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Abstract

Automated classification of medical images for colorectal and prostate cancer

diagnosis is a crucial tool for improving routine diagnosis decisions. There-

fore, in the last few decades, there has been an increasing interest in refining

and adapting machine learning algorithms to classify microscopic images of

tumour biopsies. Recently, multispectral imagery has received a significant

interest from the research community due to the fast-growing development

of high-performance computers. This thesis investigates novel algorithms for

automatic classification of colorectal and prostate cancer using multispectral

imagery in order to propose a system outperforming the state-of-the-art tech-

niques in the field.

To achieve this objective, several feature extraction methods based on image

texture have been investigated, analysed and evaluated. A novel texture fea-

ture for multispectral images is also constructed as an adaptation of the local

binary pattern texture feature to multispectral images by expanding the pixels

neighbourhood to the spectral dimension. It has the advantage of capturing

the multispectral information with a limited feature vector size. This feature

has demonstrated improved classification results when compared against tradi-

tional texture features. In order to further enhance the systems performance,

advanced classification schemes such as bag-of-features – to better capture

local information – and stacked generalisation – to select the most discrimi-

native texture features – are explored and evaluated. Finally, the recent years

have seen an accelerated and exponential rise of deep learning, boosted by the

advances in hardware, and more specifically graphics processing units. Such

models have demonstrated excellent results for supervised learning in multiple

applications. This observation has motivated the employment in this thesis

of deep neural network architectures, namely convolutional neural networks.

Experiments were also carried out to evaluate and compare the performance

obtained with the features extracted using convolutional neural networks with

vi



random initialisation against features extracted with pre-trained models on

ImageNet dataset. The analysis of the classification accuracy achieved with

deep learning models reveals that the latter outperforms the previously pro-

posed texture extraction methods. In this thesis, the algorithms are assessed

using two separate multiclass datasets: the first one consists of prostate tu-

mour multispectral images, and the second contains multispectral images of

colorectal tumours. The colorectal dataset was acquired on a wide domain of

the light spectrum ranging from the visible to the infrared wavelengths. This

dataset was used to demonstrate the improved results produced using infrared

light as well as visible light.

vii



List of Publications

Peer-Reviewed Publications:

• R. Peyret, A. Bouridane, F. Khelifi, M. A. Tahir, and S. Al-Maadeed,

“Automatic classification of colorectal and prostatic histologic tumor im-

ages using multiscale multispectral local binary pattern texture features

and stacked generalization,” Neurocomputing, 2017

• R. Peyret, A. Bouridane, S. A. Al-Maadeed, S. Kunhoth, and F. Khelifi,

“Texture analysis for colorectal tumour biopsies using multispectral im-

agery,” in Engineering in Medicine and Biology Society (EMBC), 2015

37th Annual International Conference of the IEEE, pp. 7218–7221

• R. Peyret, F. Khelifi, A. Bouridane, and S. Al-Maadeed, “Automatic

Diagnosis of Prostate Cancer using Multispectral based Linear Binary

Pattern Bagged Codebooks,” in 2017 International Conference on Bio-

engineering for Smart Technologies (BioSMART 2017), Aug. 2017

• S. Al Maadeed, S. Kunhoth, A. Bouridane, and R. Peyret, “Multispec-

tral imaging and machine learning for automated cancer diagnosis,” in

2017 13th International Wireless Communications and Mobile Comput-

ing Conference (IWCMC), pp. 1740–1744, IEEE, June 2017

Publication Under Preparation:

• R. Peyret, A. Bouridane, F. Khelifi, S. Al-Maadeed, “Convolutional Neu-

ral Networks for Automatic Classification of Colorectal and Prostate Tu-

mour Biopsies using Multispectral Imagery”

viii



Table of Contents

Acknowledgements iv

Abstract v

List of Publications viii

Table of Contents ix

List of Tables xvi

List of Figures xviii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ix



TABLE OF CONTENTS x

2 Biological Aspects and Image Acquisition 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Biological Description of the Colon and Prostate Gland . . . . . 10

2.2.1 Large Intestine or Colon . . . . . . . . . . . . . . . . . . 10

2.2.2 Prostate Gland . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Polyps, Tumours, and Cancer . . . . . . . . . . . . . . . 13

2.3 Optical Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Sample Collection . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Section Preparation . . . . . . . . . . . . . . . . . . . . . 21

2.5 Multispectral Imaging . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Imaging System and Equipment . . . . . . . . . . . . . . 23

2.6 Datasets Decription . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Machine Learning and Computer-Aided Colorectal and Prostate

Cancer Diagnosis Systems 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Machine Learning Basics . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Definition of Learning Algorithms in the Context of Clas-

sification . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Capacity, Overfitting and Underfitting . . . . . . . . . . 38



TABLE OF CONTENTS xi

3.2.3 Hyperparameters and Validation Sets . . . . . . . . . . . 40

3.2.4 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . 41

3.2.5 Feature Extraction . . . . . . . . . . . . . . . . . . . . . 41

3.3 Previous Work on Texture-Based Cancer Classification . . . . . 42

3.3.1 The Generic CADS . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 State-of-the-Art Texture-Based Tumour Classification and

Grading for Digitalised Biopsy Images of Colon and Prostate

Tumours . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 Previous Work on Multispectral Texture Analysis . . . . 55

3.3.4 Previous Work on IR Analysis . . . . . . . . . . . . . . . 55

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Texture Analysis on Multispectral Images for Colorectal and

Prostate Cancer Diagnosis 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Texture Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Haralick Texture Features . . . . . . . . . . . . . . . . . 59

4.2.2 Local Binary Pattern (LBP) . . . . . . . . . . . . . . . . 60

4.2.3 Local Intensity Order Pattern (LIOP) . . . . . . . . . . . 61

4.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Curse of Dimensionality . . . . . . . . . . . . . . . . . . 63

4.3.2 Principal Component Analysis . . . . . . . . . . . . . . . 65



TABLE OF CONTENTS xii

4.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 k-Nearest Neighbour (k-NN) Classifer . . . . . . . . . . . 66

4.4.2 Logistic Regression (LR) Classifier . . . . . . . . . . . . 67

4.4.3 Decision Tree (DT) Classifier . . . . . . . . . . . . . . . 68

4.4.4 Random Forest (RF) Classifier . . . . . . . . . . . . . . . 69

4.4.5 Support Vector Machine (SVM) . . . . . . . . . . . . . . 69

4.4.6 Multiclass Classification . . . . . . . . . . . . . . . . . . 76

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . 77

4.5.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . 79

4.5.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Multispectral LBP Texture Feature 86

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Feature Extraction using LBP Approach: A Review . . . . . . . 87

5.2.1 Rotation Invariant Uniform LBP . . . . . . . . . . . . . 87

5.2.2 3D-LBP . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 The Proposed Multispectral Multiscale LBP Texture Feature . . 90

5.4 MMLBP System with BoF Classification Scheme . . . . . . . . 92



TABLE OF CONTENTS xiii

5.4.1 Image Descriptor: Histograms of Codebooks . . . . . . . 93

5.4.2 BoF Framework . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 MMLBP System with Stacked Generalisation Classification Scheme100

5.5.1 Dimensionality Reduction using ICA and Classification

using SVM . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5.2 LR for Stacked Generalisation . . . . . . . . . . . . . . . 104

5.6 Experiment and Setup . . . . . . . . . . . . . . . . . . . . . . . 105

5.6.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6.2 Evaluation Measures . . . . . . . . . . . . . . . . . . . . 107

5.6.3 Training Procedures . . . . . . . . . . . . . . . . . . . . 107

5.6.4 Parameters Tuning . . . . . . . . . . . . . . . . . . . . . 108

5.7 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 110

5.7.1 Proposed Algorithm Discussion . . . . . . . . . . . . . . 110

5.7.2 Impact of the Spatial Resolution . . . . . . . . . . . . . 113

5.7.3 Comparison Against Existing Algorithms . . . . . . . . . 114

5.7.4 Extension to the IR Spectrum . . . . . . . . . . . . . . . 115

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Deep learning: Convolutional Neural Networks for Colorectal

and Prostate Cancer Diagnosis 117

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



TABLE OF CONTENTS xiv

6.2 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . . 119

6.2.1 Back-Propagation . . . . . . . . . . . . . . . . . . . . . . 121

6.2.2 Mini-Batch . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.3 Regularisation: Reducing Overfitting . . . . . . . . . . . 124

6.3 Deep Convolutional Networks . . . . . . . . . . . . . . . . . . . 126

6.3.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . 127

6.3.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3.3 CNN, Feature Extraction and Classification . . . . . . . 129

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4.1 Hardware and Software Specifications . . . . . . . . . . . 130

6.4.2 Selected Architecture . . . . . . . . . . . . . . . . . . . . 130

6.4.3 Details of Learning . . . . . . . . . . . . . . . . . . . . . 132

6.4.4 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . 136

6.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 138

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Conclusion 149

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Summary of Thesis Contributions . . . . . . . . . . . . . . . . . 149

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



A Appendices 154

A.1 Model Architecture of the Proposed Convolutional Neural Net-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.2 Networks Training . . . . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 163

xv



List of Tables

2.1 Gleason grade groups . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Summary of the different texture feature extraction methods . . 45

3.2 Summary of the systems used for CAD of colorectal and prostate

cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Index Table of the permutations in (1, 2, 3) . . . . . . . . . . . . 62

4.2 Feature vector size . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Number of principal components selected . . . . . . . . . . . . . 80

4.4 Parameters C and γ of the SVM classifier . . . . . . . . . . . . 80

4.5 Parameter C of the LR Classifier . . . . . . . . . . . . . . . . . 81

4.6 Performance of the different combinations of texture feature and

classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Number of images used in each phase for each the tested dataset.108

5.2 Accuracy (in %) comparison of different feature extraction and

classification methods . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Confusion Matrix of BoF multiscale for prostate dataset. . . . . 112

xvi



5.4 Confusion Matrix of BoF multiscale for colorectal dataset. . . . 113

5.5 Accuracy (in %) comparison of different spatial resolution. . . . 114

5.6 Accuracy comparison to literature methods. . . . . . . . . . . . 115

5.7 Accuracy of proposed algorithm on colorectal dataset. . . . . . . 116

6.1 Validation and test accuracy comparison of different architectures138

6.2 Accuracy comparison against other methods . . . . . . . . . . . 144

6.3 CNNs average classification computation times for one image . . 146

6.4 CNNs average training computation times for the complete dataset

(in s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xvii



List of Figures

2.1 Structures of the human large intestine, rectum, and anus . . . . 11

2.2 Histology of a slide of the colon with a 600× magnification . . . 11

2.3 Anatomy of the prostate gland . . . . . . . . . . . . . . . . . . . 13

2.4 Histology of a slide of the prostate gland . . . . . . . . . . . . . 14

2.5 microscopic feature of andenocarcinoma of the colon . . . . . . . 15

2.6 Microscopic views of hyperplasia and adenoma . . . . . . . . . . 17

2.7 Gleason histologic patterns of the prostatic adenocarcinoma . . 18

2.8 An extract from the spectral bands of a sample of class Str taken

from the prostate dataset . . . . . . . . . . . . . . . . . . . . . . 25

2.9 An extract from the spectral bands of a sample of class BPH

taken from the prostate dataset . . . . . . . . . . . . . . . . . . 26

2.10 An extract from the spectral bands of a sample of class PIN

taken from the prostate dataset . . . . . . . . . . . . . . . . . . 27

2.11 An extract from the spectral bands of a sample of class PCa

taken from the prostate dataset . . . . . . . . . . . . . . . . . . 28

xviii



LIST OF FIGURES xix

2.12 Spectral bands of a sample of class Ca taken from the colorectal

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.13 Spectral bands of a sample of class Ta taken from the colorectal

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.14 Spectral bands of a sample of class HP taken from the colorectal

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.15 Spectral bands of a sample of class NRP taken from the colorec-

tal dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Example of a ROC curve and its AUC. . . . . . . . . . . . . . . 38

3.2 Relationship between capacity and accuracy. . . . . . . . . . . . 39

3.3 Standard workflow of a CAD algorithm . . . . . . . . . . . . . . 43

4.1 Example of a 2-class training set described in (a) a 2D feature

space and (b) a 3D feature space . . . . . . . . . . . . . . . . . 64

4.2 Plot of the sigmoid function . . . . . . . . . . . . . . . . . . . . 68

4.3 Diagram of an example of a DT classifier . . . . . . . . . . . . . 69

4.4 Diagram of the RF classifier . . . . . . . . . . . . . . . . . . . . 70

4.5 Example of a SVM binary classification . . . . . . . . . . . . . . 72

4.6 An extract from the spectral bands of a sample taken from the

colorectal dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Resulting panchromatic image . . . . . . . . . . . . . . . . . . . 78

4.8 ROC curves for the Multiscale LBP and SVM combination with

multispectral images . . . . . . . . . . . . . . . . . . . . . . . . 83



LIST OF FIGURES xx

4.9 ROC curves for the Multiscale LBP and SVM combination with

panchromatic images . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 rotation invariant uniform LBP patterns . . . . . . . . . . . . . 88

5.2 Multispectral LBP descriptor . . . . . . . . . . . . . . . . . . . 90

5.3 Multiscale neighbourhood for MMLBP . . . . . . . . . . . . . . 91

5.4 BoF representation steps. . . . . . . . . . . . . . . . . . . . . . 93

5.5 Image descriptor extraction framework. . . . . . . . . . . . . . . 94

5.6 Block diagram of the multiscale MLBP feature extraction. . . . 95

5.7 Block diagram of the bagged codebooks generation. . . . . . . . 97

5.8 Block diagram of the proposed system’s training phase. . . . . . 98

5.9 Block diagram of the proposed system’s testing phase. . . . . . 99

5.10 Stacked generalisation block diagram . . . . . . . . . . . . . . . 100

5.11 Block Diagram of the proposed stacked MMLBP + GLCM. . . . 106

5.12 ROC for stacked MMLBP + GLCM for prostate dataset. . . . . 113

5.13 ROC for the stacked MMLBP + GLCM for colorectal dataset. . 113

6.1 Example of a simple neural network . . . . . . . . . . . . . . . . 120

6.2 CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Illustration of the architecture of VGG16 . . . . . . . . . . . . . 131

6.4 Validation accuracy obtained with different learning rates for

the network trained on prostate data. . . . . . . . . . . . . . . . 133



LIST OF FIGURES xxi

6.5 Validation accuracy obtained with different learning rates for

the network trained on colorectal data. . . . . . . . . . . . . . . 134

6.6 Loss function evolution during training for the prostate dataset 134

6.7 Accuracy evolution during training for the prostate dataset . . . 135

6.8 Loss function evolution during training for the colorectal dataset 135

6.9 Accuracy evolution during training for the colorectal dataset . . 136

6.10 Example of an output of the first convolutional layer for the

network trained on the prostate dataset . . . . . . . . . . . . . . 139

6.11 Example of an output of the last convolutional layer for the

network trained on the prostate dataset . . . . . . . . . . . . . . 140

6.12 Example of an output of the first convolutional layer for the

network trained on the colorectal dataset . . . . . . . . . . . . . 141

6.13 Example of an output of the last convolutional layer for the

network trained on the colorectal dataset . . . . . . . . . . . . . 142

A.1 Convolutional Neural Network architecture for the prostate dataset155

A.2 Convolutional Neural Network architecture for the colorectal

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.3 Evolution of the loss during training of VGG16 on the prostate

dataset using a Xavier weights initialisation . . . . . . . . . . . 164

A.4 Evolution of the accuracy during training of VGG16 on the

prostate dataset using a Xavier weights initialisation . . . . . . 164

A.5 Evolution of the loss during training of VGG16 on the colorectal

dataset using a Xavier weights initialisation . . . . . . . . . . . 165



A.6 Evolution of the accuracy during training of VGG16 on the

colorectal dataset using a Xavier weights initialisation . . . . . . 165

A.7 Evolution of the loss during training of pretrained VGG16 on

the prostate dataset . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.8 Evolution of the accuracy during training of pretrained VGG16

on the prostate dataset . . . . . . . . . . . . . . . . . . . . . . . 166

A.9 Evolution of the loss during training of pretrained VGG16 on

the colorectal dataset . . . . . . . . . . . . . . . . . . . . . . . . 167

A.10 Evolution of the accuracy during training of pretrained VGG16

on the colorecat dataset . . . . . . . . . . . . . . . . . . . . . . 167

A.11 Evolution of the loss during training of pretrained InceptionV3

on the prostate dataset . . . . . . . . . . . . . . . . . . . . . . . 168

A.12 Evolution of the accuracy during training of pretrained Incep-

tionV3 on the prostate dataset . . . . . . . . . . . . . . . . . . . 168

A.13 Evolution of the loss during training of pretrained InceptionV3

on the colorectal dataset . . . . . . . . . . . . . . . . . . . . . . 169

A.14 Evolution of the accuracy during training of pretrained Incep-

tionV3 on the colorectal dataset . . . . . . . . . . . . . . . . . . 169

A.15 Evolution of the loss during training of pretrained ResNet50 on

the prostate dataset . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.16 Evolution of the accuracy during training of pretrained ResNet50

on the prostate dataset . . . . . . . . . . . . . . . . . . . . . . . 170

A.17 Evolution of the loss during training of pretrained ResNet50 on

the colorectal dataset . . . . . . . . . . . . . . . . . . . . . . . . 171

xxii



A.18 Evolution of the accuracy during training of pretrained ResNet50

on the colorectal dataset . . . . . . . . . . . . . . . . . . . . . . 171

xxiii



Nomenclature

Acronyms

k-NN k-Nearest Neighbour

2D 2-Dimension(al)

3D 3-Dimension(al)

AUC Area Under Curve

BoF Bag-of-Features

BoW Bag-of-Words

BPH Benign Prostatic Hyperplasia

CADS Computer-Aided Diagnosis Systsem

CAD Computer-Aided Diagnosis

Ca Carcinoma

CCD Charge-Coupled Device

CNN Convolutional Neural Network

CPU Central Processing Unit

DT Decision Tree

xxiv



FNR False Negative Rate

FN False Negative

FPR False Positive Rate

FP False Positive

GLCM Grey-Level Co-occurrence Matrix

GPU Graphics Processing Unit

HP Hyperplastic Polyp

ICA Independent Component Analysis

IR Infra-Rred

LBP-TOP Local Binary Pattern-Three Orthogonal Plan

LBP Local Binary Pattern

LCTF Liquid Crystal Tunable Filter

LDA Linear Discriminant Analysis

LIOP Local Intensity Order Pattern

LR Logistic Regression

LTP Local Ternary Pattern

MLP Multi-Layer Perceptron

MMLBP Multispectral Multiscale Local Binary Pattern

NRP No Remarkable Pathology

OvsA One-versus-All

OvsO One-versus-One

xxv



PCA Principal Component Analysis

PCa Prostatic Carcinoma

PIN Prostatic Intraepithelial Neoplasia

PPMM Probabilistic Pairwise Markov Model

pp percentage point

ReLU Rectified Linear Unit

RF Random Forest

RGB Red Green Blue

ROC Receiver Operating Characteristic

SIFT Scale-Invariant Feature Transform

Str Stroma

SURF Speeded Up Robust Features

SVM Support Vector Machine

TA Tubular Adenoma

TNR True Negative Rate

TN True Negative

TPR True Positive Rate

TP True Positive

Vis Visible

VLBP Volume Local Binary Pattern

WEKA Waikato Environment for Knowledge Analysis

xxvi



Symbols

E Mathematical expectation

∇θJ(θ) Gradiant of the cost function J along θ

x vector x

xT Transposed vector x

GLCMr,θ Co-occurence matrix of an image for the specific spatial rela-

tionship (r, θ), r being a real number representing the radius

and θ a real for the angle.

J Cost function

LBP λ
Pλ,R

Local binary pattern for the spectral plans of a pixel for a set

of Pλ neighbour spectral plans and a distance R

LBP riu2
P,R Rotation invariant uniform local binary pattern of a pixel for a

set of P neighbours and a radius R

LBPP,R Local binary pattern of a pixel for a set of P neighbours and a

radius R

MMLBPP,Pλ,R Multispectral Multiscale local binary pattern of a pixel for a

set of P neighbours and Pλ neighbour spectral plans, and a

radius R

U Uniformity measure

V LBPP,R Volume local binary pattern of a pixel for a set of P neighbours

and a radius R

xxvii



Chapter 1

Introduction

1.1 Introduction

The World Health Organization has declared that the cancer burden is a world-

wide health problem. According to their 2014 report, 14 million new cases were

diagnosed in 2012 and 8 million people died from cancer in the same period

[5]. Colorectal cancer is the third most common cancer globally and prostate

is in second position amongst men representing respectively 9.7 % and 7.9 %

of all cancers for both sexes [5]. Both colorectal and prostate tissues are glan-

dular and therefore have a similar histological appearance. They are also both

subject to the same tumor types; adenocarcinoma being the most commonly

diagnosed cancerous tumor type in these organs. The known incidence of these

cancers has been growing rapidly, partly due to increased life expectancy but

also because of better public awareness of the diseases, which has led to higher

performing and more frequent diagnosis tests [6]. For prostate cancer diagno-

sis, the European Association of Urology’s guidelines [7] a histological analysis

carried out on a sample taken from a needle biopsy. In a needle biopsy, a

1
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small sample of tissue is removed from the prostate gland and prepared for

microscope examination with precise staining and sliding procedures. The his-

tological analysis is then performed by a highly trained pathologist, who uses

a microscope to visually navigate over the biopsy sample slide. The pathol-

ogist finally decides the grade and stage of the cancer or the type of tumour

based on their experience and expertise. This diagnosis is crucial for deter-

mining a course of treatment [8] and is also the most widely used method for

colorectal cancer diagnosis [9]. However, this process is very laborious and

time-consuming for pathologists, as they have to manually analyse every sam-

ple to spot the particular features characterising the type of tumor and the

various cancer stages. It results in a high intra- and inter-observer variabil-

ity [10, 11] which affects the reliability of the diagnosis. In december 1999,

a study [12] of more than 6,000 patients, carried out by Johns Hopkins re-

searchers, found that up to two out of every 100 people who come to larger

medical centres for treatment were given the wrong diagnosis after histological

analysis. The results suggest that second opinion pathology examinations not

only prevent errors, but also save lives and money. Consequently, there is an

increasing interest among pathology experts in the use of machine vision (or

computational diagnosis tools) to reduce the diagnosis error rates by reducing

the fallible aspect of human image interpretation. In this thesis, methods for

automatically analysing microscopic images of biopsies are investigated.

This introduction chapter first discusses the motivations and objectives of the

thesis. The main contributions to knowledge are then detailed. Finally, the

outline of the thesis is set out.
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1.2 Motivation and Objectives

The human vision system is excellent at performing qualitative tasks, how-

ever, it performs less successfully when it comes to quantitative analysis [13].

Relying solely on their eyes can lead pathologists to misdiagnose a sample.

MacAulay et al. [14] gave the example of a normal-appearing pathologic cell

that can be recognised with a quantitative texture analysis of the cell’s nucleus,

but which stays unnoticed under qualitative observations. Consequently, it is

logical to improve the diagnosis accuracy by using computer vision algorithms

to quantitatively analyse samples. Computer-aided diagnosis can also assist

pathologists in order to reduce the human analysis time, improving efficiency

and acting as a second opinion. The addition of computer-based quantita-

tive analysis to the human qualitative interpretation can, furthermore, highly

reduce the intra- and inter-observer variability revealed in [11].

The main objective of this thesis is to develop a computerised automatic sys-

tem for diagnosis of colorectal and prostate tumours using images of biopsy

samples. A complete computer-aided diagnosis system consists of two separate

phases. First, the unhealthy region needs to be localised, before the system

categorises the type of tumour and the grade of the cancer. This thesis focuses

on the second phase of the computer-aided diagnosis system. Subsequently,

the resulting solution can be integrated into a full computer-aided system us-

ing a region segmentation technique or a block-wise image processing method.

Numerous investigations for prostate or colorectal tumour classification have

already been carried out [15, 16]. However, a large quantity use colour spaces

limited to grey-scale or RGB images. In the last decade, an increasing num-

ber of studies have used multispectral images [17, 18, 19, 20, 8, 21], which

are acquired using a more precise sampling of the light spectrum. This ap-
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proach aims at better capturing the spectrum of the reflected light coming

from the observed sample, consequently offering more discriminative informa-

tion. Larsh et al. [22] suggested that multispectral imagery has the ability

to improve histopathological analysis by capturing patterns that are invisible

to the human vision system and to the standard RGB imaging. The research

carried out using multispectral imaging has shown promising results and often

outperforms the systems using traditional grey-scale or RGB images [15, 16].

However, multispectral images contain a large amount of data which makes

them more difficult to process because of increased execution times and prob-

lems caused by the curse of dimensionality [19].

The aim of this research is to perform this classification task using multispec-

tral images of colorectal and prostate tumour samples. Two separate datasets

divided into four classes each are used in this thesis. The colorectal dataset

consists of images acquired on a wide light spectrum, ranging from the visible

wavelengths to the infrared wavelengths. This work intends to demonstrate

the advantage of using infrared information during image acquisition for the

classification of colorectal tumour samples. The thesis plans to investigate,

analyse and study different image analysis techniques alongside classification

methods, which emphasise on identifying texture features to capture charac-

teristics specific to each type of tumour.

1.3 Contributions

The key original contributions to knowledge of the present thesis are presented

as follows:
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• A multiclass algorithm for the classification of prostate and colorectal

tumours using multispectral imagery is proposed. This sytem is based

on a two-dimensional texture extraction combined with a feature se-

lection method. By analysing the performances of this technique on

multispectral data and panchromatic images, it was demonstrated that

multispectral data show a strong advantage over panchromatic images.

• In order to further utilise the information added by multispectral data,

a novel multispectral texture feature based on Local Binary Patterns

is introduced. It takes advantage of inter-band spectral information by

expending the pixel’s neighbourhood considered in Local Binary Pattern

features to the spectral dimension. The classification results obtained

with this feature are superior to the ones produced by standard texture

extractors.

• Powerful classification frameworks are investigated. The bag-of-features

scheme uses an image descriptor built as the histogram of texture pattern

regions. Regarding the stacked generalisation scheme, texture features

are extracted at different scales. Each scale is then fed to a different sup-

port vector machine classifier. The output of these classifiers is finally

fed to another classifier for the final classification decision. It is demon-

strated in this thesis that these frameworks outperform the traditional

classifiers for the task at hand.

• Infrared light has not previously been used for histology image classi-

fication. This thesis demonstrates the benefits of using infrared infor-

mation alongside visible light. The performance of the system using

multispectral images acquired only in the visible range is compared to

results obtained when infrared wavelengths are added. This shows that
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the classification accuracy is marginally improved by including infrared

information.

• The use of Deep Learning methods is also investigated. More specifically,

a convolutional neural network architecture is proposed for biopsy image

analysis and classification. The performance of this network is evaluated

and compared against the results obtained using features produced by

training convolutional neural networks on the ImageNet. Although the

transfer learning method has a very high accuracy, the proposed convo-

lutional neural network shows more consistency for the different datasets

tested.

1.4 Outline of the Thesis

This thesis is divided into seven chapters.

Chapter 2 provides the essential background in order to understand the data

used for this thesis. It presents a biological background on the colon and

the prostate gland and describes the anatomy and histology of these organs

when healthy. In addition, a detailed explanation of their cancerous and pre-

cancerous stages at cellular level is carried out. The acquisition process of

colorectal and prostate tumour biopsy images as well as the datasets used in

this thesis are depicted.

Chapter 3 focuses on computer vision applied to computer-aided diagnosis

problems. It first presents the basics of machine learning systems and describes

generic machine learning algorithms. It also addresses the feature extrac-

tion phase of computer-aided diagnosis systems. Finally, the state-of-the-art
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computer-aided diagnosis systems for colorectal and prostate tumours, includ-

ing the techniques used for feature extraction and classification of microscopic

images are reviewed.

Chapter 4 describes the implementation of four different texture features ap-

plied to multispectral microscopic images. Different classifiers are also pre-

sented. The chapter demonstrates the usefulness of multispectral data by

comparing the performances of different pairings of texture feature and classi-

fier on the datasets manipulated in this work.

Chapter 5 introduces a novel texture feature for multispectral data. It also

details two different advanced classification frameworks. The performances of

the proposed multispectral texture feature combined with different classifica-

tion schemes are finally compared and the results analysed. In addition, the

usefulness of the infrared spectrum is addressed.

Chapter 6 is concerned with an investigation of deep learning, convolutional

neural networks and transfer learning applied to the classification of multi-

spectral biopsy data. The concepts and theory of deep learning are presented

with a particular attention paid to convolutional neural networks. In addition,

the experiments carried out for the benefit of this thesis are described and

the results thoroughly analysed. These experiments compare several network

architectures using the datasets described above.

Finally, Chapter 7 presents the conclusions of the thesis and suggests possible

further work. It details the main achievements of this thesis, reviewing the re-

sults obtained from the different experiments carried out, placing these results

in the wider context of the project. Tracks for future investigations are also

inspected.
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1.5 Conclusion

This introduction chapter presented the context, motivation and objectives of

this investigation work. The main contributions to knowledge of the thesis

were then addressed. Lastly, the thesis outline was given. The next chapter

draws up a biological background on the data used for the project.



Chapter 2

Biological Aspects and Image

Acquisition

2.1 Introduction

In this chapter, a biological background on the colon and the prostate gland is

discussed. Anatomic and histologic descriptions of the organs in their healthy

states will be given before a detailed explanation of the cancerous and precan-

cerous stages at a cellular level. Then, an explanation of the image acquisition

process as well as a description of the datasets used in this thesis are discussed.

9
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2.2 Biological Description of the Colon and

Prostate Gland

2.2.1 Large Intestine or Colon

Anatomic Description

The large intestine, or colon, is an organ of the human digestive tract. It

serves as a reservoir for the fluids evacuated from the small intestine before

defecation. This tubular structure of 6 cm diametre and 150 cm length, has

for main function to absorb the water and electrolytes of the chyme. Those

solutes are transfered to the blood through the membrane of the colon. The

colon wall also self lubricates by secreting mucus which facilitates transport of

the bowel’s content before it can be evacuated by defecation. It also secretes

hormones but no digestive enzymes [23].

The rectum is the continuation of the colon and is located just before the anus.

It has a similar tissue structure to the colon with folds comparably to the plicae

circularis present in the small intestine. Figure 2.1 shows the anatomy of the

colon and rectum.

Histologic Description

Figure 2.2, shows a slide of the colon tissues with caption. The mucosa or mu-

cous membrane is a tissue type present in different internal organs of the body.

It is composed of the epithelium and the lamina pripria. The epithelium is a

single layer of column-shaped epithelial cells that has a thin brush border. The

lamina propria is a connective tissue that has a rich vascular and lymphatic
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Figure 2.1: Structures of the human large intestine, rectum, and anus. [24]

Figure 2.2: Histology of a slide of the colon with a 600× magnification. The
red arrows show the crypts openings.
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network, which absorbs the digestive products [25, 26]. The mucosa displays

deep crypts, the crypts of Lieberkühn, which are straight and unbranched.

The walls of these crypts are lined with a great number of goblet cells which

are recognisable by their larger size and paler colour. The crypts bases are cov-

ered with undifferentiated cells and endocrine cells which are typically smaller

and darker. Mucus is secreted by the goblet cells and is usually present on the

walls of the crypts [23]. The lumen, which is the inside of the bowel, extends to

the inside of the crypts of the mucosa. A muscularis mucosae layer is present

immediately at the base of the crypts. It consists of separate inner circular

and outer longitudinal layers of muscles.

2.2.2 Prostate Gland

Anatomic Description

The prostate gland is a chestnut-shaped organ of the male reproductive system.

With a 4 cm diametre at the broadest area, it is located in the pelvis, inferior

to the urinary bladder (see Figure 2.3). Its main function is to secrete a fluid

that is added to the seminal fluid during ejaculation [25].The prostate consists

of 30 to 50 tubular or sack-like glands organised into three concentric layers:

an inner mucosal layer, an intermediate submucosal layer, and a peripheral

layer where the main prostatic glands are located.

Histologic Description

The secretory portion of the glands consists of a simple layer of pseudostratified

columnar epithelium supported by the non secretory stroma. At the centre
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Figure 2.3: Anatomy of the prostate gland. ©1995-2015 Healthwise, Incorpo-
rated.

of the glands, the lumen of the alveoli is enclosed by the epithelium. The

stroma is made up of the lamina propria which is intimetely intermingled

with a layer of smooth muscle called the muscularis mucosae as can be seen

on Figure 2.4. The muscularis mucosae can be recognised from the lamina

propria by a more intense staining. The upper inset of Figure 2.4 shows that

there is no clear outlined layers of smooth muscle in the prostate; instead, it

is randomly organised throughout the stroma.

2.2.3 Polyps, Tumours, and Cancer

Anatomic Characteristics

As described in Section 2.2, both the prostate gland and the colorectum have

a similar tissue organisation with the tubular glandular mucosa – composed

of epithelium and lamina propria – being their main functional tissue. This

quality means that they are subject to developing the same types of tumours
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Figure 2.4: Histology of a slide of the prostate gland ×178; upper inset cor-
responding to the larger rectangle (×350); lower inset corresponding to the
smaller rectangle (×650). The lamina propria and smooth muscle (SM) are
visible adjacent to the secretory epithelium (Ep) and in the non secretory
areas. Prostatic concretions (C) – aggregations of dead epithelial cells and
precipitated secretions – are observable in the lumina of the alveoli. In the
lower inset, the basal cells (arrowheards) are seen along taller columnar secre-
tory cells showing the pseudostratified nature of the epithelium in the prostate
gland. A blood vessel (BV) is recognisable by its red colour. Lymphocytes are
visible at the lower border of the main image indicating an inflammation of
the prostate gland. [25]
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Figure 2.5: Low magnification photography of a microscopic view of an ande-
nocarcinoma of the colon. (×120) [25]

and cancers. Carcinomas are the most common type of malignant tumours,

they derive from epithelial cells [27]. Carcinomas are called adenocarcinomas

when derived from glandular tissues – which is the case for both of the organs

studied in this work.

All growths are not necessarily malignant and benign polyps can occur [28].

They usually are non-cancerous growths of the mucosa into the lumen and can

be of different types. Although most polyps are completely benign like the

hyperplastic polyps or hyperplasia, some types of polyp can transform into an

adenocarcinoma and can as such be considered as a pre-cancerous stage. They

are called adenoma and can be tubular or villous depending on their growth

patterns [29]. Hyperplastic polyps are characterised by an increase in the

number of cells resulting in an increased size of the tissue due to an enhanced

cell division. In contrast to an adenoma or a carcinoma, the division rate in a

hyperplastic polyp returns to normal as soon as the stimulus is removed.

Histologic Characteristics

An adenocarcinoma has easily recognisable features. Unlike the well organised

healthy tissues described in Section 2.2 and visible at the left of Figure 2.5,
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the lesioned tissue shows an irregular pattern of glands and is hyperchromatic,

meaning it is intensively stained with the hematoxylin staining agent – top

left of Figure 2.5. Moreover, the muscle fibres from the muscularis mucosa are

observable among the glands.

The grade of an adenomatous polyp is assessed by the degree of dysplasia.

This is to describe how differentiated the cells are. A low-grade dysplasia

means that, similarly to a healthy tissue, the cells are well differentiated, each

of them having their specific shape and function. On the other end of the

spectrum, a high-grade dysplasia means that the polyp is more cancerous-like

with irregular patterns of glands, hyperchromatism, and without production

of mucus [25].

Figure 2.6 shows a comparison between a low grade adenomatous polyp and

a hyperplastic polyp. Both samples of Figure 2.6a and 2.6b have hyperchro-

matism and the crypts are more crowded with goblet cells than in a normal

tissue (see Figure 2.2). However, the main difference between the two lies in

the shape of the crypts. On Figure 2.6a, the crypts have a close to normal

straight simple tubular crypts. On the other hand, Figure 2.6b, shows an early

case of deformation of the crytps with the appearance of branches and folds

inside them.

In the specific case of prostate cancer, the Gleason grading system has been the

main tool to recognise the stages of the adenocarcinoma tumours [30, 31, 32].

It ranks patterns, observable at low magnification, from the most differenti-

ated (Gleason pattern 1) to the least differentiated cells (Gleason pattern 5),

as shown on Figure 2.7. Most of the time, several patterns can be observed

on prostate carcinomas. For this reason, a primary and secondary Gleason

patterns are defined as the two most prevalent patterns on the tissue. The
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(a) Photography of a microscopic view of
a hyperplastic polyp of the colon. ×100

(b) Photography of a microscopic view of
a low grade tubular adenoma of the colon.
×200

Figure 2.6: Comparison of microscopic views of hyperplasia and adenoma for
the colon.

final grading Gleason score is given by the sum of these two predominant pat-

terns’ number. It ranges from 2 (1+1) to 10 (5+5) [33] and will determine

the adequate treatment for a patient. However, Gleason patterns 1 and 2 are

not currently included in the calculation of the final Gleason score grading

anymore, making 6 (3+3) the lowest possible score. This is why most datasets

used for automatic diagnosis are divided into classes corresponding to Glea-

son patterns ranging from 3 to 5. Another diagnosis system has been defined

in [30]. It groups Gleason grades into new categories as shown on Table 2.1.

This is due to a difference in the Gleason grade 3+4 and 4+3 which should

lead to different treatments. This means that differentiating the Gleason pat-

terns 3 and 4 are particularly important tasks, whereas the differences between

patterns 4 and 5 have less impact on the final diagnosis.

This histologic description of the different types of tumour and polyps high-

lights how difficult it can be to discriminate between them. Every case sits

somewhere on a spectrum. Limits between different categories can sometimes

be hard to determine, making specialists disagree over some samples. Thus,
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Figure 2.7: Gleason histologic patterns of the prostatic adenocarcinoma
schematic diagrams. Original version (left) and 2015 Modified International
Society of Urological Pathology (right). [33]

Table 2.1: Gleason grade groups

Gleason grade group Gleason score

1 ≤ 6
2 3 + 4 = 7
3 4 + 3 = 7
4 4 + 4 = 8, 3 + 5 = 8, 5 + 3 = 8
5 9-10



2.2. Biological Description of the Colon and Prostate Gland 19

the use of a machine learning algorithm could help give them a second opinion

for the litigious cases.
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2.3 Optical Microscopy

Conventional transmitted light widefield microscopy was used for acquiring

the images of this study’s datasets. It consists of a collecting lens (also called

the objective lens), an ocular lens (or eyepiece lens), a detector (either the

human eye or a Charge-Coupled Device (CCD) camera), and a light source.

It is suitable for inspecting thin and transparent samples. The sample is usu-

ally stained to increase the contrast of their structure of interest compared to

the rest of the sample. The light coming from the source is reflected on the

sample and travels trough the lenses before hitting the detector. the inverted

magnification of the object is formed at the imaging plane and observable by

the detector.

2.4 Sample Preparation

Sample preparation is usually carried out by a pathologist following a precise

protocol.

2.4.1 Sample Collection

For the collection of the prostate dataset, the samples were provided by the

Institute of Pathological Anatomy and Histopathology, University of Ancona,

Italy. They were taken from prostate ablations in order to have a full section

of the tissue.

The colorectal dataset was acquired from samples provided by Dr. Rafif from

Al-Ahli Hospital, Doha, Qatar. They were extracted from colorectal biopsies.
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2.4.2 Section Preparation

The following section preparation stages are the same for both datasets.

After they were collected from patients, the ablated tissues were fixed in a

“life-like” state by being immersed into formalin for 6 to 12 hours. Formalin is

a fixing agent that stops enzyme activity, kills microorganisms while keeping

the molecular structure intact in order to allow the appropriate reaction with

the staining agents. Tissues then go through a series of ethanol and xylene

baths to be dehydrated before being embedded in molds filled with wax (which

is immiscible with water, hence the dehydration phase). After the wax has

solidified, the “block” of wax embedded with the tissue sample is sectioned

into 3 to 5 µm -thick slices to make sure only one layer of cells is present on

each section. These sections are then floated out on a warm water bath so

they can flatten, picked up onto a glass microscope slide and dried [17].

Most of the cells on the tissue are colourless at this stage. In order to reveal

the tissue structures, the samples need to undergo a staining stage. The most

widely used staining agents are Haematoxylin & Eosin (H&E) stains. When

using H&E stains on a tissue sample, its nuclei take a dark blue colour while

its cytoplasms and other components show different shades of pink. The slides

are then covered with a glass cover and are ready for microscopic observation.

2.5 Multispectral Imaging

Traditional cameras function following a RGB model mimicking the human

eye’s vision mechanism. Visible light is captured by three types of sensors

(which are cone cells in the retina). The sensor’s (respectively cone cell) re-
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sponse to a particular wavelength λ is given by its responsivity function R(λ).

Each type of sensor has a response in the visible spectrum of light and its

responsivity is positive on a limited range and equals to zero elsewhere. The

bandwidth in which the sensor’s responsivity is positive is different for each

type of sensor: the first type will respond to wavelengths corresponding to

blue (400-500 nm), second type to green (450-630 nm), and the third one to

red (500-700 nm). In a vision system, the emitted light is reflected by the

observed object and reaches the sensor or eye. The spectrum of the reflected

light, called reflectance, varies depending on the colour of the object. The sys-

tem’s output is a projection of this reflectance on the different colour sensors.

As a result, two objects with different reflectances could give similar outputs

and be perceived as having the same colour.

For this reason, a more accurate approximation of the light spectrum is done

using many more sensors than the usual three used in the RGB systems, with

each sensor having a narrow bandwidth. Depending on the bandwidth reso-

lution, the number of spectral bands can be varied to capture more precise

information on the light spectrum: the smaller the bandwidth resolution, the

larger the number of spectral bands and the more accurate the approximation

is. As suggested by Larsh et al. [22], a more accurate approximation of the

reflectance allows for an improved histological analysis by capturing patterns

that are invisible to the human vision system and the standard RGB imagery.

The resulting image is a cube of data consisting of several gray level spec-

tral images, each of them being acquired using a spectral filter centred on

a particular wavelength of the electromagnetic spectrum. Consequently, this

three-dimensional image has two spatial dimensions and one spectral dimen-

sion.
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An object’s reflectance goes beyond the visible spectrum and some sensors are

designed to capture wavelengths that are in the infrared (IR) spectrum. A mul-

tispectral imaging system can therefore be adapted to an extended spectrum,

capturing images throughout the visible and the IR ranges of the electromag-

netic spectrum.

2.5.1 Imaging System and Equipment

Both datasets used in this thesis were acquired using the optical system de-

scribed in Section 2.3, except that a Liquid Crystal Tunable Filter (LCTF)

was placed between the microscope and the camera to simulate the behavior

of spectral sensors.

The prostate cancer was acquired using a ™VARISPEC LCTF with a spectral

range of 400-720 nm.

For the colorectal dataset, images were acquired in visible light and IR. The

microscope was equipped with a halogen illumination emitting in the visible

and the IR spectra. The camera used was a XENICS CHEETAH with a

spectral range of 400-1700nm and a resolution of 320×265 pixels. Two separate

™VARISPEC LCTF were needed to cover the whole spectrum required: one

for the visible spectrum (400-720 nm) and another one for the IR (850-1800

nm).

2.6 Datasets Decription

Two datasets were used for the purpose of this thesis.
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The first one, referred to as prostate dataset, was used in previous works

by Tahir et al. [19]. It consists of 512 different multispectral prostate tumour

tissue images of size 128 × 128. The images are taken at 16 spectral chan-

nels (from 500 to 650 nm) and at x40 magnification power. The samples are

evaluated by two highly experienced independent pathologists and labeled into

four classes: 128 cases of Stroma (Str), which is normal muscular tissue, 128

cases of Benign Prostatic Hyperplasia (BPH), a benign condition, 128 cases of

Prostatic Intraepithelial Neoplasia (PIN), a pre-cancerous stage, and 128 cases

of Prostatic Carcinoma (PCa), an abnormal tissue development corresponding

to cancer. Samples of the prostate dataset are shown in Figures 2.8, 2.9, 2.10,

2.11.

The second dataset, referred to as colorectal dataset, is composed with

multispectral colorectal histology data with a (x40) magnification power. This

dataset was developed by the University of Qatar with the collaboration of

the Al-Ahli Hospital, Doha. It is split into 4 classes, each of them composed

of 40 images. The images are acquired on a wider spectrum than in the first

dataset as it is spread on the visible (Vis) and infrared (IR) ranges of the

electromagnetic spectrum with an interval of 23 nm between each wavelength.

That is to say, in the visible range, the wavelength interval is 23 nm starting

from 465 nm to 695 nm and in the IR range, the wavelength interval is also

23 nm and ranges from 900 nm to 1590 nm. The spacial size is 128 × 160.

The 4 classes are: Carcinoma (Ca), containing the images of cancerous colon

biopsies, Tubular Adenoma (TA), a pre-cancerous stage, Hyperplastic Polyp

(HP), a benign polyp and No Remarkable Pathology (NRP). Samples of the

colorectal dataset are shown in Figures 2.12, 2.13, 2.14, 2.15.
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(a) band 1 (b) band 2 (c) band 3 (d) band 4

(e) band 5 (f) band 6 (g) band 7 (h) band 8

(i) band 9 (j) band 10 (k) band 11 (l) band 12

(m) band 13 (n) band 14 (o) band 15 (p) band 16

Figure 2.8: An extract from the spectral bands of a sample of class Str taken
from the prostate dataset
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(a) band 1 (b) band 2 (c) band 3 (d) band 4

(e) band 5 (f) band 6 (g) band 7 (h) band 8

(i) band 9 (j) band 10 (k) band 11 (l) band 12

(m) band 13 (n) band 14 (o) band 15 (p) band 16

Figure 2.9: An extract from the spectral bands of a sample of class BPH taken
from the prostate dataset
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(a) band 1 (b) band 2 (c) band 3 (d) band 4

(e) band 5 (f) band 6 (g) band 7 (h) band 8

(i) band 9 (j) band 10 (k) band 11 (l) band 12

(m) band 13 (n) band 14 (o) band 15 (p) band 16

Figure 2.10: An extract from the spectral bands of a sample of class PIN taken
from the prostate dataset
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(a) band 1 (b) band 2 (c) band 3 (d) band 4

(e) band 5 (f) band 6 (g) band 7 (h) band 8

(i) band 9 (j) band 10 (k) band 11 (l) band 12

(m) band 13 (n) band 14 (o) band 15 (p) band 16

Figure 2.11: An extract from the spectral bands of a sample of class PCa taken
from the prostate dataset
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(a) band 2 (b) band 4 (c) band 6 (d) band 8

(e) band 10 (f) band 12 (g) band 14 (h) band 16

(i) band 18 (j) band 20 (k) band 22 (l) band 24

(m) band 26 (n) band 28 (o) band 30 (p) band 32

(q) band 34 (r) band 36 (s) band 38

Figure 2.12: Spectral bands of a sample of class Ca taken from the colorectal
dataset
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(a) band 2 (b) band 4 (c) band 6 (d) band 8

(e) band 10 (f) band 12 (g) band 14 (h) band 16

(i) band 18 (j) band 20 (k) band 22 (l) band 24

(m) band 26 (n) band 28 (o) band 30 (p) band 32

(q) band 34 (r) band 36 (s) band 38

Figure 2.13: Spectral bands of a sample of class Ta taken from the colorectal
dataset



2.6. Datasets Decription 31

(a) band 2 (b) band 4 (c) band 6 (d) band 8

(e) band 10 (f) band 12 (g) band 14 (h) band 16

(i) band 18 (j) band 20 (k) band 22 (l) band 24

(m) band 26 (n) band 28 (o) band 30 (p) band 32

(q) band 34 (r) band 36 (s) band 38

Figure 2.14: Spectral bands of a sample of class HP taken from the colorectal
dataset
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(a) band 2 (b) band 4 (c) band 6 (d) band 8

(e) band 10 (f) band 12 (g) band 14 (h) band 16

(i) band 18 (j) band 20 (k) band 22 (l) band 24

(m) band 26 (n) band 28 (o) band 30 (p) band 32

(q) band 34 (r) band 36 (s) band 38

Figure 2.15: Spectral bands of a sample of class NRP taken from the colorectal
dataset
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2.7 Conclusion

In this chapter, we gave a broad description of the biological aspects of a the

prostate and the colon. The anatomic and histological characteristics of the

different types of tumour and cancer found in these organs were also explained.

Then, the image of the tissue sample acquisition system was detailed. Espe-

cially, we described the samples extraction, processing, and staining. We also

explained the acquisition system and its components. Finally, the two datasets

used in this study were described.

In the next chapter, an insight on machine learning and computer-aided diag-

nosis systems (CADS) will be given. We will also give a detailed state of the

art of automatic diagnosis systems for prostate and colorectal cancers.



Chapter 3

Machine Learning and

Computer-Aided Colorectal and

Prostate Cancer Diagnosis

Systems

3.1 Introduction

This chapter discusses the basics of machine learning systems in general and

describes generic learning algorithms. It also describes texture feature extrac-

tion. It then thoroughly reviews the state-of-the-art in the field of CADS for

colorectal and prostate cancers.

34
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3.2 Machine Learning Basics

Goodfellow et al. [34] define machine learning as “a form of applied statistics

with increased emphasis on the use of computers to statistically estimate com-

plicated functions and a decreased emphasis on proving confidence intervals

around these functions” and “an algorithm that is able to learn from data.”

Mitchell et al. [35] provide a definition for learning in this context, “a com-

puter program is said to learn from experience E with respects to some class

of tasks T and performance measure P , if its performance at tasks in T , as

measured by P , improves with experience E.”

3.2.1 Definition of Learning Algorithms in the Context

of Classification

The task T Thanks to machine learning, we are able to address tasks that

cannot be solved with a rigid program conceived by humans. In the previous

definition, the learning process is not the task T but rather a method to be

able to complete this task. In the case of this thesis, the task at hand is

a classification task. However in other situations, this task could also be a

regression, a translation or a transcription task [34]. In a classification task,

the aim is to determine the category of an input. The input, x ∈ Rn, is called

an example and it is a collection of features that have been computed from the

object to classify. To solve the task, the learning algorithm has to construct a

function f : Rn 7→ {1, . . . , k}, where k is the number of categories – or classes.

The model thus assigns to an example x a class y ∈ {1, . . . , k}, y = f(x).
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The performance measure P In order to assess the performance of a

machine learning system, a quantitative measure P is used. For a classification

task, this performance measure often is the accuracy:

Accuracy =
number correctly classified examples

total number of examples
.

However, classification tasks are often asymmetrical, especially in a medical

context. For instance, detecting a cancer when there is not any does not have

the same impact as not detecting a cancer when there is one. In this case, the

accuracy does not give enough insight on the classifier’s performance. It does

not tell how the misclassified examples are split between classes. In a binary

classification problem, True Positives, TP (resp. True Negatives, TN), are the

examples that were correctly classified in the positive (resp. negative) class.

Examples classified as negative (resp. postive) when they were in fact positive

(resp. negative) are called False Negatives, FN (resp. False Positives, FP )

[36]. Two new metrics are therefore defined:

Precision =
TP

TP + FP
, (3.1)

The Precision is the fraction of correctly classified positives in all the examples

classified as positive by the model.

Recall =
TP

TP + FN
, (3.2)

The Recall is the fraction of correctly classified positives in all the examples

that should have been classified as positive.
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Another performance measure very often used is the receiver operating charac-

teristic curve (or ROC curve) [36]. This curve displays the True Positive Rate

(TPR) on the y-axis and the False Positive rate (FPR) on the x-axis. It shows

the variation of the two rates depending on the value of the discrimination

threshold. This threshold is the model’s output value from which an example

is classified as positive. In order to draw the ROC curve, the discrimination

threshold is varied from 0 to 1 and for each threshold value, the TPR and FPR

are computed, resulting in a point on the ROC curve. Points are then linked

in order to create the curve. The point at the right end (resp. left end) of the

curve corresponds to classifying every example as a positive (resp. negative).

A perfect classifier would be as much as possible in the upper left corner of the

graph. Consequently, the left part of the ROC and its steepness near the origin

is an important factor to consider when looking at a ROC curve. A widely

used metric to compare two ROC curves is the area under curve (AUC) which

gives an average value of the classifier performance but does not substitute the

curve itself. With a perfect classifier, the AUC equals 1, while for a random

binary classifier, the AUC equals 0.5. Figure 3.1 shows an example of ROC

curve and its AUC.

The performance measures how the algorithm performs with new, previously

unseen data, to have a better idea of how it will perform on real world data.

The collection of examples, called dataset, is therefore split into a training set,

used to build the aforementioned f function, and a test set, used to evaluate

the model’s performance measures. This is called the data-generating process.

The generalisation is the performance of the system on the test set.
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Figure 3.1: Example of a ROC curve and its AUC. The grey area of the figure
is the area for which the AUC is computed.

The experience, E Depending on the experience that they can have dur-

ing the learning process, a machine learning algorithm can be supervised or

unsupervised.

• In unsupervised learning, the algorithm learns properties of the struc-

ture of an experienced dataset consisting of a collection of features. An

example of unsupervised learning algorithm is clustering. It aims at par-

titioning the dataset into clusters of examples with similar properties.

• In supervised learning, the algorithm experiences a dataset in which

examples are associated with a label of target class. It then learns to

predict the label y from x

3.2.2 Capacity, Overfitting and Underfitting

In a machine learning system, the training stage consists of making the clas-

sification accuracy on the training set as high as possible. The system is then

tested on the test set. Its accuracy will logically be smaller on the test set
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Figure 3.2: Relationship between capacity and accuracy. Training and gen-
eralisation accuracy have a different behaviour. At the left of the graph is
the underfitting regime, where the training and test accuracy are low. When
the capacity increases, the training accuracy increases but the generalisation
accuracy starts decreasing. As a result, the gap between both accuracy in-
creases. When the gap becomes too large, it is the overfitting regime where
the capacity is above optimal capacity.

than the training accuracy. The better the system, the smaller the gap be-

tween those two accuracy is.

Underfitting happens when the model is unable to achieve a high accuracy

on the training set. Overfitting is when the gap between training accuracy

and generalisation accuracy is too large [36]. The model’s capacity controls

whether it is more likely to overfit or to underfit. The capacity can be defined

as the model’s ability to fit a large variety of functions. A low capacity results

in underfitting as the model is not able to fit the training set. A high capacity

can lead to overfitting as the model learns characteristics of the training set

that are useless for generalisation.
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The best performing algorithms need to have an appropriate capacity to the

complexity of the task at hand. Figure 3.2 shows the typical relationship

between capacity and accuracy.

Parametric and non parametric models. A parametric model learns a

function described by a parameter vector with a finite size set ahead of any

data observation. An example of parametric classification model is the logistic

regression classifier. A non parametric model does not have this limitation and

has a complexity that is a function of the training set size. The capacity of

a non parametric model can therefore become very high. An example of non

parametric model is the k-nearest neighbour classifier.

3.2.3 Hyperparameters and Validation Sets

In the majority of machine learning models, there is a number of parame-

ters that control the algorithm’s behaviour – by controlling its capacity for

instance. These are called hyperparameters and are not tuned by the learning

algorithm itself. They thus need optimising. For this purpose, a nested learn-

ing procedure must be implemented to be able to learn the hyperparameters

resulting in the best system performance.

If the hyperparameter controls the capacity, it is not possible to learn it on the

training set because as shown on Figure 3.2, the accuracy will increase with

the capacity and the hyperparameters giving the highest accuracy will always

be picked. This would result in overfitting and give poor generalisation. It

is also important that the test examples are not used to make any decision

about the model, including the choice of hyperparameters, as this would mean
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that these example are not “unseen” by the model during testing. This would

result in an optimistic evaluation of the model’s generalisation accuracy. To

solve this problem, a validation set is often used. It is a set of unseen examples

by the training algorithm picked from the training data. The training data

is therefore split into two subsets, one is used to learn the parameters of the

learning algorithm, and the other one, the validation set, is used for selecting

the hyperparameters. In this thesis, we used 80 % of the training data for

training and 20 % for validation. The test set is then used for generalisation,

once the hyperparameters have been optimised.

3.2.4 Cross-Validation

The datasets used in this thesis being small, a fixed training and test set would

be problematic as estimating the average generalisation accuracy would imply

statistical uncertainty. This would make it hard to compare different systems

performances. In order to resolve this issue, a cross-validation procedure can

be carried out: the data-generating process is repeated on different randomly

chosen splits of the dataset. More specifically, a k-fold cross-validation can be

computed. The dataset is split into k folds – or non overlapping subsets – and

k different trials are run using different training and test sets. On the ith trial,

the ith subset is used as test set and the remaining data is used for training.

This procedure may also be used for validation.

3.2.5 Feature Extraction

As described previously, a learning algorithm requires some features taken

from the objects – in our case, images – to classify. These features are usually
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vectors describing certain characteristics of the image. The choice of features is

critical to the performance of the algorithm. They are a representation of the

input data and, for this purpose, have a descriptive function. They also need

to have a high discriminative power in order to differentiate regions or patterns

in the input image. Finally, their size need to be as reduced as possible in order

to avoid the curse of dimensionality (see Section 4.3.1). The next section will

go through feature extraction techniques.

3.3 Previous Work on Texture-Based CAD of

Colorectal and Prostate Cancer

3.3.1 The Generic CADS

A great number of various techniques are available in the literature for au-

tomatic diagnosis of cancer using microscopic images of biopsies. Different

approaches are taken by the authors. Some of them aim at detecting a cancer-

ous region on a whole slide, others focus on grading the stage of the cancer and

the rest work towards a classification of regions with homogeneous diagnosis

[15, 4]. The majority of these approaches revolve around the same workflow –

see Figure 3.3. First, an image preprocessing phase is used to remove irrelevant

noise, segment key objects, regions, or features in the image, or standardise

the intensity and the scale of the image to maintain unity in colour or grey

level and magnification throughout the whole dataset. Afterwards, a feature

extraction phase tries to capture the characteristic information for the problem

at stake. It popularly resorts to colour, texture and morphological features.

The next phase is the feature selection where the most discriminative features
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Biopsy
images

Image
preprocessing

Feature
extraction

Feature
selection

Classification
Diagnosis
outcome

Figure 3.3: Standard workflow of a CAD algorithm

extracted from the image are picked out to be fed to the classifier. Finally, the

classification phase either detects the cancerous region or gives a final diagnosis

in terms of grade or type of tumour, depending on the authors’ approach.

All these techniques can be divided into two different categories according to

the feature extraction they use.

1. The algorithms using texture features: these algorithms use metrics to

characterise the spatial variations of pixel intensity [37] in order to iden-

tify the representative patterns to the different diagnosis outcomes. Har-

alick et al. [38] indentified fine, coarse, smooth, rippled, molled, and

irregular or lineated textures.

2. The algorithms using morphological features: this type of algorithm in-

tends to estimate the shape and size of structures present on the image

such as epithelial nuclei and cytoplasms, glands, lumen, mucous or cer-

tain types of cells like the goblet cells.

Using textures features has a clear advantage as cancerous and pre-cancerous

tissues often do not have recognisable structures – as described in Section 2.2.3

– thus making a morphologic description impossible. A number of combina-

tions of morphologic and texture features have been explored in precedent

works. Tuceryan et al. [37] distinguished four different groups of texture anal-

ysis methods.
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1. Statistical methods use the spacial distribution of grey values of the im-

ages. Common examples are co-occurrence matrices and autocorrelation

features.

2. Topological methods characterise a texture as consisting of ”texture el-

ements” or primitives. Some methods then extract statistical properties

of the primitives and use them as feature vectors. Instead, other meth-

ods look for a placement rule that constitutes the texture. Examples of

such methods are Voronoi tessellations or Delaunay triangulations.

3. Model based methods are not only capable of describing the texture but

they are also able to synthetise it thanks to parametres that capture

the main perceived qualities of texture. Random fields models such as

Markov random fields and fractals are the most common examples of

such methods in literature.

4. Signal processing methods such as spacial domain filters, Fourier trans-

forms, Gabor and wavelet models.

Table 3.1 summarises the different methods used in the context of CAD of

colorectal and prostate cancer.

A complete CADS based on digitalised biopsy images of prostate or colorectum

should include two steps. First, it should be able to locate the cancerous or

abnormal region on a slide. Then, an automated and thorough analysis of this

region determines the final diagnosis by finding the type of tumour or grading

the cancer. However, in the majority of published works, authors focus on one

of these two steps. This thesis concentrate on the second step.
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Table 3.1: Summary of the different texture feature extraction methods

Method Category Description Features

Statistical Co-occurence Matrices
(GLCM)

Captures spacial
relationships between
pixels with the same
intensity

Haralick features
[21, 39, 40, 41, 42, 43,
44, 45, 17, 18, 46, 47]

Run-Length Matrices
(GL-RLM)

GL-RLM features [48]

Autocorrelation
features

describes the
coarseness, regularity
and fineness of the
texture

Autocorrelation
coefficients

Histogram-based Compiles the different
pixel intensities
without any spacial
information

First-order statistics
[44, 43, 48, 17, 18],
color-channel
histogram [49, 50]

Local operators Captures the local
information of texture

Local Binary Pattern
(LBP)
[51, 52, 53, 16],Local
ternay Pattern (LTP)

Topological Graphs Represents the
placement rule that
depicts the texture

Statistics from graphs
based on the nuclei
positions [54, 50, 55]

Model-
based

Random field models Models the texture as a
probability model or as
a linear combination of
a set of basic functions

Probabilistic pair-wise
Markov model
(PPMM) [56]

Fractals Uses scaling invariance
to capture
self-similarity of the
image

Greyscale fractal
dimension [57, 49] color
fractal dimension
[56, 58]

Signal
processing-
based

Time domain filter
response

Captures information
on orientation and
edges of the image

Sobel, gradient and
derivative [44, 43]

Wavelets Multiscale tool that
captures both spacial
and spectral
information

Gabor filters
[43, 44, 59],
multiwavelets
[40, 46, 51]
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3.3.2 State-of-the-Art Texture-Based Tumour Classifi-

cation and Grading for Digitalised Biopsy Images

of Colon and Prostate Tumours

This section reviews the methods described in published articles for classifica-

tion or grading of colon and prostate cancer using biopsy images. The main

issue when comparing these studies lies in the diversity of data used by re-

searchers testing their work. The datasets vary in size, ranging from a few

dozen images to a few thousands. The number of classes used to distinguish

two cases can also be very different from one study to the other. Some can use

a binary cancer/not cancer distinction when others tend to display a more pre-

cise spectrum of cancer evolution and highlight the diversity of tumour types.

The very type of data used can be either a panchromatic grey-scale image, or

a RGB colour image, or even a multispectral image.

Feature extraction

Panchromatic and colour images Esgiar et al. [60] computed a gray-

level co-occurrence matrix (GLCM) on each colorectal histological image and

extracted some of the GLCM features proposed by Haralick [38]. In [47],

Kalkan at al. combined the same features with structural ones before com-

puting a feature selection and a four-class classification, achieving a 75.15 %

accuracy. In the case of prostate cancer, several authors used the GLCM

features [21, 43, 44, 41]. Haralick and morpologic features are sometimes com-

bined. For instance, the authors of [41] used morphologic characteristics to

classify non-cancerous regions by assuming that the lumen occupies a larger

area of the image in a normal tissue. The classification between stroma and
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cancerous tissue was then based on Haralick texture features. Their reported

classification error was 20.7 %. In [51], the authors used a 8-class dataset of

5000 images. The classes involved were the following: tumor epithelium, simple

stroma, complex stroma, immune cells, debris, normal mucosal glands adipose

tissue and background (no tissue). The authors compared several texture de-

scriptors such as GLCM, Linear Binary Pattern (LBP), perception feature –

mimicking the human perception at an abstract level, as described in details

in [61] – and Gabor filters. Their best reported result was achieved with a

combination of LBP, GLCM, lower and higher order histogram features and

perceptual features with 87.4 % accuracy. The authors of [57, 49, 58, 62] used

fractal analysis for prostate cancer grading or carcinoma detection. Huang

et al. [58] used two different fractal measurements: the conventional fractal

dimension and an entropy-based fractal dimension. They achieved a 95 %

accuracy for their system. In [49, 63], Tabesh et al. described the colour,

the texture and morphologic characteristics of the tissue sample using object-

and image-level features. Tissue structures are segmented and the intensity

of these segmented regions are used for object-level features, while features

such as colour channel histograms, fractal dimension and wavelet coefficient

statistics are considered for image-level analysis. In this study, 96.7 % of the

samples were correctly classified for the binary cancer versus non-cancer prob-

lem. When tackling the Gleason grading classification task, the accuracy was

81 %. Yu et al. [56] proposed a method using the colour fractal dimension

that captures colour and textural information on the tissue. It is modeled

as a mixture of gamma distributions per pixel. The spacial dependences be-

tween pixels are taken into account via a probabilistic pairwise Markov model

(PPMM) [64, 65, 66] once a Bayesian classification between cancer and benign

pixels has been performed. Jafari-Khouzani et al. [40] extracted the energy
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and entropy of multiwavelet transform coefficients which they combined with

Haralick features. These descriptors were used on a 100-image dataset split

into 4 classes and produced a classification accuracy of 97 %. Almuntashri et

al. [67], used a 3-class dataset of 45 images. They developed a system employ-

ing some of the wavelet transforms energy features along with wavelet-based

fractal dimensions. This system reportedly performed a 95 % classification

accuracy. In some studies, morphologic features are first extracted to be used

as a basis for a texture feature extraction algorithm. This is the principle

used by Naik et al. in [55] where cell nuclei were segmented and their cen-

troids were used as seeds of Voronoi, Delaunay and minimum spanning tree

graphs. Those graphs aim at capturing the nuclei’s spacial organisation in

the tissue to classify thanks to features like area, edge length and nuclear

density. In [68], Sengar et al. used a mix of statistical an textural features

extracted from preprocessed ROIs. Banwari et al.[69] used similar features for

ROI segmentation. In [70] et al. Haralick and LBP features were extracted

from preprocessed patches of the colon slide images converted from RGB to

grey-level format. Similarly, Hussain et al. [? ] compared the performances

of different textural and morphological features coupled with different types

of classifiers. They used a dataset of prostate cancer RGB images converted

to the grey-level format. Other studies use a combination of textural and

morphological features. For instance, Nguyen et al. [44, 71] segmented the

nuclei using a maximum likelihood algorithm and combined it to a collection

of texture features including first order statistics, Gabor filters statistics and

Haralick features.

Multispectral images Multispectral images have been used for texture fea-

ture extraction. In [45], Masood et al. applied GLCM features after segment-
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ing the image data through a pre-processing phase. the approach consists of

using the spectral dimensions to segment the image into four clusters represent-

ing four different tissue types: nuclei, cytoplasm, glands and stroma. Chaddad

et al. proposed an improved version of the snake algorithm for the segmen-

tation and extraction of GLCM texture features of multispectral-segmented

images [46]. In [72], the authors proposed a method for characterising the

continuum of colorectal cancer using several texture features after segmenta-

tion. As for features extraction, the GLCM features, the Laplacian of Gaussian

and discrete wavelets were used. A few other studies used wavelet transforms

[44, 73] and Laplacian of Gaussian [47]. In [17], Roula et al. worked on prostate

histological images and extracted GLCM features from each spectral band and

combined them with morphological features for the discrimination phase using

a quadratic discriminant analysis. They showed that multispectral analysis

significantly improved classification scores. In [19], Tahir et al. first extracted

statistical and structural features as well as the GLCM features. They then

used a Round-Robin Tabu Search for dimensional reduction of the multispec-

tral data before classification. They achieved a classification accuracy ranging

between 98 % and 100 %.

None of the previously mentioned authors used a multispectral texture fea-

ture detector that uses the spectral dimension directly. They either combined

several results of 2-dimensional texture detector run on each spectral band,

or used dimensional reduction to create a 2D image on which the texture was

to be detected. Khelifi et al. [74, 75, 76, 39] developed a multi-band tex-

ture detection extending the GLCM. For this purpose, they used a spatial and

spectral grey-level dependence method assuming a joint information between

spectral bands exists. They applied this technique to the prostate cancer case.

This method was inspired by the generalised co-occurrence matrix presented
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in [77] by Hauta-Kasari et al.. In [78], the authors extracted significant fea-

tures of the GLCM of the images using a analysis of variance. They further

reduced the feature dimensionality using PCA and finally trained a decision

tree classifier, they achieved 92.59% accuracy.

However, only few studies use LBP texture features in this field [52, 53] and

none of them uses the joint information of spatial and spectral dimensions.

For example, the authors of [52] select a single band from which the texture

extraction is conducted. In [53], the LBP histogram is built on all three colour

channels of the image.

Multispectral images were also used in other cancer detections. Grote et al.

[79] used multispectral images to distinguish between non-malignant lobular

tissue from well differentiated breast cancer. They used a texture-based su-

pervised classification in order to detect lobule candidate regions. Irshad et

al.[80] worked on multispectral band selection applied to mitosis detection in

breast cancer histopathology. They used texture features including Haralick

and GL-RLM on selected bands before classification. Zimmerman-Moreno et

al. [81] used LBP features extracted from each spectral band of lymph nodes

microscopic images

Classification

After choosing a set of features to extract from the image, and potentially se-

lecting a subset of them, the next step is the choice of a classification method.

Like in most fields where machine learning is involved, the published studies

on automatic diagnosis of colorectal or prostate cancer use a supervised learn-

ing approach. Machine learning systems use mathematical functions – called
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classifiers – whose argument is a feature vector and returns one of the classes

considered in the classification problem at hand. In supervised learning, this

classifier requires a dataset to be trained on. During training, the classifier is

fed a collection of pairs of feature vector and class label. It also establishes

some decision boundaries in the feature space.

The most common classification methods used for this problem are k nearest

neighbours (k-NN), support vector machines (SVM), neural networks, logistic

classifier, random forest or linear discrimination. Alexandratou et al. [82]

compared 16 supervised machine learning algorithms on how well they could

classify a dataset of prostate cancer images according to either a tumour versus

non-tumour split, a low- versus high-grade division, or a four-class diagnostic

and grading problem. Thirteen Haralick features were extracted and WEKA

(Waikato Environment for knowledge Analysis [83]) packages were used to

evaluate the different classifiers. They concluded that Logistic Regression and

SVM were the two most competitive classifiers.

Ensemble learning or multiclassifiers [84, 85] is a possible method used to im-

prove a system’s classification results. With this strategy, an ensemble – or

collection – of classifiers is put together and each one of them is trained on all

or part of the feature space. In the end, their predictions are combined to give

the final outcome of the model. With a complex structure and multiple differ-

ent characteristics and feature vectors, histologic images are particularity well

suited for this type of strategy. For instance, by using the strengths of each

classification method in discriminating some particular aspects of the task at

hand and combining them, it can be expected that the overall performance of

the system will be improved. Ensemble methods can work on different parts

of the feature space, using different training sets or different classifiers all to-



3.3. Previous Work on Texture-Based Cancer Classification 52

gether. Doyle et al. [86, 87, 88] developed a cascaded ensemble learning system

dividing the multiclass problem into several binary problems, going from the

broadest to the most specific. Tissues are first sorted out between cancerous

and non-cancerous. Then, the cancerous tissues are subdivided according to

another binary classifier – e.g. Gleason grades 3 and 4 versus Gleason grade

5. This same approach is used until all the classes are processed. Through

this process, the most different classes are better divided and it results in an

increased accuracy. This method has proved to outperform the traditional

one-versus-all scheme used for multiclass problems and the one-shot classifi-

cation. The overall multiclass accuracy was 89 %. Nguyen et al. [44] used

two SVM classifiers trained on different feature sets, meaning one of them is

trained on texture features and the other is trained on morphological features.

The probabilities that each classifier classifies their associated feature set as

cancer or normal tissue are multiplied. Those products are then compared

and the sample is classified as cancerous if the product of the probabilities

that it is cancerous is greater than the product of the probabilities that it is

normal tissue. Greenbalt et al. [53] presented a two-stage ensemble learning

system that first assigns an initial grade using quaternion wavelets and LPB

associated with a neural network multiclass classification. In a second phase,

the classification result is refined using a SVM classifier if some classes have

close probabilities. An accuracy of 98.9 % was reported over all the classes

considered. Such a system can be generalised to more than two stages using a

tree-like structure.

Sanghavi et al. [89], proposed a method based on scale-invariant feature trans-

form (SIFT) and speeded up robust features (SURF) extraction on each colour

plan, allowing them to extract key points on the image such as cell nuclei. This

is followed by the creation of a dictionary of words using a k-means clustering
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technique. The final classification is performed with a k-NN classifier. A 94 %

classification accuracy was achieved for grade 3 and 4 of prostate cancer.

Table 3.2: Summary of the systems used for CAD of colorectal and prostate
cancer

Author Feature Classifier Dataset System
perfor-
mance

Esgiar et
al. [60]

Haralick features Linear
Discriminant
Analysis (LDA) or
k-NN

44 normal and 58
cancerous
panchromatic
images of colon
biopsies

Accuracy:
90.2 %

Kalkan
et al.
[47]

Haralick features,
morphologic
features

Logistic regression
classifier

55 panchromatic
images of colon
biopsy divided
into 4 classes

AUC:
0.90-0.95

Kather
et al.
[51]

Haralick, LBP,
lower and higer
order statistics,
perceptual
features

SVM with radial
basis function
(rbf)

5000 panchromatic
images of colon
biposy divided
into 8 classes

Accuracy
87.4 %

Huang et
al. [58]

Fractal dimension,
entropy based
fractal dimension

Bayesian, k-NN,
SVM

205 panchromatic
images of prostate
biopsy divided
into 4 classes

Accuracy:
94.6 %

Tabesh
et al.
[63, 49]

Fractal dimension,
color channel
histograms,
wavelet coefficient
statistics

Bayesian, k-NN,
SVM

2 sets of prostate
panchromatic
images:
tumour/non-
tumour 2-class set
(367 images) and
Gleason grade
4-class set (268
images)

Accuracy:
Set 1: 96.7
% Set
2: 81.0 %

Yu et al.
[56]

Colour fractal
dimension and
PPMM

Markov random
field

27 panchromatic
images of prostate
biopsy

AUC:
0.831

Continued on next page
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Table 3.2 – Continued from previous page

Author feature Classifier Dataset System
perfor-
mance

Naik et
al. [55]

Graph-based
features

SVM 44 panchromatic
images of prostate
biopsy divided
into 3 classes

Accuracy:
91.48 %

Almunta-
shri et
al. [67]

Wavelets energy
features,
wavelet-based
fractal dimensions

SVM 45 panchromatic
images divided
into 3 classes

Accuracy:
95 %

Nguyen
et al.
[44]

morphologic
features, Haralick
features, first
order statistics,
Gabor filter
statistics

SVM 17 panchromatic
images of prostate
biopsy

FPR: 6 %

Sun et
al. [48]

Run-length matrix
features

Multilayer
Perceptron

9 panchromatic
images of prostate
biopsy

Accuracy:
89.5 %

Masood
et al.
[45]

Haralick features
on segmented
images using
spectral
dimensions

LDA, SVM 32 hyperspectral
images of colon
biopsy, 2 classes

Accuracy:
90 %

Roula et
al. [17]

Haralick features
from each spectral
band, morphologic
features

Quadratic
discriminant
analysis

33 Multispectral
images of colon
with 33 spectral
bands between 400
nm and 720 nm

Error rate:
5.1 %

Tahir et
al. [8]

Haralick features,
Round-Robin
Tabu Search

SVM prostate dataset Accuracy:
98 %

Table 3.2 summaries a selected number of methods presented in this section.

The results are difficult to compare as each study uses different performance
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measures as well as a different dataset with different data types and a different

number of classes.

3.3.3 Previous Work on Multispectral Texture Analysis

Some methods for other applications, such as image segmentation, used a 3D

histogram as a mean to fuse information from three colour channels of a colour

image [90]. Hassan El Maia et al.[91] proposed a method for multispectral im-

age classification using the mutual information of GLCM features. In [92], the

authors used a method developed in [93] for automatic face recognition. This

algorithm was a modified LBP that computed a LBP on each colour band

of the spectrum separately and added opponent features to capture the spa-

cial correlation between the bands. Radu-Mihai Coliban et al.[94] proposed a

pseudo-morphology based on the Euclidean distance in Rn. Using the proposed

pseudo-morphology, the authors introduced a pseudo-granulometry and a mor-

phological covariance to characterise the image texture. In [95], the authors

use a neural network structure to classify multispectral texture information

extracted from the images.

3.3.4 Previous Work on IR Analysis

In the field of facial recognition, the IR spectrum has been used and has

proved to increase the recognition rates in many cases. Abdelhakim Bendada

et al.[96] introduced a differential local ternary pattern (LTP) descriptor and

extend their method to the IR spectrum. It was shown that a high recogni-

tion rate was achieved with the IR spectrum. The authors of [97] developed a

method for synthesising the visible and near IR face images in order to take
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advantage of both the illumination invariance of IR images and the detailed

texture information provided by the face images captured in the visible range

of the electromagnetic spectrum. The authors compared their method to the

conventional LBP applied separately to the near IR and visible images and

showed that the combined use of the IR and visible spectra increased the

identification rate by 8.76 pp (from 88.83 % to 97.59 %). Thematic mapping

imagery uses the infrared spectrum to acquire information that is not captured

by the visible spectrum. Yun Zang [98] used an algorithm of conditional vari-

ance detection on multispectral images captured on a visible and IR spectrum

for classification of urban treed areas.

Larsh et al. [22] worked on infrared spectroscopy of human cells and tissue

for disease detection. The authors showed that it is possible to differentiate

between IR spectra from the cytoplasm from those from the nucleus even in di-

viding cells. Smolina et al. [99] also demonstrated that the IR spectral response

of epithelial tumours for breast cancers have a high discriminative power. In

[100], IR imaging is used to predict the presence of regional or distant metas-

tases in primary skin melanomas. Wolthuis et al. [101], used reconstructed

colour-coded spectral images for generating an automatic IR-based histology

of human colon carcinomas. The effectiveness of the IR spectral imaging for

tumour heterogeneity characterisation and tissue subtype recognition was es-

tablished. These previous research on IR imaging show that information that

is invisible to the human visual system can be captured by IR imaging. This

can lead to improved prevision performances for many problems. This type of

imagery have not been directly applied to the problem at hand.
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3.4 Conclusion

This chapter described the basics of machine learning algorithms and how

texture features could be extracted in order to be used by the learning algo-

rithm. The state-of-the-art texture-based computer aided-diagnosis systems

for prostate and colorectal cancers were reviewed. We also addressed previous

works on multispectral and IR texture analysis. The next chapter investigates

different texture extraction methods and classifiers for multispectral histology

images.



Chapter 4

Texture Analysis on

Multispectral Images for

Colorectal and Prostate Cancer

Diagnosis

4.1 Introduction

A number of techniques have been used to characterise the texture of an image

as discussed in Section 3.3.1. This chapter, based on the study [2], investigates

four different types of texture feature extraction techniques: Haralick texture

feature, Local Binary Pattern (LBP), a multiscale version of LBP and Local

Intensity Order Pattern (LIOP) with the aim to evaluate their performances.

The proposed algorithm consists of extracting the features on each spectral

band and fuse them by concatenating the features into a large feature vector.

58
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Then, a Principal Components Analysis (PCA) is used in order to reduce the

large dimensionality of the feature vector with a view to select the best features

and hence avoid the effect of feature correlation which can negatively affect

the classification accuracy.

To assess the usefulness of the proposed method, a comparative study against

one similar algorithm using panchromatic images is carried out. The panchro-

matic image is obtained by averaging all the spectral bands into one two-

dimensional image.

4.2 Texture Analysis

4.2.1 Haralick Texture Features

The Haralick features [38] are calculated from the grey-level co-occurrence

matrix (GLCM) which reflects how often a pixel with the intensity value i

occurs in a specific spatial relationship (r, θ) ∈ R2 to a pixel with the value j.

Namely, the GLCM of an n×m image with p different pixel values is a p× p

matrix defined as follows [38]:

GLCMr,θ(i, j) =
n∑
x=1

m∑
y=1

{
1, if I(x, y) = i and I(x+ r cos θ, y + r sin θ) = j,

0, otherwise.

(4.1)

Four different spatial relationships are computed: r = 1 and θ = 0◦, 45◦, 90◦, 135◦.

This results in four different GLCMs: GLCM1,0, GLCM1,π
4
, GLCM1,π

2
, GLCM1, 3π

4
.

These matrices are then normalised to have real values in [0, 1].
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The following Haralick features are computed from the normalised GLCM

matrices GLCMr,θ(i, j) of the image [38]:

• Energy: ∑
i,j

p(i, j)2, (4.2)

• Contrast: ∑
i,j

|i− j|2p(i, j), (4.3)

• Homogeneity ∑
i,j

p(i, j)

1 + |i− j| , (4.4)

• Correlation ∑
i,j

(i− i)(j − j)
σiσj

p(i, j). (4.5)

A feature normalisation is then operated and these different Haralick features

from all the GLCMs are concatenated in a vector. As a result, a vector of

length 16 is created and used as a feature vector and image descriptor.

For multispectral images, GLCMs are extracted from each band and the Haral-

ick features of each band are computed separately. They are then concatenated

into a single final vector used as image descriptor.

4.2.2 Local Binary Pattern (LBP)

Ojala et al. [102] described LBP texture features as a local characterisation of

a pixel neighbourhood at a radius R sampled into a set of P neighbors on a

circle centred around the central pixel and of radius R. Let g0 be the intensity
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of the central pixel x and gp the intensity of its pth neighbor. The LBP is

defined as follows [102]:

LBPP,R(x) =
P∑
p=1

s(g0 − gp)2p−1, (4.6)

where,

(x) =

{
0, if x ≤ 0,

1, if x > 0.
(4.7)

LBP is computed for the whole image, before it is pooled into a LBP histogram

of size 256. The resulting LBP histogram, which is invariant to intensity

changes, is then used as a texture feature descriptor to characterise the image.

A multiscale version of LBP has also been modified and tested on the images:

the LBP histograms are calculated over different scales and concatenated into

a single multiscale LBP histogram. For each scale, the neighbourhood is con-

sidered at a different radius R.

4.2.3 Local Intensity Order Pattern (LIOP)

The global ordinal intensity information is used to divide the image into sub-

regions where local ordinal information of each pixel is accumulated into their

respective LIOPs [103]. More precisely, the first phase consists of a prepro-

cessing step where a Gaussian filter is applied in order to smooth an image,

therefore making the relative order insensitive to noise. Secondly, the pixels

are sorted by their intensity in a non-descending order. A histogram is cre-

ated by dividing this array of pixels into B equal bins, each bin representing

a subregion.
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Table 4.1: Index Table of the permutations in (1, 2, 3)

Permutation (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)
Index 1 2 3 4 5 6

Then, the LIOP is computed for every subregion. Each pixel’s, x, neighbour-

hood is sampled into a set of N neighbours (x1, x2, . . . , xN). Let’s consider ΠN

the set of all possible permutations π of N integers (1, 2, . . . , N) and set an

index table defining a function Ind(π) as shown is Table 4.1 for N = 3.

The set of neighbours is sorted in an intensity non-descending order to obtain

a permutation π of the original set. The LIOP for pixel x is a N !-dimensional

vector defined as follows:

LIOP (x) = (0, 0, . . . , 1
Ind(π)

, . . . , 0). (4.8)

For each subregion, a N ! bins histogram is created with the LIOPs of all the

pixels within it. They are then concatenated to form the LIOP descriptor of

the image.

LIOPdescriptor = (des1, des2, , desB), (4.9)

where:

desi =
∑
x∈bini

LIOP (x). (4.10)

This method captures both global and local intensity information and makes

the features invariant to intensity changes and geometrical and photometric

transformations such as rotation.
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4.3 Feature Selection

Prior to performing the sample classification, a feature selection is operated.

The approach used to handle multispectral data generates large feature vectors.

Indeed, texture feature vectors are extracted from each spectral band of an

image and are then concatenated to form the image descriptor.

This can result in an increased training time, but can also lead to poorer results

due to the curse of dimensionality problem causing an increased overfitting.

This curse of dimensionality is especially visible with the dataset used in this

work because they consist of a small amount of samples.

4.3.1 Curse of Dimensionality

The curse of dimensionality is a counter intuitive concept that states that, with

a fixed number of training samples, the model’s accuracy decreases when the

number of explanatory variables increases [104, 105]. This can be explained

by the fact that when the dimensionality of the feature space increases, it be-

comes sparser and sparser as the density of samples decreases. As a result, the

likelihood that a sample lies on the wrong side of the best separating hyper-

plane tends to zero when the dimensionality tends to infinity. In other words,

as illustrated in the example in Figure 4.1a and 4.1b, the probability of finding

a hyperplane that separates correctly two classes in the training set increases

with the dimensionality of the feature space. However, when the function is

projected back into a lower dimensional feature space, the simple hyperplane

becomes a complicated function. Consequently, this function learns character-

istics that are specific to the training set, leading to overfitting. Therefore, the

model fails to provide accurate results on the testing set.
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(a) In a 2D feature space, this set of samples is
not separable by a simple linear function

(b) By increasing the feature space dimension-
ality, it is possible to find a hyperplane that
separates the samples

Figure 4.1: Example of a 2-class training set described in (a) a 2D feature
space and (b) a 3D feature space
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4.3.2 Principal Component Analysis

PCA is a widely used technique for feature selection [106, 107]. Its goal is

to find a matrix W verifying eq. 4.11 so that the n-dimensional transform

s = (s1, s2, . . . , sn)T explains the maximum amount of variance using n linearly

transformed orthogonal components s1, s2, . . . , sn.

s = Wx, (4.11)

where, x is a m-dimensional random vector.

The PCA is computed using a recursive process. The direction of the first

principal component, w1, is defined as follows:

w1 = arg max
||w||=1

E{(wTx)2}, (4.12)

where, w1 is am-dimensional vector. As a result, the first principal component,

w1, is the projection in the direction for which the projection has the maximum

variance.

The general term of the recursive formulation is defined as follows: having

determined the k − 1 first principal components, the kth principal component

is defined as the principal component of the residual:

wk = arg max
||w||=k

E{(wT (x−
k−1∑
i=1

(wiwi
Tx))2}. (4.13)

The principal components are given by sk = wk
Tx. In practice, the PCA is

usually carried out using the covariance matrix of the sample C = E{xxT}.

The direction vectors, wk, of the principal components, sk, are the eigenvectors
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of C corresponding to its n largest eigenvalues. In this case, the goal is to

perform a dimensionality reduction, therefore n << m is chosen.

4.4 Classification

Once the texture features are extracted and the most discriminative selected,

the classification is carried out. To achieve this step, the database is divided

into a training set and a testing set, consisting in 70 % and 30 % of the total

dataset, respectively. A 10-fold cross-validation is then computed and all the

loops’ results are averaged in order to obtain the final results.

As a measure of performance and to take into account false alarm rates, the

classifier accuracy and the ROC’s Area Under Curve (AUC) for each of the

three classes are used.

Five different classifiers were tested to compare their performances: the k-

Nearest Neighbour (k-NN) classifier, the Logistic Regression (LR) classifier,

the Decision-Tree (DT) Classifier, the Random Forest (RF) used with 100

decision trees, and the Support Vector Machine (SVM) with a Gaussian kernel.

4.4.1 k-Nearest Neighbour (k-NN) Classifer

The k-NN classifier is a non-parametric method, i.e. it needs to store the

training examples. In fact, in this method, a sample is classified by a majority

voting scheme from its k closest training examples. The parameter k is the

only parameter to tune in order to optimise accuracy on the testing set. A

distance metric also needs to be selected. The more commonly used is the
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Minkowski distance Lp:

Lp(xi,xj) = (
∑
k

|xi,k − xj,k|p)1/p. (4.14)

This distance is the Euclidean distance with p = 2. However depending on

the data structure, other distances can be used such as Chi Square or cosine

distances. For this work, the Euclidean distance was selected for its versatility

and ease of implementation.

4.4.2 Logistic Regression (LR) Classifier

The LR classifier is easy to implement and is computationally inexpensive [36].

Once the training is performed, the classification step is also simple and rapid.

The principle of a LR classifier is simple: for every training example, a linear

combination of its features is fed to a sigmoid function σ(z):

σ(z) =
1

1 + e−z
. (4.15)

The sigmoid function is represented in Figure 4.2. It has a noticeably similar

behaviour to a step function. However, the sigmoid function has continuity

and differentiability properties on its whole definition domain.

As a result, the linear combination of features fed to the sigmoid function will

return a value between 0 and 1. If this value is greater than 0.5, the example

is classified as 1 otherwise, it is classified as 0.

More formally, this can be described as follows. Let the labeled data be

{xi, yi}, i = 1 . . . n, yi ∈ {0, 1},xi ∈ Rd. The aim is to find a weight vector
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Figure 4.2: Plot of the sigmoid function. Its value at 0 is 0.5, and quickly
tends to 1 when z increases while quickly vanishing when z decreases.

w so that for a maximum of samples xi, the following condition is respected:

{
σ(xi ·w) > 0.5 if yi = 1,

σ(xi ·w) ≤ 0.5 if yi = 0.
(4.16)

This is therefore an optimisation problem which is solved using a gradient

descent method.

For the testing phase, the linear combination of the new example’s features is

fed to the sigmoid function, using the weights calculated on the training data.

4.4.3 Decision Tree (DT) Classifier

The basic principle of the DT classification model is to break down a complex

decision making problem into a set of simpler decisions to make [108]. This

often makes the solution easier to interpret. As illustrated in Figure 4.3, a DT

is a tree in which each internal node is labeled with an input feature. The

leaves of the tree are labeled with a class. During training, the problem of
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Figure 4.3: Diagram of an example of a DT classifier

classifying the full input feature vector is divided into smaller problems at the

nodes. The deeper the tree is, the more layers it will have and the smaller the

decision making problems will be at the internal nodes.

4.4.4 Random Forest (RF) Classifier

The RF classification method is based on an aggregation of DTs [109]. A

random feature selection is realised and different sets of features are used to

train different DTs. The different predictions of the DTs are submitted to a

majority vote or an averaging principle to give the final prediction. An example

of diagram of the RF algorithm is shown on Figure 4.4.

4.4.5 Support Vector Machine (SVM)

The SVM framework is a very popular approach for supervised learning. It

has thee main properties that make it attractive for this purpose. [110]
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Figure 4.4: Diagram of the RF classifier



4.4. Classification 71

• SVMs build a maximum margin decision boundary, i.e. with the max-

imum distance to the samples. This helps them perform well on the

generalisation set [85].

• The decision boundary is a linear hyperplane. However, by using the ker-

nel trick, data can be embedded into a higher dimensional space. This

trick is used for data that are not linearly separable in the original space.

As seen in Section 4.3.1, increasing the feature space dimensionality of-

ten helps to find a linear separator. This separator is non-linear in the

original feature space and therefore can separate non-linearly separable

data.

• SVMs are a non-parametric method meaning that the training data are

not summarised by a fixed set of parameter, i.e. the number of parameter

depends on the number of training examples. However, in practice, they

retain only a small number of training samples, usually proportional to

the number of dimensions. Consequently, SVMs combine the advantages

of both the non-parametric and parametric methods: they are able to

depict complex functions whilst being resistant to overfitting.

The main idea of SVMs is that some training examples are more important

than others: those from one class that are closer to the other class in the

feature space. The decision boundary should therefore be the farthest away

possible from the training examples, namely maximising the margin which

is the distance between the closest example from each class and the decision

boundary. Those closest training samples to the decision boundary are the

support vectors. This principle is illustrated in Figure 4.5.
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Figure 4.5: Example of a SVM binary classification. Red points correspond
to the positive class and the blue to the negative class. The hard green line
is the maximum margin separator and the margin is the area between the
dashed lines. The support vectors are the points that are on the dashed lines,
represented by a small circle marker.

Linear SVM

The data are assumed linearly separable by a separating hyperplane dividing

the positive class from the negative one [111]. The data are labeled {xi, yi},

i = 1, . . . , l, y ∈ {−1, 1}, xi ∈ Rd. The points x that are on the hyperplane

satisfy Eq. 4.17.

w · x + b = 0, (4.17)

where, w is a normal vector to the hyperplane. Therefore, the distance be-

tween the hyperplane and the origin is given by dh = |b|
||w|| , where ||w|| is the

Euclidean norm of w. Let d+ and d− be the distance from the separating plane

and the closest positive and negative examples, respectively. The margin of

the separating hyperplane equals d+ + d−. The aim of the SVM is to find

the separating hyperplane that maximises this margin. This problem can be

formulated as follows.
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It can be assumed that all the training examples satisfy:

xi ·w + b ≤ −1 for yi = −1, (4.18)

xi ·w + b ≥ +1 for yi = +1. (4.19)

The following can be found from Eq. 4.18 and 4.19:

∀i, yi(xi ·w + b)− 1 ≥ 0. (4.20)

The points for which the equality holds in Eq. 4.18 and 4.19 are on the hy-

perplanes H1 : xi · w + b = 1 and H2 : xi · w + b = −1, respectively, both

with a normal vector w. Therefore, the margin equals d+ + d− = 2
||w|| . Conse-

quently, finding the planes H1 and H2 that maximise the margin is equivalent

to minimising ||w||2 under the constraints given by Eq. 4.20.

The problem is further solved by using a Lagrange multipliers method. Let

αi, i = 1, . . . , l, be the Lagrange multipliers for each inequality constraints of

Eq. 4.20. The resulting Lagrangian is [111]:

LP =
1

2
||w||2 −

l∑
i=1

αiyi(xi ·w + b) +
l∑

i=1

αi. (4.21)

This Lagrangian LP must now be minimised with respect to w and b, and

in the meantime the derivative of LP with respect to all the αi must vanish

with the constraints that αi ≥ 0. The objective function being convex, and

the points that satisfy the constraints forming a convex set, this problem is

convex. As a result, it is equivalent to the dual problem [111, 112]: maximise
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LP subject to the constraints that its gradiant with respect to w, and b vanish

and that αi ≥ 0.

The gradient of LP vanishes if and only if:

w =
∑
i

αiyixi, (4.22)

and ∑
i

αiyi = 0. (4.23)

By substituting them into Eq. 4.21, one obtains the final dual formulation of

the problem:

LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyj(xi · xj). (4.24)

The SVM training therefore consists in maximising LD with respect to the αi

subject to constraints given by Eq. 4.23 and αi ≥ 0. The problem solution is

given by Eq. 4.22.

One should note that there is one αi per training sample and those with αi > 0

are the support vectors, as they lie one of the hyperplanes H1 or H2. All the

other points have αi = 0 and do not have an effect on the decision boundary.

Non-Linear SVM: Kernelisation

In the case of non linearly separable data, it is possible to find a linear separator

in a higher dimensional feature space H by mapping the data from the original

feature space L to H with a mapping function F : L 7→ H [111, 85].

In the linear case (Section 4.4.5), it can be observed that the data only ap-

pear in the form of a dot product, xi · xj, in Eq. 4.24. Therefore, with this
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transformation, the SVM training will be the same as in Section 4.4.5, except

that the dot product in L, xi ·xj, is replaced by the dot product in H, that is:

F (xi) · F (xj).

This is where the kernel trick is accomplished. By defining a kernel function

such that K(xi,xj) = F (xi) · F (xj), the only knowledge of K : L2 7→ H is

enough to perform the SVM training without explicitly knowing the mapping

function F . Mercer’s theorem states that any kernel function such that the

matrix Kij = K(xi,xj) is positive definite, correspond to a feature space [113,

114]. Consequently, a reasonable kernel function can be chosen, and from its

use, an optimal linear separator can be found efficiently in high-dimensional

feature space. When mapped back into the original feature space, the decision

boundary is non-linear.

In this thesis, SVM is used with the widely employed Gaussian kernel, given

by:

K(xi,xj) = e
−
||xi−xj||

2

2γ2 . (4.25)

Two parameters are to be tuned depending on the input data: parameter

C and γ. The parameter γ translates the radius of influence of the support

vectors. A high γ means that the support vector will have a small radius of

influence while a high value means that the influence of the support vectors

reaches farther away [111]. The C parameter is a trade-off parameter. The

lower the C value, the smoother the decision boundary is. However, a high

value of C means the classification of all training examples needs to be accurate

even if it means that the model selects more support vectors and has a more

complex decision surface [111].
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4.4.6 Multiclass Classification

For some classifiers, the multiclass algorithm can be obtained by extending the

binary classifier. These include the random forest, neural network, SVM [115],

k-Nearest Neighbour, and Naive Bayes.

However, many classifiers implementations - such as the widely used implemen-

tation of SVM, LibSVM [116] - commonly decompose the multiclass problem

into several binary problems [111, 117]. It was even shown that these methods

performed better than the extended versions of the classifiers in some cases

[118, 119]. The two mainly used approaches are described here.

One-versus-All (OvsA) or One-versus-Rest

The idea of the OvsA approach is to decompose the K-class classification

problem into K different binary problems, where each separates a class from

the other K − 1 classes [120]. Therefore, K binary classifiers are required,

where the kth classifier is trained with the samples from class k as positive

examples and the samples belonging to the other K − 1 classes as negative

examples. During the testing phase, the classifier returning the maximum

output wins and the label corresponding to its class is assigned to the sample

tested.

One-versus-One (OvsO)

In the OvsO approach, classes are compared pairwise by different binary clas-

sifiers [121, 119]. For each pair of classes, only the samples from the two

considered classes are used to train a binary classifier. This technique results
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in constructing K(K−1)
2

different binary classifiers. During testing phase, a vot-

ing approach among the classifiers is taken. The class that was chosen by the

higher number of classifiers is the winner and the label corresponding to its

class is assigned to the sample tested.

Chosen Approach

In this chapter and for ease of results interpretation, a OvsA method was used

to generate multi class versions of the classifiers.

4.5 Experiments

Two sets of experiments were carried out. The first one was performed on

panchromatic images that were obtained by averaging the multispectral images

over their spectral bands in order to generate a single 2D image containing

the contribution of all the spectral bands. Figure 4.7 shows an example of

a panchromatic image, computed from the averaged spectral bands of the

multispectral image displayed in Figure 4.6. This is a simulation of what a

greyscale image would be. The second set of experiments was carried out using

the multispectral images from the datasets. This comparison allows to assess

the usefulness of multispectral imaging and the gain of information it causes.

4.5.1 Feature Extraction

In order to compare their performances, the texture features described in this

chapter were extracted from the images of the two datasets detailed in Sec-
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(a) band 2 (b) band 4 (c) band 6 (d) band 8

(e) band 10 (f) band 12 (g) band 14 (h) band 16

(i) band 18 (j) band 20 (k) band 22 (l) band 24

(m) band 26 (n) band 28 (o) band 30 (p) band 32

Figure 4.6: An extract from the spectral bands of a sample taken from the
colorectal dataset

Figure 4.7: Resulting panchromatic image, averaged spectral bands
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Table 4.2: Feature vector size

Feature type Feature vector size
panchromatic
images

Colorectal
Dataset

Prostate Dataset

LIOP 144 6048 2304
LBP 256 10752 4096
Multiscale LBP 2048 86016 32768
Haralick 16 672 144

tion 2.6. Table 4.2 summarises the size of each feature vector for the panchro-

matic images. For multispectral images, this size is multiplied by the number

of spectral bands and the resulting vector lengths are displayed in the table.

4.5.2 Feature Selection

PCA was conducted on the extracted features before classification. The opti-

mal number of principal components was computed for each feature type. This

was done by computing the cumulative sum of the explained variance ratio,

i.e. the variance ratio for which the selected principal components account

for. The number of principal components that explained 99 % of the variance

was selected as the optimal number of principal components. This allows to be

sure that the components used for classification contain nearly all the informa-

tion from the features. The remaining information can be considered as noise

and is filtered out. The lower number of components improves the computing

time and avoids the curse of dimensionality. Table 4.3 shows the number of

principal components selected for each type of feature for each dataset.
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Table 4.3: Number of principal components selected

Feature type colorectal Prostate
Panchromatic Multispectral Panchromatic Multispectral

LIOP 99 136 125 350
LBP 38 30 13 20
Multiscale
LBP

112 31 29 135

Haralick 5 30 6 20

Table 4.4: Parameters C and γ of the SVM classifier

Feature type colorectal Prostate
Panchromatic Multispectral Panchromatic Multispectral

LIOP
C: 1 C: 10 C: 1 C: 100
γ: 10 γ: 0.1 γ: 10 γ: 0.1

LBP
C: 10000 C: 1000 C: 100 C: 100
γ: 1 γ: 1 γ: 10 γ: 1

Multiscale LBP
C: 10 C: 10000 C: 100 C: 10
γ: 0.1 γ: 0.01 γ: 0.1 γ: 1

Haralick
C: 10000 C: 100000 C: 1 C: 100
γ: 0.0001 γ: 0.00001 γ: 10 γ: 0.1

4.5.3 Classification

The five classifiers described in Section 4.4 were used for the classification

in order to compare their performances. For SVM and LR, a grid-search

was performed in order to find their optimal parameters. Table 4.4 shows

the parameters C and γ that were chosen with a grid search for the SVM

classifier. Table 4.5 displays the parameter C of the LR classifiers. For the

k-NN classifier, the rule introduced by Duda et al. [122], stating that the

parameter k should be equal to the square root of the number of samples, was

used. For the RF classifier, 300 trees were used. A 10-fold cross-validation

scheme is used and the final results are averaged over the different runs of the

cross-validation.
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Table 4.5: Parameter C of the LR Classifier

Feature type colorectal Prostate
Panchromatic Multispectral Panchromatic Multispectral

LIOP 0.01 10 1 1
LBP 10 1000 100 100000
Multiscale
LBP

100 1000 100 1000000

Haralick 10 100 100 1000

4.6 Results and Analysis

Table 4.6 shows the accuracy obtained for the different combinations of texture

features and classifier both for panchromatic and multispectral images. The

highest accuracy is displayed in bold text for each dataset.

The table shows that, for every dataset, the best classification accuracy is

achieved with the combination of multiscale LBP and SVM classifier. Kalkan

et al. [47] used Haralick features with a LR classifier and tested their algo-

rithm on panchromatic images (90 % accuracy). Kather et al. [51] used a

combination of texture features with a SVM classifier on panchromatic images

(87.4 % accuracy). Consequently, this makes the proposed algorithm similar

when using panchromatic data and results show that the performances are also

similar for this type of data. However, the datasets being different, it is not

possible to directly compare the performance measures.

For both the colorectal and prostate datasets, the best accuracy was found

with multispectral data. This shows how much more discriminative informa-

tion can be extracted from the samples when they have been acquired with a

multispectral imagery system.

The accuracy is higher on the prostate dataset than it is on the colorectal

one. This can be explained by a difference in size of the image. The prostate
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Table 4.6: Performance of the different combinations of texture feature and
classifier. The performance measure used here is the accuracy (in %) and its
standard deviation is given in brackets

Feature Classifier
colorectal Prostate

Panchromatic Multispectral Panchromatic Multispectral

LIOP

k-NN 33.2 (±1.9) 39.1 (±1.8) 41.0 (±1.7) 48.5 (±1.9)
LR 40.4 (±0.8) 53.7 (±0.7) 52.8 (±1.0) 65.1 (±0.7)
SVM 43.6 (±0.6) 55.1 (±0.5) 55.7 (±0.5) 68.0 (±0.5)
DT 34.1 (±2.1) 31.0 (±1.9) 41.4 (±1.7) 45.9 (±1.8)
RF 39.6 (±1.4) 39.5 (±1.3) 54.2 (±1.1) 57.8 (±1.1)

LBP

k-NN 30.2 (±1.3) 63.8 (±0.9) 70.8 (±0.9) 77.4 (±0.9)
LR 40.0 (±1.4) 69.5 (±1.0) 76.8 (±0.8) 90.5 (±0.7)
SVM 46.8 (±1.3) 77.6 (±0.8) 79.3 (±0.7) 91.6 (±0.9)
DT 32.3 (±2.1) 64.4 (±1.6) 65.7 (±1.6) 79.0 (±1.3)
RF 38.7 (±1.4) 80.7 (±1.3) 72.9 (±1.0) 81.1 (±1.2)

M. LBP

k-NN 31.5 (±1.2) 64.7 (±1.5) 75.3 (±1.0) 89.1 (±0.9)
LR 51.1 (±1.3) 87.3 (±1.1) 84.9 (±0.7) 91.5 (±0.7)
SVM 51.3(±0.7) 88.2(±0.5) 88.9(±0.6) 92.4(±0.4)
DT 27.2 (±1.4) 68.5 (±1.1) 66.8 (±0.7) 79.5 (±0.7)
RF 40.2 (±1.4) 82.8 (±1.3) 77.3 (±1.1) 88.0 (±1.0)

Haralick

k-NN 36.2 (±0.9) 55.6 (±1.0) 83.9 (±1.3) 87.2 (±0.9)
LR 42.1 (±0.9) 86.5 (±1.0) 80.4 (±0.8) 89.1 (±0.9)
SVM 41.7 (±0.9) 83.4 (±1.0) 85.1 (±0.7) 91.9 (±0.8)
DT 29.3 (±2.8) 63.3 (±1.3) 77.2 (±1.6) 83.8 (±1.9)
RF 33.9 (±1.0) 82.2 (±1.1) 83.1 (±1.4) 89.4 (±0.9)

dataset images being larger, it is easier for the system to learn texture patterns.

Another reason for this difference of performance might come from the image

quality.

Figure 4.8 and 4.9 shows that the ROC curves for Multispectral LBP features

and SVM. For both datasets, the AUC is higher for class Ca than the others.

This class representing the cancerous case, it has more specific characteristics

than the other classes. Its texture in particular is chaotic compared to the

more structured tissues present in the other classes. Consequently, it shows

that the system performs better on the binary task of discriminating cancerous

versus non-cancerous tissue than the other Ovs binary classifications.
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(a) ROC curve for the prostate dataset with multispectral data

(b) ROC curve for the colorectal dataset with multispectral data

Figure 4.8: ROC curves for the Multiscale LBP and SVM combination with
multispectral images
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(a) ROC curve for the prostate dataset with panchromatic data

(b) ROC curve for the colorectal dataset with panchromatic data

Figure 4.9: ROC curves for the Multiscale LBP and SVM combination with
panchromatic images
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4.7 Conclusion

In this chapter, several feature types on both panchromatic and multispec-

tral images of colon biopsies were compared. A four-class classification was

computed after the feature extraction and selection process on two separate

datasets. The experimental results demonstrate a clear improvement of the al-

gorithms performance for every texture features and the classifiers used when a

multispectral image is used instead of a panchromatic one. This result confirms

the higher discriminative power of multispectral imaging over panchromatic

imaging.

The second main conclusion that can be drawn from this study is the superi-

ority of the LBP features over both Haralick and the LIOP counterparts for

colorectal and prostate tumour discrimination.

Both of these results show that the best classification performance is achieved

with the large feature vector and feature selection rather than smaller data.

In the next chapter, a better way to exploit the multispectral texture informa-

tion will be investigated.



Chapter 5

Multispectral LBP Texture

Feature

5.1 Introduction

In the previous chapter, it was concluded that multispectral data allowed for

a more accurate classification of the prostate and colorectal tumour tissues.

However, the previously used system does not consider the inter-band spectral

information. We suspect that more information can be extracted from the

multispectral image by taking into account this inter-band information, in

order to further improve the classification accuracy.

In this chapter, based on the published papers [3, 1], a novel multispectral

LBP texture feature approach is investigated. First, a brief review of the ex-

isting LBP features is carried out. Then, the proposed multispectral LBP is

presented. Two different classification methods are considered and assessed.

The first system uses a bag-of-features (BoF) scheme while the second imple-

86
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ments a stacked generalisation framework. These two classification methods

are detailed in the chapter. Finally, the experiments carried out are explained

and their results are analysed.

5.2 Feature Extraction using LBP Approach:

A Review

The conventional LBP was presented in Section 4.2.2. In this section its rota-

tion invariant and 3D variants are discussed.

5.2.1 Rotation Invariant Uniform LBP

A rotation invariant LBP, referred to as LBP riu2, using uniform patterns has

also been proposed as illustrated in Figure 5.1a. They operate as templates

for microstructures such as bright spot (0), flat area or dark spot (8) and

edges of varying positive or negative curvature (1-7) [102]. These structures

define a uniformity measure U corresponding to the number of transitions in

the pattern as follows:

U(LBPP,R) = |s(gP−1−gc)− s(g0−gc)|+
P−1∑
p=1

|s(gp−gc)− s(gp−1−gc)|. (5.1)

Figure 5.1a shows the 9 patterns with a U measure of at most 2 when the

27 other patterns shown of Figure 5.1b have a uniformity measure of at least

4. Therefore, patterns having U(LBPP,R) ≤ 2 are said to be uniform. The

following operator defines a grey-scale and rotation invariant texture descrip-
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(a) Uniform LBP patterns and their corresponding labels

(b) Non-uniform LBP patterns

Figure 5.1: The 36 unique possibilities for a circular symetric set of LBP
patterns and their corresponding labels for rotation invariant, uniform LBP.
The red squares correspond to the central pixel, the white and grey squares
represent the 0 and 1 bits in the 8-bits output of the operator. The numbers
are the unique LBPP,R(x) labels.

tion [102]:

LBP riu2
P,R (x) =

{ ∑P
p=1 s(gp − gc) if x ≤ 2,

P + 1 otherwise.
(5.2)

In this way, P+1 uniform patterns are assigned to a unique label corresponding

to the number of 1 bits in the pattern while the non-uniform patterns are

grouped under the same category. The final texture feature used is a histogram

of P + 2 bins generating all the LBP riu2
P,R outputs accumulated over the image.

This form of LBP seems more adapted to the problem at hand because of

the rotation invariance it provides. Indeed, in the case of histopathology,

sample orientation and cells direction are not relevant criteria to consider for

classification because they vary independently to the sample’s class. A second
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advantage of this LBP riu2
P,R over a conventional LBPP,R is its smaller size thus

making it faster to process in a classification phase.

5.2.2 3D-LBP

Since multispectral images are 3D data the conventional LBP concept needs

to be modified to deal with this datatype. In the literature, two methods

are usually described when dealing with 3D images for applications such as

video processing and face recognition [123]. The proposed method is inspired

from Volume Local Binary Pattern (VLBP) and LBP-TOP (for Local Binary

Pattern-Three Orthogonal Plan) [123]. VLBP and LBP-TOP are briefly dis-

cussed in this section. To extend LBP to dynamic texture analysis, Zhao et al.

define a neighbourhood as the joint distribution of 3P + 3 image pixels where

P is the number of neighbours on one frame as shown on [123]. A similar

technique to the conventional LBP can be applied and a VLBP is defined as

follows [123]:

V LBPP,R(x) =
3P+2∑
p=1

s(g0 − gp)2p−1. (5.3)

The VLBP local features are pooled into a histogram of size 23P+2. This

histogram’s size increases very rapidly when the number of neighbours, P ,

grows and may become very computationally expensive. On the other hand,

using a small P may lead to a loss of some critical information for diagnosis

purpose. To address this issue, a LBP-TOP feature is proposed by considering

three orthogonal planes intersecting on a central pixel as described in [123].

The technique computes a two-dimensional LBP on each of these plans and

concatenates the output histograms which will be of size 3∗2P instead of 23P+2

previously used. In [123], the circles are considered in the time dimension
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because this LBP-TOP is meant to be applied on video processing so the

motion direction of texture is unknown.

5.3 The Proposed Multispectral Multiscale LBP

Texture Feature

In the proposed technique the third dimension is spectral (not temporal), there-

fore no texture motion is considered. Consequently, unlike in the aforemen-

tioned 3D-LBP variants, a neighbourhood of only P points in the spatial plan

and Pλ on a straight line in the spectral dimension intersecting the spatial plan

at the central pixel was considered as shown in Figure 5.2 where Pλ = 2. As

explained above, this technique is adopted to make the LBP rotation invariant

in the spatial dimensions while still using the same U measure described in 5.2

in the XY plan.

Figure 5.2: Multispectral LBP descriptor: the neighbourhood considered for
multispectral LBP. X and Y being the spatial dimensions. Each tile represents
a pixel. The red tile is the central pixel considered, and the blue tiles are the
pixel considered in the neighbourhood.
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The key idea is to assign the LBP riu2
P,R patterns to different categories depending

on the Pλ pixels in the neighbouring plans. On top of the LBP riu2
P,R computed

using equation 5.2, the LBP λ
Pλ,R

is calculated using the following equation:

LBP λ
Pλ,R

(x) =

Pλ−1∑
q=1

s(g′q − gc)2q, (5.4)

where, g′q is the pixel value in the pixel of plan q aligned to the central pixel.

The MMLBPP,Pλ,R is defined as follows:

MMLBPP,Pλ,R = LBP riu2
P,R + (P + 1)LBP λ

Pλ,R
. (5.5)

The MMLBPP,Pλ,R outputs are then pooled into a histogram of size (P +

2) ∗ 2Pλ . It is worth noting that the scale is controlled by R ∈ [1..Nscale]. As

a result, the histograms built from each scale are concatenated to form the

MMLBP. Each scale is built separately as described in Figure 5.3. The result-

ing vectors can either be concatenated or fed to different classifiers depending

on the classification scheme chosen. This is detailed in Sections 5.4 and 5.5.

Figure 5.3: Multiscale neighbourhood for MMLBP
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5.4 MMLBP System with BoF Classification

Scheme

For the last fifteen years, BoF approaches have proved to be very efficient in

various computer vision applications [124, 125, 126, 127]. It is based on a

methodology used in text classification where the Bag-of-Words (BoW) ap-

proach and textons are commonly used. In text documents classification, a

dictionary of words is built and the words frequency from this dictionary is

quantified for each text document in order to classify them. The BoF ap-

proach was thought of as an analogy to the aforementioned technique. In this

representation, a dictionary of image features is built in order to recognise

image feature patterns. Unlike image segmentation, objects in an image are

not identified. Small regions of the image are instead characterised in order to

represent its content. Therefore, the technique shows very good adaptiveness

to the dataset used by identifying the particular features relevant to the com-

plete dataset. The reason being that each pattern used for describing an image

comes from the analysis of the whole dataset. The analysis in small image re-

gions also makes this approach robust to translations and rotations as well as

occlusion, making it ideal for medical imaging applications [124, 128, 129].

This section presents a system based on MMLBP texture extraction and using

histograms of codebooks as image descriptors for classification. First, the

image descriptors extraction is discussed. Then, the classification method is

addressed.
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Input
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Feature
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Codebook
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Image rep-
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features
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Figure 5.4: BoF representation steps.

5.4.1 Image Descriptor: Histograms of Codebooks

The BoF framework is based on an analogy with the BoW framework. A

dictionary - or codebook - of visual words - called codewords - that represent

the most characteristic patterns of dataset is built. In order to construct the

image descriptor, the occurrence of each codeword is computed and a histogram

of their occurrence is created.

Figure 5.4 shows the four steps of image classification using a BoW framework

described by Csurka et al. in [126].

5.4.2 BoF Framework

The image descriptor extraction is described in Figure 5.5.

A block-based image processing is conducted in this system. Images are divided

into small overlapping blocks and the feature vectors are extracted from each

block. In this case, the MMLBP texture feature described in Section 5.3 is

used. Each block is therefore represented by a 40-bin histogram characterising

its multispectral texture.

After this block-wise feature extraction, a k-means clustering of all the block

descriptors from all the images is carried out. This operation clusters the

collection of image blocks into k groups.
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Figure 5.5: Image descriptor extraction framework.

Each cluster member is then identified with the cluster’s centroid and each

centroid is assigned a label. This operation results in the generation of the

codebook that will be used for the dataset image description. For each image,

the corresponding label is assigned to each block and the frequency of each label

is then calculated. The final image descriptor is the normalised histogram of

label occurrences.

Multiscale BoF System

For a multiscale system, described in Figure 5.6, the MMLBP features are

extracted for different R parameters of the multispectral LBP texture feature

as described in Section 5.3. A different codebook is then created for each scale

R with their respective multispectral LBP features using the aforementioned

technique - Section 5.4.2. This collection of codebooks is named a multiscale
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codebook. Finally, the histograms of occurrences are computed for each scale

and concatenated into one sole final image descriptor as shown in Figure 5.6.

Image

MLBP
scale 1

Extraction

MLBP
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Extraction

..
.

MLBP
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Extraction

Descriptor
extraction

Descriptor
extraction

..
.
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Figure 5.6: Block diagram of the multiscale MLBP feature extraction.

Bagged Codebooks

In the technique described in Section 5.4.2, the whole collection of blocks from

all the images of the dataset is used at the clustering phase for codebook

creation. This very large number of feature vectors generated in this manner

would require a very large memory space and may also lead to overfitting.

To address this issue, a codebook is created from a number N of randomly

selected features from all the images as shown in Figure 5.7. More precisely, N

blocks are randomly selected from the collection of image blocks in the dataset

and MMLBP features are extracted from these particular blocks. Clustering is

then carried out using a k-means algorithm on this subset of selected feature

vectors, resulting in the creation of a codebook. For the remaining blocks, the

MMLBP feature vectors are extracted and assigned to the cluster with their
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closest centroid. As a result each block is represented by a label and the label

occurrences can be computed for image descriptor construction purposes.

The random selection of features vectors for codebook generation poses a chal-

lenge of class representation. A bagging ensemble method is chosen to over-

come this issue. This technique, introduced by Breimann [130], is based on the

idea that using multiple versions of a predictor and aggregating their results

increases the final prediction accuracy. In order to have an accurate represen-

tation of the feature space a number M of codebooks have to be created as

shown in Figure 5.7. As a matter of fact, the theory of bagging is based on

the fact that the predictor models trained on different data will not always

lead to the same results due to the variation of learning sets [131]. By training

M prediction models on different learning sets and aggregating their results,

this variation is therefore compensated. This number of codebooks M will be

optimised as a system hyperparameter during experimentation.

5.4.3 Classification

For the training phase described in Figure 5.8, multispectral LBP are extracted

for each scale for every block of the training set images. The M multiscale

codebooks previously created as mentioned in Section 5.4.2 are used for mul-

tiscale descriptor extraction. Then, a classification model is trained for each

multiscale codebook. In this system, the classifier used is the SVM.

In the testing phase of the system, which is shown in Figure 5.9, the feature

vectors are extracted from each block of the image and used to create a descrip-

tor of the image by creating a histogram based on each multiscale codebook

with the same approach used at the training stage. In this way, M descriptors
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Figure 5.7: Block diagram of the bagged codebooks generation.

are collected for the input image. They are fed to their respective SVM pre-

dictor model and the class receiving the most votes from the M predictors is

the system’s predicted class for the input image.
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Figure 5.10: Block diagram of stacking training and testing with MMLBP
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5.5 MMLBP System with Stacked Generali-

sation Classification Scheme

As illustrated in Figure 5.10, the proposed system is composed of two main

stages. First, MMLBP features are extracted and, then, an Independent Com-
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ponent Analysis (ICA) is performed to reduce the dimensionality of the feature

space. In the second phase, a stacked generalisation employing the Support

Vector Machine classifier is used at the matching stage.

5.5.1 Dimensionality Reduction using ICA and Classi-

fication using SVM

ICA

In order to address the curse of dimensionality problem and hence reduce

the learning cost, the ICA is applied before classification. In contrast to the

more widely used PCA, this technique presents the advantage of being able to

decorrelate the signal and reduce statistical dependencies between the features

as much as possible [132]. In fact, it could be seen as a version of PCA that

defines orthogonal directions. The ICA transformed data are computed using

only the training data of the SVM classifier. The testing data are projected

to the new basis before classification. The number of components used for

classification is optimised as described in Section 5.6.4.

In the ICA, the main goal is to represent the data with minimizing the statis-

tical dependence of the components [133, 134, 135].

Definition 1. Statistical Independence: Let y1, y2, . . . , ym a set of m zero-

mean random variables with a joint density f(y1, y2, . . . , ym). The variables yi,

i ∈ [1 . . . n], are mutually statistically independent if:

f(y1, y2, . . . , ym) = f1(y1)f2(y2) . . . fm(ym), (5.6)

where, fi(yi) is the marginal density of yi.
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Statistical independence is therefore a very strong condition requiring an in-

finite amount of data. Consequently, in practice, a proxy measure is used,

usually under the form of a function to maximise.

Definition 2. ICA: Let x be a m-dimensional random variable. The ICA of

x consists of finding a m× n matrix W so that:

s = WTx, (5.7)

where, s = (s1, s2, . . . , sn)T and its components si are considered mutually

statistically independent.

A widely used algorithm for computing the ICA is the FastICA introduced

by Hyvarinen [134]. It is a fixed-point algorithm and works on prewhitened

data. Prewhitening the data consists of transforming the data to give them the

same characteristics as white noise. For this purpose, a linear transformation

resulting in uncorrelated data with a variance equals to one is applied to the

centred data [134]. The FastICA is based on a non-Gaussianity measure as

a proxy for statistical independence. This non-Gaussianity is measured with

a non-quadratic non-linear contrast function f(u) and its first and second

derivatives, g(u) and g′(u). In [134], Hyvarinen shows that f(u) = −e−u2/2,

g(u) = ue−u
2/2 and g′(u) = (1 − u2)e−u

2/2 are adapted for problems where

robustness is very important. The steps of the FastICA algorithm are described

in algorithm 1.

After experimenting with the PCA for dimentionality reduction, the results

obtained with ICA in agreement with the theory and show an improved ac-

curacy due to the statistical independence of the components selected by the

algorithm. As a consequence, The ICA is selected as a dimensionality re-
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Algorithm 1: FastICA

1 FastICA (X, n);
Input : non-negative integer n: number of desired components
Input : whitened matrix X ∈ Rm×l, where each one of the l column

represents a m-dimensional sample (n ≤ m)
Output: W ∈ Rm×n a matrix where each column projects X into the

independent components space
Output: S ∈ Rn×l: the independent components matrix, with l

n-dimensional columns, each representing a sample
2 for p← 1 to n do
3 wp ← Random vector of length m;
4 while wp not converging do
5 wp ← 1

n
Xg(wp

TX)T − 1
n
g′(wp

TX)1wp ; // 1 is a

n-dimensional vector of ones

6 wp ← wp −
∑p−1

j=1 wp
Twjwj; // Independence to the other

components

7 wp ← wp

||wp|| ; // Vector normalisation

8 end

9 end
10 return W = [w1,w2, . . . ,wn];
11 return S = WTX;
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duction technique. The classifier used in this system is based on the SVM

classifier described in Chapter 4. The kernel parameters are optimised using

a grid-search method which is detailed in Section 5.6.4. In order to find the

appropriate compromise between the sizes of training and testing datasets and

hence avoid over-fitting that might be caused by a leave-one-out technique,

a 10-fold cross-validation is used as mentioned in Section 5.6.3. The OvsA

scheme is used to build the multiclass classifier.

5.5.2 LR for Stacked Generalisation

Stacked generalisation (or stacking) is an ensemble method for classification

[136]. It uses the output of a first layer of classifiers as inputs to another

classifier - called meta-classifier - for the final decision. In this chapter, this

system is used to fuse the different scales of multispectral LBP texture feature

at score level.

Figure 5.10 shows the two steps of training and testing for the stacking algo-

rithm. A LR model is used as a meta-classifier for its relatively low comput-

ing cost. The first layer of classifiers is composed by SVM classifiers with a

Gaussian kernel as described in Section 5.5.1. In addition to a 10-fold cross-

validation carried out at the meta-classifier level, an internal cross-validation

of the training data is implemented in order to prevent bias and to improve

stability of the different classifiers.



5.6. Experiment and Setup 105

5.6 Experiment and Setup

5.6.1 Experiments

In order to assess the performance of the proposed MMLBP texture feature,

different classification frameworks are tested.

The proposed systems are compared with the results given by the algorithm

described in Chapter 4 by using a conventional LBP extracted from a panchro-

matic image that is generated by averaging the spectral bands of the multi-

spectral image. Similarly, it is compared to another variant of LBP adapted to

multispectal images, which consists of extracting LBP histograms from each

band and then concatenating them to generate a final descriptor. This method,

is referred to as the concatenated LBP. A system using the concatenated

MMLBP features coupled with a SVM classifier is also tested. It is denoted

concatenated MMLBP. It is worth mentioning that these LBP variants are

used with an SVM classifier for a fair comparison. For the same reason, they

are also applied using the same number of scales Nscale. Many authors use

GLCM texture features, described in Chapter 4.

The proposed system using the BoF framework described in Section 5.4.2 is

referred to as BoF. BoF multiscale refers to the multiscale version of this

system.

The proposed system using stacked classification of GLCM features com-

bined with MMLBP features as shown in Figure 5.11 is denoted as stacked

MMLBP + GLCM. Its results are also compared to the ones given by

MMLBP alone - denoted as stacked MMLBP.
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Figure 5.11: Block Diagram of the proposed stacked MMLBP + GLCM.

In the second set of experiments, the impact of spatial resolution variations of

the performances is discussed.

The algorithms are also compared against different algorithms from the liter-

ature that used the prostate dataset or that can be implemented and tested

on the prostate dataset. An adapted version of Masood et al.’s algorithm [45]

to the multiclass problem is implemented. In this method the authors use the

GLCM features after segmentation of the image to train an SVM classifier.

The methods presented are also compared against Khelifi et al.’s results [39].

The authors define a multispectral form of the GLCM before extracting the

GLCM features. Finally the results shown in [19] are used for comparison

purposes. In [19], Tahir et al. describe a Round-Robin Tabu search algorithm

for prostatic tumor classification.

Finally, the colorectal dataset is used to assess the usefulness of the IR spec-

trum. The stacked MMLBP + GLCM algorithm is applied to the visible (Vis)

and IR bands of the dataset separately and then to the images with both parts

of the light spectrum combined. The results are then compared.
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5.6.2 Evaluation Measures

In order to avoid accuracy variations, the cross-validation is run ten times and

the accuracy is averaged. The standard deviation is calculated on the mean

accuracies of each cross-validation.

In addition to the accuracy and the standard deviation, the ROC curve and

the AUC and the confusion matrix are also computed and used to assess the

performances of the proposed algorithm. These performance measures are

useful metrics to allow for a better understanding of what each class captures

before OvsA combination to obtain the overall accuracy.

5.6.3 Training Procedures

BoF

A 10-fold cross-validation scheme is adopted in order to improve the general-

isation estimation and reduce the standard deviation on this estimation. 10

folds are chosen as the best compromise between the sizes of the training and

test datasets. The test dataset needs to be large enough so that the variance

on its estimation is as small as possible. However, the training set also needs to

have a sufficient number of examples for the model to not be in the underfitting

regime.

Stacking MMLBP + GLCM

As illustrated by Figure 5.10, the double 10-fold cross-validation run on the

datasets means that, for each experiment, 90 % of the dataset is used for
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Table 5.1: Number of images used in each phase for each the tested dataset.

Data-set Prostate Colorectal

SVMs training set 415 518
Logistic regression training set 46 58

testing set 51 64
dataset size 512 640

training the LR classifier model and the remaining 10 % are used for the

testing phase. 90 % of this training set (or 81 % of the total dataset) is used

for training the SVM models and in the remaining 10 % of the training set (or

9 % of the whole dataset), the trained SVM models are used to train the LR

model. Table 5.1 displays the SVMs and LR training sets and the testing set

sizes for each dataset.

5.6.4 Parameters Tuning

BoF

A number of hyperparameters need to be tuned for this algorithm:

• The size of codebooks which corresponds to the number of clusters k in

the k-means clustering. It also determines the size of the image descriptor

(descriptor size = k∗number of scales),

• The number of image features selected for codebooks generation N ,

• The number of different codebooks generated at each scale M ,

• The SVMs kernel parameters C and γ.
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A grid-search method is adopted to find the optimal combination of these

hyperparameters:

k = 20 ∗ i, with i = [|4 : 12|],

N = 500 ∗ i, with i = [|1 : 10|],

M = 5 ∗ i, with i = [|1 : 10|],

C = 10i, with i = [| − 3 : 3|],

γ = 10i, with i = [| − 3 : 3|].

For each combination of the parameters in these intervals, the accuracy is

calculated and averaged with a 10-fold cross-validation. The parameters giving

the maximum average accuracy are then chosen as the model parameters.

Stacking MMLBP + GLCM

As discussed previously, a total of 3 parameters need to be optimised for each

SVM classification: the number of components selected in the ICA, and the C

and γ parameters of the SVM kernel. A 3D grid-search was performed with

the following parameters, with a step equals to 1:

C = 10i, with i = [| − 3 : 3|],

γ = 10i, with i = [| − 3 : 3|],

Ncomp = 10 ∗ i, with i = [|1 : 50|].
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For each combination of the parameters in these intervals, the accuracy is

calculated and averaged with a 10-fold cross-validation. The parameters giving

the maximum average accuracy are then chosen as the model parameters.

5.7 Results and Discussion

5.7.1 Proposed Algorithm Discussion

Table 5.2 shows a comparison of the classification accuracies obtained using

different features and classification methods. First, a conventional LBP fol-

lowed by a SVM classification is performed and an accuracy of 88.9 % is found

for the prostate dataset while this algorithm was 51.3 % accurate for the col-

orectal dataset. This shows that this option is not robust to the data. When

using a concatenated version of multispectral LBP followed by an SVM clas-

sification, the results are improved and accuracies of 92.4 % and 88.2 % are

achieved on the prostate dataset and the colorectal dataset, respectively. This

shows how the multispectral information improves the classification accuracy.

However, there still is a high variation of accuracy between both datasets which

highlights a lack of robustness to the data. The added discriminative power

of the inter-band information is proven by the increased accuracy when using

concatenated MMLBP. It is indeed improved by 1.8 pp and 0.9 percentage

points (pp) for the prostate and colorectal datasets, respectively.

With BoF framework using a single scale texture features, the estimated ac-

curacy is higher than concatenated MMLBP (which does have the multiscale

information). However, the standard variance computed shows that the dif-

ferences between these estimated accuracies are within the margin of error.
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Therefore, it can be considered that there is no improvement from using the

single scale BoF as opposed to the concatenated MMLBP. Nonetheless, the

BoF multiscale is a fairer comparison to the concatenated MMLBP as the

features in this system also capture the multiscale information and only the

classification method changes. An increase accuracy of 96.5 % and 91.2 % is

observed when using the multiscale information on the prostate and colorectal

datasets, respectively. It can be noticed that the standard variations observed

with both BoF and BoF multiscale are higher than the ones observed with the

previous simple classifiers.

When using stacked MMLPB, the results are further improved and an accu-

racy of 99.2 % and 98.9 % on the prostate and colorectal datasets, respectively,

therefore demonstrating the robustness of the proposed algorithm. This can be

explained because the stacking method selects the best features for classifica-

tion and discards the features that drop the accuracy, which is independent to

the data. When GLCM texture features are combined to the MMLBP texture

features the results are improved by 0.3 pp and 0.6 pp for the prostate and

colorectal datasets, respectively.

Finally, the multispectral spectral information adds significant improvement

over the conventional LBP as illustrated by the performance of the concate-

nated LBP method. However, the multispectral information is better captured

by the MMLBP texture feature as demonstrated by the improvement observed

with the concatenated MMLBP. Furthermore, the stacking classification pro-

cess enhances the performance further as demonstrated by the results of the

stacked MMLBP compared to the concatenated MMLBP and the BoF mul-

tiscale. The reason for a lower performance of the BoF algorithm probably

comes from the difficulty to find optimal parameters for the SVMs. Each of
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Table 5.2: Accuracy (in %) comparison of different feature extraction and
classification methods

Dataset Prostate Colorectal
Conventional LBP 88.9 ± 0.6 51.3 ± 0.7
Concatenated LBP 92.4 ± 0.4 88.2 ± 0.5
Concatenated MMLBP 94.2 ± 0.3 89.1 ± 0.4
BoF 95.0 ± 0.7 88.7 ± 0.8
BoF multiscale 96.5 ± 0.8 91.2 ± 0.9
Stacked MMLBP 99.2 ± 0.3 98.9 ± 0.4
Stacked MMLBP + GLCM 99.5 ± 0.3 99.5 ± 0.1

them being trained on a different random subset of the training set data, their

optimal parameters vary. Being able to have finely tuned SVMs parameters

could mean an increased performance of the BoF system.

For the Stacked MMLBP + GLCM, Figure 5.12 and 5.13 displays the ROC

curves and shows the AUC for the different classes in a binary classification

following the OvsA scheme. Tables 5.3 and 5.4 show the confusion matrices

obtained with BoF multiscale. This is done to assess the positive and negative

false alarm rates for each class. In both algorithms, it can be observed that

the classification for the cancerous class is always the one performing best.

This can be explained by the specific characteristics and features present in

the images of this class. It corresponds to the binary classification cancerous

vs non-cancerous tissues.

Table 5.3: Confusion Matrix of BoF multiscale for prostate dataset.

Class BH Class Ca Class IN Class Str
Class BH 119.7 0 4.6 3.7
Class Ca 0 128 0 0
Class IN 3.2 0 123.4 1.4
Class Str 6.1 0 0.0 122.9
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Figure 5.12: ROC for stacked MMLBP + GLCM for prostate dataset.

Figure 5.13: ROC for the stacked MMLBP + GLCM for colorectal dataset.

Table 5.4: Confusion Matrix of BoF multiscale for colorectal dataset.

Class Ca Class HP Class TA Class NRP
Class Ca 39.0 0 0.3 0.7
Class HP 0 38.1 0 1.9
Class TA 0.5 0.8 36.4 2.3

Class NRP 0.5 1.1 3.3 35.1

5.7.2 Impact of the Spatial Resolution

Table 5.5 shows the impact of image spatial resolution on the results of stacked

MMLBP + GLCM. It demonstrates that the accuracy is marginally influenced
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Table 5.5: Accuracy (in %) comparison of different spatial resolution.

Data-set Prostate Colorectal

Resolution 100 % 99.5 ± 0.3 99.5 ± 0.1
Resolution 75 % 99.8 ± 0.3 98.8 ± 0.4
Resolution 50 % 99.5 ± 0.3 99.4 ± 0.4
Resolution 25 % 97.6 ± 0.3 98.7 ± 0.4
Resolution 10 % 96.0 ± 0.4 96.3 ± 0.4

by the change of resolution. It varies from 99.5 % ± 0.1 for the full resolution

to 98.7 % ± 0.4 for a spatial resolution of 25 % the original one for the colorec-

tal dataset. For a resolution of 10 %, the accuracy drops to 96.3 %. The same

consistency can be seen on colorectal dataset until 50 % of the original reso-

lution then a drop by 2 points in accuracy is noticed for 25 % of the original

resolution. The drop further continues with a resolution of 10 % the original

one. This shows the robustness of the MMLBP algorithm presented in this

paper to spatial resolution reduction until a certain percentage depending on

the dataset.

5.7.3 Comparison Against Existing Algorithms

Table 5.6 depicts the performance accuracy obtained when comparing the pro-

posed algorithms against some existing methods in the literature. For this

comparison, only the prostate dataset is used as this is the only one used by

other authors. Kelifi’s [39] algorithm is tested on prostate dataset. Masood’s

et al. algorithm is evaluated using the prostate datasets using a multiclass

classifier instead of the authors’ binary classifier [45]. As can be seen in Ta-

ble 5.6, the proposed method outperforms these two other algorithms in terms

of accuracy. Tahir et al.’s algorithm is evaluated using the prostate dataset

as reported by the authors who achieved a 98.9 % accuracy. The proposed
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Table 5.6: Accuracy comparison to literature methods.

Method Accuracy

Khelifi et al. [39] ( %) 75.6
Tahir et al. [19] ( %) 98.9
Bouatmane et al. [21] ( %) 99.83
Masood et al. [45] ( %) 85.1
BoF multiscale ( %) 96.5 ± 0.8
Stacked MMLBP + GLCM ( %) 99.5 ± 0.3

algorithms are implemented on the same dataset and the results of 99.5 %

accuracy clearly show that the proposed stacked MMLBP + GLCM technique

outperforms the other methods of the literature. Bouatmane et al. [21] claim

an accuracy of 99.83 % on the same dataset. The proposed algorithm is in the

same range of values when considering the standard deviation of the accuracy,

and it would be interesting to compare both their performances on another

dataset.

5.7.4 Extension to the IR Spectrum

The stacked MMLBP + GLCM algorithm is first evaluated on the visible and

near infrared ranges separately on the colorectal dataset. Once this done, it is

evaluated on a combined dataset including both the Vis and IR data by fusing

the accuracy results at a score level using the stacking technique discussed in

Section 5.5.2. Table 5.7 proves that using both the visible and infrared ranges

of the light spectrum improves slightly the results. On the colorectal dataset,

the proposed algorithm scores 99.2 % when using only the bands representing

the wavelengths in the visible spectrum; this same algorithm scores 99.5 %

when using the wavelengths from the infrared as well as the visible range. One

can notice that the IR alone does not perform as well as the Vis spectrum
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Table 5.7: Accuracy of proposed algorithm on colorectal dataset.

Dataset Accuracy

Dataset 3 Vis 99.2 ± 0.1
Dataset 3 IR 96.2 ± 0.5
Dataset 3 Vis+IR 99.5 ± 0.1

with this algorithm but it adds different information and helps improving the

accuracy when combined.

5.8 Conclusion

Multispectral texture features form an attractive method for extracting infor-

mation from histologic images of colorectal or prostate tumor tissue for clas-

sification purposes. This chapter proposed a MMLBP texture feature. The

feature was combined with different classification schemes. It was proven that

the feature combined with GLCM using a stacked generalisation for feature

fusion at the score level for classification gives better or similar results than ex-

isting ones available in the literature. It attains a classification accuracy above

99 % on both the datasets tested. This study also showed that results can be

improved when combing both infrared and visible information extracted from

tissue samples.

In the next chapter, a more versatile and automatised feature extraction tech-

nique based on convolutional neural networks is introduced.



Chapter 6

Deep learning: Convolutional

Neural Networks for Colorectal

and Prostate Cancer Diagnosis

6.1 Introduction

Deep learning is a branch of machine learning that attempts to mimic the

thinking process. In order to process data, information is passed through a

network consisting of different layers, where each layer serves as input to the

following layer. The first layer of a network is referred to as the input layer,

while the last one is the output layer. All the layers in between are called

the hidden layers. Typically, a layer is a simple algorithm consisting of an

activation function.

One of the first neural networks was created in 1943 by Walter Pitts and War-

ren McCulloch [137]. The authors based their model on advances in the human

117
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brain research and used a combination of algorithms called threshold logic to

imitate the thinking process. In 1967, Ivankhnenko and Lapa [138] published

a work describing the architecture of a deep network that had multiple thin

layers of non-linear features. The principle was to select the best features using

statistical methods and forward them to the next layer. The first convolutional

neural networks (CNN) appeared in 1979, when Fukushima [139] designed a

system called Neocognitron consisting of multiple pooling and convolutional

layers. Yann LeCun demonstrated the concept of backpropagation in 1989

[140] and used it in a CNN in order to read handwritten digits.

Deep learning has kept evolving but failed to find practical application be-

cause of its processing cost and insufficiently powerful hardware technology

available. In 1999, Graphic Processing Units (GPUs) were developed, making

computers faster at processing data. At that time, neural networks started to

compete with SVMs. They were still slower than the latter but often offered

better results with the same data, with their performance improving as more

data is added. In 2011, the speed of GPUs started to reach a level allowing

easy CNN training and making neural networks efficient and rapid. As an ex-

ample, the AlexNet architecture was developed in 2012 [141] and won several

international competitions including the ImageNet competition. GoogLeNet

[142] that is a 22 layers deep network, won the ImageNet competition of 2014.

He et al. [143] deepened even more the networks with ResNet and won the

best paper 2015 at the Conference on Computer Vision and Pattern Recogni-

tion. In order to reduce the training times, they developed a framework where

layers are formulated as residual function with reference to the layer input, as

opposed to the unreferenced learning functions previously used. Their resid-

ual network counts 152 layers. In 2016, the company Google DeepMind used

a mix of supervised deep learning and reinforcement deep learning (RL) to



6.2. Feedforward Neural Networks 119

create a system able to learn how to play the game of Go [144]. This program

called AlphaGo achieved a 99.8% winning rate against other Go programs,

and defeated the human European Go champion by 5 games to 0. In 2017,

they created AlphaGo Zero [145] which outperformed the original AlphaGo in

performance and in learning time without using any human knowledge.

This field of machine learning is now very active and the research commu-

nity is focused on solving practical applications using modern deep learning.

This chapter aims at applying the deep learning framework to the problem

at hand. It will first describe the principles of deep neural networks and the

techniques used for optimising them. Then, the particular CNN architecture

is described as well as the experiments carried out for this work. Finally, the

results achieved and their analysis are detailed.

6.2 Feedforward Neural Networks

Feedforward neural networks, also called multilayer perceptrons (MLPs), are

the base of deep learning models. They aim to approximate a function f ∗ :

x → y, where x is an input feature vector and y is its corresponding class.

The network builds a mapping y = f(x; θ) by learning the parameters θ that

provide the best approximation function to f ∗. In this type of networks, in-

formation moves from input to output through the intermediate layers with

no feedback connections as depicted in Figure 6.1. The number of layers is

called the depth of network. Each layer consists of a vector of functions or

units that act in parallel and this vector’s dimension is the width of the layer.

Therefore, many hyperparameters need to be chosen when designing a neural

network model including its architecture, that is to say the number of layers
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Figure 6.1: Example of a simple neural network with 2 hidden layers, each one
with a width of 5.

and units per layer. Figure 6.1 shows an example of a simple architecture of a

neural network.

A hidden layer computes an affine transformation of its input and then applies

a non-linear function g. This is defined by h = g(WTx + b), where h is the

output of the hidden layer, W is the weights of the affine transformation and

b the biases. W and b are the parameters learnt when training the model.

The function chosen for each unit is called the activation function and is in-

spired by the behaviour of biological neurons. The most widely used activation

function is the Rectified Linear Unit (ReLU) defined by : g(z) = max{0, z}.

Many other options are available and the research on activation function is

still a very active field but ReLU has proven to perform well and is the default

choice for activation functions.

The network training is performed using a gradient descent. The main differ-

ence with other models is that the nonlinearity of neural networks causes the

loss function to be nonconvex. Unlike convex optimisation used with SVMs or

LR, there is no guarantee of global convergence of a gradient descent applied
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to a nonconvex loss function. Consequently, the learning process is sensitive

to the initial values of weights and biases. In order to apply a gradient based-

learning, a cost function must be chosen. The problem at hand in this work

defines a conditional distribution p(y|x; θ) and the maximum likelihood prin-

ciple is well adapted for it [34]. As a result, the cross-entropy between the

training data and the model’s prediction – which is equivalent to the negative

log-likelihood – is used as cost function. It enables the model to estimate the

conditional probability of the classes, knowing the input, and is given by:

J(θ) = −EX,Y∼p̂data log pmodel(y|x), (6.1)

where, p̂data is the distribution of the training data, pmodel is the model distri-

bution, and θ is a set of parameters for which the cost function is calculated.

Consequently, the specific form of the cost function changes depending on the

form of log pmodel.

6.2.1 Back-Propagation

During training, the gradient of the cost function ∇θJ(θ) is computed using a

back-propagation algorithm [146, 147, 148], to allow information to flow back-

wards through the network and compute the error made on each weight of the

network. A gradient-descent is then used to minimise the cost function. Learn-

ing is subsequently performed by updating the units’ weights. This procedure

is detailed in Algorithm 2.

Training a neural network consists of applying a series of forward propagations

– the network output is generated from the data flowing through the network

– and back-propagations to compute the error at each unit. Each one of these
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Algorithm 2: Back-propagation algorithm for a L-layer network with
weights θ(l) and a training set {(x1,y1), . . . , (xm,ym)}.
1 for l← 1 to L do
2 θ(l) = small random value ; // Initialise network weights for

each layer

3 end
4 foreach epoch do
5 for l← 1 to L do
6 ∆(l) = 0 ; // Initialise gradient matrices

7 end
// For each training example

8 foreach (xi,yi) ∈ {(x1,y1), . . . , (xm,ym)} do
// Forward propagation

9 w(1) ← xi;
10 for l← 2 to L do
11 w(l) ⇐ g(θ(l−1)w(l−1)) ; // For each layer of the

network

12 end
// Back-propagation

13 δ(L) ← w(L) − yi ; // Compute the error at the output

layer

14 for l← L− 1 to 2 do
15 δ(l) ⇐ ((θ(l))T δ(l)). ∗w(l). ∗ (1−w(l)) ; // Compute the

error of each unit at the hidden layers

16 ∆(l) ←∆(l) + δ(l)(w(l))T ; // Update the matrix ∆ for

each layer

17 end

18 end
// Gradient-descent: Update weights using learning rate

η and gradient 1
m

∆
19 for l← 1 to L do
20 θ(l) ← θ(l) − η 1

m
∆(l)

21 end

22 end

23 return θ(1), . . . , θ(L);
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forward propagation and back-propagation combinations in called a pass. A

pass of all the training example is performed for computing the gradient used

for the gradient-descent algorithm. A pass of every training example is called

an epoch. At the end of each epoch, the network’s weights are updated using

a learning rate hyperparameter that is multiplied to the gradient calculated

with back-propagation.

The learning rate is one of the most important hyperparameters to tune in a

neural network as it controls the effective capacity of the network [34]. There-

fore, it needs to be carefully optimised. If the learning rate is too large, the

gradient-descent can have the opposite of the desired effect and the training

accuracy can decrease [149]. However, when it is too small, training is slower

and sometimes the training accuracy can stay permanently small [149]. The

number of epochs is also a hyperparameter to be tuned ahead of training.

6.2.2 Mini-Batch

During network training, it was previously explained that the gradient of the

cost function, ∇θJ(θ), was estimated as the mean of the gradients over all

the training examples. However, it can be computed on a small number of

examples randomly selected and averaged only over these examples.

It can be proven that the standard error of the mean estimated from n ex-

amples is given by σ√
n
, where σ is the true standard deviation of the value of

the samples [34]. This means that the precision gain is not linearly related

to the number of examples used. The gain in precision is therefore not worth

the quadratic increase of the number of examples used to estimate it. Conse-

quently, the optimisation will converge faster if the estimates of the gradient
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are computed rapidly with a greater approximation rather using an exact value

that is slowly computed.

Typically, a deep learning algorithm uses a subset of the training set called

mini-batch to compute the gradient estimate and perform gradient-descent.

With larger batches, a more accurate estimate of the gradient is obtained but

with less than linear returns. With smaller batches, the learning rate might

need to be very small in order to keep the stability of the system, which could

be broken by the high variance in the gradient estimate, thus increasing the

computing cost. However, it was observed that small batches can provide a

regularising effect [150]. Thanks to modern multicore GPUs, several examples

can be processed in parallel. The runtime is consequently lower when using

mini-batch training as long as the mini-batch size allows all the mini-batch

examples to be processed in parallel.

6.2.3 Regularisation: Reducing Overfitting

In machine learning, the main issue is to increase the generalisation perfor-

mance, even if it means a smaller training performance. Strategies designed

to tackle this problem are collectively called regularisation techniques. Many

different regularisation strategies are commonly used by the deep learning com-

munity and it is still an active subject of research [34].

Dataset Augmentation

The most efficient way to build a model with an improved generalisation per-

formance is to increase the number of examples in the training set. However,

in medical imaging, the size of the datasets is usually very small – 40 and
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32 images for the two datasets used in this thesis. Using this amount of data

would probably mean a very small test accuracy, meaning either that the model

overfits the data or even a very small training accuracy due to the model un-

derfitting the data. In order to overcome this issue, fake data is generated and

added to the training set. This method has proven to be very effective for

reducing overfitting [151, 152, 153, 154]. The fake data is generated using ge-

ometric transformations of the images in the dataset that does not change the

class. For instance, translation, rotation, flip, skewing, rescaling or a combi-

nation of these transformations are often used. However, the transformations

that can or cannot be used are specific to each classification problem as they

need to preserve the image class.

Early Stopping

When training a model with a high enough capacity to overfit the data, it

is often observed that the training accuracy increases over time. However,

the validation accuracy typically increases at first and then starts falling after

reaching a maximum. In order to have the minimum overfitting effect, the early

stopping strategy is adopted and the model’s parameter settings achieving the

highest validation accuracy – and thus hopefully the highest generalisation

accuracy – are selected. These parameters are then used for testing. Bishop

[155] and Sjöberg et al. [156] showed that early stopping has a regularisation

effect because it restricts the optimisation procedure to a small volume of the

parameter space in the neighbourhood of the initial parameter value.
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Dropout

The dropout was introduced in 2014 by Sriastava et al. [157]. It is a com-

putationally not expensive but very effective regularisation strategy. It trains

an ensemble of models consisting of networks formed by removing some units

in the hidden and input layers from the original network architecture. The

probability of removing each unit is a hyperparameter set per layer ahead of

training. This provides a way to approximately and efficiently combine many

different simulated neural network architectures sharing weights. Therefore,

the number of parameters to learn during training does not change. During

testing, the original network architecture without dropout is used with the

scaled-down weights learnt during training of the different thinned networks.

If a unit was kept with a probability p during training, the weight of this unit

is multiplied by p during testing.

6.3 Deep Convolutional Networks

CNNs [140, 146] are a type of neural network that specialise in data with a grid-

like topology. They are particularly adapted for image processing. Similar to

conventional neural networks, they consist of units with weights and biases that

are learnt during training. However, with the assumption on the data topology,

it is possible to add some properties to the architecture in order to reduce

the number of parameters to learn and improve the network implementation

efficiency. These key ideas are: local connections, shared weights, pooling and

the use of many layers [158].
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Figure 6.2: CNN architecture

CNNs’ units are arranged in three dimensions in each layer of the network:

width, height and depth of the activation volume. As depicted in Figure 6.2,

three different kinds of layers are usually stacked to form the full CNN archi-

tecture: convolutional layer, pooling layer and fully connected layer. Fully-

connected layers are layers of a traditional MLP as described in Section 6.2.

6.3.1 Convolutional Layer

The convolutional layer is the core layer of a CNN. The basic idea is that

instead of connecting a unit to every unit of the previous layer, it is only

connected to a local region of the previous layer. The spatial extent of this

connection is called the receptive field of the unit or the filter size. It is a

hyperparameter of the model. The filter size along the depth axis is the same

as the depth of the previous layer. This shows an asymmetry in the way spatial

dimensions (width and height) and the depth dimension are treated, making

the network particularly adapted for multispectral images. The connectivity

of the convolutional layer is local along the width and height but the layer is

fully connected along the depth. A convolutional layer’s parameters can also

be seen as a set of spatially small-sized learnable filters or kernels. During the

forward pass, the filters are convolved across the width and height dimensions
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of the input volume. This action produces a 2D activation map outputting the

responses of the filter at each position of the input layer [158, 34].

The output volume of a convolutional layer depends on three hyperparameters:

the number of filters, the stride and zero-padding.

• The number of filters looking at the same receptive field determines the

depth of the output volume. A different filter activates for every different

pattern. A set of units with the same receptive field is called a fibre of

the output layer.

• The stride, used when the filters are slid along the spatial dimensions of

the previous layer, impacts the height and width of the output volume.

The higher the stride, the smaller the output volume is.

• The input volume can be padded with zeros around the border in order

to keep the information at the border. Without zero-padding, the in-

formation carried by the pixels at the border of the input image would

vanish quickly after successive convolutional layers. This artificially in-

creases the size of the input layer and therefore increases the size of the

output layer as well.

Parameter Sharing

The parameter sharing scheme is used to reduce the number of parameters to

be learnt. It is based on the assumption that a useful feature at one position of

the input layer is also useful at a different position. This means that the units

on a same output depth slice use the same weights and bias. This explains the

fact that the forward propagation through a convolutional layer is equivalent

to convoluting a filter or kernel with the input layer.
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6.3.2 Pooling Layer

Typically, a pooling layer is inserted between successive convolution layers.

The pooling function replaces the output of a convolutional layer at a certain

unit with a statistic of its neighbouring units. The most popular pooling

function used is the max pooling introduced by Zhou et al. [159]. The pooling

layer aims at making the system invariant to small translations of the input.

This property gives more importance on whether or not a feature is present in

the input rather than to its exact position.

6.3.3 CNN, Feature Extraction and Classification

The combination of convolutional and pooling layers aims at learning the best

features that could be extracted from the dataset. It contrasts with most of

the current methods that use handcrafted feature extraction techniques such

as the ones presented in the previous chapters. These approaches can give very

good results but are usually sensitive to the dataset and perform poorly when

applied to different data. The combination of convolutional and pooling layers

of a CNN provides a more versatile way to extract features from images. The

fully-connected layers of a CNN correspond to the classifier. It aims at learning

to classify the learnt features. As a result, a CNN is a unified versatile scheme

for feature extraction and classification. Because medical images classification

is often a very complex task, it requires carefully manufactured feature sets

for each type of data or even each different dataset. Doing just that with a

unified framework, CNNs seem particularly adapted to the field.
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6.4 Experiments

6.4.1 Hardware and Software Specifications

In order to train deep CNNs, a GPU is needed. The system used for this

experiment is equipped with one NVIDIA K80 GPU and four CPUs. It has

61 GiB RAM. Regarding software, Keras with TensorFlow backend was used.

Keras has the advantage of making available deep learning models alongside

pre-trained weigths.

6.4.2 Selected Architecture

The proposed CNN architecture evaluated for the task at hand was based on

VGG16 [160] whose architecture is represented in Figure 6.3. In oder to design

the proposed architecture, the last block of convolutional layers of the VGG16

was removed and the number of filters per layer was halved. The idea is to

reduce the capacity of the network because the inter-class similarity in the

datasets used for the task at hand is high compared to the dataset on which

VGG was tested.

As represented in Figure A.1 and A.2, the overall proposed network architec-

ture consists of a total of 13 layers with weights, the first ten being convolu-

tional layers and the remaining three fully-connected. The output of the last

fully-connected layer is fed to a softmax classifier, which is a generalisation of

the LR classifier to the multiclass problem and produces a distribution over

the four class-labels. The network uses the cross-entropy as loss function.
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Figure 6.3: Illustration of the architecture of VGG16 [160]

Like in VGG16, it is decided to use a small kernel with a size of 3 pixels for every

convolutional layer. The strategy of stacking convolutional layers with small

filter size is preferred to the one using a single large receptive field convolutional

layer. For the same final receptive field, the former strategy includes non-

linearities (ReLU functions) at each layer while the latter computes a simple

linear function on the input which makes the features less expressive. A stride

of 1 is also adopted for the whole network in order to minimise information

loss.

In order to have a better control over the outputs size of each layer and keep

border information, a zero-padding of one is added before each convolutional

layer. The first two convolutional layers use 32 kernels and are followed by

a 2 × 2 max-pooling layer as described in Section 6.3.2. The max-pooling

layer reduces the size of the ouput and thus the network capacity. In order to

compensate this loss, the number of kernels is doubled in the next convolutional

layer. Consequently, this sequence is followed by two convolutional layers with
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64 filters, and then a new max-pooling layer is applied. This is then followed by

a series of three convolutional layers with 128 filters and a max-pooling layer.

A final series of three convolutional layers with 256 filters and a max-pooling

layer is applied. The neurons in the three fully-connected layers with sizes 1024,

1024 and 4, respectively, are connected to all neurons in the previous layer.

The ReLU non-linearity is applied to the output every layer with weights.

Dropout is used after every max-pooling and fully-connected layer to reduce

overfitting. An early stopping strategy is also adopted in order to reduce

the training time and for regularisation reasons, as explained in Section 6.2.3.

Finally, a data augmentation is carried out using the following transformations:

each image is flipped along the two spacial axis and a 30◦ rotation in both

directions is applied. This results in the generation of 27 fake images for each

real data image. To ensure that the generalisation is not over estimated, the

dataset augmentation is performed after splitting the dataset into training and

test sets.

6.4.3 Details of Learning

The weights of each layer are initialised using a Xavier initialisation method

[161], where the weights are drawn from a normal distribution centered on

zero and with a standard deviation of
√

2
Nin+Nout

, where Nin and Nout are

the number of input and output units, respectively. The network is trained

separately on the two datasets.

The learning rate used is the same for all the layers. It is optimised using

a grid-search scheme which results are presented in Figure 6.4 and 6.5. The

accuracy is computed for different learning rates taken from a logarithmic scale
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Figure 6.4: Validation accuracy obtained with different learning rates for the
network trained on prostate data.

and one value per decade is evaluated. The learning rate selected for training

is then 0.0001 for both datasets.

For each model training, a 10-fold cross-validation technique is adopted in

order to find a good estimate of the systems’ generalisation accuracy. This

provides a large training set for better learning.

Figure 6.6 and 6.8 illustrate the evolution of the loss function during training

for the prostate and colorectal datasets, respectively. Figure 6.7 and 6.9 show

the evolution of their accuracy. It can be noticed from these figures that the

validation accuracy is very close to the training accuracy which proves that the

model is not in the overfitting regime. The higher variation in validation accu-

racy and loss can be explained by the smaller set used for validation compared

to the one used for training.
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Figure 6.5: Validation accuracy obtained with different learning rates for the
network trained on colorectal data.

Figure 6.6: Loss function evolution during training for the prostate dataset
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Figure 6.7: Accuracy evolution during training for the prostate dataset

Figure 6.8: Loss function evolution during training for the colorectal dataset
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Figure 6.9: Accuracy evolution during training for the colorectal dataset

6.4.4 Transfer Learning

Transfer learning consists of using a network previously trained on another

dataset in order to use the knowledge acquired during this learning task for

the new task at hand [162]. In most transfer learning for image classification

tasks, the ImageNet dataset [163], which contains 1.2 million images with

1000 categories, is used for pre-training the network. When only a small

dataset is available, this allows to train the CNN on a very large dataset

and therefore train a high capacity network that captures fine details without

overfitting. Very deep networks also require a lot of time and very powerful

machines equipped with multiple GPUs. Using pre-trained networks can be

advantageous when not provided with appropriate resources. Several transfer

learning scenarios are practicable.

In a first scenario, the pre-trained CNN is used as a fixed feature extractor.

The convolutional layers of the network are kept with the weights determined

during training on the ImageNet dataset and the pre-trained fully-connected

layers are replaced with fully-connected layers initialised with random weights.
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During training, only the newly added fully-connected layers are marked as

trainable. They use the features extracted by the pre-trained convolutional

layers as inputs. These features are usually referred to as CNN codes [34, 162].

Another strategy is, on top of retraining the fully-connected layers from scratch,

to fine-tune the weights of the pre-trained convolutional layers by continuing

back-propagation. Either all the convolutional layers can be fine-tuned or only

some of the higher-level layers to avoid overfitting. This derives from the ob-

servation that the lower-level layers usually learn more generic features, such

as edge detectors, that can be used for many different learning tasks. On the

other hand, the high-level layers tend to learn features that are more and more

specific to the characteristics of the classes of the original dataset.

In this thesis, only the first scenario has been investigated. The pre-trained

CNNs are very deep and require a very high computation power to be fine-

tuned. Using them as feature extractors is in fact equivalent to only training

a relatively shallow MLP.

The proposed architecture was compared to popular CNN architectures: VGG16

[160], InceptionV3 [142], ResNet50 [143]. These networks were initialised with

the weights obtained when pre-training them on the ImageNet dataset. How-

ever, InceptionV3 and ResNet50 being very deep networks (48 and 152 layers,

respectively), a minimum input image size is required. InceptionV3 necessi-

tates a minimum width and height of 139 pixels and ResNet50 of 197 pixels.

The images of the colorectal dataset being smaller, a zero-padding was added

to reach the required dimensions. Moreover, the ImageNet images are RGB

images and therefore have a depth of 3 channels. In order to meet the dimen-

sion requirements, a PCA was carried out to reduce the dimensionality of the

multiscale images to 3 channels.
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Table 6.1: Validation and test accuracy comparison of different architectures
(in %)

Method
Prostate dataset Colorectal dataset
Validation
accuracy

Test
accuracy

Validation
accuracy

Test
accuracy

Proposed CNN 100 99.8 ± 0.1 100 99.5 ± 0.1
VGG16 Xavier initial. 100 99.6 ± 0.1 99.0 ± 0.1 99.2 ± 0.1
VGG16 pre-trained 100 99.5 ± 0.1 97.5 ± 0.2 98.1 ± 0.1
InceptionV3 pre-train. 98.8 ± 0.2 99.0 ± 0.1 92.3 ± 0.3 94.5 ± 0.3
ResNet50 pre-trained 100 100 99.5 ± 0.1 99.0 ± 0.2

6.5 Results and Analysis

In order to visualise the effect of the kernels on images throught the network,

Figure 6.10 and 6.12 present examples of outputs of the first convolutional layer

of the networks trained with the prostate and colorectal datasets, respectively.

Figure 6.11 and 6.13 depict examples of outputs of the last convolutional lay-

ers of the same networks. It can be observed that after the first layer, the

outputs are very similar to the input image, for instance with transformations

resembling edge detections. Once the image has flown through the network,

different regions or features of the input image are represented in the outputs

of the last convolutional layer. The different layers thus learn a succession of

transformations leading to an isolation of relevant regions or features of the

input image. The fully-connected layers of the network are then able to classify

these particular features into the four classes.

Table 6.1 displays the validation and test accuracies obtained with the prostate

and colorectal datasets for different CNN models. The evolutions of loss and

accuracy during training for each model are displayed in Section A.2.

Table 6.1 shows that the validation and test accuracies are very close, proving

a good generalisation of the systems and that overfitting was avoided. The
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Figure 6.10: Example of an output of the first convolutional layer for the
network trained on the prostate dataset
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Figure 6.11: Example of an output of the last convolutional layer for the
network trained on the prostate dataset
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Figure 6.12: Example of an output of the first convolutional layer for the
network trained on the colorectal dataset
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Figure 6.13: Example of an output of the last convolutional layer for the
network trained on the colorectal dataset
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proposed CNN model achieves an average test accuracy of 99.8 % and 99.5

% for the prostate and colorectal datasets, respectively. Figure 6.6 and 6.8

show that the optimal CNN weights were obtained after 44 and 70 epochs,

respectively. The VGG16 model initialised with Xavier weights trains very

“quickly” for the prostate dataset – optimal validation accuracy is obtained

after 19 epochs as illustrated by Figure A.3. However, it is less efficient at

learning for the colorectal dataset and needs as much as 70 epochs to obtain

minimum validation loss (Figure A.5). The results also show a slight overfitting

for the colorectal dataset, as the validation accuracy is lower than the training

accuracy (Figure A.5). This is due to the high capacity of the network. When

using this network with pre-trained weights from ImageNet, the training loss

reaches a minimum after only a few epochs but the validation loss shows that

the network overfits marginally for both datasets (Figure A.7 and A.9). The

test accuracy is also lower than for the proposed CNN with 99.5 % and 98.1 %,

respectively. This is because the CNN codes learnt with the ImageNet dataset

are not as adapted to the classification task at hand than the ones learnt

with the proposed CNN. The InceptionV3 model shows a higher overfitting

(Figure A.11 and A.13) and a lower generalisation for both datasets with 99.0

% and 94.5 % accuracy for the prostate and colorectal dataset, respectively.

This shows once again that the CNN codes learnt on the ImageNet dataset with

this network are not adapted to the classification task at hand. Finally, the pre-

trained ResNet50 achieves optimal accuracy with the lowest number of epochs:

5 and 22 for the prostate and colorectal dataset, respectively. It also achieves

100 % average accuracy for the prostate dataset, outperforming the proposed

CNN and 99.0 % for the colorectal dataset, which is slightly lower than the

proposed dataset. This lower performance compared to the proposed CNN

architecture for the colorectal dataset might be due to some loss of information
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Table 6.2: Accuracy comparison against other methods (in %)

Method Prostate dataset Colorectal dataset

Tahir et al. [8] 98.9 N/A
Bouatemane et al. [21] 99.83 N/A
Concatenated LBP [2] 92.4 ± 0.4 88.2 ± 0.5
Stacked MMLBP + GLCM [1] 99.5 ± 0.3 99.5 ± 0.1
Proposed CNN 99.8 ± 0.1 99.5 ± 0.1
ResNet50 pre-trained 100 99.0 ± 0.2

when performing PCA on the 42 channels of the colorectal dataset images. The

prostate dataset consisting of images with only 16 channels, it is logical that

the loss of information is not as important during this transformation.

Therefore, the proposed CNN architecture is more adapted to the task at hand

than the other methods it was compared to. However, ResNet50 shows a very

good performance when used as a feature extractor and is trained with fewer

epochs needed.

In every case, it can be noted that the colorectal dataset is more prone to

overfitting. This is probably due to the size of the images, which are spatially

smaller than for the prostate dataset. As a consequence, a model with the

correct capacity for the prostate dataset might be over-dimensioned for the

colorectal dataset.

Comparison Against Other Machine Learning Methods

Table 6.2 shows the test accuracy of the best performing CNN architectures

compared to other methods from Tahir et al. [8], Bouatemane et al. [21]

and from the systems presented in Chapter 4 and 5. Regarding the prostate

dataset, four systems have an accuracy above 99 %: Bouatemane et al. [21],

Stacked MMLBP + GLCM, the proposed CNN and ResNet50 with pre-trained
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weights. The highest classification accuracy is achieved by ResNet50 with

100 %. The proposed CNN and Bouatemane et al. [21] both achieve 99.8 %,

however, the standard deviation is not given for the latter. Therefore, it is

not possible to know the precision of this accuracy estimation. The Stacked

MMLBP + GLCM system achieves 99.5 % with a 0.3 pp standard deviation, as

presented in Chapter 5, which makes this performance similar to the proposed

CNN. However, the higher standard deviation shows a lower precision on the

accuracy estimation. The proposed CNN is therefore preferred.

With respect to the colorectal dataset, only the algorithms presented in this

thesis were analysed for comparison. The Stacked MMLBP + GLCM system

and the proposed CNN both give the same accuracy and standard deviation.

They outperform the ResNet50 with pre-trained weights by 0.5 pp.

Finally, when considering the results obtained with both datasets, the Stacked

MMLBP + GLCM system and the proposed CNN appear to give the most

stable results as well as the highest accuracy. Yet, on average, the standard

deviation of the accuracy achieved by the proposed CNN is lower than the one

obtained with the Stacked MMLBP + GLCM system. The ResNet50 network’s

performance seems to be more dependent on the dataset used. Moreover,

it would be interesting to compare the system proposed by Bouatemane et

al. [21] using the colorectal dataset in order to verify whether it performs

as well on different datasets. Considering the current information available

on the systems performance and with the datasets available, the proposed

CNN is selected as the best performing system in terms of accuracy for the

classification task at hand.
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Table 6.3: CNNs average classification computation times for one image

Method Prostate dataset Colorectal dataset

Proposed CNN 14 ms 7 ms
VGG16 Xavier initial. 75 ms 42 ms
VGG16 pre-trained 75 ms 42 ms
InceptionV3 pre-train. 63 ms 42 ms
ResNet50 pre-trained 65 ms 47 ms

Computational Complexity Analysis

In CADSs, an unlabeled image is fed to a previously trained system. Conse-

quently, the time used to process this image is decisive, as it is crucial that the

CADS works on-line. However, a forward pass of an image through the CNN

architectures studied in this thesis is computationally non-expensive. Table 6.3

displays the classification times per image for all the CNN architectures tested.

It demonstrates that only a few milliseconds are needed to classify one image,

once the CNN has been trained. However, it must be noticed that the proposed

CNN architecture is much quicker at classifying the images than the others.

This is due to the fact that, for the architectures described in the literature

and the pre-trained networks, a PCA must be carried out in order to reduce

to 3 the number of channels of the image to be classified. This preprocessing

stage lengthens the total classification time.

As said above, the training is performed only once when the CADS is created.

Consequently, the training time is not a critical measure for the problem at

hand. However, the computational complexity of deep learning systems can

rapidly become significantly high. Such architectures require high-performing

hardware, including GPUs. Some extremely deep architectures can also entail

several weeks of training times [34]. Such long training times considerably slow

down the CADS development process. In order to verify that the proposed
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Table 6.4: CNNs average training computation times for the complete dataset
(in s)

Method
Prostate dataset Colorectal dataset
Time per
epoch

Total
training
time

Time per
epoch

Total
training
time

Proposed CNN 90 3780 45 2925
VGG16 Xavier initial. 245 4655 97 6790
VGG16 pre-trained 83 3154 35 1400
InceptionV3 pre-train. 39 1755 15 705
ResNet50 pre-trained 41 205 32 704

system can be trained within a reasonable duration, a comparison of the train-

ing times for each architecture is carried out (Table 6.4). The computational

times depending on the hardware and software used, it is not possible to com-

pare the CNN architectures against the other classification systems presented

in this thesis. However, this is the first time deep learning is used for this ap-

plication. Therefore, this section aims to establish the ability of deep learning

systems to be trained in a short period of time with the datasets used.

Unsurprisingly, Table 6.4 demontrates that pre-trained networks have a much

shorter training time per epoch due to the reduced number of layers to be

trained: ResNet50 and InceptionV3 only train in a few minutes. When con-

sidering this measure of performance, the best architecture is ResNet50. How-

ever, the total training time for every CNN model is under two hours, making

it a reasonable time for developing a CADS.

6.6 Conclusion

This chapter explained the theory behind deep learning by presenting deep

feedforward networks and CNN architectures. Then, a proposed CNN archi-
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tecture was detailed and compared against previously trained network models

used as feature extractors. These CNNs were also compared to other classifica-

tion methods presented on other chapters of this thesis and other works from

the literature. The proposed CNN demonstrated excellent performances when

compared to pre-trained CNNs and to the other classification methods studied

in this thesis. The computational complexity of the CNNs was also analysed

and it was demonstrated that the proposed CNN is faster at classifying images

than the pre-trained networks because it avoids a preprocessing phase. The

conclusion of this overall analysis was that the proposed CNN architecture

was globally the best performing system for classifying colorectal and prostate

tumour images.



Chapter 7

Conclusion

7.1 Introduction

This chapter presents a review of the main contributions made to automatic

classification of microscopic images of colorectal and prostate tumours. Sug-

gestions for future works are subsequently examined.

7.2 Summary of Thesis Contributions

CAD is a very active field of research. Many different methods have been

investigated for automated classification of tumour biopsies in the past few

decades. However, these systems’ accuracy still needs to be improved before

clinical use. This thesis aims at building a system which further improves the

performance of sample classification. For this purpose, two different datasets

were used to carry out experiments. The first dataset included four classes of

prostate tumour microscopic images. Another dataset consisted of four classes

149
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of colorectal tumour microscopic images. As presented in chapter 2, these or-

gans have similar types of tissue and consequently develop the same kind of

tumours. The observations made by pathologists for diagnosis are very similar

in both cases. It is therefore understandable that similar automatic systems

can accomplish comparable performances for both tissue types. Non-binary

datasets are used with the aim of simulating a representation of the evolution

spectrum of cancer, and tracking its evolution from healthy tissue, to cancer,

via pre-cancerous tumours. This study exploits multispectral imagery in order

to profit from the complete spectral range of the tissue’s reflected light, and

increase the amount of information acquired. For this work, texture features

were chosen for their remarkable discrimination power, which is evident even

when the tissue structure is largely altered by advanced stages of cancer. Mul-

tiple classification techniques were investigated in this thesis and the analysis

of the results led to the following contributions to knowledge:

• A multiclass classification system adapted to multispectral prostate and

colorectal tumour images was proposed. This system uses a two-dimensional

texture extraction technique on each spectral band. The image descrip-

tor is a concatenation of the texture feature vectors from each band,

followed by a feature selection method in order to avoid problems caused

by the curse of dimensionality. From the analysis of the system’s perfor-

mance on panchromatic and multispectral images, it was deduced that

multispectral data led to a considerably higher classification accuracy

than the one found with panchromatic images.

• A novel multispectral texture feature, referred to as MMLBP, was pro-

posed. It is based on LBP features and exploits the inter-band spectral

information by expanding the pixel’s neighbourhood considered in LBP
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patterns to the spectral dimension. Using this technique, it is possible

to make more efficient use of the spectral information as opposed to con-

catenating the texture from each spectral band. It also keeps the feature

vector to a small number of dimensions. The classification results of this

method demonstrated that the proposed feature outperforms standard

texture extraction methods.

• Complex classification schemes were investigated in order to improve the

results achieved with the proposed MMLBP feature. The BoF frame-

work, inspired from text classification, computes the texture of image

sub-blocks and constructs a histogram of the sub-blocks feature used as

image descriptor. The stacked generalisation framework uses multiple

classifiers, each fed with a feature vector from a different scale. The ul-

timate classification decision is made by a meta-classifier that takes as

input the outputs of the different classifiers. The BoF scheme is better at

capturing local information, while the stacked generalisation scheme is

better at selecting the features with the most discriminative power. As a

result, both methods helped to improve the performance of the MMLBP

texture feature.

• The colorectal dataset was acquired with a light spectral range extended

from the visible wavelengths to the IR. The performance of the proposed

classification system were evaluated on the visible end of the light spec-

trum and compared to the system’s accuracy when the IR spectral bands

were added to the input images. This demonstrated that including the

IR information improves the classification accuracy.

• Different deep learning architectures were investigated. A CNN architec-

ture was proposed and the results of the classification were compared to
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the performance of pre-trained networks. The transfer learning systems,

using features learnt from images of a different origin, showed promis-

ing results. Howerver, they did not demonstrate the same consistancy

when compared to the proposed architecture with randomly initialised

weights.

7.3 Future Work

From the experimental work carried out in this thesis, several directions for

further research arise.

• The techniques studied in this thesis are only one part of a complete

CADS. Due to the type of images available, they focus on the classifi-

cation of tumours, the datasets having been constructed with images of

homogeneous diagnosis regions of the biopsies. A complete CADS would

take as input an image of the entire biopsy, possibly including regions

with different diagnoses. Consequently, a phase of segmentation needs

to be combined to this system in order to distinguish between regions

corresponding to different diagnoses.

• The main problem faced by research on automated diagnosis systems is

lack of data. As explained in this thesis, every research group uses dif-

ferent datasets for prostate and colorectal tumour classification. More-

over, each dataset consists of a limited amount of images. One of the

conclusions of this thesis is that CNNs seem particularly promising for

extracting the best features resulting in an excellent classification per-

formance. However, deep learning needs an extensive amount of data in
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order to be trained. It would therefore be best to generate a reference

large open-source dataset consisting of several thousands of multispectral

images divided into many classes, to simulate the evolution of tumours

and cancers. Having a universal dataset which all systems use would

help to identify the most efficient system and would also help developing

deep learning systems.

• Generating a very large dataset of labeled data poses some problems.

First, it is a time and labour-intensive task which requires multiple highly

experienced pathologists to carry out. The main issue, however, is the

element of human error, meaning that pathologists may disagree on a

diagnosis for some samples. The subjectivity involved in data labeling

cannot be completely removed from the process as the supervised learn-

ing system will be trained on a dataset generated by pathologists. Many

deep learning systems have been designed to tackle unsupervised learn-

ing, however, none has succeeded in solving the problem in the same

way that deep learning has done for supervised learning. A great chal-

lenge would be to design an unsupervised learning system that would

automatically distinguish between similar types of tumour or stages of

cancer. Such a system might be able to pick up on earlier stages of cancer

by recognising structures invisible to the human vision system.

• The proposed MMLBP has the ability to characterise multispectral tex-

ture as demonstrated by this study. It can be applied to many other

fields where multispectral data are involved, such as facial recognition

or satellite imagery. This texture feature can help to detect objects or

segment regions of interest in several applications.
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Appendices

A.1 Model Architecture of the Proposed Con-

volutional Neural Network
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Figure A.1: Convolutional Neural Network architecture for the prostate
dataset
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Figure A.2: Convolutional Neural Network architecture for the colorectal
dataset
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A.2 Networks Training
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Figure A.3: Evolution of the loss during training of VGG16 on the prostate
dataset using a Xavier weights initialisation

Figure A.4: Evolution of the accuracy during training of VGG16 on the
prostate dataset using a Xavier weights initialisation
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Figure A.5: Evolution of the loss during training of VGG16 on the colorectal
dataset using a Xavier weights initialisation

Figure A.6: Evolution of the accuracy during training of VGG16 on the col-
orectal dataset using a Xavier weights initialisation
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Figure A.7: Evolution of the loss during training of pretrained VGG16 on the
prostate dataset

Figure A.8: Evolution of the accuracy during training of pretrained VGG16
on the prostate dataset
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Figure A.9: Evolution of the loss during training of pretrained VGG16 on the
colorectal dataset

Figure A.10: Evolution of the accuracy during training of pretrained VGG16
on the colorecat dataset
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Figure A.11: Evolution of the loss during training of pretrained InceptionV3
on the prostate dataset

Figure A.12: Evolution of the accuracy during training of pretrained Incep-
tionV3 on the prostate dataset
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Figure A.13: Evolution of the loss during training of pretrained InceptionV3
on the colorectal dataset

Figure A.14: Evolution of the accuracy during training of pretrained Incep-
tionV3 on the colorectal dataset
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Figure A.15: Evolution of the loss during training of pretrained ResNet50 on
the prostate dataset

Figure A.16: Evolution of the accuracy during training of pretrained ResNet50
on the prostate dataset
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Figure A.17: Evolution of the loss during training of pretrained ResNet50 on
the colorectal dataset

Figure A.18: Evolution of the accuracy during training of pretrained ResNet50
on the colorectal dataset
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