002) or ground survey of water bodies (Jeffries, 2016).  

3.1.2.1 Computer-based techniques/approaches 

The computer-based approaches include digitising water bodies through visual 

investigation, edge detection using single or multispectral imageries, water 

morphological segmentation, spectral transformation and texture analysis (Bagli et al., 

2004, Ryu et al., 2002, Verpoorter et al., 2012 and Verpoorter et al., 2014). And the 

perimeter of earthly features such as water bodies is manually digitised by drawing 

polygons or identified using algorithms. Some computer-based approaches have 

algorithms that are supposed to distinguish other earth features from water bodies (Frazier 

and Page, 2000 and Carroll et al., 2009). But this has been proven to be problematic 

because optical properties of water vary in space and time and most SWBs are well 

integrated into the terrestrial environment. Thus, multiple automated algorithms are 

required to identify SWBs amongst other earth features (Carroll et al., 2009, Jain et al., 

2005 and Song and Civco, 2002). There is also a problem of replication over a large area 

because of the diverseness of water body features and the complications of the techniques. 

Therefore, automated approaches have only been restricted to a small area or regional 

scale (Ryu et al., 2002 and Verpoorter et al., 2012). However, Verpoorter et al. (2014) 

utilised automated thresholding, classification, vectorisation and shadow removal from 

Landsat-7 ETM+ to identify water body abundance. The database was further 

extrapolated to determine global water body (GLOWABO) abundance down to 0.002 sq. 

km in surface area. McDonald et al. (2012) also utilised the Pareto distribution to 
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extrapolate water body abundance using data from the United States of America National 

Hydrography Dataset (NHD) and these data had varying resolutions.  

Section 2.1 also reviewed the Downing et al. (2006) Pareto extrapolation of a global water 

body database using Lehner and Dolls (2004) GLWD. The strength of the GLWD 

database is the combination of multiple classical map sources, regional and global 

databases (at varying resolutions) to generate lakes, reservoirs, wetlands and SWBs 

abundance. However, the dataset only shows a strong correlation in identifying water 

bodies >10 sq. km,  and there are uncertainties in identifying water bodies <10 sq. km 

which created an overestimation using the Pareto distribution (Seekell and Pace, 2011 

and Seekell et al., 2013).  

Diverseness of water body features and multiple techniques are further complicated by 

imagery quality. But remote sensing of water bodies has been improving from World 

Atlases to 250 m resolution of Shuttle Radar Topography Mission (SRTM), MODIS 250 

(Carroll et al., 2009), Lidar (Ma et al., 2006), MSSL Global Lakes database (MGLD), 

Global Land Cover Facility water body database, Landsat-7 ETM (Verpoorter et al., 

2012) and Landsat-8 (Sheng et al., 2016) amongst others. With each passing satellite 

imagery dataset over the years, there have been improvements in imagery resolutions. 

Landsat-8 carries an Operational Land Imager (OLI) sensor with 30 m resolution that 

provides multi-temporal and multispectral imagery for identifying earth’s features (Roy 

et al., 2014), with global coverage. It has a higher resolution compared to Terra/Aqua 

MODIS which has 0.25 – 1 km resolution (McCullough et al., 2012), and 

NOAA/AVHRR (Natural Oceanographic and Atmospheric Administration Advanced 

High Resolution Radiometer) which has ~1 km resolution (Bryant, 1999).  

Landsat-8 provides an alternate approach to identifying water bodies if an automated 

approach is applied but it is classed as coarse compared to Google ™ Map and World 
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Imagery on ArcGIS. In identifying water bodies on Landsat-8, multiple band 

combinations are used to define water body features. Landsat-8 multispectral imageries 

can identify water bodies in natural colour, land/water interface and infrared (Loveland 

and Irons, 2016 and Roy et al., 2014). The limitation of Landsat-8 and other temporal 

satellite imagery sources are shadow cast, cloud cover and vegetation cover and inability 

to distinguish diverse water surfaces (Sheng et al., 2016). But water body identification 

can be improved by specific spectral indices or ratioing which eliminate dark shadows by 

dividing one image band with another (Xu, 2006). Also, Normalised Difference Water 

Index (NDWI) and Modified Normalised Difference Water Index (MNDWI) (Xu, 2006) 

are models that identify the water body’s spectral signature on land (Liao et al., 2014) 

using Landsat-based surface reflectance at 30m resolution (Feng et al., 2016). This is 

achieved by creating an equation that combines different bands (Sarp and Ozcelik, 2016).   

Lidar and high resolution UAV imagery have been adopted in identifying earth features 

such as large lakes, vegetation cover, glaciers and rock fall (Ma et al., 2006 and Turner 

et al., 2015). A similar approach could be used in identifying SWBs. UAVs have been 

found to identify earth features at resolutions up to 0.02 m and can be set up for spatial 

and temporal imaging at fine details. But airplane based Lidar and UAV imagery are 

greatly limited by coverage area and set up cost factor. A more realistic and cost effective 

approach would be using Landsat-8, Google ™ Map and World Imagery on ArcGIS 

which have regional and global coverage and are publicly available data. Google ™ Map 

and World Imagery on ArcGIS stitch the best imagery quality from multiple dates to 

avoid of cloud cover. While Landsat-8 provides multi-temporal identification of water 

bodies which cannot be obtained in stitched imageries (Loveland and Irons, 2016, Lu et 

al., 2011 and Roy et al., 2014). Thereafter, sub-regional Lidar and UAVs data could be 
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used to update pre-existing databases at sub-regional levels. These new developments 

could improve the level of details processed.  

Also, it would be interesting to compare the GLWD (Lehner and Doll, 2004), which is 

one the most widely acceptable database, with current high resolution imagery maps for 

Northumberland in determining its regional water body abundance. 

3.1.2.2 Ground Survey Approach 

In Northumberland, ground surveys have been applied in ecology to determine wildlife 

and ecological interactions (Jeffries, 1998, Jeffries, 2005 and Jeffries, 2008), land use 

management and classical map survey (Elliott, 2011, Jeffries, 2008, Lunn, 2004 and 

Waddington, 2010). Identifying water body abundance and surface area flux is only a 

recent area of the ground survey study. Jeffries (2016) showed that there is a relationship 

between regional precipitation levels and SWBs abundance in Druridge Bay, 

Northumberland and this had implications for carbon capture potentials. Like Lidar and 

UAV, ground surveying is limited to sub-regional/regional coverage. Jeffries (2016) was 

only able to survey ~1 sq. km of Druridge Bay, Northumberland compared to a 

Northumberland regional area of ~5,000 sq. km. 

3.1.3 Northumberland Landscape and water body distribution 

Section 2.7 reviewed the Northumberland geology, habitats and influence of coal mining 

subsidence in creating ponds (Jeffries, 2008 and Waddington, 2010). The general 

topography of Northumberland is an Upland West, lowland East towards the North Sea 

coast and transitional landscapes in between (Figure 3.1). Northumberland elevation 

ranges from Cheviots (815m) to Wool Meath (652m) to the North Pennines being around 

300m and Kielder Moor generally around 200 m, and down to the coast at sea level. The 

landscape is cut by river valleys that drain eastwards to the North Sea. The valleys drain 
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into the Rivers Till, Tweed, Tyne and their tributaries (Charlton et al., 2003, Lunn, 2004, 

Passmore and Waddington, 2009 and Waddington, 2010). The soils of Northumberland 

are dominated by glacial till and drift derived soil types and they cover most of the farm 

land which are seasonally waterlogged loamy and clay soils. Some areas of 

Northumberland have peat-like soil, flood plains and eroded soils (Gilbert et al., 2014; 

Gilbert, 2016; Jeffries, 1998; Jeffries, 2008; Lunn, 2004; Taylor, 2017 unpublished; and 

Waddington, 2010).  

Usually, water migrates from higher land elevations to the lowlands with its end points 

being inland water bodies, rivers and oceans (Calder, 1996 and Fan et al., 2013). SWBs 

collect rainfall/snow and vary in capacity, shape and elevation. Upon SWBs saturation, 

water flows (water shedding) to larger lakes and streams through soils and these alter 

volume transfer and water chemistry (Boix et al., 2012, Céréghino et al., 2013, Fritz, 

1996 Jeffries, 2016 and Oertli et al., 2002). Also, the fluctuations and variability of these 

processes through time is a significant show of lakes and SWBs response to short/long 

term climate change respectively. The general water shedding pattern in Northumberland 

are from the western upland and undulating hills towards the eastern lowland soils and 

river plains (Wilkinson et al., 2010). However, it is unclear if this causes more abundant 

water bodies in the lowland area compared to the upland. This is because precipitation, 

evaporation, landscape, land use, water transport and soil type are factors that influence 

the seasonal distribution of water bodies but it is expected that more water bodies are 

found on flat lands irrespective of land elevation compared to undulating or sloping land. 
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Figure 3.1: Northumberland elevation (DEM) showing upland West and lowland East 

varying elevations in between (World Imagery)
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3.2.1 Research Aim  

The aim of the research in this chapter is to quantify the number and surface area of water 

bodies in Northumberland by:  

 Mapping water bodies using two types of imagery  

 Analysing the effect of mapping scales in identification of water bodies 

 Assessing the seasonal variability of number and surface area of water bodies  

 Investigating different approaches to upscaling number and surface area of water 

bodies  

The results of this research are later used in estimating the regional carbon stock in 

Northumberland in Chapter 6. 

3.2.2 Research Questions 

1. a. What is the total number and surface area of water bodies in Northumberland 

at 1:20,000 scale? 

b. What is the upscaled number and surface area of water bodies in 

Northumberland at 1:2,000 scale?  

2. How does number and surface area of water bodies vary based on mapping scale 

and imagery type? 

3. What are the effect of landscape and seasonal variations in number and surface 

area of water bodies? 

4. What are the differences in water body metrics between coastal and inland and 

between National Character Areas (NCAs) of Northumberland? 

5. How effective is the satellite imagery approach to mapping water bodies?  
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3.3 Method 

3.3.1 Imagery Analysis   

Northumberland water body distribution (NWBD) was analysed by manually drawing 

polygons around water bodies identified by eye on Landsat-8 and World Imagery for 

Northumberland at two scales using ArcGIS 10.0, with the exclusion of lotic systems 

(rivers, streams and their tributaries). The perimeter of water bodies identified in 

Northumberland was manually digitised at 1:2,000 scale (World Imagery) and 1:20,000 

scale (World Imagery and Landsat-8). The scales were often adjusted to accommodate 

and improve details during digitising. Water body abundance was represented in 

logarithmic intervals or size ranges starting from 10 – 100 sq. m. Results were compared 

to the GLWD extract for North East, England. 

World Imagery with higher resolution (0.3 m) allowed for detailed digitising of water 

bodies but the imagery provided no information on temporal changes because it is a stitch 

of different imageries collected at different dates. Landsat-8 data with resolution 15 – 30 

m provided temporal changes with data collected from 2013 – 2015 on days with <20% 

cloud cover (Table 3.1). Landsat-8 imageries were downloaded for July and September 

2013, July and December 2015, and April 2015. The Landsat-8 imageries were displayed 

in ArcGIS 10.0 as natural colour (4-3-2), infrared (5-4-3) and land/water (5-6-4) band 

combinations. The imageries were further pan-sharpened using the Panchromatic Band-

8 but this had little effect on water body visibility. World Imagery was void of cloud 

cover but, as with Landsat-8 imagery, it had vegetation cover and shadow cast that 

hindered water body identification.  

The GLWD comparison was developed by using a map outline of North East, England to 

extract water bodies within the North East of England. 
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Table 3.1: Maps and Imagery features used for identifying inland water bodies of 

Northumberland 

Imagery Feature Map 

 Landsat-8 World Imagery World Imagery 

Scale 1:20,000 1:20,000 1:2,000 

Resolution Low Resolution High 

Resolution 

High Resolution 

Cloud Cover (%) <20 0 0 

Vegetation Cover and shadow 

cast 

Present present present 

Imagery Date 2013 - 2015 Various dates combined into one 

stitched image 

Northumberland (Area Analysed) All All Selected NCAs 

3.3.2 Northumberland National Character Areas (NCA) 

For ease of digitising water bodies, Northumberland’s National Character Areas (NCA) 

were reclassified from eight to six. The reclassification was done based on NCAs with 

similar vegetation, elevation, landscape, geo and biodiversity (Natural England, No 

Date). The reclassification combined Cheviots with Cheviots Fringes and Mid 

Northumberland with Northumberland Sandstone Hills. The other NCAs are South East 

Northumberland Coastal Plain, North Northumberland Coastal Plain, Tyne Gap and 

Hadrian Wall and Border Moors and Forests (Table 3.2 and Figure 3.2). 

World Imagery and Landsat-8 were displayed at 1:20,000 scale to digitise all NWBD. 

Then, at 1:2,000 scale to digitise water bodies in National Character Area (NCA) test 

areas and this was upscaled using three different approaches to determine extrapolated 

NWBD.  

file:///E:/PHD%20corrections/(Natural%20England).%20No%20Date
file:///E:/PHD%20corrections/(Natural%20England).%20No%20Date
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Approach 1: Northumberland is assumed to have a uniform distribution of water 

bodies based on the hypothesis that Northumberland has uniform vegetation and 

elevations in all NCAs. 

Approach 2 - Northumberland is divided into two zones - Coastal Plain and 

Border Upland. And assumed that these elevation zones have different 

distributions of water bodies, due to geological, vegetation and land use 

differences. The Border Upland (BU) includes Tyne Gap and Hadrian Wall, 

Border Moors and Forests, Cheviots/Cheviots Fringes and Mid 

Northumberland/Northumberland Sandstone Hills, and the Coastal Plain (CU) are 

South East Northumberland Coastal Plain and North Northumberland Coastal 

Plain (Figure 3.2). 

Approach 3: Distribution of water bodies is upscaled for each of the six 

reclassified National Character Areas (NCA)  

Table 3.2: Northumberland NCA Classification and Test Area 

NCA NCA size (X 

106 sq. m) 

Test Area (X 

106 sq. m) 

Percentage 

test area (%) 

South East Northumberland Coastal Plain 437 40 9.15 

Mid Northumberland 637 

726 

50 3.67 

Northumberland Sandstone Hills 

Border Moors and Forests 1271 33 2.63 

Cheviots 364 

515 

45 5.11 

Cheviot Fringe 

Tyne Gap and Hadrian's Wall 434 37 8.64 

North Northumberland Coastal Plain 376 22 5.84 

Northumberland Area 4760 227 4.78 
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Figure 3.2: Northumberland NCA and test area for 1:2,000 scale water body distribution 

(World Imagery) 

3.3.3 Rainfall and Temperature 

Rainfall and temperature were analysed as climatic factors that control water body 

distribution in Northumberland. These climatic factors were assessed from July 2013 to 

April 2015 using data from the Met Office UK (Accessed – August 2015). The dataset 

includes monthly, seasonal and annual rainfall, temperature and sunshine. The climate 

data were compared with water body size and abundance digitised from the Landsat-8 

image collected at the same time. 

3.3.4  Accuracy Assessment 

Accuracy assessment was carried out in six NCAs by counting number of water bodies 

in six ~1 sq. km sites in fine detail from World Imagery and comparing the results with a 

reference map (Google ™ Maps). The accuracy assessment of the South-East 
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Northumberland NCA, that is the number of water bodies identified in the World Imagery 

and Google ™ maps in Blakemoor Farms, Druridge, were further compared with ground 

survey data  collected by Jeffries (2016) for the same site. Jeffries (2016) collected water 

body abundance data from November 2010 to November 2013 for the purpose of 

identifying the temporal variations in SWBs at Blakemoor farms (Figure 3.3). In this 

research, Jeffries (2016) assessment was used to approximate upper and lower limits of 

water body abundance based on the influence of precipitation. 

 
Figure 3.3: Position of Druridge Bay, South East Northumberland, B is the Blakemoor 

site and “NR” labelled Nature Reserves sites between Amble and Cresswell, 

Northumberland (Jeffries, 2016). 

 

  



57 

 

3.4 Results  

3.4.1 Accuracy of water body digitisation 

Number of water bodies in six ~1 sq. km sites in the Northumberland NCAs varied 

identified on World Imagery and Google™ map. On World Imagery, the general trend 

showed an increase in number of water bodies with decreasing size range with more water 

bodies found in size range 10 – 100 sq. m compared to other size ranges except in Tyne 

Gap and Hadrian’s Wall and South East Northumberland NCAs (Figure 3.4 and Figure 

3.5). On Google Map, the number of water bodies identified was fewer compared to 

World Imagery and the distribution varied in each NCA. Mid Northumberland / 

Northumberland Sandstone Hills and North Northumberland NCA showed a decrease in 

number of water bodies with increasing surface area (Figure 3.4). There were no 

significant differences in number of water bodies identified on World Imagery and 

Google Map in all accuracy assessment sites of ~1 sq. km, as detailed in Table 3.3 

Table 3.3: Test of difference in accuracy of water body digitisation on World Imagery 

and Google Map 

NCA Wilcoxon Signed Rank Test 

Value 

N P 

South East Northumberland Coastal Plain 0.000 4 0.317 

Mid Northumberland / Northumberland 

Sandstone Hills 

2.000 4 0.655 

Border Moors and Forests 2.000 4 0.593 

Cheviots / Cheviot Fringe 0.000 4 0.109 

Tyne Gap and Hadrian's Wall 2.000 4 0.655 

North Northumberland Coastal Plain 0.000 4 0.157 

Jeffries (2016) showed that there was variation over time in the number of water bodies 

in Blakemoor Farm Druridge Bay, South-East Northumberland. In the period of low 

precipitation, Jeffries’ water body counts were less than World Imagery and Google™ 
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map counts (Figure 3.5). During high precipitation, Jeffries’ water body counts were 

higher. Therefore, in comparison to Jeffries (2016), this research seems to be representing 

an average number of water bodies between the wet and dry phase of Jeffries (2016). 

Also, Jeffries (2016) identified water bodies in size range of 1 – 10 sq. m which are not 

easily identified using satellite imagery.  

There were no significant differences in the number of water bodies on World Imagery 

for South East Northumberland NCA and number of water bodies in Jeffries (2016) high 

rainfall (Wilcoxon Signed Rank Test Value = 6.000, N= 4, P = 0.109 and Jeffries (2016) 

low rainfall (Wilcoxon Signed Rank Test Value = 0.000, N = 4, P = 0.109, Pearson 

Correlation = 0.969). Also, there was strong positive correlation between World imagery 

and Jeffries (2016) (High rainfall: Pearson Correlation = 0.939 and Low rainfall: Pearson 

Correlation = 0.969).
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Figure 3.4: Accuracy assessment of water bodies’ count in Northumberland comparing World Imagery and Google ™ maps  
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Figure 3.5: Comparison between Jeffries (2016) and satellite imagery counts of water bodies
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3.4.2 Imagery Analysis 

3.4.2.1 Northumberland Water Body Distribution (NWBD) using Landsat- 8 multi-

temporal imagery at 1:20,000 scale 

Across all of Northumberland mapped at 1:20,000 scale, only one water body was >10 

sq. km but its surface area varied (Figure 3.6a & b) owing to seasonal change. The range 

10,000 – 100,000 sq. m accounted for the most number of water bodies in all dates 

analysed (Table 3.5). There were more water body counts in spring of April 2015 and 

summer of July 2013 (Figure 3.6a & b) compared to other dates of analysis with July 

2013 accounting for 1144 water bodies. The distribution showed fewer water body counts 

from range 100 - 1000 sq. m at 1:20,000 scale with no water bodies identified below 100 

sq. m. Despite more water bodies counted in spring and summer, water bodies surface 

area was larger and expanded in the winter time of December 2014. This covered over 

93.7 sq. km (Table 3.5) compared to July 2013 which covered 30.1 sq. km. The increased 

surface area in December 2014 is a function of expansion of surface area in ranges 10,000 

– 100,000 sq. m from 262 counts in September 2013 to 495 (in December 2014).  

Also, more water bodies were seen in summer due to reduced cloud cover. Winter time 

contains large or expanded water body areas that are often covered in cloud, as seen from 

December 2014 to April 2015 where ranges 0.1– 10 sq. km reduced in number and surface 

area but number and surface of area in SWBs in ranges 0.001 – 0.1 sq. km increased 

(Table 3.5). Similarly, there was a reduction in the overall surface area on this date by 

over 50% from 93.7 sq. km to 45.2 sq. km. Despite the temporal change influence by 

seasonality, there were no significant differences in water body abundance and changes 

in surface area of water bodies as shown in Table 3.4. 

During the period of analysing water body abundance, seasonal rainfall in 

Northumberland ranged from ~150 mm to ~280 mm with winter of 2014 showing the 
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highest rainfall. Summer and spring of 2013 and 2015 respectively had the lowest 

rainfalls (Figure 3.7a). Temperature was highest in summer 2013 and lowest in winter 

2014 (Figure 3.7b). However, there was no clear relationship between water body 

abundance and weather parameters (rainfall and temperature). Typically, with increasing 

temperature and decreasing rainfall from winter to spring, the sizes and number of water 

bodies reduce.  

Table 3.4: Test of difference in multi-temporal distribution of water bodies in 

Northumberland using Landsat-8 at 1:20,000 scale (mean with standard error), where N 

= 6 

Landsat-8: 1:20,000 scale Surface Area  
 

P- value Wilcoxon Signed Rank Test Value 

Jul-13 to Sep-13 0.917 11.000 

Sep-13 to Jul-14 0.116 18.000 

Jul-14 to Dec-14 0.249 5.000 

Dec-14 to Apr-15 0.249 5.000 

 
Number of water bodies 

 
P- value Wilcoxon Signed Rank Test Value 

Jul-13 to Sep-13 0.345 4.000 

Sep-13 to Jul-14 0.345 11.000 

Jul-14 to Dec-14 0.686 6.000 

Dec-14 to Apr-15 0.893 7.000 
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Table 3.5: Multi-temporal distribution of water bodies in Northumberland using Landsat-

8 at 1:20,000 scale (mean with standard error) 

Landsat-8: 1:20,000 

scale 

Surface Area (X 106 sq. m) 

RANGES  Jul-13 Sep-13 Jul-14 Dec-14 Apr-15 Mean Area  

100 - 1,000 sq. m 0.015 0.007 0.003 0.004 0.001 0.01 ± 0.00 

1,000 – 10,000 sq. m 3.420 0.783 0.354 0.260 1.113 1.15 ± 0.55 

10,000 - 100,000 sq. m 11.170 7.802 18.136 21.525 17.777 15.28 ± 2.51 

100,000 - 1,000,000 sq. m  3.730 4.328 55.002 40.010 10.379 22.69 ± 10.45 

1 – 10 sq. km 0 3.756 43.749 19.438 2.556 13.90 ± 8.21 

10 – 100 sq. km 11.970 12.322 13.905 12.429 13.392 12.80 ± 0.36 

Total Surface Area 30.290 28.999 131.151 93.669 45.218 65.83 ± 20.12 

 Number of water bodies 

RANGES Jul-13 Sep-13 Jul-14 Dec-14 Apr-15 Mean Number 

100 - 1,000 sq. m 21 10 5 8 1 9 ± 3 

1,000 – 10,000 sq. m 586 146 58 40 169 200 ± 99 

10,000 - 100,000 sq. m 526 262 431 495 605 464 ± 58 

100,000 - 1,000,000 sq. m  10 22 218 183 48 96 ± 43 

1 – 10 sq. km 0 3 18 8 2 6 ± 3 

10 – 100 sq. km 1 1 1 1 1 1 ± 0 

Total number bodies 1144 444 731 735 826 776 
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Figure 3.6a & b: Low resolution Distribution (a) area (b) number of water bodies in 

Northumberland (temporal distribution) at 1:20,000 scale 

 

 
Figure 3.7a & b: Rainfall levels (mm) and Mean temperature (0C) in East and North East 

England 

 

3.4.2.2 Northumberland Water Body Distribution using World Imagery at 1:20,000 scale 

Mapping water bodies using World Imagery allowed for digitising more water bodies 

down to size range 10 – 100 sq. m. There were more water bodies digitised at size range 

100 – 1,000 sq. m (361) and 1,000 – 10,000 sq. m (832) (Table 3.6) compared to Landsat-

8 multi-temporal average (Table 3.5). The distribution of water bodies at this scale also 

showed one water body >10 sq. km and two water bodies were identified in size range 1 
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– 10 sq. km. Using World Imagery at 1:20,000 scale, the total number of water bodies 

counted was 1395 (Table 3.6) which covered a total surface area of over 26 sq. km of the 

entire Northumberland. The most water body counts of 832 were identified in size range 

1,000 – 10,000 sq. m (Figure 3.8a & b). Despite identifying water bodies down to 10 sq. 

m, there was a sharp reduction in surface area <1,000 sq. m and imagery analysis at 

1:20,000 scale reduced what is identified as water bodies, causing the negligible size-

distribution at below 100 sq. m (Figure 3.8a & b).  

At 1:20,000 scale, there were more water bodies counted on World Imagery compared to 

Landsat-8 on average. The average surface area was higher on Landsat-8 (65.83 + 20.12 

sq. km) compared to World Imagery (26.243 sq. km) (Table 3.5 and 3.6) as well as in 

each size ranges (Figure 3.8). Test of difference analysis showed that there was no 

significant difference in World Imagery (average) and Landsat-8 (Surface area: Wilcoxon 

Signed Rank Test Value = 17.000, N= 6, P = 0.173, and number of water bodies: 

Wilcoxon Signed Rank Test Value = 6.000, N= 6, P = 0.686) 

Table 3.6: Distribution of water bodies in Northumberland using World Imagery at 

1:20,000 scale 

RANGES (sq. m) Surface Area (X 106 sq. m) Number of water bodies 

1 -10 sq. m     

10 - 100 sq. m 0.00 4 

100 - 1,000 sq. m 0.21 361 

1,000 – 10,000 sq. m 2.92 832 

10,000 - 100,000 sq. m 4.81 178 

100,000 - 1,000,000 sq. m  4.69 17 

1 – 10 sq. km 2.15 2 

10 – 100 sq. km 11.47 1 

Total  26.24 1395 
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Figure 3.8a & b: High resolution distribution (a) area (b) number of water bodies in 

Northumberland using World Imagery 
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3.4.2.3 Northumberland Water Body Distribution (NWBD) using World Imagery at 

1:2,000 scale (Test Area) 

To identify water bodies <100 sq. m, viewing scale was adjusted from 1:20,000 to 

1:2,000. Water bodies’ count was 4202 with sizes ranging from 1 sq. m to 1 sq. km. The 

sum of the test area amounted to 4.78% of Northumberland and more water bodies were 

identified in the 1 – 1000 sq. m size range compared to 1:20,000 scale. The distribution 

did not follow Pareto or any other distribution pattern in all NCAs. Inland uplands of 

Cheviots and Border Moors and Forest (with higher elevations/undulating hills) had 

fewer counts compared to lowland areas (North Northumberland and South East 

Northumberland Coastal Plains). At 1:2,000 scale, total surface area of water bodies in 

size range 1 – 10 sq. m were <1000 sq. m (Table 3.7). 

Table 3.7: Distribution of water bodies in Northumberland using World Imagery at 

1:2,000 scale 

RANGES (sq. m) 

1:2,000 scale 

Surface Area (X 106 sq. m) Number of water bodies 

1 - 10 sq. m 0.001 152 

10 - 100 sq. m 0.094 2016 

100 - 1,000 sq. m 0.517 1693 

1,000 – 10,000 sq. m 0.748 303 

10,000 - 100,000 sq. m 0.889 26 

100,000 - 1,000,000 sq. m  2.323 12 

Total 4.572 4202 
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3.4.3  Upscaling approaches for estimating water bodies at World Imagery 1:2,000 

scale 

3.4.3.1 Approach 1: Entire Northumberland 

Approach 1 summed the number and surface area of water bodies in all NCA test areas 

(which was 4.78% of the entire Northumberland area (Table 3.2)) and extrapolated it 

across Northumberland to determine NWBD, given the assumptions of uniformity in 

Northumberland vegetation and elevations in all NCAs. Thus, distributions were like the 

test area with negligible sizes and area below 10 sq. m. (Figure 3.9a & b). The estimate 

had no error values. 

3.4.3.2 Approach 2: Coastal Plain and Border Upland 

Approach 2 involved reclassifying Northumberland into Coastal Plain and Border 

Upland. The sum of water bodies (number and surface area) in South East 

Northumberland Coastal Plain and North Northumberland Coastal were extrapolated to 

determine number and surface area of water bodies in Coastal Plain. Similarly, the sum 

(number and surface area) of water bodies in Tyne Gap and Hadrian Wall, Border Moors 

and Forests, Cheviots/Cheviots Fringes and Mid Northumberland/Northumberland 

Sandstone Hills were extrapolated to determine number and surface area of water bodies 

in Border Upland. The upscaled water body abundance covered over 30.447 sq. km of 

Coastal Plain (813 sq. km) with more water bodies in range 100 – 1,000 sq. m and 10 – 

100 sq. m compared to sizes >1,000 sq. m and no water bodies >100,000 sq. m. The 

Border Upland (3,950 sq. km) contained 52.268 sq. km of water bodies between 1 sq. m 

– 1 sq. km, with the lowest count in range 100,000 – 1,000,000 sq. m (Table 3.8).  

Coastal Plain and Border Uplands upscale accounted for 39,138 + 2062 water bodies in 

range 10 – 100 sq. m and 34,139 + 1654 in range 100 – 1000 sq. m., while ranges 100,000 

– 1,000,000 sq. m and 10,000 – 100,000 sq. m contained water body surface area >29 
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million sq. m respectively. Despite containing the largest water body counts, ranges 10 – 

100 sq. m and 100 – 1,000 sq. m totalled around 1.92 million and 8.10 million 

respectively. Overall, there was a gradual increase in surface area from range 1- 10 sq. m 

to 100,000 – 1,000,000 sq. m in approach 2 with a corresponding inverse relationship in 

water body counts (except in range 1 - 10 sq. m) (Figure 3.9a & b).  Standard error was 

based on variations in respective NCA test areas that were covered within Coastal Plain 

and Border Upland. 

Table 3.8: Coastal Plain and Border Upland distribution of water bodies in 

Northumberland using World Imagery at 1:2,000 scale 

2 Coastal Plain 4 Border Uplands 

RANGES (sq. m) 

1:2,000 scale 

Surface Area 

(x 106 sq. m) 

Number of 

water bodies 

Surface 

Area (x 106 

sq. m) 

Number of 

water bodies 

1-10 sq. m 0.00 + 0.00 228 + 45 0.01 + 0.00 1,953 + 203 

10-100 sq. m 0.28 + 0.02 5,267 + 44 1.63 + 0.13 33,872 + 1,620 

100 - 1,000 sq. m 2.85 + 0.23 8,513 + 59 5.23 + 0.48 25,625 + 1,069 

1,000 – 10,000 sq. m 6.62 + 0.98 2,410 + 32 7.29 + 0.67 5,346 + 334 

10,000 - 100,000 sq. m 20.69 + 2.87 266 + 35 8.48 + 1.38 546 + 91 

100,000 - 1,000,000 sq. m 0 0 29.62 + 8.38 74 + 21 

Total 30.45 16,684 52.27 67,417 

3.4.3.3 Approach 3: National Character Area (NCA) distribution of water bodies 

Approach 3 involved extrapolating number and surface area of water bodies from NCA 

test areas to their respective NCA area. All NCAs contained water bodies ranging from 1 

sq. m – 10,000 sq. m, but water bodies >10,000 sq. m could only be extrapolated in South 

East and North Northumberland Coastal Plain, Mid Northumberland and 

Northumberland Sandstone Hills. Approach 3 showed an inverse relationship between 
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number and surface area of water bodies (except in size range 1 – 10 sq. m) (Table 3.10 

& Figure 3.9). Standard error was based on variations in respective NCA test areas in 

Northumberland. There were no significant differences in the test of differences between 

South East Northumberland Coastal Plain Water body distribution against other NCAs in 

Northumberland using Approach 3 as shown in Table 3.9. 

Table 3.9: Test of difference of South East Northumberland Coastal Plain Water body 

distribution against other NCAs in Northumberland using Approach 3 

 

In all, total count in Approach 1 is over 87,000 water bodies with over 95 million sq. m 

in upscaled surface area (Figure 3.9c & d).  Approaches 2 and 3 contained 81 million sq. 

km and 82 million sq. km and water bodies counts were 70,745 and 84,102 respectively 

(Figure 3.9c & d). The approaches confirm that 1.3 – 2% of Northumberland contains 

water bodies in the size range 1 sq. m to 1 sq. km. This is with the exclusion of rivers, 

water bodies >1 sq. km and un-digitised areas covered in vegetation and shadow. 

NCA Surface Area   
P- value Wilcoxon Signed Rank Test 

Value 

N 

Tyne Gap and Hadrian's Wall 0.465 3.000 4 

Border Moors and Forests 0.144 1.000 4 
Mid Northumberland / 

Northumberland Sandstone Hills 
0.225 3.000 5 

Cheviots / Cheviot Fringe 0.715 6.000 4 

North Northumberland Coastal 

Plain 
0.800 1.000 5 

 
Number of water bodies  
P- value Wilcoxon Signed Rank Test 

Value 

N 

Tyne Gap and Hadrian's Wall 1.000 5.000 4 

Border Moors and Forests 0.465 3.000 4 

Mid Northumberland / 

Northumberland Sandstone Hills 
0.686 9.000 5 

Cheviots / Cheviot Fringe 0.273 8.000 4 

North Northumberland Coastal 

Plain 
0.138 2 5 
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Table 3.10: Surface area and number of water bodies in Northumberland NCAs 

 NCA name Tyne Gap 

and 

Hadrian's 

Wall 

Border Moors 

and Forests 

Mid Northumberland / 

Northumberland 

Sandstone Hills 

Cheviots / Cheviot 

Fringe 

North 

Northumberland 

Coastal Plain 

South East 

Northumberland 

Coastal Plain 

 NCA area 434 x 106 sq. m  1,272 x 106 sq. m 1,360 x 106 sq. m  881 x 106 sq. m  377 x 106 sq. m 437 x 106 sq. m 

Surface area of water 

bodies 

      

1-10 sq. m 2,889 2,915 2,996 3,827 1,339 428 

10-100 sq. m 272,277 140,819 351,951 635,653 79,568 185,127 

100-1,000 sq. m 1,082,606 958,340 1,614,562 2,633,787 732,253 1,901,049 

1,000-10,000 sq. m 1,037,401 1,165,513 3,023,302 1,723,630 1,257,162 4,708,613 

10,000-100,000 sq. m   6,479,087 
 

1,493,042 16,278,394 

100,000-1,000,000 sq. 

m 

  33,951,075    

              

Number of water bodies             

1-10 sq. m 407 397 512 550 212 55 

10-100 sq. m 6,269 3,338 7,418 11,725 1,648 3,333 

100-1,000 sq. m 3,881 2,782 4,859 9,303 2,331 5,600 

1,000-10,000 sq. m 624 397 1,279 991 447 1,721 

10,000-100,000 sq. m     341  47 191 

100,000-1,000,000 sq. 

m 

    85      
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Figure 3.9a & b: Number and surface area of water bodies in Northumberland using 

World Imagery at 1:2,000 scale 
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Figure 3.9c & d: Comparing approaches for NWBD using World Imagery at 1:2,000 scale 
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3.4.4 Global Lake and Wetland Database (GLWD) for North East England 

In the North East database of the GLWD developed by Lehner and Doll (2004), water 

bodies were identified from 0.1 – 10 sq. km to 10 – 100 sq. km. Water bodies <1 sq. km 

in surface area were greater in number. And there was no Pareto distribution as suggested 

by Downing et al. (2006) (Table 3.11). As expected the database was limited in 

identifying water bodies <0.1 sq. km. 

Table 3.11: Inland water bodies distribution of North East England (GLWD) 

  Size range (sq. km) Surface area (sq. km) Number of water bodies 

10.1 - 100 27 2 

1.1 - 10 54.1 21 

0.1-1 30.7 57 
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3.5 Discussion   

3.5.1 Underpinning Northumberland Water Body Distribution (NWBD) 

Knowledge of the distribution of water bodies in size range <0.1 sq. km has been greatly 

flawed by the high level of uncertainties in calculating their abundance. The flaw is 

further encouraged by using parameters that control distributions of larger water bodies 

and lakes to extrapolate SWBs abundance as described by the GLWD and Downing et 

al. (2006). This chapter’s results clearly indicate a change in trends from postulates by 

Schuiling (1977), Wetzel (1990) and Downing et al. (2006) of an existing relationship 

between the increase in number of lakes and decrease in surface area. Although these 

relationships are true in larger lakes and other large water bodies, it is not applicable in 

the estimation of SWBs’ abundance because of the diversity and inter-dynamics of 

natural and anthropogenic factors that control SWB abundance. The results also showed 

that SWBs are more abundant than the larger water bodies at a regional and sub-regional 

scale with no clear patterns in distribution relationship. However, there is a strong 

limitation in identification and quantification of SWBs as it relates to the quality of 

imagery and temporal variations. The GLWD showed water bodies >0.1 sq. km increase 

in number of water bodies from large to small size ranges. NWBD showed similar 

relationships for its large water bodies but in the SWBs the pattern varied and these can 

be related to strong influences of regional climate and hypsometry on water bodies 

distribution (Seekell and Pace, 2011 and Seekell et al., 2013). Furthermore, precipitation 

has been known to play a significant role in carbon capture in collaboration with the size 

of water bodies (Jeffries, 2016). This is evident in the abundance change of water bodies 

in Northumberland identified in this research (multi-temporal distribution of water bodies 

in Northumberland using Landsat-8 at 1:20,000 scale). 
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Water bodies <0.1 sq. km on NWBD showed no mathematical relationship with the 

GLWD database because its coverage starts from 0.1 sq. km. GLWD for North East 

England were closely related to Landsat-8 except for two water bodies identified >10 sq. 

km. This can be related GLWD to the database identifying other waters outside the 

Northumberland area. Overall, Landsat-8 and World Imagery databases confirm that 

there are more water bodies <0.1 sq. km than previously estimated globally and their 

impacts in climate change scenarios are being missed out (Boyd et al., 2010). Their 

inclusion in the current climate change models poses an interesting outlook to 

understanding how much SWBs are defending the planet from increased atmospheric 

CO2 and CH4. Also, the global water body distribution is skewed towards the north of the 

equator between 35 - 70oN where land space is more abundant (Lehner and Doll, 2004). 

Thus, SWB influences on carbon capture have broader global significance than 

previously assumed.  

3.5.2 Accuracy assessment of water bodies abundance in Northumberland  

More water bodies were identified using the World Imagery maps compared to the 

Google™ maps. The accuracy of pond assessments using different imageries are subject 

to the image quality used for identification and the temporal variations in the water bodies 

based on landscape, precipitation flux and other environment influences (Jeffries, 2012). 

Each NWBD site had a varying number of water bodies because of the nature of the 

landscape, sediment types and localised processes that control natural and anthropogenic 

water body formation such as climate/weather and land use. Although, these keep SWBs 

abundance in a continuous flux, there were no statistically significant difference in 

utilising World Imagery or Google Map in identifying water bodies in each NCAs. 
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Ground survey data by Jeffries (2016) provided an alternate means of identifying water 

bodies and this confirmed the flux mechanisms of SWB abundance. It also confirmed the 

presence of water bodies in size range 1 – 10 sq. m that were not abundantly seen in 

satellite imagery in this research. Advancement in image quality could potentially 

improve identification of water bodies in size range 1 – 10 sq. m but water bodies of these 

sizes have quick wetting and drying phase and may be difficult to identify because of 

their close similarity with surrounding soils. Also, Jeffries (2016) ground survey data on 

precipitation showed that this research’s water body distribution was at a median 

abundance and water body distribution can change based on precipitation influence. In 

high precipitation periods, more water bodies are expected to be formed but the 

geographical distribution of these water bodies are unclear because of the variation in 

landscape. However, the general conception remains that flat landscapes will be expected 

to have more water bodies than undulating landscape (Calder, 1996, Fan et al., 2013 and 

Wilkinson et al., 2009). It is also worth noting that in this research, there were no 

significant differences between World Imagery water body count in South East 

Northumberland Coastal Plain NCA and Jeffries’ (2016) high and low precipitation water 

body counts. This confirms that this research’s water body distribution bis at the median 

abundance.    

Upscaling at 1:2,000 scale showed elevated counts of water bodies (>28,000) in size 

ranges 10 – 100 sq. m and 100 – 1000 sq. m compared to all other ranges. Upscaling or 

extrapolating water bodies using the test areas could be overestimating water body 

abundance in inland Northumberland which has undulating hills that cannot hold water 

bodies but this may be appropriate in lowland landscapes such as coastal and river flood 

plain areas of Northumberland. These areas are also influenced by the land use which 

contributes to the flux of NWBD.  Factors such as image resolution and scale change also 
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influence the variations in NWBD from an automated analysis approach in extrapolating 

water bodies. However, the variations in NWBDs reduce with increase in water body size 

range. Thus, results acquired are a function of how efficient the data processing and 

constrained applied to determine water body abundance.  

3.5.3 Water bodies in Northumberland  

At 1:20,000 scale, more water bodies were counted on World Imagery compared to 

Landsat-8 on average. But the average surface area was higher on Landsat-8 (65.83 + 

20.12 sq. km) compared to World Imagery (26.243 sq. km) in all size ranges. Like Jeffries 

(2016) at a sub-regional level, Landsat-8 also confirmed the continuous flux state of water 

body abundance at a regional level. This further confirmed that  a single estimate is not 

tenable and a range should be given which reflects the strong control by regional 

influences. Also, water body abundance flux will not allow for establishing a fixed 

distribution pattern such as Pareto (Seekell and Pace, 2011, Raymond et al., 2013 and 

Verpoorter et al., 2014) regionally or globally.  

3.5.4 Extrapolating Northumberland water body distribution 

Approaches 1, 2 and 3 showed that 1.3 – 2% of Northumberland’s area contains water 

bodies in the size range 1 sq. m to 1 sq. km. This is with the exclusion of rivers, water 

bodies >1 sq. km and un-digitised water bodies covered in vegetation, shadow cast and 

cloud cover. Global water body distribution is around to 2 – 3% of global land cover 

(Lehner and Doll, 2004 and Downing et al., 2006), therefore, upscaling approaches are 

in line with literature from a global context. None of the estimates given by Approaches 

1, 2 and 3 give a Pareto distribution because of the reduction in the size range 1 – 10 sq. 

m. Pareto distribution could have been achieved in Northumberland if the <10 sq. m were 
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excluded from results. However, flux state of water bodies being controlled by regional 

climates, temporal changes and landscape meant that results may not be replicable in a 

different location or the same location in a different season (Jeffries, 2016). Image 

resolution, vegetation cover, and high evaporation in shallow water depths were also 

factors that potentially accounts for the inability to identify water bodies in size range 1 

– 10 sq. m. Therefore, natural processes in Northumberland and data processing make it 

less likely for water body abundance to follow a Pareto distribution or any defined 

distribution pattern.   

3.5.5 Temporal variation of Northumberland water bodies and carbon flux  

This research showed that water body abundance does not directly correspond with 

weather parameters (temperature and rainfall) because filling up of a water body is an 

accumulation of precipitations and evaporations from previous months or seasons. Also, 

high precipitation also does not always directly relate to more water bodies because water 

supply generally feeds regional water bodies, soils, groundwater and river systems (Boix 

et al., 2012, Céréghino et al., 2008, Céréghino et al., 2013 and Fritz, 1996). For large 

water bodies with deeper depth, precipitation flux is noticed in the reduction/increase in 

water volume. Most SWBs experience pond disappearance by the loss of water cover and 

become similar with the surrounding soil environment or become extremely shallow 

systems as a result of the seasonal accumulation of high evaporation and low precipitation 

(Jeffries, 2016). Pond reappearance occurs as result of an accumulation of seasonal low 

evaporation and high precipitation. This further explains why temperature and rainfall 

data for July and September 2013, July and December 2015, and April 2015 did not relate 

with Landsat-8 water body abundance collected from the same months. 
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Temporal analyses of water bodies showed a wide variation in the size-abundance of 

lentic systems in the region. Water body abundance flux can provide information on 

source and sink potentials. Pond disappearance and water body size reduction signify 

carbon sinks and burial of carbon in sediment respectively. While pond reappearance and 

the increase in water body surface areas could relate to the formation of new natural and 

anthropogenic ponds, the age of ponds, carbon sink/source flux and precipitation levels 

(Raymond et al., 2013 and Gilbert et al., 2014).  

In July 2013 and July 2014, there were more water bodies counted in Northumberland. 

Without factoring water body depth, increase in surface area of water bodies can play 

significant roles in CO2 and CH4 flux viz-a-viz carbon cycling in water bodies (Cole et 

al., 2007, Downing, 2010 and Raymond et al., 2013). The increase in water bodies’ 

surface area also allows for easier entry of terrestrial carbon into water systems (Boyd et 

al., 2010). However, it is difficult to determine the general water bodies’ behaviours with 

increasing total surface area as there is potential for heterogeneous behaviours of different 

water bodies at different size ranges in Northumberland (Gilbert et al., 2014). From 

December 2014 to April 2015, there was a decrease in surface area of water bodies from 

93.7 sq. km to around 45 sq. km. This represents  over 50% drop in water bodies surface 

area and consequently burial of accumulated terrestrial and aquatic carbon (Raymond et 

al., 2013 and Clow et al., 2015). During this period, there was a massive reduction in 

water body sizes between 0.1 – 10 sq. km which could be related to surface evaporation 

(that is, accumulation of seasonal temperature increase and reduced rainfall), land sparing 

(Lamb et al., 2016) and other agro-based techniques. In the winter, there is more DOC 

settling at pond bottoms due to slowed microbial actions in cold weather (Dunalska et al., 

2003). Also, increase in precipitation and pond size expansion favour water transport of 

allochthonous and autochthonous carbon. 
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It should be noted that at 1:20,000 scale, no water bodies were identified between size 

range 1 - 10 sq. m, 10 - 100 sq. m and few water bodies were identified at 100 – 1,000 

sq. m. But temporal changes are significant in identifying the importance of 

environmental and climatic controls in water body distribution, hence, the continued 

conversation on improving imagery to further understand SWBs’ carbon burial (Clow et 

al., 2015, Downing et al., 2006, Downing 2010, Lehner and Doll, 2004 and Verpoorter 

et al., 2014) and to identify water bodies <1,000 sq. m.   

3.5.6 Small water bodies abundance in Northumberland and carbon capture 

With improved imagery quality and no cloud cover, the error in digitising imagery was 

highly reduced for water bodies’ identification on World Imagery compared to Landsat-

8. World Imagery provided no information on the temporal change in water body 

distribution or effect of seasonal variation. At 1:20,000 scale, there was only one water 

body >10 sq. km (like Landsat-8) and two water bodies in size range 1 - 10 sq. km. With 

decreasing size range, more water bodies were identified compared to low resolution 

Landsat-8 even in size range 10 – 100 sq. m. This is in-line with researches by Downing 

et al. (2006), Cole et al., 2007, Seekell et al. (2013) and Verpoorter (2014) that more 

water bodies abound in surface area <0.1 sq. km. However, 1:20,000 scale is limited in 

identifying water bodies <1,000 sq. m accurately.  

To achieve identification to 1 sq. m, the scale was adjusted in 6 selected areas to 1:2,000. 

This identified water bodies’ sizes between 1 sq. m to 1 sq. km. In the selected areas, 

more SWBs were identified in finer details in each NCA. The distribution of water bodies 

coincided with a downhill distribution of water bodies in Northumberland, that is, South 

East and North Northumberland Coastal Plains and other lowland areas in 

Northumberland contained more water bodies compared to areas of higher elevations. 
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Consequently, SWBs contribute significantly to carbon flux in flat lands (Seekell et al., 

2013 and Clow et al., 2015). Agricultural activities also play a significant role in the 

carbon burials in these areas (Lamb et al., 2016) as Gilbert et al. (2014) showed that there 

is heterogeneity in the carbon storage in Coastal Northumberland with carbon storage of 

up to 20% in organic carbon sequestered in ponds. This confirmed land use as a 

significant influencer of small water distribution (Downing et al., 2006). 

To understand the significance of SWBs to the carbon cycle and abundance down to 1 

sq. m, three approaches were developed to extrapolate the number of ponds in 

Northumberland at 1:2,000 scale. The three approaches showed more water bodies 

counted between 1 – 10,000 sq. m which has not been previously estimated in literature. 

But the estimated water body count in the size range 1 – 10 sq. m were <3200 with a very 

negligible surface area. Therefore, at size range <10 sq. m, there is need to improve 

imagery quality, identification techniques that distinguish water bodies from surrounding 

soil and eliminate vegetation cover that may hinder digitising water bodies at 1:2,000 

scale. Water bodies in size range 1 – 10 sq. m are more subject to climatic effects 

compared to the other size ranges because of their quick wetting and drying. Hence, 

carbon fluxes are more rapid and significant compared to large water bodies (Gilbert et 

al., 2014).  
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3.6 Limitation to Northumberland Water Body Distribution 

Research  

World Imagery is not available for multiple dates so temporal change cannot be 

investigated at higher spatial resolution but this was partly compensated by the Landsat-

8 data which provided images from different dates. Landsat-8 images were limited in  the 

identification of SWBs compared to larger water bodies, due to the pixel size. Also, in 

the accuracy assessment, field survey data came from only one source (Jeffries, 2016) 

and from one site in Northumberland. But alternative accuracy assessment of water 

bodies for all NCAs was achieved by analysing Google ™ Map. There is a limitation in 

field surveys of other NCA of Northumberland as this could not be completed within the 

timescales of this PhD research. 

Extrapolated data needs further methods for constraining it as land features in 

Northumberland vary within an NCA. Therefore, there is a chance of overestimation of 

water body abundance in undulating land and upland features, despite using three 

approaches and the localised data source for estimating water body abundance. 

The research is also limited in absence of an accurate means to measure pond expansion 

and reduction in surface area. Although Landsat-8 provided a means of identifying 

surface area flux, the level of detail produced can be further enhanced through improved 

methodologies around actual field and high resolution imagery data.  

However, the similarity in the results with other works goes to show the plausibility of 

the research methods/approaches as well as plausibility of the extrapolations.   

  



84 

 

3.7 Conclusion 

There are multiple methods for identifying water body distribution and each method has 

strengths and weaknesses in estimating SWB distribution. This research used map-based 

identification of water bodies to estimate water bodies abundance and distribution. There 

were variations in the identification of water bodies distribution based on imagery, 

precipitation change and mathematical extrapolations. The reality is water bodies 

abundance and distributions are in continuous flux and their identification is dependent 

on the accuracy of the data utilised, imagery quality and scale of analysis.   

SWBs and their abundance flux are important in carbon capture and understanding of 

their size and abundance behaviour with corresponding environmental control will help 

unlock new knowledge in carbon capture. Therefore, researching constrained automated 

methods of quantifying water bodies (including Pareto distribution) should be further 

considered in determining regional and global estimates. However, Pareto distribution 

seems to be only correct for larger water bodies.   
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Chapter 4: Carbon Stock in Northumberland Water Bodies 

4.1  Background 

Water bodies have been found to behave differently in terms of their source or sink 

potentials (Cole et al., 2007, Gilbert et al., 2014 and Seekell et al., 2013). These broad 

source/sink potentials are affected by numerous factors including regional climate, 

surrounding vegetation type and terrestrial inclusions, age of water body and pond 

succession, water body biochemistry and flux processes within the ponds, water body 

depth and hypsometry (Downing et al., 2006, Gilbert et al., 2014, Raymond et al., 2013 

and Seekell et al., 2013). These and other environmental/physical, biological and 

geochemical/chemical factors control carbon stocks in water bodies. 

Estimates of SWBs’ carbon stocks are important for quantifying inland water body 

contributions to the carbon cycle (Boyd et al., 2010 and Ntengwe and Edema, 2008). 

Knowledge of this and the regional number and surface area of water bodies further 

define the total carbon stocks in SWBs at a regional scale. In comparison to the well-

defined atmospheric and ocean carbon sinks, there is a need to more accurately estimate 

the various sub-compartments of land or terrestrial carbon cycle (Cole et al., 2007, Gilbert 

et al., 2014 and Tranvik et al., 2009). The majority of the land sub-compartments are not 

well understood especially the SWBs compartment and SWBs have been described as the 

potential missing carbon sink or a missing link in the global carbon cycle (Aufdenkampe 

et al., 2011, Cole et al., 2007 and Lal, 2004).  

This chapter focuses on quantifying carbon that is stocked in sedimentary depositions of 

ponds. This was achieved by quantifying carbon stock deposited from allochthonous and 

autochthonous sources in selected ponds at Druridge Bay, South East Northumberland. 

The ponds were categorised into four pond types (similar to Gilbert et. al., 2014) and 
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three water body size ranges. The results of the carbon analyses are upscaled to determine 

the carbon stock across Northumberland water bodies in Chapter 6. 

4.2  Literature Review 

There are numerous environmental/physical, biological and geochemical/chemical 

factors that combine to influence the variation of carbon stocks within ponds. These flux 

mechanisms are closely similar to other flux systems within the global carbon cycle such 

as lakes, rivers and streams which process and stock carbon in the water column and 

bottom sediments. However, in ponds, there is highly reduced fluvial transport which 

contributes to increasing carbon loss to the atmosphere (Cole et al., 2007). The reduced 

fluvial transport also means that SWBs do not have well-graded sediments, as is found in 

oceans, with materials well graded from coarse to fine, from ocean shore to deep 

continental shelf (Demaison and Moore, 1980, Gilbert et al., 2014 and Grabowski et al., 

2011). This is significant because aggregation proportions of fine and coarse materials 

contribute to the efficiency for carbon burial in sediments or carbon remobilisation into 

the water column and atmosphere.  

For SWBs, the interplay of sedimentary material aggregation and other sub-factors within 

physical/environmental, biological and geochemical/chemical factors influence carbon 

source/sink potentials. This explains why highly porous or loose sediments, which are 

expected to easily remobilise carbon, can stock more net carbon than impermeable 

sediments (Gilbert et al., 2014). These varying influences also create a flux pattern of 

carbon exchange with the atmosphere and carbon burial. Thus, the efficiency of pond 

carbon flux determines net carbon source or sink (Gilbert, 2016 and Taylor, 2017). 

Although these factors are numerous, varying and environment specific, this research 

focused on: 

 Sediment wetness 
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 Organic carbon concentration 

 Carbon Nitrogen Ratio (C:N) 

 Dry bulk density 

 Carbon stock 

And the roles of each of these factors are reviewed below. 

The microbial community inherent in the pond sediment and how it affects carbon 

stock is researched in Chapter 5. 

4.2.1 Sediment wetness 

Pond sediment composition can either be the interaction of gas, solid and liquid materials 

which are mostly prevalent in shallow SWBs or solid and liquid materials which occur 

prevalently in larger water bodies (Avnimelech et al., 2001). These can be described as 

temporary or permanent ponds respectively (Gilbert et al., 2014 and Gilbert, 2016).  The 

solid components of water body sediment are usually organic and inorganic matter 

(Grabowski et al., 2011) and the liquid phase is water. In a permanent pond system, the 

top layer of sediment with high sediment wetness or moisture content is referred to as 

soft sediment (Yuvanatemiya and Boyd, 2006) because of its continuous exposure to the 

pond water column (Munsiri et al., 1996) (Figure 4.1). Also, some permanent ponds are 

known to contain gasses as a result of microbial methane production in pond sediment 

(Gebert et al., 2006 and Sanders et al., 2007) or sediment aeration in sand dune pond 

sediments. 

Sediment wetness or moisture penetrates more efficiently in unconsolidated sediments 

which have high porosity and the wetness reduces down the core profile as a result of 

increased compaction in sediment (Grabowski et al., 2011). Sediment wetness also has a 

direct effect on organic matter concentration (Gilbert, 2016) and microbial 

http://www.sciencedirect.com/science/article/pii/S0012825211000171#bb0275
http://www.sciencedirect.com/science/article/pii/S0012825211000171#bb0700
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communities/biochemistry within pond sediment (Grabowski et al., 2011). Increased 

porosity in sediment allows development of biofilm that attach themselves to the 

inorganic matter within sediment pore spaces for mineral extraction and transport of 

nutrients through pond sediments. As sediment compaction increases, there is a reduction 

in pore spaces which hinders the development of microbial biofilms and moisture 

penetrations in sediments (Grabowski et al., 2011). Within the biofilms, the nature of 

microbial loads varies and microbial variability is controlled by carbon source, pond 

permanence/temporariness and pond environment amongst other factors. Sediment 

wetness is also known to influence the nature of the microbial community in SWBs and 

microbial communities of ponds are further explored in Chapter 5. 

4.2.2 Organic Carbon Concentration 

Percentage organic carbon in small pond sediments has been found to range from 1 - 19% 

in lowland sites in Northumberland (Gilbert et al., 2014). This is within the ranges that 

were previously recorded by Dean and Gorham (1998), Downing et al. (2008) and Boyd 

et al. (2010). Although this confirms the carbon sink potentials of small ponds, small 

ponds are generally in a flux state of carbon preservation and oxidation with oxidative 

by-products of CO2, H2S and CH4. Gilbert et al. (2014) showed the highest organic carbon 

concentrations were recorded in loose naturally vegetated permanent pond sediments in 

Blakemoor Northumberland while the lowest were in arable field ponds. This goes to 

show that carbon depositions can vary with pond type and are largely controlled by the 

capacity to bury particulate carbon or remobilise carbon for redox. Also, temporary ponds 

in Hauxley, Northumberland, accumulated carbon concentration by creating anoxia and 

a dampening layer of moss (Jeffries, 1998) and this further identified the diversity of 

influences on carbon buried in sediment. 
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4.2.3 Carbon Nitrogen Ratio (C:N)  

Carbon in pond sediment can be sourced from either allochthonous or autochthonous 

material inputs. Allochthonous carbon (with heavy molecular weight), like coarse 

sediment, has a quick sedimentation time to pond bottom with minimal microbial 

interaction in the water column. Allochthonous materials are usually characterised by 

complex molecular structures (Dean and Gorham, 1998) that are sometimes difficult to 

degrade by pond microbes. Thus, they continuously accumulate in the pond bottom and 

are slowly degraded by microbes penetrating through wet sediments. They include mainly 

plant and animal matter from the terrestrial environment, and make up the bulk of 

particulate organic carbon (POC) in water bodies. Autochthonous carbon quantities in 

ponds are functions of biologic interactions within the pond and are mostly associated 

with in-situ microbes. They are characterised by typically less complex organic structure, 

slower sedimentation time compared to heavy terrestrial carbon and can easily be 

oxidised within the pond water column (Boyd, 1995). They include esters, amino acids, 

lipids and metabolic substrates of microbes, and they make up a large proportion of 

Dissolved Organic Carbon (DOC) found in ponds. 

Knowledge on the source of organic matter is important in understanding and building 

relationships between the various sub-compartments of the land or terrestrial carbon 

cycle. Although carbon mineralisation alters the identity of organic matter and makes it 

difficult to define organic matter source especially after extreme microbial degradation, 

the origin of organic matter can be described by measuring the ratio of carbon and 

nitrogen content (Meyers and Ishiwatari, 1993 and Cole et al., 2007). Pond sediment rich 

in terrestrial input or allochthones are characterised by complex organic compounds with 

C:N ratio typically >10:1. Vascular Plants are identified by C:N ratio between 20-30:1. 
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Pond sediment dominated by autochthonous carbon are characterised by C:N ratios 

<10:1 (Ishiwatari and Uzaki, 1987, Meyers and Ishiwatari 1993 and Prahl et al., 1994).  

C:N ratio analyses in water bodies provides an avenue for down core profiling of carbon 

processes and origin. This is needed to understand aquatic carbon oxidation, pond 

succession and processes related to terrestrial input over time. Pond succession reflects 

the depositional environmental conditions and the changes in vegetation that supply 

materials into water bodies’ bottom sediments (Biggs et al., 1994, Gilbert et al., 2014, 

Jeffries, 2008). Ponds in Northumberland have been identified to reflect changes in 

depositional material based on seasonal changes and land use. C:N ratio can be used to 

identify these depositional changes (Gilbert, 2017), which reflect changes from algae 

rich, plant rich or vascular plant depositions into ponds.  

It is expected that the level of information from C:N ratio in a stable lentic system (e.g. 

ponds) will be more easily interpreted compared to river systems that are influenced by 

highly oxidative and continuous material mixing and transport. High oxidation of 

terrestrial organic matter can lower C:N ratios (Emerson and Hedges, 2003). These cause 

inland water bodies (rivers and lakes) surrounded by terrestrial plants to have C:N ratio 

<10:1 which complicate C:N ratio analyses.  

4.2.4 Dry Bulk Density 

In understanding the variation of sediment wetness in different ponds, there is also a need 

to understand the porosity in pond sediment and porosity is  usually tied to the sediment 

type and grain size. Fine clay soil clumps together and has low sorption for water 

compared to coarse sediment that allows for water absorption. Therefore, highly porous 

sediments have lower dry bulk density after removal of moisture or sediment wetness. 

Sediment cohesion is a function of the existing weathering, transport and microbial 
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processes that are inherent in the pond sediment (Grabowski et al., 2011). The size 

aggregation and chemical interaction of sedimentary minerals bring about cohesion, and 

the proportions of fine or coarse grains and their potential chemical bonding or 

interactions cumulate to create material density (Bennett and Hulbert, 2012). 

In pond sediments’ down core profile, compaction and porosity tend to control the dry 

bulk density. At the top sediment, materials tend to unevenly aggregate coarse and fine 

sediment laterally. Thus, high porosity and moisture penetration contribute to low dry 

bulk density and the reverse occurs in pond bottom sediment because of increased 

compaction of sediments and overburdens overlying sediments. Gilbert et al. (2014) 

identified that permanent natural ponds in Northumberland had a lower dry bulk density 

in sediment compared to arable, pasture and sand dune ponds. This is because of the 

continuous sediment wetness or moisture penetrating through natural pond’s top sediment 

which causes low compaction or sediment looseness. Dry bulk density increased down 

core profile at different rates depending on sediment type (Munsiri et al., 1995). Also, 

ponds that hold gas bubbles cause a reduction in dry bulk density in that portion of 

sediment (Avnimelech et al., 2001, Grabowski et al., 2011 and Gilbert, 2016).  

4.2.5 Carbon stock 

Allochthonous and autochthonous carbon inputs are the main contributors to carbon stock 

in pond sediment. Figure 4.1 typifies the deposition of sediment in pond bottom over a 

34-year period. The figure shows accumulation of materials from allochthonous and 

autochthonous deposition of carbon into bottom sediments based on prevailing 

physical/environmental, biological and geochemical/chemical factors that control carbon 

stock or development of soft sediments in the pond bottom. 
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The sources of the materials are usually from surrounding and in-situ biochemical matter 

decomposition, which causes bio-accumulation and geo-accumulation of materials by 

erosion and sedimentation (Yuvanatemiya and Boyd, 2006). The flux of organic carbon 

(burial and re-mobilisation) and nutrients are functions of temperature, oxygen 

penetration, soil type, compaction, moisture penetration, primary productivity, the age of 

pond and seasonal wetting/drying of water body amongst other factors. High carbon 

preservation is favoured by anoxia while high oxygen penetration into pond bottoms leads 

to more CO2 emissions. Overall, carbon stocks are expected to be high in top pond 

sediment and reduce down core profile as result of terrestrial input deposited in the top 

sediment. Autochthonous organic carbons in a highly oxidised environment are 

susceptible to microbial degradation. However, when they reach the pond bottom as DOC 

or colloidal DOC, their fate is dependent on sediment wetness and the pre-existing factors 

that control flux of organic carbon (Dunalska et al., 2003, Yuvanatemiya and Boyd, 2006, 

Cole et al., 2007, Ntengwe and Edema, 2008, Boyd et al., 2010 and Gilbert et al., 2014). 

  

 

Figure 4.1: Accumulation of soft sediment in pond (Yuvanatemiya and Boyd, 2006) 
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4.2.6 Background Summary 

The dry bulk density of pond sediment is a function of sediment type and aggregation, 

porosity, sediment wetness and material compaction. And irrespective of pond types, 

pond size or any other factor, high carbon burial in pond sediments are tightly related to 

the appropriate aggregation, dry bulk density and sediment wetness (Gilbert et al., 2014). 

Therefore, there is a relationship between carbon stock and dry bulk density of pond 

sediments, that is, carbon stock in sediments are a component of total sediment 

composition. 

Although, there are multiple influences acting to varying degrees on carbon stocks in a 

pond, the origin of carbon can be tied to allochthonous (terrestrial) input and aquatic 

microbial processes. 
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4.3.1 Research Aim  

This chapter is aimed at quantifying the carbon stock in small water bodies (SWBs), its 

variation across and within pond sediments. This is to contribute to the limited research 

in this field and it continues works by Gilbert et al. (2014) at Northumbria University on 

carbon capture efficiencies in Blakemoor, Northumberland (Research Title: The Power 

of Ponds: Sequestering organic carbon in small natural water-bodies). The results of this 

chapter are to be integrated into estimating regional carbon stock in Northumberland 

water bodies in Chapter 6. 

The research aims are achieved by analysing the variabilities of carbon stocks and carbon 

stock parameters of different ponds in Northumberland. These parameters are:  

 Pond size (10 - 100 sq. m, 100 - 1,000 sq. m and 1,000 - 10,000 sq. m) 

 Pond types (sand dune ponds, arable ponds, pasture ponds and natural ponds)  

 Down core profile parameters of: 

 Sediment wetness 

 Organic carbon concentration (%C) 

 C:N Ratio 

 Dry bulk density  

 Carbon stock  

4.3.2 Research Questions 

1. a. How much organic carbon is stored in the pasture, natural, sand dune and arable 

ponds in Northumberland per square metre?  

b. What is the average amount of carbon stored per square metre of water bodies 

in Northumberland? 

2. a. What is the effect of size ranges on carbon storage in all pond types? 

b. What is the effect of size ranges on carbon storage within pasture pond? 
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3. a. How does carbon storage vary with depth? 

b. How significant are pond depth, bulk density and sediment wetness to carbon 

storage?  
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4.4 Methods 

4.4.1 Research design 

The research focussed on validating and further enhancing the existing body of 

knowledge in understanding carbon stock in small water bodies. The sample site was 

Druridge Bay, South East Northumberland with core samples collected from selected 

water bodies that were previously analysed by Gilbert et al. (2014) and Gilbert (2016). 

The selected ponds were chosen to account for: 

Water body size ranges: 

 10 – 100 sq. m, 

 100 – 1,000 sq. m and 

 1,000 – 10,000 sq. m 

Pond types: 

 sand dune, 

 arable, 

 pasture and 

 natural ponds 

A pilot study collected sediment cores in February 2014 for initial analyses of carbon 

stock in Northumberland ponds. Thereafter, 18 pond sediment cores were collected from 

ten (10) ponds in June 2016 to analyse variability in terms of pond size ranges, pond types 

and down core profile. Weather conditions during sampling days were clear summer skies 

and calm breeze with temperature ~200C. 
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4.4.2 Sample Collection 

Samples were collected from Druridge Bay using a cylindrical corer that collects 45 cm 

of pond sediment with a 4.70 cm diameter (similar to corer used in Gilbert, 2016). The 

coring technique involved manually pushing in the corer to collect pond sediment beneath 

the water layer. Then, the corer is carefully turned in a circular motion and guarded out 

of the sediment to prevent loss of bottom sediment and breakage of the sediment core. 

Thereafter, the sediment core was carefully pushed out (with minimum force) and placed 

on a clean sheet of aluminium foil. On-site, the sediment core was sliced into 1-3 cm thick 

sediment discs, wrapped and bagged.  

Table 4.1 shows the number of ponds sampled and their size range. The cores were 

collected at different depths of the pond, starting at the pond edge. For pasture ponds with 

size range 10 – 100 sq. m and all arable ponds, triplicate cores were collected at the edge, 

middle and centre of the ponds. In pasture ponds of size range 100 – 1,000 sq. m and 

1,000 – 10,000 sq. m, triplicate cores were collected at the pond edge and at intervals of 

3 metres further away from the pond edge. For natural and sand dunes ponds, duplicate 

cores were collected at pond edge and at knee-deep depths of the pond. 

Table 4.1: Pond type and size range of cores collected for carbon analysis  

Pond type Size ranges (sq. m) 

 
10 -100 100 -1,000 1,000 – 10,000 

Sand dune pond 
 

2  1 

Arable Pond 1 1 1 

Pasture Pond 3 3 3 

Natural pond 
 

1 2 
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4.4.3 Laboratory Analysis 

The freshly collected sediment samples were unwrapped, weighed and placed in small 

open-air containers. Samples (sliced discs) were homogenised and 0.25 g of each wet 

sample was further analysed for its microbial communities. The remaining sediments 

were re-weighed and placed in a dry cabinet at room temperature to limit loss of labile 

organic carbon from sediments. The samples were weighed at 3 day intervals and after 

three weeks of drying the samples’ dry weight became stabilised for a week and this was 

considered as the dry weight of the sediment. 

4.4.3.1 Sediment Wetness 

Sediment wetness was calculated as the percentage difference in wet and dry weight: 

Sediment Wetness (%) =  
𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡−𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡
∗ 100% 

Dry Bulk Density of pond sediment was defined as the dry weight of sediment divided 

by the volume of the pond sediment disc. This is similar to the empirical calculation of 

density (that is mass/volume).  

Volume = 𝜋𝑟2h, (r= radius of corer and h = slice thickness) 

Thus, Dry Bulk Density = 
𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝑉𝑜𝑙𝑢𝑚𝑒
 (in g/cm3) 

4.4.3.2  Grinding and Sieving 

After the drying phase, the samples (disc slices) were ground in a mortar with a pestle 

and large stones, vegetation and roots manually removed. Thereafter, the sediments were 

sieved (to 5µm) and kept in 10 ml vials for carbon and nitrogen analysis. In between 

grinding and sieving of each sediment slices (samples), the equipment was cleansed with 

acetone.   

4.4.3.3  TEA Analysis of Pond Sediment 

Percentage carbon and nitrogen were analysed in each pond sediment samples using the 

Total Elemental Analyser (TEA Brand: Thermo Scientific FLASH 2000 Series Organic 
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Elemental Analyser™ - Manufactured by Thermo Fisher Scientific Inc.). The combustion 

system worked by helium carrier gas (flow rate 130 ml/min) carrying 5 mg (approximate 

value recorded to 0.01 mg) of combusted dry sediment samples through a copper sulphate 

filter (which removes water from the combusted sediment) into a Gas Chromatography 

(GC) column and through magnesium perchlorate filter (which is a drying agent that dries 

the gas from the combusted sediment). The result was then detected by a thermal 

conductivity detector (TCD). The runtime per sediment sample was set at 360 seconds 

and two oven temperatures were set at 980 0C and 680 0C. This allowed for detection of 

nitrogen and carbon peaks. 

After every 100 samples run in the TEA, the filters were changed and the system was 

recalibrated for a new run using aspartic acid as a known standard for instrumental 

calibration and an unknown standard (which is aspartic acid)  to confirm instrumental 

calibration. Blanks were also run to check for any issue around TEA detection. Within 

each core and/or in every 10 samples, triplicates of that sample were run to check for the 

limit of quantification of the results. 

4.4.3.4  Carbon and Nitrogen concentration (%) 

The results of the TEA analyses were presented as percentage carbon and nitrogen, which 

were calculated from the 5 mg of combusted pond sediment. The results were collected 

for analysing carbon concentration, C:N ratio and carbon stocks. 

4.4.3.5  Carbon Dry Bulk Density 

Carbon dry bulk density in the pond sediment core was calculated as a percentage of the 

dry bulk density of pond sediment that contains only carbon. 

Carbon Dry Bulk Density = 
% 𝐶𝑎𝑟𝑏𝑜𝑛 

100
∗ 𝐷𝑟𝑦 𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑃𝑜𝑛𝑑 𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 (in 

g/cm3) 
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4.4.3.6  Carbon Nitrogen Ratio (C:N) 

The C:N ratio was calculated from the percentage carbon and nitrogen (concentration) 

from the TEA analysis. 

C:N ratio = 
%𝐶

%𝑁
 

4.4.3.7  Carbon Stock 

Given the dry bulk density in a pond core, carbon stock per square metre was calculated 

for ponds based on differences in pond types, size range and changes down core profile. 

Therefore, carbon stock per cm of depth per square metre of surface area was represented 

as the mass of carbon to volume ratio within a square metre of sediment. 

Carbon Stock per cm depth per square metre pond = Carbon Dry Bulk Density ∗
10,000

1,000
 

(in Kg C per sq. m)  

Results were also presented as the sum of 5 x 1 cm depths in the down core profile 

analysis of carbon stock. Total carbon stock per core was the sum of all carbon stock per 

sediment disc in the entire core.  
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4.5 Results 

4.5.1 Depth of Cores  

The cores included 9 pasture ponds cores collected as triplicates from three size ranges 

and 9 other cores from the sand dune, arable and natural pond types as described in Table 

4.2 and they also covered size range 10 – 100 sq. m, 100 – 1,000 sq. m and 1,000 – 10,000 

sq. m. The depth of the cores varied but was longest in natural ponds and shortest in arable 

ponds. 

Table 4.2: Depth of pond sediment cores analysed  

Depth of Pond Cores 

pond type  Number of 

Core 

analysed  

Size Range  

  
 

10 - 100 sq. m  100 - 1000 sq. m 1,000 - 10,000 sq. m  

sand dune 3   12.00 cm, 12.00 cm 10.00 cm 

arable pond 3 13.00 cm 7.00 cm 10.00 cm 

natural pond 3   17.50 cm 22.00 cm, 22.00 cm 

pasture pond 9 15.00 cm, 

10.50 cm, 

9.00 cm   

19.50 cm, 17.00 cm, 

22.00 cm 

17.50 cm, 16.50 cm, 

12.50 cm 

total cores 

depth 
18  47.50 cm  107 cm  110.5 cm 

4.5.2 Descriptive assessments of ponds and pond cores 

Temporary ponds include all ponds in size range 10 – 100 sq. m and all arable ponds.They 

were shallow in depth and mostly dried out. Permanent ponds included all ponds in size 

range 100 - 1,000 sq. m and 1,000 – 10,000 sq. m except for arable ponds. They are 

characterised by water cover all year round with potential wetting and drying of the pond 

edges. 
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Arable pond cores contained mainly fine-grained sediment with mainly earthenware red 

colour clay in the bottom sediment. The top sediment contained debris interwoven with 

fine grain sediments. Sand dune pond cores contained loosely brittle dark sediment 

interwoven with sandy sediments. They also contained macrophyte roots and other 

debris/detritus (Figure 4.2a). Pasture pond sediments were richly dark loamy sediments, 

with slightly sticky clayey texture and a smaller quantity of sand compared to sand dune 

sediments (Figure 4.2b). Natural pond sediment cores were similar to the pasture pond 

cores with rich dark loamy and slightly clayey sediments.They also contained macrophyte 

roots, sandy sediments and debris. During the sample collection, natural and pasture 

ponds in size range 1,000 - 10,000 sq. m had gas bubbles trapped in the sediment. These 

gas bubbles were not collected but lost to the atmosphere. 

 
Figure 4.2a: Typical photo of a sand dune pond’s sediment core collected from 

Northumberland 
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Figure 4.2b: Typical photo of a pasture pond’s sediment core collected from 

Northumberland 

4.5.3 Sediment wetness 

Generally, sediment wetness decreased from top to bottom of sediment cores and it was 

lowest in the bottom core sections of most ponds analysed. The topmost sediment in the 

natural pond (size range 1,000 – 10,000 sq. m) contained the highest sediment wetness 

(83.74%) of all 190 sediment discs from all ponds. Arable ponds (size range 1,000 - 

10,000 sq. m) at depth 3 cm accounted for the lowest sediment wetness of 14.21% (Figure 

4.3b).  Overall, sediment wetness followed a similar pattern of high to low from top to 

bottom of the core except in arable pond sediments (Table 4.3, Table 4.4 and Figure 4.3 

a, b, c and d). The arable pond sediments contained the lowest sediment wetness of all 

pond types and sand dune pond sediment were highest followed by pasture and natural 

ponds respectively (Table 4.3). Most of the sediment cores analysed showed an inverse 

graph-like reduction (negative, often statistically significant, correlation with depth) in 

sediment wetness down the core profile except for arable ponds 100 – 1,000 sq. m and 
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1,000 – 10,000 sq. m (which gave a positive correlation with depth Table 4.4). A non-

parametric Kruskal-Wallis test showed f Significant differences between Pond Types 

with Kruskal-Wallis test value = 33.71, DF = 3, P = 0.000, N = 198. Statistical analysis 

was performed for only pond types (Table 4.4) as there were not enough core replicates 

to analyse differences between pond size ranges of each pond type for all variables 

studied in this chapter. 

Table 4.3: Average sediment wetness across pond types 

Pond Type  Average Sediment wetness (%) across 

pond types  

Number of sediment disc per 

pond type 

Sand Dune 47.64 + 4.41 24 

Arable 21.81 + 1.28 18 

Pasture 36.74 + 1.04 107 

Natural  35.84 + 2.36 41 

Table 4.4: Correlation of pond depth with sediment wetness  

Correlation of Pond Depth with Sediment Wetness (Pearson Correlation, P value, N) 

pond type  Size Range 10 - 100 sq. m  

   Pearson Correlation P value N 

sand dune 
   

arable pond -0.880 0.004 8 

natural pond 
   

pasture pond a -0.872 0.002 9 

pasture pond b -0.878 0.001 10 

pasture pond c -0.987 0.000 12 

pond type  Size Range 100 - 1000 sq. m 

sand dune A -0.893 0.003 8 

sand dune B -0.755 0.030 8 

arable pond 0.797 0.107 5 
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natural pond -0.802 0.002 12 

pasture pond a -0.932 0.000 15 

pasture pond b -0.911 0.000 13 

pasture pond c -0.244 0.380 15 

pond type  Size Range 1,000 - 10,000 sq. m 

sand dune -0.958 0.000 8 

arable pond 0.946 0.015 5 

natural pond 2A -0.897 0.000 14 

natural pond 2B -0.662 0.007 15 

pasture pond a -0.816 0.001 12 

pasture pond b -0.869 0.000 13 

pasture pond c -0.833 0.000 15 

 

Given the randomness of factors that control sediment wetness, the variations seem 

mainly controlled by the current weather state (precipitation and evaporation), water 

supply, sediment type and pond depth. 

In the size range 10 – 100 sq. m, sediment wetness was strongly influenced by seasonal 

weather changes that come with quick seasonal drying and wetting of ponds. The pasture 

and arable ponds were sampled dry with no water cover. The arable pond recorded 

30.50% and 21.77% at the topmost and bottom sediments respectively (Figure 4.3b). The 

pasture pond contained 29 – 58% from bottom to top sediment. Also, all pasture ponds, 

irrespective of the size range, showed similar trends in sediment wetness (Figure 4.3c). 

Thus, the variations in sediment wetness based on pond type showed that water supply 

were significant influencers of sediment wetness in ponds. 

In size range 100 – 1,000 sq. m, the natural pond reduced from 47.39% to 26.61% from 

top to bottom and the reduction was gradual. In sand dune ponds, sediment wetness 

dropped at depth 1.5 cm but increased at 2.5 cm depth showing that moisture can change 
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within short depths (Figure 4.3a). The variations seemed to be more dependent on 

localised factors within the pond sediments such as porosity, sediment grain size, 

sediment mixture and compaction.  

In size range 1,000 – 10,000 sq. m, ponds were permanent except the arable pond. The 

top sediment recorded high sediment wetness then reduced down core profile except in 

the arable pond. Sediment wetness changes in pasture ponds were similar with size range 

100 – 1,000 sq. m. The arable pond within this size range was linear from top to bottom. 

 

 

 
Figure 4.3: Sediment wetness in ponds (a) Sand Dune (b) Arable (c) Pasture (d) Natural 

ponds (where pasture ponds were triplicate cores and natural pond 1,000 – 10,000 sq. m 

and sand dune pond 100 – 1,000 sq. m were based on two samples collected at the edge 

and deeper part of the ponds) 
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4.5.4 Carbon Concentration 

4.5.4.1  Carbon concentration across pond types 

In all pond sediments, the overall average carbon concentration was 3.97 ± 0.26 %C 

(range 0.58 %C – 26.63 %C). The top layer of the sand dune pond (1,000 – 10,000 sq. 

m) recorded the highest carbon concentration in all samples but carbon concentration in 

the pond’s bottom core was similar to sand dune pond (100 - 1,000 sq. m) (Figure 4.4a). 

Natural ponds ranged from 0.66 %C – 16.48 %C. The change down core in 100 – 1,000 

sq. m was not linear (Figure 4.4d). All arable ponds showed a linear decrease of carbon 

concentrations with depth (Figure 4.4b). 

Carbon concentration in pasture ponds are shown in Figure 4.4c, size range averages 

include 10 – 100 sq. m (6.65 ± 0.59 %C, range = 2.81 %C – 12.78 %C), 100 – 1,000 sq. 

m (2.41 ± 0.23 %C, range = 1.14 %C – 6.71 %C) and 1,000 – 10,000 sq. m (3.29 ± 0.29 

%C, range = 1.27 %C – 7.83 %C), with more carbon concentrated in size range 10 – 100 

sq. m (Figure 4.5). 

Similar to sediment wetness, most of the sediment cores analysed showed an inverse 

graph-like reduction (negative, often statistically significant, correlation with depth) in 

carbon concentration down the core profile (Table 4.5). A non-parametric Kruskal-Wallis 

test  showed Significant differences between between pond types with Kruskal-Wallis 

test value = 22.08, DF = 3, P = 0.000, N = 198. 

Table 4.5: Correlation of pond depth with carbon concentration  

Correlation of Pond Depth with Carbon Concentration (Pearson Correlation, P value, N) 

pond type  Size Range 10 - 100 sq. m  

   Pearson Correlation P value N 

sand dune 
   

arable pond -0.514 0.193 8 



108 

 

natural pond 
   

pasture pond a -0.747 0.021 9 

pasture pond b -0.730 0.016 10 

pasture pond c -0.904 0.000 12 

pond type  Size Range 100 - 1000 sq. m 

sand dune A -0.524 0.183 8 

sand dune B -0.878 0.004 8 

arable pond -0.066 0.916 5 

natural pond -0.340 0.916 12 

pasture pond a -0.734 0.002 15 

pasture pond b -0.781 0.002 13 

pasture pond c -0.748 0.001 15 

pond type  Size Range 1,000 - 10,000 sq. m 

sand dune -0.343 0.405 8 

arable pond 0.209 0.736 5 

natural pond 2A -0.540 0.046 14 

natural pond 2B 0.028 0.921 15 

pasture pond a -0.764 0.004 12 

pasture pond b -0.756 0.003 13 

pasture pond c -0.578 0.024 15 
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Figure 4.4: Carbon concentrations in ponds (a) Sand Dune (b) Arable (c) Pasture (d) 

Natural ponds (where pasture ponds were triplicate cores and natural pond 1,000 – 10,000 

sq. m and sand dune pond 100 – 1,000 sq. m were based on two samples collected at the 

edge and deeper part of the ponds) 

 

 
Figure 4.5: Average carbon concentration in pasture pond in size ranges 10 - 100 sq. m, 

100 - 1,000 sq. m and 1,000 - 10,000 sq. m 

 

4.5.4.2  Carbon concentration across size ranges 

In all size ranges, carbon concentration decreased down the core profile (Figure 4.6) and 

concentration varied in all pond sediment cores. Ponds within the size range 10 – 100 sq. 
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m recorded the highest carbon concentrations. The topmost sediment averaged 8.78 ± 

2.16 %C while the bottom sediment contained 2.96 ± 2.09 %C.  Size range 100 - 1,000 

sq. m recorded lower carbon concentration compared to 10 – 100 sq. m and 1,000 – 

10,000 sq. m. Ponds within size range 1,000 – 10,000 sq. m have the highest carbon 

concentration in top sediment averaging 8.77 ± 2.44 % but their overall average was less 

than 10 – 100 sq. m (Figure 4.6). The trend showed a gradual reduction in carbon 

concentration from top to bottom of pond sediments. 

 
Figure 4.6: Carbon concentration across size ranges 

4.5.5 Carbon Nitrogen Ratio (C:N ratio) 

From all ponds, maximum and minimum nitrogen concentrations were 1.61% and 0.09% 

and they were recorded in sand dune ponds (size range 1,000 – 10,000 sq. m). The overall 

average C:N ratio was 10.64 ± 0.12 (range 6.69 – 16.55).  The C:N ratio decreases with 

depth except in all arable ponds and natural pond (100 – 1,000 sq. m). Arable ponds 

remained at a roughly constant level down the core profile, ranging from 8.86 – 10.93 in 

all size ranges (Figure 4.7b). Sand dune ponds in all size ranges ranged from 8.44 to 16.55 

(Figure 4.7a). The C:N ratio in natural ponds ranged from 6.69 – 14.12. C:N ratio 
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averages based on size range included 10.15, 9.30 and 9.87 in size range 10 – 100 sq. m, 

100 – 1,000 sq. m and 1,000 -10,000 sq. m respectively. Pasture pond size range averages 

include 10 – 100 sq. m (10.23 ± 0.09), 100 – 1,000 sq. m (9.51 ± 0.14) and 1,000 – 10,000 

sq. m (10.88 ± 0.17). 

Similar to sediment wetness and carbon concentration, most of the sediment cores 

analysed showed an inverse graph-like reduction (negative correlation with depth) in C:N 

ratio down the core profile, with many having statistically significant correlation P <0.05 

(Table 4.6). A non-parametric Kruskal-Wallis test showed significant differences 

between pond types with Kruskal-Wallis test value = 41.98, DF = 3, P = 0.000, N = 198. 

Table 4.6: Correlation of dond depth with C:N ratio  

Correlation of Pond Depth with C:N ratio (Pearson Correlation, P value, N) 

pond type  Size Range 10 - 100 sq. m  

   Pearson Correlation P value N 

sand dune 
   

arable pond -0.608 0.110 8 

natural pond 
   

pasture pond a -0.758 0.018 9 

pasture pond b -0.029 0.938 10 

pasture pond c -0.705 0.010 12 

pond type  Size Range 100 - 1000 sq. m 

sand dune A -0.685 0.061 8 

sand dune B -0.921 0.001 8 

arable pond 0.782 0.118 5 

natural pond -0.096 0.767 12 

pasture pond a -0.791 0.000 15 
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pasture pond b -0.902 0.000 13 

pasture pond c -0.629 0.012 15 

pond type  Size Range 1,000 - 10,000 sq. m 

sand dune -0.347 0.399 8 

arable pond 0.301 0.622 5 

natural pond 2A -0.923 0.000 14 

natural pond 2B -0.471 0.077 15 

pasture pond a -0.738 0.006 12 

pasture pond b -0.761 0.003 13 

pasture pond c -0.600 0.018 15 

 

 
Figure 4.7: C:N ratio in ponds (a) Sand Dune (b) Arable (c) Pasture (d) Natural ponds 

(where pasture ponds were triplicate cores and natural pond 1,000 – 10,000 sq. m and 

sand dune pond 100 – 1,000 sq. m were based on two samples collected at the edge and 

deeper part of the ponds) 
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4.5.6 Dry Bulk Density  

4.5.6.1  Sediment Dry Bulk density 

Ponds’ sediment dry bulk density increased from top to bottom of the ponds except in 

arable ponds (Figure 4.8a). For sand dune, natural and pasture pond >100 sq. m with 

water cover, sediment dry bulk density was low in the top sediment and increased down 

core. In the top sediment of ponds <100 sq. m (all of which have no water cover) and all 

arable ponds, sediment dry bulk density was higher compared to the ponds with water 

cover. Dry bulk density >1 g/cm3 was associated with low sediment wetness and <1 g/cm3 

relates to high sediment wetness or a mixture of low moisture and soil air in temporary 

ponds. In the top 3 cm of pond sediment, averages of size range 100 - 1,000 sq. m and 

1,000 - 10,000 sq. m were 0.91 ± 0.13 g/cm3 and 0.81 ± 0.15 g/cm3 respectively. As they 

were <1 g/cm3, it connoted low sediment dry bulk density (Figure 4.8a). However, 

sediment dry bulk density increased with depth and it was characterised by lowered 

sediment wetness. Size range 10 - 100 sq. m was characterised by a gradual increase in 

sediment dry bulk density from the top sediments towards the bottom. In the bottom core, 

sediment dry bulk density was highest in size range 1,000 - 10,000 sq. m (Figure 4.8b). 

Unlike statistical analyses of sediment wetness, carbon concentration and C:N ratio which 

showed more negative correlations, most of the sediment cores analysed for sediments 

dry bulk density showed more positive, often significant, correlations with pond depth 

(Table 4.7). A non-parametric Kruskal-Wallis test showed significant differences 

between pond types with Kruskal-Wallis Test value = 20.46, DF = 3, P = 0.000, N = 198. 

Table 4.7: Correlation of pond depth with sediment dry bulk density  

Correlation of Pond Depth with sediment dry bulk density (Pearson Correlation, P value, N) 

pond type  Size Range 10 - 100 sq. m  

   Pearson Correlation P value N 
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sand dune 
   

arable pond 0.700 0.053 8 

natural pond 
   

pasture pond a 0.619 0.075 9 

pasture pond b 0.797 0.006 10 

pasture pond c 0.954 0.000 12 

pond type  Size Range 100 - 1000 sq. m 

sand dune A 0.776 0.024 8 

sand dune B 0.966 0.000 8 

arable pond -0.251 0.684 5 

natural pond 0.303 0.338 12 

pasture pond a 0.467 0.079 15 

pasture pond b 0.911 0.000 13 

pasture pond c -0.016 0.956 15 

pond type  Size Range 1,000 - 10,000 sq. m 

sand dune 0.756 0.030 8 

arable pond 0.001 0.999 5 

natural pond 2A 0.685 0.007 14 

natural pond 2B 0.496 0.060 15 

pasture pond a 0.649 0.023 12 

pasture pond b 0.829 0.000 13 

pasture pond c 0.840 0.000 15 
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4.5.6.2  Carbon Dry Bulk Density  

Carbon dry bulk density changed down core profiles in all pond sediments and across 

ponds. The general trend for all pond types decreased down core profile except in arable 

ponds. The smaller ponds (10 - 100 sq. m) contained higher carbon dry bulk density 

compared to larger ponds (100 - 1,000 sq. m and 1,000 - 10,000 sq. m). Also, the samples 

with high sediment wetness had higher carbon dry bulk density. Arable ponds were 

characterised by very low sediment wetness and consequently very low carbon dry bulk 

density. 

 
Figure 4.8: Dry Bulk Density of (a) Pond Sediment (left) and (b) Carbon (right) 

4.5.7.1 Carbon Stock in Ponds 

The average carbon stock per sq. m varied between ponds and within ponds. Table 4.8 

shows carbon stock in different ponds and size ranges, and Table 4.9 showed correlation 

of pond depth with carbon stock in ponds. Based on the depth of each pond core analysed, 

the overall pond average for size ranges 10 - 100 sq. m, 100 – 1,000 sq. m and 1,000 – 

10,000 sq. m were 4.48 ± 2.07 kg C/sq. m, 3.04 ± 0.61 kg C/sq. m and 3.64 ± 0.88 kg 
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C/sq. m respectively (Table 4.8). The changes in size range showed carbon stocks in pond 

sediment did not decrease with increasing size ranges but are controlled by the prevailing 

factors that support or limit carbon stocking in individual pond sediments. Carbon stock 

was highest in size range 10 – 100 sq. m. On average, size range 10 - 100 sq. m 

accumulated more carbon than 100 – 1,000 sq. m and 1,000 – 10,000 sq. m (Figure 4.9). 

The pond type averages include sand dune ponds (3.75 ± 0.84 kg C/sq. m), arable ponds 

(1.65 ± 0.38 kg C/sq. m), natural ponds (3.74 + 0.01 kg C/sq. m) and pasture ponds (5.26 

± 0.73 kg C/sq. m). The lowest carbon stocks per sq. m were arable ponds, probably as 

they were relatively shallow and dry.  

Table 4.8: Carbon stock of ponds in Northumberland (average value taken for sand dune 

pond (100 - 1,000 sq. m), natural pond (1,000 - 10,000 sq. m) and averages for all pasture 

ponds)  

Pond Type  size range (sq. m) 

 
10-100 sq. m 

(kg C/sq. m) 

100-1,000 sq. m 

(kg C/sq. m) 

1,000 - 10,000 

sq. m (kg C/sq. 

m) 

Pond 

Average (kg 

C/sq. m) 

sand dune 
 

2.92 ± 0.17 4.59 3.75 ± 0.84 

arable pond 2.41 1.36 1.17 1.65 ± 0.38 

natural pond 
 

3.84 3.64 ± 1.49 3.74 ± 0.01 

pasture 

pond (Average) 

6.55 ± 0.53 4.04 ± 0.23 5.18 ± 0.63 5.26 ± 0.73 

Size Range Average 4.48 ± 2.07 3.04 ± 0.61 3.64 ± 0.88 
 

Arable and natural ponds showed positive, nut non-significant, correlations of carbon 

stock with depth, and most pasture ponds showed negative, sometimes significant 

correlations except for one pasture core analysed at size range 10 – 100 sq. m (Table 4.9). 

A non-parametric Kruskal-Wallis test showed significant differences between pond types 

with Kruskal-Wallis Test value = 13.31, DF = 3, P = 0.004, N = 198. 
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Table 4.9: Correlation of pond depth with carbon stock  

Correlation of Pond Depth with carbon stock in ponds (Pearson Correlation, P value, N) 

pond type  Size Range 10 - 100 sq. m  

   Pearson Correlation P value N 

sand dune 
   

arable pond 0.397 0.330 8 

natural pond 
   

pasture pond a -0.530 0.142 9 

pasture pond b 0.292 0.413 10 

pasture pond c -0.768 0.004 12 

pond type  Size Range 100 - 1000 sq. m 

sand dune A 0.080 0.850 8 

sand dune B -0.858 0.006 8 

arable pond 0.703 0.185 5 

natural pond 0.101 0.754 12 

pasture pond a -0.150 0.594 15 

pasture pond b -0.562 0.046 13 

pasture pond c -0.409 0.130 15 

pond type  Size Range 1,000 - 10,000 sq. m 

sand dune -0.087 0.838 8 

arable pond 0.163 0.794 5 

natural pond 2A 0.032 0.914 14 

natural pond 2B 0.423 0.116 15 

pasture pond a -0.730 0.007 12 

pasture pond b -0.591 0.330 13 

pasture pond c -0.431 0.109 15 
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Figure 4.9: Average carbon stock per sq. m across size ranges 

 

4.5.7.2  Carbon stock in pasture ponds 

Overall average carbon stocks within pasture ponds were 5.26 ± 0.73 kg C/sq. m and it 

was the highest amongst all pond types. Size range 10 – 100 sq. m had an average of 6.55 

± 0.53 kg C/sq. m (range = 5.49 – 7.22 kg C/sq. m) and this is the highest recorded in all 

pond size ranges and pond types. Furthermore, carbon stocks vary within pasture ponds 

and size range as shown in Table 4.10. 

Table 4.10: Carbon stock of pasture ponds in Northumberland in size range 10 - 100 sq. 

m, 100 - 1,000 sq. m and 1,000 - 10,000 sq. m                                                               

Total Carbon Stock per sq. m in Pasture Pond 

Pond core size range (sq. m) 

  10 - 100 sq. m 

(kg C/sq. m)  

100 - 1,000 sq. m 

(kg C/sq. m) 

1,000 - 10,000 sq. m 

(kg C/sq. m)  

c1 6.94 3.59 6.35 

c2 5.49 4.30 4.21 

c3 7.22 4.25 4.96 

Size Range Average 6.55 ± 0.53 4.04 ± 0.23 5.18 ± 0.63 
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4.5.8 Average carbon stock down core profile 

In the down core analysis at 5 cm intervals, results showed a general decrease in carbon 

stock down core in both size range and pond type, with all cores analysed being at least 

5 cm deep. 

4.5.8.1  Top 5 cm of pond depth 

This is the most biologically active layer of pond sediments, given it has low sediment 

dry bulk density and high sediment wetness except in arable ponds. Table 4.11 shows the 

carbon stock average in the top 5 cm. The overall carbon stock averages were higher in 

size range 10 - 100 sq. m (Table 4.11). Carbon stocks were highest in pasture pond 

followed by the sand dune, natural and arable ponds respective (Figure 4.10). 

Table 4.11: Carbon Stock in the top 5 cm of pond sediment 

Pond Type  size range (sq. m) 

 
10-100 sq. m (kg 

C/sq. m) 

100-1,000 sq. m 

(kg C/sq. m) 

1,000 - 10,000 sq. 

m (kg C/sq. m) 

sand dune 
 

2.04 ± 0.01 2.81 

arable pond 1.15 0.82 0.97 ± 0.40 

natural pond 
 

0.99 1.24 

pasture pond (Average) 3.58 ± 0.44 1.84 ± 0.31 2.32 ± 0.10 

Size Range Average 2.36 ± 1.21 1.42 ± 0.30 1.84 ± 0.43 

4.5.8.2  5 – 10 cm of pond depth  

This contained the second highest carbon stock on average in the down core profile 

analysis of ponds. Similar to the top 5 cm, pasture pond accumulated the most carbon 

stock on average and pasture pond in size range 10 – 100 sq. m stocked the most carbon 

in all pond size ranges. Carbon stocks were lowest in arable ponds. Based on size range, 
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carbon stock accumulation was highest in 10 – 100 sq. m and lowest in 100 – 1,000 sq. 

m (Table 4.12 and Figure 4.10). 

Table 4.12: Carbon Stock in 5 cm - 10 cm depth of pond sediment 

Pond Type  size range (sq. m) 

 
10-100 sq. m 

(kg C/sq. m) 

100-1,000 sq. m (kg 

C/sq. m) 

1,000 - 10,000 sq. 

m (kg C/sq. m) 

sand dune 
 

0.72 ± 0.27 1.77 

arable pond 0.65 0.54 0.20 

natural pond 
 

1.56 0.76 ± 0.34 

pasture pond (Average) 2.40 ± 0.04 1.06 ± 0.07 1.40 ± 0.28 

Size Range Average 1.53 ± 0.88 0.97 ± 0.22 1.03 ± 0.35 

4.5.8.3  10 – 15 cm of pond depth 

Maximum core depth for sand dune (1,000 – 10,000 sq. m) and arable ponds (100 – 1,000 

sq. m and 1,000 – 10,000 sq. m) was under 10 cm. Therefore, no data were recorded for 

those ponds. However, pasture ponds in all size ranges had the most carbon stock per 

square metre on average. Natural pond (size range 100 - 1,000 sq. m) stocked the most 

carbon stock based on size range (1.15 kg C/sq. m). Overall, the size range averages were 

0.59 kg C/sq. m, 0.64 kg C/sq. m and 0.90 kg C/sq. m of size ranges 10 – 100 sq. m, 100 

– 1,000 sq. m and 1,000 – 10,000 sq. m respectively (Figure 4.10). 

4.5.8.4  15 - 20 cm of pond depth 

All the cores from ponds within size range 10 – 100 sq. m were under 15 cm in length. 

Therefore, only ponds in size range >100 sq. m and <10,000 sq. m were analysed. The 

pond types were pasture and natural ponds with each being in size ranges 100 – 1,000 sq. 

m and 1,000 – 10,000 sq. m. They stocked averages of 0.27 kg C/sq. m and 0.44 kg C/sq. 

m respectively (Figure 4.10). 
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4.5.8.5  20 – 25 cm in pond depth 

Only pasture pond (100 – 1,000 sq. m) and natural pond (1,000 – 10,000 sq. m) had depths 

>20 cm and they averaged 0.83 kg C/sq. m and 0.41 kg C/sq. m respectively (Figure 

4.10). 

 
Figure 4.10: Down core profile of carbon stock in Northumberland 
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4.6 Discussions 

4.6.1 Pond sediment core 

Core depth in Northumberland ponds is strongly controlled by the underlying pond 

sediment types, texture, composition and water penetration. In the sand dune pond, the 

sediment trend was from soft sandy sediment at the top to rocky-clayey bottom soils. 

Arable pond sediments were characterised by tough compacted clay sediment with no 

water cover and low sediment wetness. The natural and pasture ponds were mainly 

permanent ponds, except the pasture ponds in size range 10 - 100 sq. m, and were easier 

to sample compared to temporary ponds due to high sediment wetness. And low sediment 

wetness, high sediment compaction and/or clay content in pond sediment made it difficult 

to collect arable pond cores using a manual corer. Hence, they were short compared to 

other pond types. Each pond analysed exhibited diverse statistical relationships with pond 

depth in the analyses of sediment wetness, carbon concentration, C:N ratio, dry bulk 

density and carbon stock. 

4.6.2 Sediment wetness, sediment and carbon dry bulk density as factors that 

control carbon stocks in pond sediment 

In each pond, the relationship between sediment wetness and dry bulk density (of carbon 

and sediment) was different. Overall, there is an inverse relationship between sediment 

dry bulk density and sediment wetness. Whereby high sediment dry bulk density begets 

low sediment wetness. Carbon dry bulk density was inversely related to sediment dry 

bulk density. The relationship between sediment wetness, sediment and carbon dry bulk 

density can also be related to the area of microbial influence and carbon processing in 

pond sediment (Boyd et al., 2010 and Grabowski et al., 2011), as the moisture aids the 

movement of nutrient and microbes through pore spaces in sediments. 



123 

 

Despite the significant role sediment wetness play in creating a direct relationship with 

the carbon concentration of pond sediments within size range 1,000 - 10,000 sq. m, except 

in arable ponds, it has an unclear relationship with ponds <1,000 sq. m and this could 

potentially be as a result of multiple environmental, biological and geochemical factors 

that are required to be in play for efficient carbon stocking. The storage and flux of carbon 

in sediment is therefore a conglomerate effect of biological, geochemical and 

environmental factors inherent in the pond environment (Boyd et al., 2010, Cole et al., 

2007, Gilbert et al., 2014, Grabowski et al., 2011 and Seekell et al., 2013) of which 

sediment wetness or moisture plays a significant role in microbes and material transport.  

Irrespective of the size range of ponds or temporary or permanent ponds, natural, sand 

dune and pasture ponds showed high sediment wetness in the top sediment as a result of 

low compaction and high porosity (Grabowski et al., 2011) and gradually declined down 

core profile due to increased sediment compaction. A good example was the top sediment 

of pasture pond (size range 10 - 100 sq. m) which was sampled with no water cover. It 

contained 58% sediment wetness in its pore spaces and these values were similar to 

moisture in permanent ponds. In the sediment bottom with high compaction, fewer pore 

spaces and fine clayey materials in sand dune pond, sediment wetness reduced to levels 

that were similar to arable ponds. Arable ponds of all size ranges were characterised by 

richly fine-grained clay soil with limited pore spaces for moisture penetration, hence, 

lowered sediment wetness. This also resulted in lowered carbon concentration compared 

to other pond types analysed. 

Fine-grained bottom sediment and increased dry bulk density lower carbon concentration 

in sediment (Avnimelech et al., 2001), that is, an inverse relationship exists. Variation in 

dry bulk density can be related to material transport in ponds. In large lakes, river systems 

and oceans, sedimentary material transport involves the quick settlement time of large 

http://www.sciencedirect.com/science/article/pii/S0269749110001776#bib1
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coarse material whilst finer materials are transported for longer distances in the aquatic 

system (Grabowski et al., 2011). This is different in small water body systems; the 

material transport occurs within a short distance and short sedimentation columns. It 

results in a mix of coarse and fine materials in the top sediment of ponds. Furthermore, it 

creates increased pore spaces for moisture penetration that permit the development of 

microbial biofilms. The microbial biofilms attach to the inorganic minerals in the 

sediment (Boyd et al., 2010). This is potentially the consequence of the higher carbon 

concentration in the top sediment in all pond size range compared to the pond bottoms. 

However, carbon concentration decreased down core profiles as a result of increased dry 

bulk density and reduced porosity caused by sediment overburden. 

4.6.3 C:N ratio analyses of carbon source in small water bodies 

Gilbert et al. (2014) identified the variability in carbon storage within ponds. In term of 

the material transport, lentic water bodies are more effective in material sedimentation 

compared to rivers and streams and other lotic systems. River systems show transient 

variation in carbon storage and source (C:N ratio) at the different locations within the 

river and this is due to continuous changes triggered by material entry and transport 

(Kaushal and Binford, 1999). Despite variations in levels of carbon concentrations in the 

same pond sediment, pond sediments show close similarities in terms of carbon source at 

different depths within the sediment and different parts of the pond. This is a function of 

reduced physical perturbation rather than stream material flow that occurs in lotic 

systems. In the analysis of the pasture ponds, they showed a similar source of carbon in 

the top sediments with C:N ratio ranging from 10-12:1. This is significant as C:N ratio 

serves as a proxy for describing the source of carbon (Ishiwatari and Uzaki, 1987 and 

Kaushal and Binford, 1999). The similarities in C:N ratios are also associated with the 
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closely similar physical, chemical and microbial processes that occur in the ponds. 

Although these influences and carbon source are closely similar, the variation in C:N ratio 

range between 10-12:1 could potentially be reflecting the slight changes in microbial 

community structure (Briée et al., 2007), and non-uniform physical and chemical 

influences in different depths within the sediment and different parts of the pond. 

Knowledge on microbial community structure and its influence on carbon source 

identification are explored further in Chapter 5. 

The C:N ratio down core profile showed the changes in terms of carbon sources that are 

buried within a pond during pond succession and the relationship between allochthonous 

and autochthonous carbon inputs. This can be related to flux in terrestrial carbon entry 

and aquatic primary productivity in ponds over time. The bottom sediment of the sand 

dune ponds contained C:N ratio <10:1 and this indicated that the ponds were 

predominantly producing aquatic carbon at that time or high oxidation of terrestrial 

carbon. Lowered C:N ratio could potentially be as a result of bacteria in the pond bottom 

which are nitrogen-limited using up the nitrogen from aquatic algae (Muller, 1977) and 

creating ammonia by-products which elevate nitrogen in the pond bottom and lower the 

C:N ratio in sediment. It can also be as a result of high oxidation and/or degradation of 

terrestrial carbon in the ponds’ bottoms. The C:N ratio gradually increased towards the 

top sediment and this can be related to change in organic carbon source, that is, more 

terrestrial input possibly from a change in surrounding vegetation (pond succession). The 

two size ranges of natural ponds had similar C:N ratios at the top sediment ranging from 

10-12:1 but carbon concentrations differed. Size range 1,000 - 10,000 sq. m (C:N ratio 

<10:1) graduated into a more predominantly aquatic carbon or highly oxidised C:N ratio 

with depth while 100 - 1,000 sq. m (C:N ratio >10:1) remained slightly more terrestrial 

carbon source. This suggests that the nature of organic carbon stored in ponds was 
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controlled by the surrounding depositional environment and nature of microbial influence 

within the pond.  

Arable ponds showed C:N ratios ranging between 8-11:1. This range of C:N ratio could 

be a result of low carbon concentration and reduced proliferation of microbes in clayey 

sediments. Other contributory factors to this level of C:N ratio in arable ponds are shallow 

depths, low moisture penetration from drying and wetting of sediment, high compaction 

and low pore spaces within the sediment. Arable pond sediments’ carbon could be 

terrestrial or aquatic sourced but its nature may have been highly oxidised in the pond or 

during transport to the pond. 

Overall, C:N ratio for pond types and size ranges ranged between 8-14:1. Organic carbon 

source varies between aquatic (autochthonous) carbon, terrestrial (allochthonous) carbon 

and highly oxidised carbon sources depending on the depositional environment or source. 

The results did not indicate a significant entry of vascular plant material as a carbon 

source. However, it is unknown if the vascular plant entry was undetected as a result of 

high oxidation during transport to the ponds or oxidation as a result of microbial 

utilisation in the pond (Emerson and Hedges, 2003). 

4.6.4 Carbon Stock in Small Water Bodies 

4.6.4.1  Carbon Stock based on Pond Types and Size Ranges 

There were no direct relationships connecting carbon stocks in pond sediments and the 

pond size. This suggests that pond sizes are one of many other factors that control carbon 

stocking but its influence is not as significant compared to dry bulk density, sediment 

wetness or organic carbon source. Some of the other influencers could be the depth of 

water column where primary productivity occurs, and the concentration of nutrients that 

support carbon processing, amongst other influencers of carbon stock levels. Carbon 

stocks were highest in size range 10 - 100 sq. m because small size water bodies are 
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favoured to capture more carbon due to their ability to quickly saturate themselves with 

material during the wetting phase of the ponds. And these materials are transported into 

pond bottoms as colluvium or alluvium. Thereafter, microbial processing, sediment 

compaction and pond inorganic materials determine the propensity for storage and 

preservation or mineralization. The small size of pond further enhances nutrients and bio-

element concentration which favour continuous microbial processes. In the pasture pond 

10 - 100 sq. m, 6.55 kg C/sq. m were stocked in sediments down core profile while in the 

arable pond (10 - 100 sq. m), 2.41 kg C/sq. m were stocked. The variation potentially ties 

to the microbial utilisation of carbon and access to nutrients, which are less likely to be 

accessed in arable ponds compared to pasture ponds, due to high sediment compaction 

that limits material movement within the fine sediments of arable ponds. Shirakova et al. 

(2013) identified a relationship between oxygenation in water bodies and carbon storage. 

The high carbon stock can be tied to the variations in oxygen levels within the two ponds. 

Arable ponds with very shallow depths are most likely exposed to more surface 

interactions that favour mineralisation processes of carbon compared to deeper pasture 

depths which favour stocking of more carbon; alongside creating anoxic bottoms as a 

result of high terrestrial inflow from the surrounding environment (Kortelainen et al., 

2004, Kortelainen et al., 2006, Mulholland and Elwood, 1982 and Shirokova et al., 2013). 

The reality is that increased carbon stock in pasture ponds in size range 10 – 100 sq. m 

occurs as result of multiple factors that favour carbon stocking in ponds. They could 

include material transport, autochthonous microbes, nature of the pond and type of 

sediment minerals (clay, loamy or sandy sediment) amongst others. These influences vary 

widely and are also associated with the flux potential of the carbon stock in inland water 

bodies (Premke et al., 2016) and their interactions determine if a pond is a net source or 

sink. 
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In the size range 100 - 1,000 sq. m, the pasture pond (4.04 kg C/sq. m) accounted for the 

highest carbon stock in this size range. Generally, pasture ponds are characterised by a 

mixture of predominantly dark loamy sediment laced together in clay and a small 

proportion of sandy sediment. This makes the pond sediments favourable for microbial 

processing of allochthonous and autochthonous carbon. The dry bulk density of pasture 

ponds generally trends from less compact sediment at the top which favours carbon 

processing and increased compaction down the core which favours lock-in of carbon in 

sediments. There was a similar pattern in the natural pond (100 - 1,000 sq. m) which 

stocked 3.84 kg C/sq. m. Carbon stock in the arable pond (1.36 kg C/sq. m) and sand 

dune (2.92 kg C/sq. m) ponds were low compared to the natural and pasture ponds in this 

size range for two distinctive reasons. Arable ponds sediment limited microbial 

penetrations, while sand dune ponds contain very loose sandy (coarse) sediments 

compared to the other pond types which allowed for moisture penetration. Also, the high 

sediment wetness in loose sediment can create uneven displacement of carbon in 

sediment and remobilizes carbon into the water column by leaching. However, the 

looseness of the sediment potentially allows for microbial proliferation through sediments 

and creation of biofilms with inorganic sediments (Grabowski et al., 2011).  The absence 

of or low percentage of fine grain sediment to lock in carbon favours displacement and 

remobilisation of carbon into the water column which is further utilised for oxidative 

processes. 

In size range 1,000 - 10,000 sq. m, carbon stock varied and this could be related to 

variations in sedimentary transport. Compared to size ranges 10 - 100 sq. m and 100 - 

1,000 sq. m, sedimentary material transport in size range 1,000 - 10,000 sq. m potentially 

follows the patterns of finer material travelling further away from the pond edge while 

coarse sediments settle at the pond edge. Although the distinction in sedimentary material 
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distribution is unconfirmed in this research, it is expected to lie between larger lakes and 

oceans, and unconsolidated material distribution of ponds <1,000 sq. m. The variation in 

carbon stocks is controlled by factors such as sediment grain size gradient, microbial 

process and carbon source, and their diversity in different parts of the pond. Arable ponds 

(size range 1,000 - 10,000 sq. m - 1.17 kg C/sq. m) recorded the lowest carbon stock in 

all ponds analysed as a result of these factors and their highly compacted fine sediments. 

Also during the dry phase of arable ponds, they can become dense and caked sediments 

which limits microbial processes. The arable ponds in Northumberland were sampled in 

their dry state as fine sediment with low sediment wetness or moisture.  

4.6.4.2  Variation in Carbon Stocks within ponds 

Boyd et al. (2010), Gilbert et al. (2014), Pitman et al. (2013) and Sobek et al. (2005) have 

all identified variations in carbon storage across ponds and within pond systems. Also, 

results within this research confirm the carbon stock variations within and across pond 

types and pond size ranges. In the analysis of the triplicate pasture pond cores in all three 

size ranges, carbon stock in each pond had a varying degree of deviation (standard errors) 

from the average value and none of the ponds showed similar carbon stock. This is also 

confirmed in the natural pond (1,000 - 10,000 sq. m) with carbon stocks of 2.14 kg C/sq. 

m and 5.14 kg C/sq. m within the same pond. The variation within the ponds could be the 

function of the various in-situ microbial activities and material processing/material inflow 

(transport) in the ponds. Also, the carbon stock levels could vary as a result of 

anthropogenic activities occurring within the pond such as animal waste inclusion in 

pasture ponds and pond ecosystem perturbation by humans, cattle, other domestic 

animals and wild animals. 

Individual cores analysed in pasture ponds in all three size ranges ranked amongst the 

highest carbon stocks in Northumberland ponds. Their carbon stock levels did not vary 
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as widely as in the natural ponds. But variations occurred in pasture ponds maybe as a 

result of the uneven and poor dispersal of sedimentary material into and within the ponds.  

4.6.4.3  Temporary and Permanent Ponds 

Seasonal variations affect the carbon levels in SWBs. For example, increased rainfall 

permits material flow into water bodies, increased allochthonous carbon deposition and 

development of primary productivity of DOC and colloidal DOC (Shirakova et al., 2013). 

Generally, ponds in Northumberland are characterised by seasonal drying and wetting. 

Temporary ponds dry out completely at some point in a year while permanent ponds lose 

moisture but do not dry completely. When these ponds are filled and over-capacitated, 

there is an overflow that causes the expansion of the pond area. Thus, shallow small water 

bodies are dynamic in terms of their surface area. The overflow of SWBs allow for the 

collection of materials that are deposited in the pond bottoms. This can trigger anoxia, 

and carbon processing leading to sequestration or atmospheric loss. Depending on pond 

type, depths and surface area, small ponds accumulate organic and inorganic materials 

which include vegetation, detritus, animal waste, agricultural and non-agricultural inputs 

(Boyd et al., 2010) by erosion or direct input. These materials are further processed by 

autochthonous pond microbes and the microbial communities vary depending on the 

wetness or dryness of the pond, amongst other factors.  

During the pond wetting phase, temporary ponds have increased DOC exchanges with 

the atmosphere as CO2 from oxidative processes. More DOCs are utilised for oxidative 

processes because it takes longer to reach thepond bottoms compared to POC and 

colloidal DOC and this exposes them to microbial utilisation (Shirokova et al., 2013). 

During the drying phase, DOC production, sedimentation and storage improve as the 

water column becomes shorter and concentration of nutrients increases alongside anoxia. 

For temporary ponds in size range 10 - 100 sq. m, their small size allows them to 

accumulate materials quicker than larger water bodies. Hence, they store more carbon 
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and process sedimentary material more efficiently. During the dry phase of temporary 

ponds, the top sediments are exposed to the atmosphere. Soil air (Boyd, 1995) and 

photolysis (photo-dissociation) cause the accelerated loss of labile organic matter (short 

chain organic carbon) in the exposed sediments (Inegbedion, 2013). This creates a layer 

of organic carbon with longer and denser molecular structure than the originally exposed 

sediments.  The continuous seasonal overturns of drying and wetting further create 

stratified layers of carbon mats in the pond bottoms (Munsiri et al., 1995). This 

stratification is significant in the efficient storage and chemical lock-in of carbon in SWBs 

with temporary pond characteristics (Boyd et al., 2010). This further enhances higher 

carbon storage in ponds in size range 10 - 100 sq. m compared to 100 - 1,000 sq. m and 

1,000 - 10,000 sq. m. 

Permanent ponds are not stratified by the loss of labile organics as a result of the 

continued water cover but microbial stratification can occur by the development of 

Firmicutes and/or Chlorobi phyla in sediment (Baker et al., 2015). These microbes are 

associated with anoxia in ponds and anoxic bottoms trigger improved carbon stock due 

to slowed levels of microbial oxidations to CO2 while oxygen bottoms create a carbon 

source (Gilbert et al., 2016). There is also a strong influence of temperature on permanent 

ponds with respect to carbon processing that was not covered in this research. 

4.6.4.4  Carbon storage down core profile 

Carbon stock in the top 5 cm of ponds was highest because it was the most 

biogeochemically and physically active layer of pond sediments. In the permanent pond, 

this layer is directly in contact with the spond water column. The sediment within this 

layer is significant in determining the source or sink potential of a pond. For permanent 

pond in a highly-oxygenated environment and sandy pond sediments with loose 

compaction, there is the probability that carbon oxidations will be prevalent in those 

sediments. Conversely, anoxia favours carbon preservation in the sediment. In a 
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temporary pond, this layer is significant in the development of the stratified layer that 

preserves carbon in sediment. The top sediment layers are involved in the remobilisation 

of sediments into the water column. It is also active in the microbial processing of 

allochthonous carbon, which is further absorbed/buried in sediments.  

At 5 cm - 10 cm of the core, carbon stock patterns were similar to the top 5 cm but the 

carbon stored at this depth was reduced compared to the top 5 cm. This is largely 

attributed to sediment being less loose compared to the top 5 cm with overburden and 

compaction beginning to build in sediment. This further starts to reduce the microbial 

interactions in sediment as microbes require less dense sediments and moisture to utilise 

carbon. Also, microbial interaction with allochthonous carbon is reduced at this depth 

compared to the top layer.  

At 10 cm - 15 cm of the core, sediment wetness gradually reduces. Size range 10 - 100 

sq. m had carbon stock of 0.59 kg C/sq. m and size range 100 - 1,000 sq. m had more 

average carbon stock at this depth compared to size range 10 – 100 sq. m and 1,000 - 

10,000 sq. m. This is either as a result of reduced compaction occurring in size range 100 

- 1,000 sq. m that reduced microbial activities or an isolated or unidentified external 

influence(s) on the ponds. 

At depth 15 cm - 20 cm and 20 cm - 25 cm, the ponds are mainly characterised by core 

bottom sediments or no data. The carbon stocks were reduced as a result of lowered 

moisture penetration, reduced microbial activity and sediment compaction. 

Natural ponds (100 - 1,000 sq. m) at depths 5 cm - 10 cm and 10 - 15 cm were found to 

be storing more carbon than the top 5 cm. This could be attributed to several reasons 

affecting the top 5 cm of the natural ponds. It could be that the top 5 cm is exhibiting a 

carbon source potential or different material entry and microbial processing which reduce 

carbon stocks, amongst other possible reasons. The pond could also be going through an 
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ageing phase where carbon stock begins to slow down (Gilbert, 2016). However, this 

research does not have the data to efficiently answer this question. The most likely 

reasons lie within material transport (carbon entry), pond sediment type and aggregations, 

moisture penetration, compaction (dry bulk density) and microbial processing interacting 

at optimum to enhance storage at lower depths compared to any other pond types at 

similar depths. 
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4.7 Limitation to carbon stock research 

Data collected for carbon analyses were collected from sites at Druridge Bay in South 

East Northumberland. It was not possible to collect samples from inland Northumberland 

areas such as the Cheviots because of site access permission and logistics. Also, this 

research did not consider the temporary variation of carbon stock within ponds and there 

was a limitation of accessing water bodies >10,000 sq. m due to safety, access to the 

necessary equipment and logistics. 

Also, the absence of data from other parts of Northumberland potentially reduces the 

range of the results. But the results clearly shows variability in carbon stock levels within 

ponds and across different ponds and this is similar to work by other authors in the region.  
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4.8 Conclusion 

Carbon stock in ponds varies across pond types, size ranges and down core profile. Pond 

size ranges have no direct effect on the carbon stock but affect environmental factors 

contributing to the total variation. The variations in carbon stocks, however, are 

controlled by numerous environmental/physical, biological and chemical/biochemical 

factors. The effects of these factors also vary and are interdependent.  

Various ponds have different sediment types and the aggregation of these minerals play 

an important role in carbon stock potentials of ponds. Highly compacted sediments have 

the most storage potential and loose compaction leads to loss of carbon. However, 

efficient stocking of carbon occurs in pond sediments with an efficient mix of loose and 

compacted sediment to allow for preservation, microbial processing and moisture 

penetration. Hence, highly porous sandy sediment ponds potentially have high 

productivity but a poor preservation of carbon while arable ponds can have low porosity 

and high sediment compaction that restricts microbial penetration, thus, high 

preservation. 

In the determination of carbon source, the C:N ratio provided a broad overview of 

activities that influence allochthonous and autochthonous carbon. But there was not a 

clear distinction of the source type because of oxidation of organic carbon and organic 

matter mixing. Therefore, exploring the microbial metabolism or feeding preference of 

allochthonous or autochthonous carbon source will be a valuable tool in distinguishing 

the organic carbon source in SWBs. 

In all, the capacity of SWBs to stock carbon increases with decreasing pond surface area 

in Northumberland. Temporary pasture ponds accumulate the most carbon in all ponds 

analysed as a result of its smaller size, aggregation of fine and coarse minerals, seasonal 

wetting and drying. And arable pond types accumulated the least carbon given as a result 

of different environmental/physical, biological and chemical/biochemical influences.  
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Chapter 5: Microbial Influence on Carbon Stock  

5.1 Background 

The interactions between microbes and carbon from allochthonous and autochthonous 

sources in ponds have been discussed in Chapter 2. Chapter 4 established the variation of 

carbon stocks in a pond as a result of physical/environmental, biological and 

geochemical/chemical factors.  

This chapter explores the influence of microbial metabolisms on carbon stock in pond 

sediment. The findings will further enhance knowledge of microbes’ contribution to the 

carbon stock in pond sediments. Metabolic processes in ponds are as diverse as the 

microbes living in the pond environment but there are broad metabolisms that occur in 

all ponds alongside pond specific metabolic processes (Ansola et al., 2014, Briée et al., 

2007 and Shirakova et al., 2013). This chapter focuses on broad metabolic features that 

occur across ponds and how they influence carbon stock in water bodies. This research 

covers:  

 Microbial community structure 

 allochthonous and autochthonous carbon processing  

 and oxygenation in pond sediment, 

to determine the relationship between carbon stock and microbes. The research involved 

PCR pyrosequencing in targeting the 16S rRNA gene of bacterial phyla and their relative 

abundance in the pond sediment used for carbon analyses.  
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5.2 Literature Review 

5.2.1 Microbes interactions in pond sediments 

Microbes are widely abundant in soils and pond sediments (Dunbar et al., 2002, 

Falkowski and Raven, 2013 and Trebilco et al., 2013). Their activities serve as important 

biogeochemical cycling markers for bio-elements such as carbon, nitrogen and sulphur 

(Ansola et al., 2014, Baker et al., 2015 and Briée et al., 2007).  The characteristics of the 

ecosystem are dependent on archaea, bacteria, fungi and other eukaryotes activities which 

have a wide diversity of biochemical processing (Bärlocher and Boddy, 2016 and Briée 

et al., 2007). Gilbert et al. (2014) and Chapter 4 showed that the top sediment layer of 

ponds accumulates more carbon than bottom sediments because of lower dry bulk 

density, high carbon concentration, access to terrestrial material entry, quick POC 

sedimentation, anoxia and high microbial actions. In lower pond bottom sediments, high 

dry bulk density (compaction and overburden) reduce microbial action on organic matter 

by limiting microbial movement through sediment pores (Avnimelech et al., 2001, Boyd 

et al., 2010 and Grabowski et al., 2011). Chapter 4 also discussed that carbon stocks were 

controlled by environmental factors such as water body size, heterogeneity of habitat and 

pond depth. Although these controlling factors vary widely and have different levels of 

influence on microbes in ponds, microbes generally utilise carbon as the main energy 

source. Therefore, factors that influence carbon stock will also influence microbial 

community structure, their metabolism and biologic interactions of competition, 

commensalism, symbiosis and predation (Jardillier et al., 2005). Investigating microbial 

community structure further unlocks the individual metabolisms that cause the pond 

sediment to act as a carbon source or sink.  
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Microbiologists have a well-established principle that “everything is everywhere but the 

environment selects” (Baas-Becking, 1934). Microbial community structure can infer the 

prevalent environmental and nutrient conditions, such as halophiles and organism 

associated with halophiles are selectively able to survive in high salt environments (Dai 

et al., 2013 and Oren, 2010). Some other environmental and nutritional controls on 

microbes are iron concentrations (Cornell and Schwertmann, 1996), anoxia in highly 

sulfate reducing pond sediment (Briée et al., 2007), temperature and moisture (Liang et 

al., 2003) amongst others.  

Also, the abundance of certain microbial groups over others relates to microbial 

adaptations in that environment. Adaptation depicts the nature and types of microbes 

better suited for a specific environment (Lozupone and Knight, 2007 and Sims et al., 

2013). This is why autochthonous microorganisms are more successful in ponds than 

allochthonous microbes; they have adaptive features and genes that allow them to survive 

better because of their longer evolutionary adaptations and successful microbial 

relationships to the environment (Elena and Lenski, 2003). Although the presence of 

nutrients sustains the growth of a dominant microbial group in an ecosystem, their 

abundance is also associated with predation and antibiotics which limit the growth of 

other groups. Growth limitations of some microbial groups have been associated with 

excesses or lack of nutrient in the environment (Jiang et al., 2006 and Briée et al., 2007). 

In an extreme environmental change, some non-performing microbes adjust or adapt to a 

state of dormancy either as spores or seed banks. This is important in small ponds that 

undergo seasonal pond succession. Non-performing or stasis microbes that are limited by 

the environmental change such as a change from summer to winter can re-flourish when 

situations become more favourable (Biggs et al., 1994, Gilbert, 2016, Gobet et al., 2012 

and Vymazal, 2005). 
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SWBs have been regarded as an extension of the forest biome and terrestrial carbon that 

holds allochthonous carbon depositions (Battin et al., 2009). But this is not entirely true 

because microbes in ponds are capable of utilising allochthonous carbon and creating 

autochthonous carbon via photosynthetic and chemosynthetic pathways. These processes 

are more effective in SWBs than large lakes, rivers and oceans because of higher nutrient 

concentration and access to terrestrial material input (Battin et al., 2009 and Cole et al., 

2007). Microbes in SWBs can be used to distinguish allochthonous and autochthonous 

carbon more effectively than in large lakes, rivers and oceans which are characterised by 

high oxidation and material transport (Battin et al., 2009, Downing et al., 2006, Cole et 

al., 2007 and Tranvik et al., 2009). This is because of small ponds’ shallow depth, reduced 

current and perturbations. Also, allochthonous and autochthonous carbon 

producing/utilising microbes can show variation in down core pond succession. 

5.2.2 Key microbial metabolism in small water bodies 

The ubiquity of microbial metabolic activities in ponds is related to microbial redox 

potentials and bio-elements. Redox in ponds is generally in flux with an imbalance to 

favour carbon sequestration or atmospheric loss (Gilbert, 2016). The predominant 

microbe determines the material exchanges, substrate utilisation, growth limitations and 

the relationship between microbes in creating a predominantly reduced or oxidised 

environment (Chapelle, 2001, Coby et al., 2011, Kluber and Conrad, 1998, and Weber et 

al., 2006). And this redox potential further defines carbon sequestration which occurs in 

a predominantly reduced pond environment or carbon loss which occurs in an oxidised 

pond environment (Clarens et al., 2010 and Mata et al., 2010). While the less dominant 

metabolisms in the pond environment support processes to enhance dominant microbe 

redox or reflect microbes in stasis (DeLong, 2005 and Nyström, 2003).  
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There are multiple activities that occur in pond environments at various levels of 

metabolic dominance. But for the purpose of this research, the key microbial processes 

include microbial community structure and their interactions, oxygenation in ponds and 

allochthonous and autochthonous carbon sources for energy. The phyla described to 

achieve this purpose are Proteobacteria, Bacteroidetes, Fibrobacteres, Planctomycetes, 

Verrucomicrobia, Acidobacteria, Firmicutes Cyanobacteria, Chlorobi, Chloroflexi, and 

some methanogens. Other phyla described include some candidate phyla and superphyla 

relationships, amongst several microbial metabolisms in various pond environments. 

5.2.2.1 Microbes influential to pond sediment processes 

Proteobacteria are a very successful Gram-negative bacterial phylum in diverse natural 

environments and they are known to utilise diverse substrates for their metabolisms. They 

are divided into six subphyla of Alphaproteobacteria, Betaproteobacteria, 

Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria and Acidithiobacillia 

(Garrity et al., 2005 and Williams and Kelly, 2013), and the subphyla aremonophyletic 

or a group of organisms that have similar ancestral descendants (Figure 5.1). 

Alphaproteobacteria have a large diversity and vary widely in functionality. 

Alphaproteobacteria are found to be more abundant in soil, pond and lake sediments 

compared to the water column and tend to be phototrophic especially in genus 

Rhodobacter (Briée et al., 2007). Betaproteobacteria are found in freshwater lakes and 

are prevalent in anaerobic conditions. In an environment with abundant 

Betaproteobacteria, candidate phylum OD1 (Parcubacteria) are also found (Briée et al., 

2007). Betaproteobacteria include hydrogen-oxidising (Hydrogenophilus and 

Aquaspirillum species), hydrogen sulphide (H2S) related (Thiobacillus), nitrifying 

(Dechlorimonas) and methylotroph (Methylophilus) bacteria. In stratified lakes, 

Betaproteobacteria (Betaproteobacterium) have been found to be in symbiotic 

relationships with phototrophs such as the green sulphur bacteria (Williams and Kelly, 
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2013), where they share symbiotic exchange of nutrients/metabolites for the cohesive 

development.  

Gammaproteobacteria are known to oxidise reduced sulfate (Thiocystis and Thiothrix). 

They are parasitic on frogs and invertebrates in water bodies. Briée et al. (2007) described 

the genus Chromatium as rod-shaped purple sulphur bacteria with a mucous coating of 

intracellular sulphur granules.  They use H2S as an electron donor for CO2 reduction and 

create granular sulphur as waste. Purple sulphur bacteria are mainly classified in the 

Chromatiaceae (a Gammaproteobacteria family) of which Chromatium is a genus 

(Imhoff, 2014). Deltaproteobacteria are mainly sulfate reducers that are prevalent in 

anoxic settings of stratified and anoxic lakes (Karr et al., 2005). Myxobacteria are a group 

of Deltaproteobacteria which ferment and degrade organic carbon. Epsilonproteobacteria 

are naturally associated with the sulfidic environments of the deep-sea (Lindstrom et al., 

2005) and sulphur springs (Elshahed et al., 2003). They are absent and rare in freshwater 

lakes and appear in the oxic and anoxic interface of the marine environment (Lin et al., 

2006). 

Bacteroidetes are a diverse phylum that anaerobically digest carbon in freshwater lakes, 

deep sea sediment, sulfidic caves and aquifers. They are mainly hydrolysers and 

degraders of cellulose, chitin and fermenters under strict anaerobic conditions (Baker et 

al., 2015 and Briée et al., 2007). In association with Bacteroidetes, OD1 are found in the 

freshwater and marine environment and they are mainly anaerobic digesters (Chouari et 

al., 2005). OD1 are oxygen sensitive and are found in anoxic or oxygen depleted 

environments (Elshahed et al., 2003).  

Fibrobacteres, Planctomycetes and Verrucomicrobia are also key bacteria phyla that 

influence metabolic activities in ponds to a varying degree dependent on environmental 

conditions. Genus Fibrobacter of Fibrobacteres are fibrolytic bacteria originating from 
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ruminant animals and are capable of processing plant polysaccharide (Béra-Maillet et al., 

2004). Planctomycetes are found mainly in lakes, aquifers, marine sediment and 

anaerobic digesters. Planctomyces spp. are divided into two main functional groups based 

on metabolism, that is, facultative aerobic chemoorganotrophs which utilise carbon by 

respiration and fermentation, and strictly anaerobic autotrophs that carry out anaerobic 

oxidation of ammonia to nitrate (van Niftrik et al., 2004). Verrucomicrobia are found in 

ponds, lakes and agricultural soil, groundwater systems and deep-sea sediments 

(Madigan, 2003 and Sangwan et al., 2005). They are known to ferment various sugars 

and degrade organic matter. Depending on the environment Planctomycetes and 

Verrucomicrobia could be dominant, or be part of the dominant microbes influencing 

metabolism or be in stasis but Fibrobacteres can only be found in grazing ponds. 

5.2.2.2 Oxygen and photolytic processes in ponds   

Small ponds have potential to be oxic, suboxic and/or anoxic depending on the prevailing 

physical/environmental, biological and geochemical/chemical influences. This affects the 

nature of metabolism that occurs within the pond system. In oxygen depleted ponds, the 

abundance of Cyanobacteria, Chloroflexi and purple sulphur bacteria increases as the 

main phototrophic microbial community (Elshahed et al., 2003). They perform 

anoxygenic photosynthesis using H2S rather than H2O as the electron donor and elemental 

sulphur is produced as the by-product. Chloroflexi are found in a wide array of 

environments and are known to be both aerobic and anoxygenic thermophiles (green non-

sulphur bacteria). Madigan (2003) also described large filamentous cyanobacteria 

(Oscillatoria spp) which were characterised by anoxygenic photosynthesis using H2S. 

Chloroflexi are anoxygenic, phototrophic and filamentous bacteria. They have been 

known to grow in warm springs as thermophiles. In stratified lakes, they are 

characteristically the green non-sulphur bacteria in the anoxic layers (Briée et al., 2007). 
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Chlorobi (green sulphur bacteria) are a group of anoxygenic photosynthetic bacteria 

frequently found in anoxic microbial mats and stratified lakes. Similar to Cyanobacteria, 

they perform photosynthesis by utilising H2S as the electron donor. They have been 

known to be photoheterotrophic and in symbiosis with other heterotrophs (Glaeser and 

Overmann, 2004). Also, methanogenic archaea and sulphur reducing bacteria dominate 

oxygen depleted water bodies. Figure 5.1 shows the Order Methanomicrobiales of 

Euryarchaeota contains methanogenic species and they are predominantly associated 

with freshwater sediments (Abreu et al., 2001, Barns et al., 1996 and Boetius et al., 2000).  

In an anaerobic pond sediment environment, Betaproteobacteria and Deltaproteobacteria 

are more abundant than Alphaproteobacteria and Gammaproteobacteria. Anoxia-

inducing microbes create an environment that permits the development of other microbes 

that require anoxia for their survival (Baker et al., 2015, Briée et al., 2007, Madigan, 

2003, Quaiser et al., 2003 and Sangwan et al., 2005). Bacteroidetes, Chloroflexi, and 

methanogens phyla are associated with metabolisms that function in almost exclusively 

anoxic environments, with the Euryarchaeota and Crenarchaeota being mainly 

methanogenic (Abreu et al., 2001, Barns et al., 1996 and Lundgren et al., 2008). 

Given the selectivity of anoxia in creating dominant microbes and other microbes that 

can survive in anoxia, carbon-utilising and carbon-producing microbes are also 

influenced by anoxia. This can be further used to identify predominant microbes that 

utilise allochthonous carbon and/or produce autochthonous carbon. At phyla level, 

Bacteroidetes are the main exclusive anaerobic digesters of cellulose and chitin degraders 

in anoxia. Elshahed et al. (2003) showed that Cyanobacteria and Chloroflexi proliferate 

in anoxia as the main phototrophs and Chlorobi have been found to be phototrophic in 

anoxic and suboxic environments (Briée et al., 2007, Elshahed et al., 2003 and Madigan, 
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2003). Thus, these two groups of microbial phyla can be used to infer allochthonous and 

autochthonous carbon in pond sediments.  

Acidobacteria and Firmicutes are gram positive bacteria commonly found in freshwater 

ponds. Firmicutes are predominant in anoxic sediments or chemoclines in stratified lakes 

(Briée et al., 2007). Acidobacteria are abundant in nature, especially in soil (Dunbar et 

al., 2002 and Quaiser et al., 2003). They are found in multiple environments including 

deep sea vents, aerobic and anaerobic environments. Similar to Acidobacteria, 

Verrucomicrobia and Proteobacteria have been found to be abundant in oxic and anoxic 

environments. Similar to Cyanobacteria, Chloroflexi and Chlorobi, in anoxia or 

environment where the predominant microbial metabolisms occur in anoxia, it is 

expected that Acidobacteria, Verrucomicrobia, Proteobacteria and other phyla containing 

both aerobic and anaerobic species will preferentially or predominantly elucidate more 

anoxia dwelling species than oxia dwelling species (Figure 5.1).  

Ponds also contain phyla in varying abundance, whose growth is based on their 

interaction with other microbes in ponds. Notable examples are:  

 OD1 – Parcubacteria, are abundant in anoxic sediments (Nelson and Stegen, 2015 

and Rinke et al., 2013). 

 WS3 – Latescibacteria, which are a member of the superphylum Fibrobacteres-

Chlorobi-Bacteroidetes (FCB) and are found in a wide range of habitats and 

anoxic sediments (Rinke et al., 2013 and Youssef et al., 2015). 

 BRC1 – uncultured candidate bacteria found in soil, anoxic marine and sinkhole 

mat clones (Baker et al., 2015) 

Some other candidate phyla that exist include OP11 – Microgenomates (Rinke et al., 

2013), SR1 – Absconditabacteria (Hug et al., 2016) and TM7 – Saccharibacteria 
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(Albertsen et al., 2013), and they have been identified in diverse natural and cultured 

environments.  

WS3 abundance has been associated with Fibrobacteres-Chlorobi-Bacteroidetes (FCB) 

superphylum as their growth is interdependent. The superphylum shares similar 

metabolic pathways and performs anaerobic fermentative metabolism of carbon (Youssef 

et al., 2015). Their abundances are also influenced by microbial relationships, nutrient 

availability and favourable environmental conditions (Jardillier et al., 2005, Lozupone 

and Knight, 2007, Rinke et al., 2013, Sims et al., 2013 and Youssef et al., 2015). 

Finally, terrestrial carbon entry into ponds is also known to trigger oxygen fluxes in ponds 

and permanent anoxia in certain ponds (Briée et al., 2007). This indicates that microbes 

are not the sole influencers of pond oxygenation but a combination of 

physical/environmental, chemical and biological interactions in the pond environment. 

However, this has been understudied in SWBs.  

5.2.3 Background Summary  

Similar environmental factors influence carbon stocks and microbes in ponds. These 

influences determine the microbial community structure of pond sediments at any given 

time. The microbial utilisation of carbon as an energy source can also be used to 

determine a pond’s carbon source and sink potentials. Within the microbial communities, 

dominant microbes can create environmental factors such as anoxia that enhance their 

growth and growth of other microbes that can tolerate anoxia. Therefore, adaptation 

provides an avenue for microbes to adjust to environmental changes and the flux of 

microbial abundance reflects succession in pond sediments, allochthonous and 

autochthonous carbon sources.
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Microbes influential to pond sediment processes
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Figure 5.1: Summary of some key predominantly oxic microbes (blue), predominantly anoxic microbes (red), and microbes that express in oxia 

and anoxia (green) depending on environment, that are influential to carbon processing in ponds   
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5.3.1 Research Aim  

The aim of this chapter is to identify key microbial processes occurring within pond 

sediments and how they drive carbon stock. This is achieved by describing the microbial 

community at phyla level and examining their influence on carbon stocks in pond 

sediment. Tying carbon stock variations to microbes unlocks new knowledge on oxia and 

anoxia, allochthonous and autochthonous carbon sources and other metabolisms in 

SWBs. This further defines the importance of small water bodies for carbon capture. 

5.3.2 Research Questions 

1. a. What are the broad variations in microbial community structure across all pond 

sediments? 

b. What are the abundant microbial phyla in the Northumberland pond sediments? 

2. a. How does pond oxygenation influence microbial community structure?  

3. a. How do allochthonous and autochthonous carbon influence microbial 

community structure in each pond sediment? 

b. How does this affect oxygenation and carbon source dynamics? 
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5.4.1 Methods 

The methods were designed to identify bacteria within pond sediments. This was 

undertaken in ponds of various types and sizes. Polymerase Chain Reaction (PCR) was 

used to identify 16S rRNA genes. The results were defined at bacterial phyla level with 

the removal of Operational Taxonomic Units (OTU) <80%. 

5.4.2 Sample collection and processing 

5.4.2.1  Research site 

The samples used were homogenised sub-samples of the cores used for carbon analysis. 

For microbial analysis, 12 ponds sediment cores were used from 10 of the ponds in 

Druridge Bay, Northumberland. The selected sediment cores for microbial analyses were 

designed to account for: 

Water body within size ranges: 

 10 – 100 sq. m, 

 100 – 1,000 sq. m and 

 1,000 – 10,000 sq. m 

Pond types: 

 arable, 

 natural, 

 pasture and 

 sand dune ponds 

5.4.2.2  Core sampling 

Table 5.1 below contains the number of cores used from each pond in Northumberland 

and their depths. Analyses for microbes in pond sediment were done at 1 cm intervals of 

homogenised sediments for the Top 5 cm. Beyond the 5th cm, sediments were 

homogenised at 2 cm intervals depending on the depth of the pond core. 
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Table 5.1:  Depth of pond core, pond type and size range for microbial analysis 

Pond type and  depth of microbial analysis Size Ranges (sq. m) 

 
10 -100 100 - 1,000 1,000 – 10,000 

Arable Pond 7 cm 5 cm 5 cm 

Natural pond 
 

10 cm 12 cm, 12 cm 

Sand dune pond 
 

8 cm, 8 cm 8 cm 

Pasture Pond 10 cm 12 cm 12 cm 

5.4.3 Laboratory Analysis – 16S rRNA Sequencing using Illumina Next 

Generation Sequencer 

The 16S rRNA sequencing is a fast and informative way of identifying and comparing 

bacterial communities in environmental samples. It is a well-established method for 

phylogenetic and taxonomic tracing of bacteria in samples. Sequencing of 16s rRNA gene 

amplicons (rRNA fragments) on an Illumina Next Generation Sequencer uses domain 

level PCR reactions to amplify isolated genomic DNA and millions of sequences of 

genetic fragments are generated to provide more knowledge of microbial community 

structure in the environment (Kozich et al., 2013 and Taylor, 2017). In 16S rRNA 

analysis, there are several variable genomic regions such as the V3, V4 and V45 regions 

which can be sequenced and this can be used to identify the dynamics of microbial 

community structure (Kozich et al., 2013, Sanschagrin and Yergeau, 2014 and Taylor, 

2017). In this research, the targeted region for microbial community structure analyses 

was the V4 region of 16S rRNA genes. It is worth noting that this type of sequencing 

allows for massive parallelisation of replications and clonal separation of templates 

without the need to insert gene fragment into a microbial host or community, which was 



150 

 

what occurred in previous methodologies for microbial analysis (Taylor 2017 

unpublished). 

5.4.3.1  DNA Extraction and Isolation  

Using the PowerSoil DNA Isolation procedure (By MO BIO Laboratory, Inc., Carlsbad, 

CA, USA) and following the manufacturer's protocols, 0.25 g of sediment was placed 

into a PowerBead Tube. It was gently vortexed to dissolve humic acids in the sediment, 

disperse sediment in the tube and protect DNA from degradation. Thereafter, 60 μl of 

Solution C1 (sodium dodecyl sulfate (SDS) and other disrupting agents) were added for 

cell lyses completion (SDS is an anionic detergent that dissolves lipid/fatty acids) and 

vortexed for 10 seconds. The solution was attached to a flatbed pad and vortexed for a 

further 10 minutes for mechanical lysis and solution homogenisation.   

The solution was centrifuged at 10,000 x g for 30 seconds at room temperature and 2 ml 

of the supernatant was transferred into a tube of 250 μl Solution C2. Solution C2 (a 

patented Inhibitor Removal Technology (IRT)) was added for precipitating organic and 

inorganic materials to improve DNA purity. The tube was centrifuged at 10,000 x g for 1 

minute and the 600 μl of supernatant was collected (avoiding the pellets) and transferred 

into a 2ml collection tube. 

200 μl of Solution C3 (a patented Inhibitor Removal Technology (IRT)) was added to the 

solution, vortexed briefly and incubated at 4 0C for 5 minutes to remove organic and 

inorganic material which improved DNA purity. The tube was centrifuged at 10,000 x g 

for 1 minute. The supernatant was transferred to a clean 2 ml collection tube. Then, 1.2 

ml of Solution C4 (a high salt concentration solution) was added and vortexed for 5 

seconds, 675 μl loaded onto a spin filter and centrifuged at 10,000 x g for 1 minute. The 

flow-through was discarded and the process was repeated once more (DNA preferentially 

binds to the silica membrane of the spin filter in high salt concentration).  
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At this stage, 500 μl of Solution C5 (ethanol based wash solution for cleaning DNA bound 

to the silica membrane) was added to remove residual salts, inorganic and organic 

materials. The resulting solution was centrifuged at room temperature for 30 seconds at 

10,000 x g. The flow-through was discarded and the spin filter was centrifuged at 10,000 

x g for 1 minute to remove residual Solution C5. 

The spin filter was carefully transferred into a clean 2ml collection tube and 100 μl of 

Solution C6 (sterile elution buffer) was carefully added to the centre of the spin filter 

membrane for efficient and complete release of DNA from the spin filter. The solution 

C6 passes through the silica membrane and DNA that was not bound to the silica (in high 

salt concentration) was released into the 2ml collection tube. The solution in the 2 ml 

collection tube was centrifuged at 10,000 x g for 30 seconds and the spin filter was 

discarded. The resulting solution was stored in a freezer for further analysis at -10oC. 

5.4.3.2 Quality Analysis – Nanodrop Spectrophotometry and Gel Electrophoresis 

This procedure was performed by Northumbria University PCR/DNA Analysis Lab. The 

Nanodrop 1000 instrument was used for spectrophotometric determination of DNA 

concentration ratios of 260nm/280nm and 260nm/230nm. Humic substances 

contaminating DNA samples were represented by the 260nm/280nm ratios and protein-

based material contamining DNA samples were represented by the 260nm/230nm ratios. 

Humic and protein based contaminants are inhibitors of PCR analysis by reducing yield 

and/or quality of results, therefore, establishing 260nm/280nm and 260nm/230nm ratios 

is important for assessing data quality produced from PCR sequencing. 

Gel electrophoresis operates on the principle of size and charge based separation of DNA 

fragments’ negative charge in ionic buffer solution, due to the release of phosphate 

groups. In this research, gel electrophoresis was used to determine the quality of extracted 

DNA and ionic buffers used for these experiments were Tris Borate Ethylenediamine 

tetra-acetic acid EDTA (TBE) or Tris Acetate (TAE). Fragment separation was run on 
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Agarose gel and this occurred based on molecular weight.  When ran in Agarose gel, poor 

quality DNA produced a smear and high quality DNA produced tight bands of high 

molecular weight compound. 

5.4.3.3  DNA Amplification and Pyrosequencing  

This procedure was also performed by Northumbria University PCR/DNA Analysis Lab 

using Wet-Lab Miseq Standard Operating Procedure (SOP) and an Illumina Next 

Generation Sequencer. This involved preparation and sequencing of the sediment sample 

for 16S rRNA gene sequence libraries using the Illumina Miseq (Schloss Lab Indices). 

16S rRNA wwasere first amplified by Polymerase Chain Reaction using primers 

containing small sample wells and unique barcodes. The 16S rRNA genes (250 bp paired 

ends of the V4 region) were amplified using the Schloss Lab universal primer set. 

Samples were arranged in a 96 wells format with two left to run the controls (a mock 

community and water for negative control). The sample wells were grouped and named, 

and using the Illumina Experiment Manager, a sample sheet was created. The sheet served 

as run parameters and indexing scheme for Miseq analyses. Thereafter, a subset of 12 

samples from each plate underwent electrophoresis on a 1% agarose gel to confirm the 

certainty of the amplification process. Library clean up and data normalisation was 

performed using Invitrogen SequalPrep Plate Normalization Kit. Finally, samples from 

all plates were pooled and library quality control was performed. This included 

quantification using a KAPA Biosystems Q-PCR kit and obtaining a Bioanalyser trace 

using the Agilent Technologies HS DNA kit.  

The PCR analysis of 16S rRNA genes allows for identification of existing, pre-existed 

and seed banks of microorganisms (Ansola et al., 2014, Hahn et al., 2003 and Zwart et 

al., 2002). These identifications are not quantitative but do show relative abundance or 

prevalence of microbes by amplifying copies of identified DNA or segments of DNA. 

The 16S rRNA genes in pond sediment were amplified to target Bacteria. The results of 
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the sequences were retrieved in a fastq file format and were further filtered using Mothur 

1.29 software pipeline (bioinformatics analysis) removing DNA sequences shorter than 

250 bp, removing sequences that aligned to the incorrect region of the 16S rDNA and 

chimeric sequences, as recommended by Scholss et al. (2009). During the analysis, 

Sequences affiliated to archaea were found, when bacteria were targeted as recommended 

by Cruaud et al. (2014), and they added to results for completeness as recommended by 

(Taylor, 2017 unpublished). Taxonomic assignments and assessment were referenced 

with the Silva database (Silva rRNA database project. No Date). Reads were classified 

based on phylogeny and operational taxonomic units (OTUs).  

5.4.3.4 Operational Taxonomic Unit (OTU) 

Unclassified phyla were also removed from the results for ease of data analysis as they 

were not covered in the Silva database when analysing the bacteria kingdom. Operational 

Taxonomic Units (OTU) of 16S RNA reads <80% of sequence identity were removed to 

improve the accuracy of bacterial identification as standard practice.  

5.4.3.4 Experiment Control 

A mock community of Halomonas and Streptococcus was used as positive quality control 

for the PCR reaction while deionised water was used as negative quality control. The 

negative quality control was set to check for potential contamination that would be 

represented in the OTU abundance and this contaminant was consequently removed from 

the analysis. 
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5.5 Results 

5.5.1 Pond Sediment - OTU Abundance 

5.5.1.1  Total Number of DNA Reads per Pond Core 

Table 5.2 shows the depth of pond cores and the abundance of microbial DNA identified 

in the PCR analysis. The number of DNA reads per sediment core varied across pond 

types and pond sizes. DNA reads ranged from 295,580 in arable ponds in size range 100 

– 1,000 sq. m to 786,001 DNA reads in size range 1,000 – 10,000 sq. m. The distribution 

of DNA abundance across all pond types and size ranges did not follow any clear pattern 

but there were more specific relationships. In the pasture ponds, DNA abundance 

increased with a decrease in water body size and the DNA abundance in all pasture ponds 

was higher than arable and sand dune ponds.  

Table 5.2: Total number of DNA reads per sediment core 

Pond depth  Size Ranges (sq. m) 

DNA reads per 

sediment core  
 

10 -100 100 -1,000 1,000 – 10,000 

Arable Pond 7 cm 5 cm 5 cm 

389,319 295,580 307,896 

Natural pond 
 

10 cm 12 cm (a), 12 cm (b) 

379,029 410,714 (a), 

786,001(b) 

Sand dune pond 
 

8 cm (a), 8 cm (b) 8 cm 

380,465 (a), 465,815 (b) 454,917 

Pasture Pond 10 cm 12 cm 12 cm 

524,442 510,586 496,588 
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5.5.1.2  Down core variation of DNA reads  

The down core profile of DNA abundance did not follow any clear overall pattern. DNA 

read varied at different depths of each core (Table 5.3, Table 5.4 and Figure 5.2). In all 

ponds, the top 1 cm sediment recorded the lowest microbial DNA reads on average and 

these top sediments were associated with high carbon stock. In size range 10 - 100 sq. m, 

the top 3 cm recorded higher DNA reads compared to size ranges >100 sq. m but at lower 

depths, there was a drop in DNA reads. DNA abundance varied in each core with no 

distributive pattern in the other size ranges (Table 5.3). 

In size range 10 - 100 sq. m, arable pond top sediment accounted for the highest DNA 

within the pond core reads and these were followed by depths of 3 cm and 5 cm. In pasture 

pond of size range 10 – 100 sq. m, the top sediment had lower DNA abundance compared 

arable pond of the same size range.  Although, PCR DNA abundance is not a reflection 

of the microbial quantity within the sediment but a reflection of amplified microbes’ 

diversity. More carbon was stocked in the top sediment of pasture ponds compared to 

arable ponds at size range 10 – 100 sq. m despite having a lower DNA read. DNA reads 

in pasture pond 10 – 100 sq. m were highest at depth 2 cm and varied at lower depths 

with an abundance range of from 63,000 – 76,000 DNA reads (Figure 5.2).  

In size range 100 - 1,000 sq. m, arable pond showed a gradual increase in DNA reads 

from top to bottom of the sediment. In the two sand dune pond cores of similar depths of 

8 cm, the top sediment varied in microbial DNA reads (77,169 and 42,216 DNA reads 

respectively). Also in this size range, natural and pasture ponds had low DNA reads in 

the top sediment compared to the arable pond and their DNA abundance varied down 

core profile (Figure 5.2).  

In size range 1,000 - 10,000 sq. m, the top sediment ranged from 51,000 - 69,000 DNA 

reads in sand dune pond sediment and the two cores analysed in natural ponds showed 

widely varying DNA reads from the same pond (Figure 5.2). 
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In all, Pearson correlation affirmed the independent behaviour of individual ponds in 

response DNA abundance to pond depths. DNA abundances in each pond were no 

statistically significantly correlated with pond depth except for arable pond in size range 

100 – 1,000 sq. m (Table 5.3). 

Table 5.3: Correlation of Pond Depth with DNA Abundance  

Correlation of Pond Depth with DNA Abundance (Pearson Correlation, P value, N) 

pond type  Size Range 10 - 100 sq. m  

   Pearson Correlation P value N 

sand dune - 
  

arable pond -0.328 0.526 6 

natural pond   
  

pasture pond -0.104 0.824 7 

pond type  Size Range 100 - 1000 sq. m 

sand dune A -0262 0.616 6 

sand dune B 0.686 0.132 6 

arable pond 0.979 0.004 5 

natural pond 0.593 0.160 7 

pasture pond 0.493 0.215 8 

pond type  Size Range 1,000 - 10,000 sq. m 

sand dune -0.476 0.340 6 

arable pond -0.391 0.515 5 

natural pond 2A 0.200 0.962 8 

natural pond 2B 0.048 0.909 8 

pasture pond 0.380 0.354 8 
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 Table 5.4: Down core DNA abundance across ponds 

  
10 - 

100 sq. 

m 

10 - 100 

sq. m 

100 - 

1,000 

sq. m 

100 - 

1,000 sq. 

m 

100 - 

1,000 sq. 

m 

100 - 

1,000 

sq. m 

100 - 

1,000 

sq. m 

1,000 - 

10,000 

sq. m 

1,000 - 

10,000 

sq. m 

1,000 - 

10,000 

sq. m 

1,000 - 

10,000 

sq. m 

1,000 - 

10,000 

sq. m 

 

Depth 

(cm) 

Arable 

Pond 

Pasture 

Pond 

Arable 

Pond 

Sand 

Dune 

Pond  (a) 

Sand 

Dune 

Pond  (b) 

Natural 

Pond 

Pasture 

Pond 

Pasture 

Pond 

Sand 

Dune 

Pond 

Arable 

Pond 

Natural 

Pond 

(2a)  

Natural 

Pond 

(2b) 

Average 

DNA 

abundance  

1 80,163 43,827 50,491 77,169 42,216 35,827 34,505 64,921 69,277 55,517 51,103 53,504 54,877 ± 

4,387 

2 44,523 131,224 51,207 75,500 73,557 50,822 66,296 73,449 109,100 92,508 39,324 56,620 72,011 ± 

7,927 

3 74,278 75,280 60,107 52,147 89,798 34,733 75,839 42,184 62,665 54,080 43,394 49,393 59,492 ± 

4,784 

4 66,844 67,293 63,924 54,998 87,883 71,644 73,688 53,715 80,773 51,042 81,367 147,322 75,041 ± 

7,364 

5 73,992 63,569 69,851 46,428 86,667 64,557 49,703 56,143 91,019 54,749 40,041 206,043 75,230 ± 

12,696 

6 to 8 49,519 66,752 
 

74,223 85,694 61,015 57,929 63,328 42,083 
 

63,925 146,889 71,136 ± 

9,238 

8 to 10 
 

76,497 
   

60,431 78,008 70,618 
  

38,272 76,662 66,748 ± 

6,287 

10 to 

12 

      
74,618 72,230 

  
53,288 49,568 62,426 ± 

6,413 
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Figure 5.2: Percentage DNA Reads down core profile across ponds
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5.5.2 Phylum Analysis 

There were variations in the microbial communities’ at all taxonomic levels in all ponds. 

The PCR pyrosequencing analysis was set up to identify Bacteria, but, two Archaea phyla 

of Crenarchaeota and Euryarchaeota were identified in the results. The Archaea were 

artefacts of the analysis but were included in the results for completeness and they also 

provided valuable information on methanogenesis, which was useful in analysing 

oxygenation in ponds. 

5.5.3 Microbial community structure of Ponds 

All ponds contained mainly phyla associated with metabolism in anoxic sediments at 

varying abundance compared to oxic metabolism. Although the PCR process does not 

provide quantitative abundance, the presence and interactions between the phyla obtained 

from all ponds suggest predominantly anoxic pond sediments. 

Acidobacteria, which are ubiquitous in nature, in soil and pond environments (Quaiser et 

al., 2003), were predominant. Acidobacteria and Proteobacteria were the most abundant 

phyla analysed in all ponds. Acidobacteria ranged from 17.67% in one of the natural 

ponds in size range 1,000 – 10,000 sq. m to 53.64% in arable ponds in size range 1,000 – 

10,000 sq. m. They were more dominant in arable ponds compared to other pond types. 

In size range 10 – 100 sq. m, the abundance of Acidobacteria can be largely tied to their 

high proliferations in the pond dry phase, when small ponds mimic the soil environment 

(Dunbar et al., 2002, Sait et al., 2002 and Quaiser et al., 2003). In natural pond size range 

1,000 – 10,000 sq. m, where one core was sampled at the pond edge and the other core in 

the deeper ends of the pond, Acidobacteria abundance was higher on the pond edge which 

will have a more frequent and longer dry phase (Figure 5.3).  
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Verrucomicrobia are also highly diverse species predominant in oxic and anoxic 

processing of carbon (Bergmann et al., 2011). Verrucomicrobia were less abundant than 

Acidobacteria, ranging from 4.73% of the total phyla abundance per pond in sand dune 

ponds of size range 1,000 – 10,000 sq. m to 12.43% in arable ponds of size range 100 – 

1,000 sq. m (Figure 5.3). The overall distribution of Verrucomicrobia showed that their 

abundance increases with decreasing pond size and they were predominant in arable 

ponds and pond edges. Their abundances reflect Verrucomicrobia being associated with 

soil environments and they flourish in pond environments with the ability to mimic soil 

environments, as with Acidobacteria. In all ponds, Verrucomicrobia abundance increased 

or decreased with increase or decrease in Acidobacteria and Proteobacteria abundance. 

The presence of Firmicutes in ponds gives clear signals of pond stratification processes 

at the chemocline and their abundance indicates potentially anoxic pond bottoms (Briée 

et al., 2007). Firmicutes abundance was low in temporary ponds in size range 10 – 100 

sq. m and 100 – 1,000 sq. m and arable ponds in size range 1,000 – 10,000 sq. m (Figure 

5.3). There was a higher abundance of Firmicutes where pond cores were collected from 

deeper ends of ponds that were completely covered in water compared to pond edge.  

The archaea (Crenarchaeota and Euryarchaeota) are found predominantly in 

methanogenesis-related environments (Abreu et al., 2001, Barns et al., 1996 and 

Lundgren et al., 2008). They were more abundant than Firmicutes and their total phyla 

abundance per pond ranged from 1.58% in the arable pond of size range 100 – 1,000 sq. 

m to 11.65% in pasture pond in size range 1,000 – 10,000 sq. m (Figure 5.3). Higher 

methanogen abundances also relate to the nature, texture and composition of pond 

sediments as arable ponds with high clay composition showed low methanogens 

abundance compared to other ponds. Water cover also favoured abundance of 

methanogens in the permanent ponds compared to the temporary ponds. Thus, ponds of 
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size range 1,000 – 10,000 sq. m contained higher Crenarchaeota and Euryarchaeota 

abundance compared to size range 10 – 100 sq. m. 

Bacteroidetes are associated with heterotrophic feeding in anoxic environments. 

Bacteroidetes abundance was 5.50% in arable ponds of size range 1,000 – 10,000 sq. m 

but in all other pond sediments, the abundance exceeded 10% of the total phyla abundance 

per pond (Figure 5.3). Bacteroidetes abundance in ponds also influences the abundances 

of other phyla such as OD1, which are also predominantly heterotrophic feeders. 

Fibrobacteres were found in low abundances in some ponds and they were mainly 

associated with pasture ponds with nearby cattle grazing.  

All ponds showed varying abundances of Fibrobacteres, Chlorobi and Bacteroidetes 

which suggests a potential superphylum relationship of Fibrobacteres-Chlorobi-

Bacteroidetes (FCB) superphylum in association with WS3 (Youssef et al., 2015), 

ecological interdependence or individual growth of each phylum in ponds of Druridge 

Bay, Northumberland. The phylum components within the superphylum have metabolic 

relationships that increase their abundance in the pond sediment environment by sharing 

nutrients, genes and substrates (Baker et al., 2015). However, this research does not go 

into details of identifying superphyla. Another potential superphylum relationship in the 

ponds will be Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) groups in 

association with Lentisphaerae (Wagner and Horn, 2006) which could exist in all ponds 

except arable pond in size range 1,000 – 10,000 sq. m (Figure 5.3).   

Bacteria candidate phyla of OD1, TM7, WS3, SR11 and BRC1 were found in trace 

abundance in some ponds compared to the abundance of Acidobacteria, Proteobacteria 

and Bacteroidetes. 

Chloroflexi, Chlorobi and Cyanobacteria were the main predominantly phototrophic 

microbes or autotrophs in all ponds analysed. They can perform their autotrophy in 

http://journal.frontiersin.org/researchtopic/4193/planctomycetes-verrucomicrobia-chlamydiae-bacterial-superphylum-new-model-organisms
https://en.wikipedia.org/wiki/Lentisphaerae
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oxygen depleted environments (Elshahed et al., 2003 and Madigan, 2003). Chloroflexi 

were most abundant in all ponds in comparison to Cyanobacteria and Chlorobi. They 

ranged from 2.00% in the arable pond in size range 1,000 – 10,000 sq. m to 14.76% in 

one of the natural ponds in size range 1,000 – 10,000 sq. m (Figure 5.3). Chloroflexi 

abundance was also higher in permanent ponds than temporary ponds. Cyanobacteria 

abundance was very low in all ponds in comparison to Chloroflexi, with 1.5% or less of 

the total phyla abundance in all ponds analysed. Chlorobi abundance in all ponds was 

much lower than Chloroflexi and Cyanobacteria in arable, pasture and natural ponds. But 

in sand dune ponds, their abundances were 5.32% in size range 1,000 – 10,000 sq. m, and 

2.84 and 1.65% in size range 100 – 1,000 sq. m. As well as phototrophic processes, 

Chlorobi are associated with pond stratification and symbiosis with heterotrophs (Glaeser 

and Overmann, 2004) and their abundance varied in each pond analysed. 

Proteobacteria are a very successful group of microbes in nature (Briée et al., 2007) and 

their abundance varied in all ponds. They ranged from 17.31% in the arable pond to 

40.24% in the sand dune ponds of size range 1,000 – 10,000 sq. m (Figure 5.). Their 

functionality widely varies as well as their diverse metabolic influence in the pond 

environments. Proteobacteria are examined at subphylum level in section 5.5.4 to identify 

the various metabolic processes occurring within the system and how they influence 

carbon processing in ponds. 
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Figure 5.3: Phyla distribution in pond sediments
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5.5.4 Proteobacteria Subphyla 

The abundance of each Proteobacteria subphylum varied in all pond sediments (Table 

5.5). There were more Betaproteobacteria and Deltaproteobacteria in comparison to 

Alphaproteobacteria and Gammaproteobacteria. As expected in the terrestrial 

environment, Epsilonproteobacteria abundance was low in comparison to other 

Proteobacterial subphyla because they are associated with sulphur springs and deep sea 

vents that are sulphur rich (Briée et al., 2007). Betaproteobacteria have been known to be 

associated with various metabolic processes and relationships with other microorganisms 

(Briée et al., 2007 and Glaeser and Overmann, 2004) and these potentially favoured their 

abundance in pond sediments.  

Table 5.5: Proteobacteria subphyla across all ponds in Northumberland 

Proteobacteria Subphylum OTU Abundance  

Alphaproteobacteria  243,067 

Betaproteobacteria  463,769 

Gammaproteobacteria 316,504 

Deltaproteobacteria  532,968 

Epsilonproteobacteria 16,703 

Unclassified Proteobacteria  190,722 

Betaproteobacteria were the dominant Proteobacteria in ponds within the size range 10 – 

100 sq. m, all sand dune ponds analysed and arable ponds in size range 1,000 – 10,000 

sq. m (Figure 5.4a). In all ponds, the total abundance of Betaproteobacteria was closely 

followed by Deltaproteobacteria and in the natural and pasture ponds of size ranges 100 

– 1,000 sq. m and 1,000 – 10,000 sq. m, Deltaproteobacteria were more abundant than 

Betaproteobacteria. Gammaproteobacteria showed the highest abundance amongst the 

Proteobacteria phylum in the arable pond of size range 100 – 1,000. Alphaproteobacteria 
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abundances were low in all ponds compared to Betaproteobacteria, Deltaproteobacteria 

and Gammaproteobacteria. Epsilonproteobacteria were also identified in the ponds but 

their abundances were much lower than the other subphyla. Unclassified Proteobacteria 

were also added to the results for completeness (Figure 5.4a). The higher abundance of 

Betaproteobacteria and Deltaproteobacteria in most of the ponds analysed compared to 

Alphaproteobacteria and Gammaproteobacteria suggests anoxia within the pond 

sediment environment. Betaproteobacteria also interact with other microbes such as 

hydrogen oxidisers, methylotrophs, dechlorinated bacteria, nitrifying bacteria and 

anoxygenic green sulphur bacteria (Briée et al., 2007) which enhances the anoxic nature 

of the ponds. Similarly, Deltaproteobacteria are known to be sulfate reducers (Briée et 

al., 2007) and are only capable of existing in anoxia.  
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Figure 5.4a: Distribution of Proteobacteria subphyla in all ponds
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The abundance of the Proteobacterial subphyla seems to have diverse effects on carbon 

stock in ponds. In a plot of Betaproteobacteria and Deltaproteobacteria (Figure 5.4b) to 

show a comparison of anoxia dependent microbes and sulfate reducing microbes, arable 

ponds had low carbon stocks in the size range 100 – 1,000 sq. m and 1,000 – 10,000 sq. 

m and this relates to low abundances of Betaproteobacteria and Deltaproteobacteria. In 

size range 10 – 100 sq. m, there was a higher carbon stock compared to size range 100 – 

1,000 sq. m and 1,000 – 10,000 sq. m and this also was related to the higher abundance 

of Deltaproteobacteria in size range 10 – 100 sq. m. Natural pond cores in size range 

1,000 – 10,000 sq. m had a varying abundance of Betaproteobacteria and 

Deltaproteobacteria. In one core there was high abundance in Betaproteobacteria and 

Deltaproteobacteria and this core contained a higher carbon stock compared to the second 

core. In the second core from the same natural pond, there was a reduction in 

Betaproteobacteria and this core had a lower carbon stock (Figure 5.4b). The two sand 

dune ponds in size range 100 – 1,000 sq. m contained a similar abundance of 

Betaproteobacteria and Deltaproteobacteria but the abundance of carbon stocks varied. 

Pasture ponds in all three size ranges contained varying abundances of Betaproteobacteria 

and Deltaproteobacteria. Pasture pond in size range 10 – 100 sq. m contained lower 

Betaproteobacteria and Deltaproteobacteria abundances compared to the other two size 

ranges but stocked more carbon (Figure 5.4b). 

In a plot of Betaproteobacteria and Alphaproteobacteria (Figure 5.4c) to show a 

comparison between strictly anoxia dependent microbes and microbes that can exist in 

anoxia or oxia, all ponds aligned more towards Betaproteobacteria with more abundance 

compared Alphaproteobacteria. This indicates more anoxic microbe processes were 

occurring in the ponds than oxic.  
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In a plot of Alphaproteobacteria and Gammaproteobacteria, all ponds’ carbon stocks were 

distributed towards the origin with ponds aligning more towards Gammaproteobacteria, 

which are mainly reduced sulfate oxidiser (Briée et al., 2007) (Figure 5.4d). Also, there 

are no clear relationships of Alphaproteobacteria and Gammaproteobacteria, to carbon 

stocks, as the big and small bubbles (carbon stock), were mixed together. 

A plot of Deltaproteobacteria and Gammaproteobacteria (Figure 5.4e) compares between 

sulfate reducing microbes and reduced sulfate oxidising microbes. Results showed the 

high carbon stock in the sand dune and one of the natural pond cores in size range 1,000 

– 10,000 sq. m coincides with anoxia and sulfate reduction related microbes. Arable pond 

in size range 1,000 – 10,000 sq. m showed low abundance in sulfate reduction and 

reduced sulfate oxidation and these potentially were also contributory to the low carbon 

stocks in this pond’s sediments. However, the overall distribution showed a wide variety 

of responses from each pond (Figure 5.4e). 
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Figure 5.4b: Betaproteobacteria – Deltaproteobacteria relationship with carbon stocks in pond sediments
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Figure 5.4c: Betaproteobacteria – Alphaproteobacteria relationship with carbon stocks in pond sediments
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Figure 5.4d: Alphaproteobacteria - Gammaproteobacteria relationship with carbon stocks in pond sediments 
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Figure 5.4e: Deltaproteobacteria - Gammaproteobacteria relationship with carbon stocks in pond sediments
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5.5.5 Carbon Source in Ponds 

A comparison between the main allochthonous and autochthonous microbe groups’ 

abundance provides insight into the variation in carbon source in pond sediment. 

Bacteroidetes, Chloroflexi, Chlorobi and Cyanobacteria (Chloroplast) accounted for 

20.59% of microbial DNA abundance or total phyla DNA abundance in all ponds 

analysed and these are useful for distinguishing between allochthonous and 

autochthonous carbon source. 

Table 5.6 shows the abundance of microbes with respect to the carbon source. Overall, 

the average allochthonous and autochthonous microbes were 62.47 ± 2.86 % and 37.53 

± 2.86 % respectively based on averaging from all ponds analysed in Northumberland.  

There was a greater abundance of allochthonous carbon utilising microbes than 

autochthonous carbon producing microbes in most ponds except in pasture ponds and 

sand dune pond of size ranges 100 – 1,000 sq. m and 1,000 – 10,000 sq. m respectively. 

In the ponds with two cores, the natural pond 1,000 – 10,000 sq. m had a wide variation 

in the main allochthonous and autochthonous microbes, while the two sand dune pond 

cores in size range 100 – 1,000 sq. m had similar levels of allochthonous and 

autochthonous microbes’ abundance compared to natural pond 1,000 – 10,000 sq. m. This 

showed that carbon stock variation is a result of the non-uniform terrestrial or aquatic 

carbon influence and these variations also occurred within a pond. The arable ponds and 

pasture pond 10 – 100 sq. m were dominated by allochthonous carbon utilisers and this 

could relate to the small size, material inflow from surrounding environment and shallow 

depth of the ponds. And with increasing size and pond permanence, the autochthonous 

carbon influence increased.
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Table 5.6: Proportion of allochthonous and autochthonous carbon producing microbes in each pond 
 

Microbial Group 

Allochthonous 
 

Autochthonous  
 

DNA Abundance % DNA Abundance % 

 10 - 100 sq. m Arable Pond 50,088 67.31 24,326 32.69 

 10 - 100 sq. m Pasture Pond 87,984 75.65 28,319 24.35 

 100 - 1,000 sq. m Arable Pond 38,254 66.82 18,994 33.18 

 100 - 1,000 sq. m Sand Dune Pond (a) 52,984 63.01 31,103 36.99 

 100 - 1,000 sq. m Sand Dune Pond (b) 60,152 60.19 39,784 39.81 

 100 - 1,000 sq. m Natural Pond 54,863 68.55 25,170 31.45 

 100 - 1,000 sq. m Pasture Pond 76,588 48.26 82,121 51.74 

1,000 - 10,000 sq. m Pasture Pond 78,782 61.13 50,092 38.87 

1,000 - 10,000 sq. m Sand Dune Pond 56,672 49.89 56,930 50.11 

1,000 - 10,000 sq. m Arable Pond 22,289 70.56 9,300 29.44 

1,000 - 10,000 sq. m Natural Pond (a) 75,943 51.75 70,805 48.25 

1,000 - 10,000 sq. m Natural Pond (b) 115,138 58.02 83,318 41.98 
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5.6 Discussion 

5.6.1 Total Microbial Abundance 

The pond environment and microbial abundance determine the success of carbon 

stocking; microbes interact with carbon as a nutrient source while prevailing condition in 

the pond environment determines carbon dynamics. This research clearly shows that on 

pasture and arable land, smaller ponds (10 – 100 sq. m) contain greater microbial DNA 

abundance than larger ponds. This relates to the ability of microorganisms in the smaller 

ponds to proliferate more efficiently in the presence of higher nutrient concentrations and 

favourable environmental conditions created by the small size of the ponds (Battin et al., 

2009, Cole et al., 2007 and Shirokova et al., 2013). In reduced carbon stock 

environments, such as the arable ponds, low carbon stocks can be related to presence or 

absence of living microbes in compact clayey sediment that can limit nutrient migration 

for microbial proliferation (Avnimelech et al., 2001, Boyd et al., 2010 and Grabowski et 

al., 2011). 

Quick drying and wetting of ponds alters nutrient concentrations that leads to 

development of successional microbial groups. Thus, carbon processing by microbes 

remains continuous and ponds can sustain microbial growth irrespectively of the stages 

of the smaller ponds’ life cycle (Rao, 2011 and Kobayashi et al., 2015). These seasonal 

changes in ponds were also reflected in the changes in microbial species or phyla 

abundance as seen in the down core profile analysis of ponds in Northumberland.  

The abundance of microbes, their growth dynamics and ecological interactions also tie to 

microbes’ ability to utilise or produce allochthonous and autochthonous carbon 

respectively (Battin et al., 2009, Biggs et al., 1994, Gilbert et al., 2014 and Jeffries, 2008). 

The top sediment of pasture pond in size range 10 – 100 sq. m contained lower microbial 

http://www.sciencedirect.com/science/article/pii/S0269749110001776#bib1
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DNA abundance compared to bottom sediments of the same pond. This could be because 

of an environmental limiting factor that stunts microbial abundance at that successional 

stage, such as loss of labile organic carbon, for example short chain alkanes, alkenes and 

light aromatics (Inegbedion, 2013) upon atmospheric exposure during the dry phase. But 

bottom sediments could have been deposited in more environmentally favourable 

conditions such as water cover and high nutrient availability. 

Change in surrounding vegetation and seasonal weather flux also influence carbon stock 

(Jeffries, 2008 and Gilbert et al., 2014) and microbial abundance in pond sediments. This 

was also observed in this research. Depositional environments differ in arable, pasture, 

sand dune and natural ponds causing variation in carbon stocks and microbial abundance. 

Physical/environmental, and chemical/biochemical factors/influences, and response of 

the microbial community to carbon source either favours or limits different phyla. 

Although the temporal changes in microbial communities were not defined to species 

level, the down core profile of DNA abundance across pond sizes reflected variations in 

microbial phyla. This potentially means changes in surrounding depositional 

environments can be reflected in nearby pond sediments.  

Furthermore, these changes in the depositional environment are not uniform across a 

pond. Natural pond in size range 1,000 – 10,000 sq. m showed different carbon stock and 

microbial DNA abundance within the same pond. The dynamics clearly show the non-

uniformity of lateral carbon deposition and microbial abundance in pond sediments. This 

non-uniformity also means that a pond’s microbial dynamics potentially may not 

accurately reflect successional changes or change in depositional environment as result 

of non-uniformity of water and aeolian material transport, sedimentation and variation in 

carbon oxidation in different parts of the ponds. These influences alongside quick wetting 

and drying in the temporal small ponds will further contribute to limiting the uniformity 
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of carbon or material deposition in pond sediments (Baker et al., 2015, Beazley et al., 

2012, Downing, 2010, Kortelainen et al., 2004, Lloyd et al., 2014 and Shirokova et al., 

2013). This further explains the variation in carbon stocks in the same ponds. Also, the 

pond edge is more efficient at reflecting the changes in depositional environments 

because of  its proximity to the surrounding environment compared to central parts of the 

pond because of material dispersal and flux in sedimentary transport (Demaison and 

Moore, 1980). 

PCR is not very effective at distinguishing living from non-living cells but it gives a 

snapshot of the existing phylogenetic diversity of living, dead and hibernating cells 

(Sheridan et al., 1998 and Soejima et al., 2008). Relating DNA abundance to carbon stock 

in pond sediment is skewed by the non-living microbes that are obtained using PCR 

analysis. Also in a nutrient-rich environment, microbial proliferation increases with the 

selective growth of successful microbes and their symbionts or any other ecological 

relationships. Thus, nutrient-rich environments are likely to show less diversity in PCR 

microbial identifications because of the large replication of similar microbes that have 

the same genes. This can be clearly distinguished in the top sediments of pasture and 

arable ponds in size range 10 – 100 sq. m, where arable ponds contained higher phyla 

diversity in microbial DNA reads, compared to pasture ponds. It is probable that PCR is 

identifying numerous 16s rRNA genes in arable pond top sediments that are living, dead 

or hibernating as a result of the growth limitations of compact clayey sediment. The wider 

microbial diversity could also reflect the absence of a quantitatively dominant microbial 

group in the arable pond’s top sediments. Conversely, the pasture ponds in size range 10 

– 100 sq. m showed less DNA abundance compared to arable ponds. This could be 

because low PCR abundance reflects less diversity in the microbial community structure 

that potentially led to replication of similar microbes and microbes that share similar 
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ecological relationships. Although quantitative abundance of microbes in ponds cannot 

be measured using PCR, pasture ponds stocking of more carbon potentially contributes 

quantitatively more ecologically successful and predominant microbes in the pond 

environment than microbes in stasis (Ansola et al., 2014, Battin et al., 2009, DeLong, 

2005 and Nyström, 2003). 

5.6.2 Microbial community structure and dynamics 

Baker et al. (2015) showed in a 16s rRNA gene survey that  estuary sediments of White 

Oak River, North Carolina contained Betaproteobacteria, Gammaproteobacteria, 

Deltaproteobacteria, Chloroflexi, Planctomycetes, Bacteroidetes, Gemmatimonadetes, 

Nitrospira, Chlamydiae and Spirochaetes and these were similar with other estuary 

sediments of Pearl River and Yangtze estuary in South China (Beazley et al., 2012, Jiang 

et al., 2011 and Zhu et al., 2013). Although these environments were an estuary, the same 

microbial groups were found in Northumberland pond sediments. Northumberland pond 

sediments also shared similarities with the estuaries in having Acidobacteria and 

Verrucomicrobia amongst the  more abundant phyla (Beazley et al., 2012, Jiang et al., 

2011, Madigan, 2003, Quaiser et al., 2003 and Zhu et al., 2013). Therefore, there is 

evidence of some metabolic pathways to be similar in Northumberland pond sediments 

and other natural environments.  

The varying abundance of 24 bacterial phyla in all pond sediments relates to pond 

microbes’ interdependence in metabolising organic carbon and preferential ecological 

conditions. Baker et al. (2015) also identified variations and complexities in microbial 

metabolism in the estuary of White Oak River, North Carolina, USA. They showed that 

mapping metabolic pathway processes within sediments involved mapping complex and 

multiple enzymatic processes from different microbes, and it is limited by identification 
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of uncultured microbial groups. Metabolism in Northumberland ponds showed a general 

overview of anoxic processes that can mediate carbon, sulphur, and nitrogen derived 

pathways from large substrates. Defining the entire microbial processes in pond 

sediments requires clear knowledge of processes within the known (taxonomically 

classified) microbial groups, unclassified/uncultured taxa and candidate phyla (Ansola et 

al., 2014, Baker et al., 2015 and Briée et al., 2007), but PCR analysis was limited in 

analysing unclassified microbes. Each Northumberland pond had variation in microbial 

abundance, phyla and potentially metabolisms. These variations in the known phyla 

abundance suggest that microbial metabolic processes are environment specific and are 

not perfectly replicable in a different environment.  

Close taxonomic similarities in Northumberland pond sediments suggest that microbes 

interact at varying levels to produce carbon source or sinks through the exchange of 

substrates, metabolites and genes (Baker et al., 2015, Cole et al., 2007, Tranvik et al., 

2009 and Youssef et al., 2015). The resulting relationship creates an environment for 

microbes to co-exist efficiently. Temporary arable ponds showed a low abundance of 

methanogens while permanent ponds had higher abundance. Thus, methane-rich 

sediment in permanent ponds potentially performed more efficient sulfate-methane 

transition (SMTZ), which require interaction amongst methanogens, Deltaproteobacteria 

and Chloroflexi (Baker et al., 2015 and Briée et al., 2007) than in temporary pond, 

amongst other metabolic processes. 

Other potential enzymatic processes within Northumberland pond sediments include 

carbohydrate hydrolytic genes found in Chloroflexi, Bacteroidetes, Gemmatimonadetes, 

and Planctomycetes amongst other phyla. These microbes have been found to degrade 

cellulose, hemicellulose and polysaccharide degrading genes (Berlemont and Martiny, 

2013).  Degradation of chitin involves multiple genes and requires interdependence of 
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the microbes within pond environment to hydrolyse and degrade the intermediary 

substrates. N-acetyl-glucosaminidase genes are found in Bacteroidetes and 

Deltaproteobacteria and endo-acting chitinase genes are found in some Chloroflexi and 

Planctomycetes. Protein degradation is usually accessed from extracellular peptidases 

which vary depending on pond environmental conditions. Bacteroidetes and 

Gemmatimonadetes are involved in making carbon and nitrogen bioavailable (Lloyd et 

al., 2014). Fatty acids or organic acid β-oxidation pathways for creating acetyl-coA 

involves various species of Gammaproteobacteria, Betaproteobacteria, Chloroflexi and 

Gemmatimonadetes which were found in all ponds. These organisms provide partial or 

total metabolism that forms acetyl coA (Beazley et al., 2012 and Lloyd et al., 2014). 

Bacteroidetes and Spirochaetes are mainly associated with fermentation using aldehyde 

dehydrogenase and alcohol dehydrogenase (Baker et al., 2015). Most of the phyla groups 

within the ponds have a wide diversity of species that can perform these processes at 

varying levels in different environments and this further creates complications of 

distinguishing metabolic processes.  

The environmental conditions can make specific microbial phyla perform certain 

metabolic functions, such as the Bacteroidetes behave as carbon utilisers or heterotrophs 

of cellulose and chitin in anoxia (Baker et al., 2015 and Briée et al., 2007). This further 

creates a Bacteroidetes relationship with other microbes to be predominantly 

heterotrophic feeding related in anoxia, such as the Bacteroidetes relationship with OD1 

(Chouari et al., 2005). In anoxia, the environment triggers Chloroflexi, Cyanobacteria 

and Chlorobi to become the main autotrophic microbes in sediments using H2S amongst 

other molecules for the primary producing role (Elshahed et al., 2003 and Madigan, 

2003). Also, microbial abundances vary depending on other factors within the 

environment, such as a favourable growth environment for Chlorobi in sand dune ponds 
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or growth limitation of Cyanobacteria in all ponds could be due to pond turbidity, 

metabolites and/or predation.  

Furthermore, superphylum Fibrobacteres-Chlorobi-Bacteroidetes (FCB) groups in 

association with WS3 had previously been obtained from anoxic layers of Sakinaw Lake 

in British Columbia, Canada and the anoxic sediments of a coastal lagoon (Etoliko 

Lagoon, Greece) (Youssef et al., 2015). The phyla that make up this superphylum were 

also present in some of the Northumberland pond sediments. Each phylum has metabolic 

relationships that enhance their abundance in each pond sediment environment by sharing 

nutrient, genes and substrates (Baker et al., 2015). However, this research is not furnished 

with information to check the details leading to forming of a superphylum but it is clear 

that some Northumberland pond sediments show the prerequisites to establish such 

potentials. The ponds also had the potentials of superphylum Planctomycetes-

Verrucomicrobia-Chlamydiae (PVC) groups (Wagner and Horn, 2006) in most of the 

ponds except in arable pond 1,000 – 10,000 sq. m because of the absence of 

Lentisphaerae. 

5.6.3 Oxygenation in Ponds 

Most phyla in the Northumberland ponds analysed were associated with anoxic 

sediments. Proteobacteria, Acidobacteria and Verrucomicrobia were more abundant than 

other phyla in the ponds and are both oxia and anoxia dwelling microbes (Briée et al., 

2007, Hahn et al., 2003, Hahn, 2006 and Madigan, 2003). However, the other phyla in 

the ponds exist in anoxic ecological conditions, suggesting the dominance of anoxic 

dwelling species of Proteobacteria, Acidobacteria and Verrucomicrobia. 

In the analyses of the subphyla of Proteobacteria, sulphate reducing and anoxia dependent 

Deltaproteobacteria and Betaproteobacteria were more abundant than 

http://journal.frontiersin.org/researchtopic/4193/planctomycetes-verrucomicrobia-chlamydiae-bacterial-superphylum-new-model-organisms
http://journal.frontiersin.org/researchtopic/4193/planctomycetes-verrucomicrobia-chlamydiae-bacterial-superphylum-new-model-organisms
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Alphaproteobacteria and Gammaproteobacteria (Briée et al., 2007 and Garrity et al., 

2005) in most Northumberland pond sediments. The abundance and variation of other 

microbial phyla such as Euryarchaeota, Crenarchaeota and Bacteroidetes which are 

predominantly associated with methanogenesis and fermentative processes further 

supported the state of anoxia in the ponds (Boetius et al., 2000, Elshahed et al., 2003, 

Lundgren et al., 2008 and Madigan, 2003). Betaproteobacteria have also been known to 

develop anoxic relationships with other microbes like methylotrophs, dechlorinated 

bacteria, anoxygenic green sulphur bacteria, nitrifying bacteria, hydrogen oxidisers, H2S 

and sulfate oxidisers (Glaeser and Overmann, 2004) to share nutrients and metabolites 

while sustaining growth in an oxygen depleted environment. In Northumberland pond 

sediments, sulfate reducing Deltaproteobacteria were more abundant than 

Gammaproteobacteria that oxidise reduced sulfate. Their greater abundance meant that 

more reduced sulfate that is not oxidised by Gammaproteobacteria is made bioavailable 

for the furtherance of anoxia (Karr et al., 2005). The reduced sulfate produced by 

Deltaproteobacteria could potentially be used by other anoxia dependent microbes such 

as myxobacteria, degraders, fermenters and methanogenic archaea in the Northumberland 

pond sediments (Briée et al., 2007).  

There were variations in the abundance of Firmicutes in different ponds which reflects 

varying levels of anoxia, suboxia and pond stratification at the chemocline (Briée et al., 

2007). In natural pond 1,000 – 10,000 sq. m, there were variations in Deltaproteobacteria 

abundance in the two cores analysed and this can be associated with the varying and 

unequal supply of allochthonous and autochthonous carbon in different parts of the pond.  

Also, Firmicutes abundance in the two cores varied and this confirmed varying levels of 

anoxia and pond stratification (Briée et al., 2007). The core with high Firmicutes 

abundance showed high Deltaproteobacteria abundance and low Firmicutes abundance 
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coincided with a lower abundance in Deltaproteobacteria. This suggests pond 

stratification improves anoxia and anoxia dependent metabolic processes in ponds, pond 

stratification is important for the effective carbon storage in bottom sediment, ponds with 

structured stratifications tend to accumulate carbon from the suboxic and oxic layers and 

store them in the anoxic layer. Also, large molecular weight of allochthonous materials 

is stored more efficiently due to reduced oxygenic mineralisation. 

Methanogenesis by Archaea also contributes to anoxia. Methanogenic bacteria were more 

predominant in permanent ponds. During field sampling gas bubbles (potentially CH4 

and H2S) were observed in some ponds. The temporary ponds (arable ponds and pasture 

pond of size range 10 – 100 sq. m) had low methanogenic bacteria abundance probably 

as a result of the dry environment which favoured outgassing. However, anoxia in 

temporary ponds could be created by the other microbial phyla such as Chlorobi 

(microbial mat formation). It is unclear if the quantitative microbial abundance related to 

anoxia was reduced by low methanogens abundance because it is possible for microbes 

to create other pathways that lead to anoxia. 

In the Northumberland pond sediments analysed, anoxia further encourages the 

proliferation of fermenters, degraders and anoxygenic phototrophic microbes at varying 

levels. For the phyla with a spectrum of oxic and anoxic microbes such as Acidobacteria, 

Planctomycetes and Verrucomicrobia, anoxia, the pre-existing ecological relationships, 

metabolic pathways, metabolites and other physical/environmental and 

chemical/biochemical influences would determine their proliferation in pond sediments 

(Madigan, 2003 and Sangwan et al., 2005). As with Proteobacteria, anoxic dwelling 

microbes of Acidobacteria, Planctomycetes and Verrucomicrobia phyla will be more 

predominant; with, for example, anoxygenic production of nitrate from ammonia by 

Planctomyces spp. (van Niftrik et al., 2004). Other species that are unable to survive 
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anoxia are forced to adapt, sporulate, die or form seed banks pending a change to more 

favourable environmental conditions or pond succession (Ansola et al., 2014). 

5.6.4 Microbial analyses of carbon source 

The high abundance of more anoxic Proteobacteria, Acidobacteria, Verrucomicrobia, 

Bacteroidetes, Chloroflexi, Chlorobi and Cyanobacteria is possibly the main influence on 

allochthonous and autochthonous carbon processing within the ponds. Their abundance 

in the Northumberland ponds influences carbon stock level, carbon source and 

oxic/anoxic state of microbial processing. However, PCR analysis of microbial 16S 

rRNA should be used with caution as it gives no quantitative abundance of the individual 

microbial cells which carry out the carbon processing. But it is reasonable to infer that 

DNA abundances of the allochthonous utilising and autochthonous producing microbes 

provide an estimate of allochthonous and autochthonous carbon sources. 

To meet their energy needs, microbes in Northumberland pond sediments utilise various 

metabolic pathways. Their feeding patterns and preferential carbon source differ based 

on microbial energy requirements and capacity to degrade or transform simple or 

complex organic matter. Acidobacteria and Verrucomicrobia species vary widely and are 

involved in both heterotrophism and phototropism. Proteobacteria have been known to 

have oxygen dependent, sulfate reducing, sulfate oxidising and other anoxic microbial 

metabolisms (Briée et al., 2007 and Glaeser and Overmann, 2004). These variations make 

it difficult to differentiate between carbon source used by Proteobacteria, Acidobacteria 

and Verrucomicrobia and other phyla in the ponds. However, microbial abundance and 

environmental effects provide a strong level of selectivity in some aspects of microbial 

community growth, such as Chloroflexi being predominantly phototrophic in anoxia 

(Elshahed et al., 2003), while in oxic environments they hydrolyse carbohydrate (Baker 
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et al., 2015). It is inferable that anoxia causes microbial species in a phylum to 

predominantly express specific carbon source preference.  

Generally, Bacteroidetes are predominantly heterotrophic in nature and they degrade 

cellulose and chitin in anoxia (Briée et al., 2007) and produce substrates that are useful 

to other microbes. They have also been known to have a phylogenetic relationship as a 

superphylum, where they share genes for growth with other microbes such as 

carbohydrate hydrolytic genes as Gemmatimonadetes, Planctomycetes and Chloroflexi 

(specifically Anaerolineae) (Baker et al., 2015) could also be found in Bacteroidetes.  

Bacteroidetes are influential in the utilisation of allochthonous carbon and enhancers of 

other microbes that utilise allochthonous carbon in anoxia. Therefore, their abundance 

can provide a reasonable estimate of the level of allochthonous carbon utilisation by 

microbes in each pond. Similarly, Chloroflexi, Chlorobi and Cyanobacteria phyla are 

known to be predominantly phototrophic in anoxia and their abundances can be used to 

infer autochthonous carbon processes in pond sediments. In all Northumberland ponds 

analysed, the main allochthonous and autochthonous carbon utilising and producing 

microbes account for 20.59% of the total DNA reads or total classified phyla abundance 

in all ponds. 

Most of the ponds analysed had more allochthonous than autochthonous influence and 

this had to do with their proximity to terrestrial habitats and material transports. This 

proximity and nature of organic carbon altered the microbial community and suggest 

varying levels of oxygenation in the different parts of a pond. Variation of microbial 

abundance and carbon stock within ponds also signified potential non-uniform 

microcosmic environmental conditions within the pond, which cause microbes to utilise 

allochthonous and create autochthonous carbon differently. This was previously 

identified in the dry bulk density, sediment wetness and material dispersal variations as 
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environmental factors that influenced carbon stocks in Chapter 4. In the permanent 

natural, sand dune and pasture ponds in size range 1,000 – 10,000 sq. m, more 

allochthonous microbes were found in the pond edge and this decreased toward the pond 

centre as a result of non-uniform material dispersal. This encourages the proliferation of 

autochthonous microbes in areas further away from the pond edge although, on the other 

hand, autochthonous photosynthetic microbes can be limited by light penetration and 

pond depth (Bärlocher and Boddy, 2016, Boyd, 1995, Boyd and Tucker, 2012, Briée et 

al., 2007 and Porter et al., 1988). 

Terrestrial inclusions in the sediment that are resistant to microbial influence (Shirakova 

et al., 2013) can increase allochthonous carbon without a corresponding increase in 

allochthonous microbes. High terrestrial influence could be critical to the higher carbon 

stock in pasture pond in size range 10 – 100 sq. m which had low abundance of 

Betaproteobacteria and Deltaproteobacteria compared to natural ponds and pasture ponds 

in size range 100 – 1,000 sq. m and 1,000 – 10,000 sq. m (which had comparatively lower 

carbon stocks but higher abundance of Betaproteobacteria and Deltaproteobacteria). 

Therefore, small ponds stock more carbon because of their small size’s ability to 

accumulate and process surrounding plant and animal waste and produce autochthonous 

sourced carbon in high nutrient environments. Larger water bodies process more aquatic 

derived carbon by utilising pond stratification and anoxia but allochthonous carbon is 

widely and non-uniformly dispersed. 

5.6.5 Some Other Metabolic Processes in Ponds  

Genus Fibrobacter of Fibrobacteres originates from the rumen of ruminant animals 

(Béra-Maillet et al., 2004) and is found in environments associated with pasture grazing 

and ponds used as a drinking water source. This potentially explains why Fibrobacteres 
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were more abundant in permanent ponds >100 sq. m. They support the degradation and 

processing of plant polysaccharides.  

Epsilonproteobacteria are rare Proteobacteria that are found in deep sea environment and 

sulphur springs (Briée et al., 2007 and Lindstrom et al., 2005). However, they were found 

in some Northumberland pond sediments at low abundance compared to the other 

Proteobacteria subphyla. They were more abundant in ponds close to the North Sea shore. 

Thus, seawater and sea microbes potentially influence Northumberland ponds to some 

degree.  
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5.7 Limitation of Microbial Research 

Ponds sampled for microbial analyses were the same as for carbon analyses. Thus, there 

were again no inland Northumberland analyses for microbial influence on carbon capture. 

Also, one sediment core was analysed per pond, except for the sand dune pond (100 - 

1,000 sq. m) and natural pond (1,000 - 10,000 sq. m) where two cores were analysed. No 

pond was analysed in triplicates. This was a limitation of logistics and available financial 

resource to execute PCR analyses of pond cores. However, within the same research 

group, Taylor (2017) conducted investigations on microbes using PCR analyses with 

similar laboratory methodology and found variations in microbial abundance in triplicate 

sample analyses of arable, natural, pasture and sand dune pond sediments. 
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5.8 Conclusion 

Microbial communities in ponds vary widely. Their influence on carbon stock is very 

important in determining carbon source or sink potentials of the ponds. Microbes 

contribute to the wide varieties of factors that control the carbon stock. Ponds analysed 

in Northumberland had varying levels of anoxia which seems to enhance carbon stocking. 

However, carbon stocking was not solely associated with predominant anoxia. Smaller 

water bodies of size range 10 – 100 sq. m showed less methanogenic activity but anoxia 

occurred through concerted efforts of the sulfate reducers, fermenters, anoxygenic 

microbes and other anoxia related microbes. Also, the predominant microbial phyla 

control the ecological relationships in pond sediment and their responses to different pond 

environments varied. Thus, anoxia prevalent Betaproteobacteria and Deltaproteobacteria 

and others were predominant in the ponds analysed. 

Arable and pasture ponds confirmed postulations by Battin et al. (2009), Cole et al. 

(2007), Downing et al. (2006) and Gilbert et al. (2014) that decreasing sizes of water 

bodies leads to a corresponding increase in carbon stock in the pond sediments. Increased 

carbon stock in small ponds was predominantly as a result of more terrestrial inputs and 

high nutrient environments that favour autochthonous carbon production by microbes. 

Large ponds utilise microbial induced anoxia and stratification to stock carbon. The large 

size allows for nutrient dilution and non-uniform dispersal of terrestrial carbon with more 

autochthonous carbon production in the pond centre.  
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Chapter 6 – Northumberland regional carbon stock  

6.1 Tying it all together  

There are multiple factors/influences that control the abundance of water bodies and the 

amount of carbon stocked. However, the aim of this chapter is to quantify the importance 

of small water bodies in Northumberland for carbon capture based on: 

 Number and surface area of water bodies  

 Carbon stock per sq. m of ponds  

 Main allochthonous and autochthonous microbes 

 Thus, this chapter: 

 ties together the research from chapters 3, 4 and 5 to estimate regional carbon 

stocks and their sources 

 discusses the importance of small water bodies to carbon capture 

 identifies the research limitations and proffer recommendations 

 and state research conclusions 

6.1.1 Estimating Northumberland water body distribution (NWBD) 

In Chapter 3, Northumberland water body distribution was assessed using multiple 

images of varying resolutions at two scales of study. Water bodies were categorised into 

size ranges 10 – 100 sq. m, 100 – 1,000 sq. m, 1,000 – 10,000 sq. m, 10,000 – 100,000 

sq. m, 0.1 – 1 sq. km, 1 – 10 sq. km and 10 – 100 sq. km. There were a varying number 

and surface area of water bodies in the images with more variations in water bodies <10 

sq. km than >10 sq. km. These variations were also observed in the temporal analysis 

using Landsat-8 imagery. 
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Although the research was designed to identify all water bodies in Northumberland, 

satellite imagery data was not effective at identifying water bodies within size range 1 – 

10 sq. m due to the quality of imagery, cloud cover and the inability to abundantly see 

water bodies through vegetation at scales of 1:2,000 and 1:20,000. Jeffries (2016) showed 

that field survey provided another approach to identifying water bodies in size range 1 – 

10 sq. m. In estimating NWBD, size range 1 – 10 sq. m has been omitted here as the 

majority of these small ponds is highly similar to the surrounding environment and soil 

with quick wetting and drying. This makes them difficult to distinguish in imagery. The 

number and surface area of water bodies are continuously in seasonal flux (Seekell and 

Pace, 2011) and this was observed in the multi-temporal Landsat-8 study. Jeffries (2016) 

data from Druridge Bay, Northumberland showed the high and low abundance of water 

bodies are as a result of the change in precipitation. Chapter 3’s Northumberland water 

body distribution was inferred to be the median of high and low abundance of 

Northumberland water body distribution (NWBD) based on Jeffries (2016) data.  

Northumberland water body distribution (NWBD) was derived from World Imagery, and 

Landsat-8 data collected from July 2013, September 2013, July 2014, December 2014 

and April 2015. It involved combining the averages of number and surface area of water 

bodies in each size range obtained from each image that was analysed at 1:2,000 and 

1:20,000 scales. Standard error was obtained in size ranges 10 – 100 sq. m, 100 – 1,000 

sq. m, 1,000 – 10,000 sq. m, 10,000 – 100, 000 sq. m and 0.1 – 1 sq. km because the two 

scales of analysis and image types showed varying number and surface area of water 

bodies. At size range 1 sq. km – 10 sq. km and 10 – 100 sq. km, only World Imagery data 

at scale 1:20,000 was used because these large water bodies were equally well identified 

in all image types and scales. They contained 2 and 1 water bodies respectively, thus, no 

error bars (Figure 6.1a and b). At 1:20,000 scale, an average of 776 water bodies covering 
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65.83 x 106 sq. m ± 20.12 x 106 sq. m were identified on Landsat-8 in the images analysed. 

The highest number of water bodies counted was in July 2013 and the highest water body 

surface area covered in Northumberland was identified on Landsat-8 images of July 2015. 

Also at 1:20,000 scale, 1,395 water bodies covering a surface area of 26.24 x 106 sq. m 

were identified on World Imagery. At 1:2,000, water bodies were identified in selected 

areas of Northumberland and this was upscaled using three different approaches to 

establishing different versions of Northumberland water body distributions. And this was 

extensively discussed in Chapter 3.  

In creating Northumberland Water Body Distribution (NWBD) (Figure 6.1 a and b), 

number and surface area of water bodies obtained from World Imagery and all dates on 

Landsat-8 at 1:20,000 scale, and the three upscaled approaches in determining number 

and surface area of water bodies using World Imagery at 1:2,000 scale were combined.  

Generally, water bodies increased in surface area from small to large and decreased in 

number from 10 sq. m to 1 sq. km (Figure 6.1a and b). Given images of Landsat-8 were 

obtained from different dates, World Imagery was obtained as a stitch of best quality high 

resolution images obtained from different dates and water body distribution is influenced 

by precipitation and evaporation (Jeffries, 2016). Images analysed suggest varying levels 

of water accumulation or pond wetting and pond drying or disappearance. Therefore, the 

error bars are also depicting lower and upper limits of number and surface area of water 

bodies between July 2013 and April 2015 and dates of data collection for World Imagery 

stitched images. As discussed in chapter 3, the extrapolated estimates must be considered 

with caution, because of limitations in the quality of imagery and the fluctuations in 

number and size of water bodies. Also, the estimates did not involve taking into account 

of land use or topography. However, these are the best estimates that have ever been 

produced for the Northumberland region, including water bodies < 0.1 sq. m. 
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Figure 6.1: Estimate of Northumberland Water Bodies Distributions (a) surface area (b) 
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6.1.2 Estimating carbon stock in Northumberland’s large water bodies and 

regional carbon stock in all Northumberland water bodies 

In the chapter 4 research, carbon stock has been found to vary across, within and down 

core sediment of water bodies. This is the consequence of the prevailing 

physical/environmental, biological and chemical/biochemical factors. These variations 

meant that there is no fixed estimate of carbon stock values for all the water bodies in 

Northumberland. Based on the pond types, arable, pasture, natural and sand dune ponds 

in Druridge Bay, Northumberland average carbon stock ranges from 1.65 ± 0.38 to 5.26 

± 0.73 Kg C/sq. m. Based on pond size, average carbon stock in Northumberland range 

from 3.04 ± 0.61 to 4.48 ± 2.07 Kg C/sq. m for ponds with surface area range of 10 sq. 

m - 10,000 sq. m. 

To determine carbon stock per square metre in size range 10,000 – 100,000 sq. m, 0.1 – 

1 sq. km, 1 – 10 sq. km and 10 – 100 sq. km, a proposed relationship between carbon 

stock and pond size was tested with the expectation of a linear relationship that could be 

extrapolated to large water bodies. However, the relationship was very weak (R2 = 0.01). 

Figure 6.2 shows the relationship between carbon stocked and water body size. 
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Figure 6.2:  Relationship between carbon stock and pond size area  
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100 – 1,000 sq. m and 1,000 – 10,000 sq. m was 3.57 kg C/sq. m from the ponds assessed 

in chapter 4 and the total carbon stock in ponds within these size ranges in 

Northumberland are 2.21 million kg, 12.85 million kg and 48.25 million kg of carbon 

respectively (Table 6.1). The three size ranges account for 63.31 million kg of carbon 

stored in pond sediments in Northumberland. Between size range 10 sq. m to 0.1 sq. km, 

SWBs contained an extrapolated carbon stock estimated at 139.46 million kg. Between 

0.1 sq. km to Kielder Dam (~11 sq. km and the largest water body in Northumberland), 

they contained an extrapolated carbon stock estimate of 122.54 million kg, making a total 

estimate of 262 million kg of carbon in inland water bodies of Northumberland with the 

exclusion of lotic systems of rivers and streams. These results confirm underestimation 

of carbon stock potentials in SWBs especially within surface area <0.1 sq. km and there 

are more water bodies with sizes <0.1 sq. km in Northumberland. The extrapolation to 

create the regional estimates of carbon stock must be interpreted with caution, partly 

because of the limit of the accuracy of the estimates for number and size of water bodies, 

referred to in the previous section. Also, the carbon stock analyses were only conducted 

for a small number of ponds in the South East Northumberland coastal plain area. 

However, the results do fall within the bounds of estimates produced by other research. 

Table 6.1: Estimate carbon stock in Northumberland water bodies 

Ranges  Water Bodies Average size area of 

water bodies (x 106 sq. 

m) 

Carbon stock in 

Northumberland water 

bodies (million kg) 

10 - 100 sq. m  

 

Small water 

bodies 

0.62 ± 0.29 2.21 ± 1.04  

100 - 1,000 sq. m 3.59 ± 1.29  12.85 ± 4.64 

1,000 - 10,000 sq. 

m 
13.5 ± 1.80 48.25 ± 6.43 

10,000 - 100,000 

sq. m 
 

 

 

 

21.33 ± 5.66 76.16 ± 20.21  

0.1 - 1 sq. km 20.70 ± 5.83 73.91 ± 20.83 
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1 -10 sq. km Large water 

bodies 

2.15 7.68 

10 -100 sq. km 11.47 40.95 

6.1.3 Source of carbon in Northumberland water body sediments 

Distinguishing between allochthonous and autochthonous carbon was difficult using C:N 

ratio due to complications of the biochemical restructuring of organic carbon by microbial 

oxidation and physicochemical processes in ponds (Bärlocher and Boddy, 2016, Briée et 

al., 2007 and Emerson and Hedges, 2003). Checking the microbes’ preferential carbon 

source was a more effective tool for identifying allochthonous and autochthonous carbon 

sources in pond sediments. Given that there were no linear relationships between carbon 

stocks and water body size, the percentage of microbes utilising allochthonous and 

producing autochthonous carbon were extrapolated to determine carbon stock from 

allochthonous and autochthonous sources across all pond size ranges. In Chapter 5, the 

average allochthonous and autochthonous microbes that utilise/produce carbon were 

62.47 ± 2.86 % and 37.53 ± 2.86 % respectively. Therefore, in the ~262 million kg of 

carbon stock in all Northumberland ponds, 163.66 million kg of carbon stock were 

associated with terrestrially-derived carbon while 98.34 million kg were from aquatic 

source as described in Figure 6.3.  
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Figure 6.3: Estimate allochthonous and autochthonous carbon stock in Northumberland 

However, these are only rough estimates of carbon source in pond sediment because: 

 not all particulate organic carbon (POC) or colloidal DOC are utilised by microbes 

prior to burial  

 recalcitrant carbon and high molecular weight are difficult to degrade by microbes 

 material transports and burial efficiency affect the nature of carbon source 

 photo-oxidation of organic carbon leads to atmospheric loss without microbial 

action 

 environmental factors such as turbidity and light penetrations control 

phototropism in water bodies 

 PCR analyses do not provide quantitative estimates of microbe abundances 

 not all microbial phyla that utilise and produced carbon which are identified using 

this PCR method 

0

20

40

60

80

100

120

10 - 100 sq.
m

100 - 1,000
sq. m

1,000 -
10,000 sq. m

10,000 -
100,000 sq.

m

0.1 - 1 sq.
km

1 -10 sq. km 10 -100 sq.
km

C
ar

b
o

n
 S

to
ck

 in
 M

ill
io

n
s 

K
g 

Estimate autochthonous carbon in Northumberland water bodies

Estimate allochthonous carbon in Northumberland water bodies



199 

 

The extrapolation is also limited by uneven material dispersal and mixing in water bodies, 

especially from allochthonous transports. Terrestrial materials tend to settle at pond edge 

and the rest of the pond potentially will produce more carbon from aquatic source. 

Depending on depths, the larger ponds will also show pond stratifications which favour 

carbon storage (Dunalska et al., 2003). Most allochthonous carbon that enters SWBs is 

particulate with complex organic structure and requires more energy to degrade. Thus, it 

experiences less microbial utilisation compared to the dissolved organic carbon (DOC) 

prior to storage and is more abundant in sediments (Shirakova et al., 2013).  

Nevertheless, it is clear from Chapter 5 that carbon source in small ponds across 

Northumberland shows high terrestrial influence compared to in-situ aquatic microbial 

carbon processing (Figure 6.3).  Potentially, high total carbon stocks or total organic 

carbon (TOC) in the pond sediments directly relate to high particulate organic matter 

(POC) (Shirakova et al., 2013). Also, the variations between carbon sources are more 

likely to be water body specific, and this is based on the variations found in the microbial 

community structure, carbon stock and surrounding depositional environment.  
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6.2 The importance of small water bodies to carbon capture in 

Northumberland 

In addition to the anthropogenic values of lakes and wetlands in providing water resources 

and agriculture (Lehner and Doll, 2004), this research has shown they also have an 

important role in carbon capture from the atmosphere and terrestrial environment.  

Downing et al. (2006), Lehner and Doll (2004), and Meybeck (1995) derived various 

estimates of the number and surface area of water bodies <0.1 sq. km. These estimates 

were developed without considering localised and regional factors that control water 

bodies <0.1 sq. km. Also, this research furthers previous research such as Lal (2004), 

Gilbert et al. (2014), Premke et al. (2016) and Tranvik et al. (2009) to show that SWBs 

stock more carbon than previously anticipated. In Northumberland, it is estimated that 

~139.46 million kg of carbon is stocked in water body sizes <0.1 sq. km and this is more 

than the carbon estimated to be stocked in pond >0.1 sq. km (~122.54 million kg). This 

also suggests that the prevailing physical/environmental, biological and 

geochemical/chemical conditions favour more efficient autochthonous and allochthonous 

carbon stocking potentials in SWBs than in larger water bodies. Therefore, more attention 

should be accorded to small water bodies’ biogeochemistry and carbon stock as they can 

no longer be classified as a miscellaneous element of the terrestrial carbon budget and 

SWBs represent a major player in the “missing links” of the carbon cycle.  

Small water bodies should no longer be considered part of the terrestrial carbon budget, 

but should be accorded similar status as rivers, large lakes and oceans because they can: 

 receive terrestrial carbon 

 process terrestrial carbon 

 produce autochthonous carbon 

 and preserve carbon in sediment 
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Battin et al. (2009) suggested a rough estimate of 20% of the terrestrial carbon budget is 

buried in inland water bodies. This research confirms the presence of terrestrially-derived 

allochthonous carbon being utilised by microbes. A novel element of this research is 

identifying that approximately 37.53% of carbon in inland water bodies is autochthonous. 

Therefore, SWBs are not just processing terrestrial carbon but produce aquatic carbon as 

well. In Northumberland, an estimated 98.34 million kg of aquatic carbon has been 

derived, while 163.66 million kg were from the terrestrial source.  

Tranvik et al. (2009) estimated 0.6 Pg/yr of carbon enters inland water bodies globally 

(and SWBs are a major component of inland water bodies). Using the Northumberland 

estimates, 0.6 Pg/yr of terrestrial-derived carbon equates to 62.47% of total inland water 

body carbon. Therefore, inland water bodies potentially produce another 0.36 Pg/yr of 

global carbon from autochthonous or aquatic carbon processes. These autochthonous or 

aquatic carbon processes involve photosynthesis, chemosynthesis, direct exchange of 

CO2/CH4 with atmosphere amongst other processes. A new global carbon estimate 

associated with inland water bodies potentially exist which expands Tranvik’s et al. 

(2009) estimates to approximately 0.96 Pg/yr of carbon stock in SWBs. However, these 

estimates require constraining in accordance with the physical/environmental, biological 

and chemical/biochemical factors and influences that control carbon capture in different 

regions and sub-regions of the world.  

Furthermore, ~20% of the global terrestrial carbon ends up in inland water bodies which 

cover ~3% of the earth’s surface, 80% of terrestrial carbon is found in the terrestrial 

ecosystems, covering ~30% of earth land area (Battin et al., 2009, Canadell and Schulze, 

2014, Couwenberg et al., 2011 and Premke et al., 2016). In relation to their global 

coverage, SWBs are doing much more carbon capture and production than previously 

thought.  
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6.3 Research Method Limitations  

In defining the importance of SWBs for carbon capture in Northumberland, there were 

limitations in achieving this goal. They were mainly around logistical issues, site access 

permission, equipment access, data cost, limited research funding and time. However, the 

available resources were maximised to provide the best achievable results without 

compromise. Details of the research methodologies’ limitations were discussed in 

Chapter 3, Chapter 4 and Chapter 5. 

6.4.1 Research Recommendations  

The key recommendations to improve the methodologies used in this research are: 

 analysing triplicate cores from all pond types  and different parts of ponds for 

carbon and microbes’ influences 

 analyse more ponds to expand the dataset  

 collecting samples from inland Northumberland  

 analysing water bodies >10,000 sq. m for carbon and microbes’ influences. 

The purpose of this thesis is to contribute regional data in establishing regional and global 

carbon stock estimates in SWBs which is important for modelling the SWBs’ global 

contributions to the global carbon budget and climate change. The research in 

Northumberland requires supporting information from other parts of the world at regional 

and sub-regional scales. This is in-line with Seekell and Pace’s (2011) suggestion that 

regional estimates reduce the overestimations associated with extrapolation models for 

estimating water body abundance. The vegetation, landscape and environment of 

Northumberland differ widely from deserts in Africa or monsoon areas in India or 

permafrost regions of Russia. Therefore, to create effective global estimates of carbon 

stock in SWBs, it is important to analyse carbon stock in various depositional 

environments across the different regions/sub-regions of the world.  
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Furthermore, there is a need to better understand the variations in the 

environmental/physical, biological and chemical factors, and their influence on carbon 

stocking in water bodies. 

6.4.2 Environmental/Physical Factors 

Monitoring changes in number and surface area of water bodies are highly important. 

However, this research has found no direct statistical relationship between SWBs size 

and carbon stock. This needs further work because it is based on a relatively small number 

of water bodies in one particular area. The best approach to calculating the number and 

surface area of water bodies for a global estimate involves adopting multiple approaches 

using high resolution imagery from satellite, UAVs and field survey, where possible. This 

should be done with consideration of temporal changes, as number and surface area of 

SWBs are in continuously flux (Jeffries, 2016), due to precipitation and land use. 

SWBs vary widely in terms of depositional environment. This research looked into dry 

bulk density and sediment wetness, and showed these had a strong influence on carbon 

stock. The level of sediment compaction, aeration, grain size and mineralogy are an 

untapped area of research. Knowledge on pond shape and water column will provide 

information on material transport, sediment wetness or moisture saturations, primary 

productivity and POC/DOC. Also, the climate components such as rainfall, snow, 

sunlight, temperature and wind have been associated with carbon capture in oceans, 

rivers, large lakes and the terrestrial ecosystems. There is need to research their dynamics 

in relation to carbon capture in SWBs.  

In Northumberland, a key research area is to determine the annual burial rate in inland 

water bodies. This will provide a better understanding of the level and source of carbon 

that enters into the water body ecosystem. Given that depositional environments vary 
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between ponds and go through successional stages in the pond’s life cycle (Biggs et al., 

1994, Gilbert et al., 2014 and Jeffries, 2008), it should be expected that terrestrial 

transport and aquatic primary productivity will vary and this would affect burial rate in 

sediment. This should be researched alongside analysis of physical remobilisation, 

microbial utilisation of carbon and pond succession (Downing, 2010). 

6.4.3 Biological factors 

This research identified the biological variability across and within ponds using mainly 

bacterial phyla and these variations were related to carbon processing of allochthonous 

and autochthonous materials. Defining the activities in ponds at a more in-depth level of 

microbial species, their metabolic pathways and biological interaction would be an 

important and novel area of research. Similarly, the research into the microbiology of 

ponds in Northumberland used the PCR approach which provided bacterial abundance 

information, but these analyses showed no quantitative abundance of the bacteria being 

able to relate mass of microbial communities to carbon stock could also prove valuable 

in determining microbial diversity associated with carbon capture in SWBs. Also, it is 

important to research other Prokaryotes and Eukaryotes in SWBs and how they influence 

carbon capture, as well as, higher plant and animal forms in pond sediments. 

6.4.4 Chemical factors 

Carbon stock in ponds strongly ties to the dilution of bio-elements and microbial 

metabolites in sediments. Although, SWBs hold high concentrations of chemicals that 

foster carbon processing, their concentrations widely vary between ponds. Thus, there is 

the need for studies into the elemental and nutrient composition of pond sediments and 

how this relates to microbes, pond oxygenation and carbon stocking. 
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The potential for a water body to be a carbon source or sink is a result of autochthonous 

and allochthonous carbon processing. This research used the C:N ratios and the microbial 

phyla to define the abundance of autochthonous and allochthonous carbon. However, 

another effective tool for distinguishing carbon source is the actual component organic 

matter, its molecular composition and potential to be broken down into CO2, CH4 and 

other degradation by-products. A combination of multiple approaches further improves 

the estimation of allochthonous and autochthonous carbon in SWBs and in the 

distinguishing of oxidised carbon. Also, there is a need to study the metabolic processes 

that occur in ponds with respect to controlling oxygenation, temperature and salinity 

amongst other broad environmental processes in ponds. 

Finally, there is a need for continuous monitoring of number and size of water bodies 

alongside their biogeochemical cycling of carbon. This relates to researching the potential 

for development of an extrapolation model that takes into account all control factors for 

carbon capture in SWBs.  
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6.5 Research Conclusion 

The Earth is currently experiencing climate change events that can be associated with 

increased atmospheric carbon emission from various fossil carbon reserves. The planet 

seems to have an innate response or defence mechanism that can trap allochthonous and 

autochthonous carbon efficiently, that is, small water bodies (SWBs). But carbon capture 

in SWBs has previously been omitted from the components of global carbon cycle 

budgets and climate change analytics. This research shows that SWBs are to be classed 

as very valuable in carbon stocking and can be characterised as “a missing link” in 

estimating global carbon budget.  

SWBs are regionally and globally more abundant than large lakes, rivers and oceans. 

SWBs comparatively stock more carbon per square metre in their sediments than larger 

water bodies. In Northumberland, many factors control carbon stocks but SWBs show an 

overarching value in creating anoxia by high concentration of bio-elements, material 

transport, primary productivity and microbial interactions. Also, their proximity to the 

terrestrial ecosystem allows ponds to collect, process and preserve allochthonous 

materials.  

The carbon stock variation within and across ponds was related to variations in 

allochthonous and autochthonous processes, primary productivity and material 

aggregation in sediments. Sandy sediments of sand dune ponds allowed microbes to 

penetrate through porous material and this increased primary productivity. But sandy 

sediments are poor at preserving organic carbon due to low sediment compactions. Clay 

sediments of arable ponds have higher compaction that locks (preserves) carbon in 

sediments but limits microbial penetration and proliferation; and consequently, 

autochthonous carbon productivity. The ideal situation is a mix of porous and compacted 

sediment minerals and grain sizes for efficient production and preservation of carbon in 

SWB sediment.  
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Of the many potential influencing factors, this research considered water bodies’ size, 

sediment wetness/precipitation and dry bulk density of pond sediment as 

physical/environmental factors and microbial variations as a biological factor that control 

carbon stocks in water bodies. The research shows that carbon stocks in water bodies 

respond to sediment wetness, dry bulk density and microbial variations, although these 

inter-relationships are complex. But no clear relationship was found in water bodies’ size 

as an influential controller of the carbon stocking process.  

Prior to this research, Battin et al. (2009), Cole et al. (2007) and others considered carbon 

in small water bodies to be from terrestrial entry. But there are also aquatic carbon 

activities by autotrophs, heterotrophs and decomposers that occur in small water bodies 

that contribute to autochthonous carbon capture.  In Northumberland, an estimated 3.57 

kg of carbon stock exist per square metre of water body sediment and its contents include 

carbon from allochthonous and autochthonous sources. Autochthonous carbon 

productivities are also enhanced by inherent high concentration of nutrients, microbes’ 

availability and favourable environmental conditions that prevail in SWBs. The estimated 

ratio of allochthonous to autochthonous carbon in Northumberland was found to be 

approximately 62.47% to 37.53%.  

The real value of SWBs is not just in the carbon stock per square metre but their regional 

abundance and total surface area. The Northumberland estimate of carbon stocks in water 

bodies with surface area <0.1 sq. km was more than the >0.1 sq. km counterparts. This is 

because more water bodies <0.1 sq. km exists compared to water bodies >0.1 sq. km. 

Finally, more work is needed on the environmental/physical, biological and chemical 

factors to constrain estimates of carbon capture within small water bodies (SWBs) 

because these factors combined have strong influences on the carbon stock and their 

source or sink potentials. Also, development of a model and improved image analyses to 
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efficiently account for temporal changes in number and surface area of water bodies are 

also important. 

What is clear from this research is that small water bodies have massive importance for 

carbon capture. They hold untold potential in understanding the Earth’s climate and their 

global contribution to combating our changing climate remains largely unexplored. 
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Appendix A:  Water Body Distribution 

Appendix A.1  GLWD Global water body distribution using Lehner and Dolls (2004) dataset 

 
Figure A.1: Global Distribution of water bodies and rivers (surface area >0.1 sq. km) 
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Figure A.2: Global Distribution of water bodies and rivers (surface area 10 sq. km) 
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Figure A.3: Estimate of United Kingdom (UK) Distribution of water bodies and rivers (surface area 10 sq. km)
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Appendix A.2  World Imagery on ArcGIS  

“World Imagery contains images with 30cm to 15m resolution range. World Imagery 

provides 1 m or better satellite and aerial imagery in many parts of the world and lower 

resolution satellite imagery worldwide, which include 15m TerraColor imagery at small 

and mid-scales (~1:591 M - ~1:72 k) and a global 2.5m SPOT Imagery (~1:288 k - ~1:72 

k). The Mainland United States and some parts of Western Europe data (earth features) 

are from DigitalGlobe viewed at 0.3m resolution imagery. World Imagery also contains 

DigitalGlobe sub-meter imagery featured in Eastern Europe, Japan, Middle East, 

Northern Africa, South America, Southern Africa, Australia, India and New Zealand. On 

a global scale, World Imagery contains sub-meter Pléiades imagery in selected urban 

areas and in 47 States of the USA, it features 1 m resolution NAIP 2013 and 2014 imagery 

(~1:36k - ~1:4k). While GeoEye IKONOS, Getmapping, AeroGRID, IGN Spain, and 

IGP Portugal provide 1 m resolution imagery in other parts of the Earth. Also, the GIS 

Users’ Community is known to provide different imagery at different resolutions for 

World Imagery” - ESRI.   

Images updated in January and July 2015 were digitised on ArcMap 10 at scales of 1:2000 

and 1:20,000 respectively. 

Appendix A.3  Northumberland water body analysis 

Table A.1: NCA Size Area for Northumberland  

NCA NCA location NCA Area (sq. m) 

South East Northumberland Coastal Plain Coastal Plain 437092045.1 
Mid Northumberland Border Uplands 637262230.3 
Tyne Gap and Hadrian's Wall Border Uplands 434239162.6 
Border Moors and Forests Border Uplands 1271559266 
Cheviots Border Uplands 364878465.2 
Cheviot Fringe Border Uplands 515911460.4 
Northumberland Sandstone Hills Border Uplands 726946566.3 
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North Northumberland Coastal Plain Coastal Plain 376696141.9 
Northumberland total area cover  4764585338 

 

Table A.2: Total surface area and number of water bodies identified in all NCA Test 

Area, which was used for estimation of Northumberland water bodies at 1:2,000 scale 

RANGES (sq. m) 

Total Surface Areas (sq. 

m) 

Total number of water 

bodies  

1-10 1023.492016 152 

10-100 94102.77539 2016 

100-1,000 517749.4185 1693 

1,000-10,000 747921.5334 303 

10,000.-100,000 888905.662 26 

100,000-100,0000 2323224.207 12 
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Table A.3: Surface area and number of water bodies identified in NCA Test Area at 1:2,000 scale 

 NCA name Tyne Gap and 

Hadrian's 

Wall 

Border Moors 

and Forests 

Mid Northumberland / 

Northumberland 

Sandstone Hills 

Cheviots / 

Cheviot Fringe 

North 

Northumberland 

Coastal Plain 

South East 

Northumberland 

Coastal Plain 

 NCA test area 37 x 106 sq. m  33 x 106 sq. m 50 x 106 sq. m  45 x 106 sq. m  22 x 106 sq. m 40 x 106 sq. m 

Surface area of water 

bodies 

      

1-10 sq. m 299.55 71.89 100.91 209.80 300.31 41.02 

10-100 sq. m 20,708.70 6,250.89 9,361.71 22,898.54 20,370.53 14,512.39 

100-1,000 sq. m 86,122.22 24,047.44 43,270.49 101,527.26 127,572.79 135,209.22 

1,000-10,000 sq. m 58,224.56 24,840.65 79,099.65 120,115.23 220,685.04 244,956.41 

10,000-100,000 sq. m   
72,445.40 209.80 363,626.71 392,224.4418 

100,000-1,000,000 sq. m   
398,192.13 

   

              

Number of water bodies             

1-10 sq. m 43 10 14 32 47 6 

10-100 sq. m 483 137 205 469 431 291 

100-1,000 sq. m 311 75 142 361 411 393 

1,000-10,000 sq. m 34 9 30 56 83 91 

10,000-100,000 sq. m     
4 

 
11 9 

100,000-1,000,000 sq. m     
1 
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Figure A.4: Water bodies identified in NCA Test Areas at 1:2,000 scale on World 

Imagery 

 
Figure A.5: Water bodies identified in Northumberland at 1:20,000 scale on World 

Imagery 



235 

 

 
Figure A.6: Water bodies identified on Landsat-8 at 1:20,000 scale by land/water 5-6-4 

band combination
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Figure A.7: Water bodies identified on World Imagery at 1:20,000 scale, land elevation in Northumberland and date of analysis (Top Left – July 

2013, Top Right – September 2013, Bottom Left – December 2014 and Bottom Right – April 2015)



237 

 

Appendix A.4 Sites analysed for Accuracy Assessment of water body digitisation on 

ArcGIS and Google ™ Map 

 
Figure A.8: North Northumberland Coastal Plain site for Accuracy Assessment  

  
Figure A.9: South East Northumberland Coastal Plain site for Accuracy Assessment 
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Figure A.10: Mid Northumberland / Northumberland Sandstone Hills site for Accuracy 

Assessment  

 
Figure A.11: Tyne Gap and Hadrian's Wall site for Accuracy Assessment  
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Figure A.12: Border Moors and Forests site for Accuracy Assessment  

 
Figure A.13: Cheviots / Cheviot Fringe site for Accuracy Assessment  
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Appendix B:  Carbon Analysis  

Appendix B.1  Pilot assessment of Druridge pools for carbon analysis 

Appendix B.1.1 Sampling sediment cores 

Pilot core samples were collected in April, 2014 for TEA analyses using a manual pole 

corer for background carbon and physical analysis of the Druridge pools (Figure B.1). 

Coring techniques, preparation of pilot core and amount of cores were discussed in 

Chapter 4. 

  
Figure B.1: Photo of the pole corer used to down core sediment collection at Druridge 

pools and a sediment core collected from a pond  

Physical observation of the first pilot core shows more compaction in the bottom sediment 

and the core sample becomes looser and wetter towards the top. The core profile showed 

there was gradual and distinct change in sediment colour and material content from more 

quartz-like grey black sediments (with small clay bricks) at the bottom (~30-35cm) to 

darker sediment at the mid core (17-29cm) and slurry sediments at the top (0-16cm) 

(Figure B.2). The pilot pond at Druridge Pools was observed to be oligotrophic (algal 
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growth) within a predominantly grassland area with the pond mixing zone between 13-

31cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2: Diagrammatic description of pilot core from Druridge pools 

 

Appendix B.1.2 TEA Analysis of pilot core  

The pilot core was sliced into 1cm thick discs, wrapped in thin foil and dried in a dry 

cabinet for 3 weeks for moisture removal. A weighed sample of sediment (4-5mg) from 

each disc was analysed in the TEA to estimate percentage carbon and nitrogen. Increased 

percentage carbon in the top pond is a result of a combination of biological, physical and 

chemical parameters interacting by mainly photosynthesis and carbon re-mobilisation. 

Interaction of algal distribution, macrophytes, plants roots, vertebrates and other 

microorganisms are enhanced by the low compaction in the top pond and top sediments 

(mixing zone); thus, higher carbon levels (Figure B.3a). However, upon calculation of 

the dry bulk density (DBD), there is a drop in the amount of carbon stock in the whole 

top sediment (Figure B.3b). Similarly, burial down core profile showed lower percentage 

carbon stored because of higher compaction and water reduction in deeper buried 

sediment.  
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Generally, results were closely similar to work by Gilbert et al. (2014) with Gilbert et al. 

(2014) recorded slightly higher carbon concentration potentially due to variation in the 

physical, chemical and biological influences in different ponds at the time of analyses. 

More study is needed to produce more confident data to affirm this hypothesis (Chapter 

4). The water depth (and hydrologic processes), water body surface area; alongside pond 

age and biotic processes can be contributory factors to variations in carbon 

concentrations. 

 
Figure B.3: (a) Organic carbon conc. (%) (Druridge pool) (b) Total carbon (g/cm3) 

(Druridge pool)  
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Appendix C:  Photos of some small water bodies in 

Northumberland 

 
Figure B.4a: A pond made for pond dipping (school kids) 

 
Figure B.4b: Pond formed as part of old outfall from open cast coal mine 
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Figure B.4c: Pond type habitat in World War 2 (WW2) anti-tank ditch 

 
Figure B.4d: Pond in dune slack 
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Figure B.4e: Temporary pond in dune slack 

 
Figure B.4f: Pond in part of larger wetland 
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Figure B.4g: Spring fed pond in pasture   

 

Figure B.4h: Subsidence pond flooded in middle of oil seed rape crop (arable field)  
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Appendix D: Nitrogen, Carbon, Moisture and Dry Bulk Density Data 

 
Figure B.5: Core 1 Natural Pond (Size range 1,000 – 10,000 sq. m) 

 
Figure B.6: Core 2 Natural Pond (Size range 1,000 – 10,000 sq. m) 
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Figure B.7: Natural Pond (Size range 100 – 1,000 sq. m) 

 
Figure B.8: Sand Dune Pond (Size range 1,000 – 10,000 sq. m) 
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Figure B.9: Core 1 Sand Dune Pond (Size range 100 – 1,000 sq. m) 

 
Figure B.10: Core 2 Sand Dune Pond (Size range 100 – 1,000 sq. m) 
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Figure B.11: Arable Pond (Size range 10 – 100 sq. m) 

 
Figure B.12: Arable Pond (Size range 100 – 1,000 sq. m) 
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Figure B.13: Arable Pond (Size range 1,000 – 10,000 sq. m) 

 
Figure B.14: Core 1 Pasture Pond (Size range 100 – 1,000 sq. m) 

 

 



252 

 

 
Figure B.15: Core 2 Pasture Pond (Size range 100 – 1,000 sq. m) 

 
Figure B.16: Core 3 Pasture Pond (Size range 100 – 1,000 sq. m) 
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Figure B.17: Core 1 Pasture Pond (Size range 1,000 – 10,000 sq. m) 

 
Figure B.18: Core 2 Pasture Pond (Size range 1,000 – 10,000 sq. m) 
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Figure B.19: Core 3 Pasture Pond (Size range 1,000 – 10,000 sq. m) 

 

 
Figure B.20: Core 1 Pasture Pond (Size range 10 – 100 sq. m) 

 



255 

 

 
Figure B.21: Core 2 Pasture Pond (Size range 10 – 100 sq. m) 

 
Figure B.22: Core 3 Pasture Pond (Size range 10 – 100 sq. m) 
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Appendix E:  Data for Microbial Analysis 

Table C.1: Phylum data 

Phylum Number Genus per Phylum Total Number of read per 

Phylum 

Acidobacteria 1,093 1,779,581 

Proteobacteria 3,120 1,763,733 

Bacteroidetes 1,268 769,739 

Verrucomicrobia 833 517,815 

Chloroflexi 735 411,315 

Euryarchaeota 194 257,189 

Crenarchaeota 56 153,539 

Actinobacteria 362 130,409 

Firmicutes 431 122,945 

Planctomycetes 604 88,571 

Chlorobi 67 76,522 

Gemmatimonadetes 88 36,766 

Cyanobacteria_Chloroplast 111 32,427 

Nitrospira 14 25,454 

WS3 77 21,206 

Armatimonadetes 164 20,703 

Spirochaetes 43 20,589 

BRC1 106 9,783 

Chlamydiae 131 8,754 

OD1 95 6,118 

Fusobacteria 8 5,806 

OP11 46 2,771 

SR1 20 2,400 

Fibrobacteres 4 202 

Lentisphaerae 1 122 

TM7 1 40 
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Table C.2: Phylum DNA data in all ponds analysed in Northumberland 
 

 10 - 100 

sq. m 

 10 - 100 

sq. m 

 100 - 

1,000 sq. m 

 100 - 1,000 

sq. m 

 100 - 1,000 

sq. m 

 100 - 1,000 

sq. m 

 100 - 1,000 

sq. m 

1,000 - 10,000 

sq. m 

1,000 - 

10,000 sq. m 

1,000 - 

10,000 sq. m 

1,000 - 

10,000 sq. m 

1,000 - 

10,000 sq. m  
Arable 

Pond 

Pasture 

Pond 

Arable 

Pond 

Sand Dune 

Pond 

Sand Dune 

Pond 

Natural Pond Pasture Pond Pasture Pond Sand Dune 

Pond 

Arable Pond Natural Pond 

2a 

Natural Pond 

2b  
Total number of DNA read per Phylum Total number of DNA read per Phylum Total number of DNA read per Phylum 

  

Acidobacteria 181,402 199,160 146,287 87,967 126,917 140,417 167,482 137,590 98,456 217,285 79,860 196,747 

Actinobacteria 21,551 25,817 7,803 13,761 13,823 4,158 7,939 4,473 5,105 8,574 4,231 13,174 

Armatimonadetes 1,590 1,059 2,086 1,204 2,343 535 1,590 1,876 1,852 3,010 880 2,678 

Bacteroidetes 50,088 87,984 38,254 52,984 60,152 54,863 76,588 78,782 56,672 22,289 75,943 115,138 

Chlamydiae 71 281 36 416 2,272 843 234 720 1,873 289 227 1,492 

Chlorobi 70 638 331 6,984 15,005 7,086 1,731 7,259 26,812 37 2,123 8,446 

Chloroflexi 17,148 22,297 13,389 19,752 23,423 17,043 79,860 41,516 29,417 8,127 66,727 72,614 

Fibrobacteres 20 0 0 2 3 15 108 9 14 0 2 29 

Fusobacteria 1 8 0 157 4,314 34 523 70 26 0 436 237 

Gemmatimonadetes 6,157 2,873 6,911 1,468 1,481 2,700 1,680 1,091 1,749 8,314 256 2,086 

Lentisphaerae 7 7 2 7 32 6 13 9 11 0 0 28 

Nitrospira 1,616 1,827 1,824 1,638 1,006 5,330 2,586 2,420 1,737 2,954 15 2,501 

Planctomycetes 9,944 15,596 6,027 11,677 7,319 6,817 4,699 5,494 3,372 6,035 2,262 9,328 

Proteobacteria 109,102 127,325 78,131 140,311 195,754 122,192 139,968 160,060 202,473 70,127 113,967 283,560 

Spirochaetes 473 422 83 1,671 3,218 1,082 2,075 706 3,367 22 2,126 5,344 

Verrucomicrobia 43,320 71,111 45,183 33,606 25,067 54,997 40,697 40,209 23,807 42,476 28,385 68,954 

BRC1 286 636 356 116 159 626 1,694 1,031 125 114 2,170 2,470 

Cyanobacteria_Chloroplast 7,108 5,384 5,274 4,367 1,356 1,041 530 1,317 701 1,136 1,955 2,258 

Firmicutes 8,163 17,192 5,349 8,574 6,846 6,845 14,272 10,229 5,588 4,350 18,522 17,012 

OD1 144 561 26 188 520 845 258 1,059 871 2 187 1,457 

OP11 3 62 9 85 640 68 218 253 636 8 160 629 

SR1 59 48 1 42 505 14 68 210 744 0 598 111 

TM7 0 7 0 0 18 0 0 0 15 0 0 0 

WS3 545 1,456 321 1,138 1,228 2,657 1,520 2,514 1,708 640 2,352 5,127 

Crenarchaeota 10,689 9,629 3,353 9,873 10,749 8,787 8,631 24,022 16,801 8,998 14,070 27,936 

Euryarchaeota 3,200 23,267 2,391 25,659 23,724 6,765 32,549 41,772 19,224 267 34,502 43,869 
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