Electroless carbon fibers: a new route for improving mechanical property and wettability of composites

Yuanlin Xue\textsuperscript{a}, Wenge Chen\textsuperscript{a,\textasteriskcentered}, Qian Zhao\textsuperscript{a}, YongQing Fu\textsuperscript{b,\textasteriskcentered}

\textsuperscript{a} School of Materials Science and Engineering, Xi’an University of Technology, Shaanxi, Xi’an, 710048, PR China

\textsuperscript{b} Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.

Abstract: For carbon fiber reinforced metal matrix composites, there are many potential problems such as severe agglomeration of carbon fibers (CFs), their poor interfacial wettability with the matrix, and poor mechanical strength. To solve these problems, we proposed to use electroless plating to coat a layer of Ni onto the CFs, and then studied their interfacial structures, fracture strain/strength and wettability. The coated Ni layer was uniformly distributed onto and well bonded with the CFs. The maximum strain of the CFs coated with the Ni layer was increased by 23.4 \%, though their average fracture strength was slightly decreased from 3.5 GPa to 2.25 GPa. The wettability of the Ni-coated fiber was significantly improved, verified from testing results using both a dip coating method and a fiber reinforced composite simulation test.

\textsuperscript{\textasteriskcentered} Corresponding author:
E-mail: wgchen001@263.net (W.G. Chen), richard.fu@northumbria.ac.uk (Richard Y.Q. Fu)
Key words: Carbon fiber; Electroless plating; Fracture strength; Wettability.

1. Introduction

Carbon fiber (CF) is a microcrystalline carbon material, containing more than 92 wt% of carbon [1]. It has high axial strength, low density (e.g., 1/4 of steel’s density and 1/2 of aluminum alloy’s density), light weight, high fracture strength (2-7 GPa), high tensile modulus (200-500 GPa), good conductivity (5-17 μΩ·m) and low thermal expansion coefficient (0-1.1 × 10^{-6} K^{-1}) [2-4]. For these reasons, the CFs are often used as the reinforcement agents in synthesis of metal matrix composites [1, 5-9]. As-received and untreated CFs normally have relatively smooth surfaces, low surface energy, low reactivity (e.g., lack of chemically active functional groups), poor chemical stability with certain metals such as iron, poor interfacial wettability and poor interfacial adhesion, all of which significantly affect the mechanical properties of composites and restrict their wide-range applications [10]. Therefore, it is critical to modify the surfaces of the CFs to solve the above problems. Coating the surfaces of CFs with a metallic layer is one of the potential solutions. This method not only solves the problems of severe agglomeration of the CFs and their poor interfacial wettability with the matrix, but also avoids the significant reaction of the CFs with metals such as iron [11,12]. Metal coated CFs can also be combined with non-metallic materials such as resin, rubber and plastics in order to fabricate new types of non-metal matrix composites with excellent permeability, conductivity and thermal...
conductivity. For example, Lv et al. [13] prepared Ni-coated CFs using a continuous 
electroplating method, and the Ni-layer was well adhered to the CFs. Both the 
conductivity and oxidation resistance of the Ni coated CFs were improved. The 
electrical resistivity was decreased to $0.74 \times 10^{-6} \ \Omega \cdot m$, and the initial oxidation 
temperature of the Ni coated CFs was $\sim 100 ^\circ C$ higher than that of the untreated CFs. 
Halouzk et al. [14] electroplated a nanoscale copper layer onto the surfaces of CFs, 
and this process was performed in the ultra-pure water, thus the contamination of Cu 
layer during the preparation process was minimized. Wan et al. [15, 16] prepared 
FeCo coated and FeCo/CuO double-layer coated CFs using an electro-deposition 
method. Results showed that both dielectric and magnetic losses have been decreased 
when using the CFs coated with the FeCo/CuO double layer because of its 
double-layer structure, thus improving permittivity and providing good absorption 
properties. Karim et al. [17] electro-deposited spherical Fe$_3$O$_4$ particles (with an 
average particle size of 50 $\mu m$) onto the CFs at 80 $^\circ C$. Ceng et al. [18] prepared 
nickel-plated CFs using a wire mesh catalysis method instead of the conventional 
palladium activation method, and reported that the deposited Ni coating was uniform 
and compact, although the quality of coating was significantly dependent on the 
catalytic process. Li et al. [19] used Ni(CO) as a precursor to deposit a continuous and 
compact nickel layer on the surfaces of CFs using carbonyl metal organic chemical 
vapor deposition (MOCVD). Their results showed that the film deposited on the 
surface of CFs was pure nickel with a good adhesion with the CFs. Fracture strength
of the CFs was increased by 34.9 % and oxidation resistance of the CFs was improved effectively. Dyadyura et al. [20] used a spraying technology to coat a titanium layer onto the CFs to obtain good physico-mechanical and tribo-mechanical properties.

Currently various metals such as copper, silver, cobalt, chrome, nickel, titanium and iron [16, 21-23] have been coated onto the CFs using various coating processes including physical vapor deposition (PVD), chemical vapor deposition (CVD), sol-gel, electroplating and electroless plating [24-28]. Among these methods, the electroless plating has the advantages of low cost and simple process. Sodium hypophosphite reduced electroless nickel plating is the mostly reported method for the CFs [29, 30]. Most researchers are currently focusing their work on process optimization and exploration of new preparation methods for the coated CFs. However, there are few studies focused on fundamental issues, such as the interfacial structures, bonding mechanisms, and surface wettability between the metal layers and CFs, as well as their relationships with mechanical properties of the composite fibers. In this work, we prepared electroless nickel-plated CFs and investigated their interfacial microstructures, tensile properties, fracture mechanism, bonding strength and surface wettability of the composite fibers.

2. Experiment

2.1 Preparation of Ni-coated CFs
Commercial CFs (with their key properties listed in Table 1) were heated to 480 °C and maintained for 60 min to burn out the organic adhesive on their surfaces. They were then soaked in acetone for 60 min, followed by cleaning with de-ionized (DI) water and drying. The treated CFs were heated in a concentrated nitric acid (68 wt%) at 90 °C for 60 min to increase their surface reactivity. They were then washed in a diluted solution of NaOH for neutralization. SnCl$_2$ of 0.3 g was dissolved into 32 mL HCl (38 wt%), and DI water was then added into this solution to form a sensitized liquid of 300 mL. The treated CFs were sensitized for 5 min in the above sensitized liquid, stirred slowly during the sensitization process, and then washed for 2 min with the running water.

Table 1. Specifications and properties of CFs.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Number of filament / (number/bunch)</th>
<th>Filament diameter /μm</th>
<th>Tensile strength /GPa</th>
<th>Elastic modulus /GPa</th>
<th>Density /g.cm$^{-3}$</th>
<th>Elongation at break /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>T700</td>
<td>12K</td>
<td>7</td>
<td>3.9</td>
<td>241</td>
<td>1.80</td>
<td>1.97</td>
</tr>
</tbody>
</table>

Before electroless plating, in order to improve the adhesion of nickel ions, the surfaces of the CFs were activated using palladium ion solution. PbCl$_2$ of 0.3 g was dissolved in 24 mL HCl (38 wt%), and then DI water was added inside to prepare a solution of 300 mL. The sensitized CFs were immersed in the liquid for 5 min to activate their surfaces, and then were immersed in the electroless plating solution (with its key components listed in Table 2). The Ni plating process was performed at 65 °C for 3 min in the alkaline condition (with a pH value of ~8) in order to reduce
the content of phosphorus in the coating [31, 32]. Finally, the Ni-coated CFs were washed and dried.

Table 2. Key components and their concentrations for electroless nickel plating solution

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiSO₄</td>
<td>30 g·L⁻¹</td>
</tr>
<tr>
<td>Na₃C₆H₅O₇</td>
<td>25 g·L⁻¹</td>
</tr>
<tr>
<td>NaH₂PO₂</td>
<td>20 g·L⁻¹</td>
</tr>
<tr>
<td>NH₃H₂O</td>
<td>Adjusting pH</td>
</tr>
</tbody>
</table>

2.2 Characterization and performance testing

Crystalline phases of the Ni-coated CFs were analyzed using X-ray diffraction (XRD, 7000 X ray diffractometer, Cu Kα, 40 kV/ 30 mA, 20 range: 10°- 90°, scanning speed: 0.8-1 degree/min and a step size of 0.02°). The coated CFs was spread out onto the substrate, and the residual stress of the fiber was estimated using the XRD results based on the 20-sin²(ψ) method, during which the incident angles (ψ) were controlled to be 0, 15 and 30 degrees, and the corresponding 20 values were obtained. Surface morphologies of the CFs before and after electroless plating were characterized using a scanning electron microscope (SEM, TESCAN VEGAIII XMU). Surface composition of the CFs was analyzed using an energy dispersive X-ray spectroscope (EDS) attached with the SEM.

Tensile properties of the CFs before and after Ni coating were measured using a fiber strength tester (LLY-06EDC). The stretching speed was 10 mm/min and the initial clamping distance was 10 mm. The fracture strength and the maximum strain were calculated using Equations (1) and (2), respectively.
\[ \sigma = \frac{F}{A} \]  
\[ \varepsilon = \frac{\Delta L}{L_0} \]

where \( \sigma \) is fracture strength (GPa); \( F \) - tensile strength (CN); \( A \) - original cross section of CF (\( \mu \text{m}^2 \)); \( \varepsilon \) - elongation at fracture (%); \( \Delta L \) - elongation (mm); \( L_0 \) - original length of CF (mm).

Interfacial bonding strength of the Ni-coated CFs was indirectly characterized by measuring the weight-loss rate of the Ni-coated CFs after an ultrasonic treatment for 30 min. It was calculated using Equation (3):

\[ W\% = \frac{m_1}{m_0} \]

in which \( W\% \) is weightlessness rate; \( m_1 \) (g) is the mass of the Ni-coated CF after ultrasonic treatment; \( m_0 \) (g) is the mass of the Ni-coated CF before the ultrasonic treatment. To further determine bonding conditions of the Ni layer on the CFs, Fourier transform infrared (FT-IR) spectra of the CFs after the original adhesive was removed were obtained using a TENSOR 27 spectrophotometer (Bruker, Germany).

Surface wettability is generally characterized by measuring the contact angle of a liquid droplet on the substrate surface, but it is difficult to measure the wetting angles of the CFs owing to their particular shapes. Therefore, we used a dip coating method to verify the improvement of wettability [33]. The CFs, including the untreated and Ni-plated ones, were immersed in a molten tin alloy for a few seconds and then quickly taken out. Their surface morphologies and compositions were characterized.
using SEM and EDS in order to check their wettability with the liquid metal Sn. Apart from these, we also prepared copper matrix composites by cold-pressing the untreated and Ni-plated CFs, respectively, with a volume fraction of CFs of 5% at a pressure of 400 MPa. The samples were then sintered at 850 °C for 2 hours. The interfacial bonding between the CF and copper was characterized to check their wettability.

3. Results and analysis

3.1 Microstructure analysis

Fig. 1 shows SEM images of the CFs before and after coated with a Ni layer. As-received CFs have a smooth surface (Fig. 1(a)). As shown in Fig. 1(b), the surface of CFs was deposited with the Ni layer which is continuous and homogeneous. According to the EDS results (Fig. 1(b), the surface of CFs was successfully coated with nickel and a tiny amount of phosphorous. In Fig. 1(c), the coating shows many nickel particles on its surface [34-37], and some small white dots (Fig. 1(c)) also appear on the coating, and they have the same compositions as those of the nickel particles. Based on the characterization results, it is assumed that during deposition the nickel ions were adsorbed onto the surfaces of CFs and then were strongly reduced in alkaline conditions to form metal particles. Meanwhile a small amount of phosphorus atoms were also formed in the Ni layer by the electroless deposition method [31, 32]. The chemical reactions during the deposition process are written in Equations (4)-(7) [38]:

Equations (4)-(7) [38]:

\[ \text{nickel ions} + 2e^- + 2H^+ \rightarrow \text{nickel metal} \]

\[ \text{nickel metal} + \text{phosphorus} \rightarrow \text{nickel particles} \]
\[
\begin{align*}
\text{H}_2\text{PO}_2^- + \text{H}_2\text{O} & \rightarrow \text{HPO}_3^{2-} + \text{H}^+ + 2[\text{H}] \quad (4) \\
\text{Ni}^{2+} + 2[\text{H}] & \rightarrow \text{Ni}^0 + 2\text{H}^+ \quad (5) \\
\text{H}_2\text{PO}_2^- + [\text{H}] & \rightarrow \text{H}_2\text{O} + \text{OH}^- + \text{P}^0 \quad (6) \\
\text{H}_2\text{PO}_2^- + \text{H}_2\text{O} & \rightarrow \text{H}[\text{HPO}_3^-] + \text{H}_2 \quad (7)
\end{align*}
\]

The cross-section morphology of the nickel coated CFs is shown in Fig. 1(d), which reveals that the CF surface is uniformly coated with a layer of metallic Ni along the circumference of the fiber, and the layer thickness is \( \sim 0.5 \, \mu\text{m} \). The Ni layer is distributed uniformly and continuously along the length direction of the fiber, and the interfaces between adjacent particles can be clearly observed as shown in Fig. 1(e).

The XRD result of the Ni-coated CFs is shown in Fig. 2(a). There are three dominant diffraction peaks, corresponding to three face-centered cubic nickel crystal orientations of (111), (200) and (220), respectively. The characteristic peak corresponding to the (002) crystal plane of graphite was found to be at \( 2\theta = 25^\circ \), and the corresponding peak of the coated CFs is much weaker when compared with that of the uncoated CFs (Fig. 2(b)). XRD analysis clearly indicate that nickel was successfully coated onto the surfaces of the CFs [31].
Fig. 1. SEM images of CFs: (a) as-received CFs; (b) Ni-coated CFs (the inset lists the EDS result of Ni-coated CFs); (c) high magnification image of the selected area in (b); (d) cross-section image of Ni-coated CF; (e) axial cross-section image of Ni-coated CF.
Fig. 2 XRD spectra of (a) Ni-coated CFs and (b) uncoated CFs.

3.2 Mechanical properties

Fig. 3 shows stress vs strain curve of the CFs after different treatments. All the CFs showed brittle fracture behaviors and were broken right after the elastic deformation. The fracture strength of CFs was decreased after their surfaces have been chemically treated and then coated with a Ni layer.

Tensile testing results of all the CFs are summarized in Table 3. Compared with that of the as-received CFs (Table 1), the fracture strength of CFs after removal of adhesive is 3.5 GPa and the elongation at break is 1.67%. Fracture strength of the CFs after the chemical treatment was reduced to 3.06 GPa, whereas its maximum strain was increased to 1.94%. The fracture strength of the Ni-coated CFs was reduced to 2.25 GPa (e.g., a 35.7% decrease), and the maximum strain was increased to 2.06% (e.g., a 23.4% increase).
Fig. 3 Tensile testing results of CFs after different treatments: (a) Ni-coated; (b) surface-treated; (c) removal of adhesive.

Table. 3 Tensile test results of the CFs after different treatments

<table>
<thead>
<tr>
<th>Samples</th>
<th>Maximum strain /%</th>
<th>Fracture strength /GPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFs after removal of adhesive</td>
<td>1.67</td>
<td>3.50</td>
</tr>
<tr>
<td>Surface-treated CFs</td>
<td>1.94</td>
<td>3.06</td>
</tr>
<tr>
<td>Ni-coated CFs</td>
<td>2.06</td>
<td>2.25</td>
</tr>
</tbody>
</table>

There are four factors that cause the decrease of fracture strength:

(1) The high temperature oxidation process during the adhesive removal process causes surface damages of the CFs. The bonding strength between the CF and nickel layer is closely related to the pre-treatment process [39]. Increasing surface roughness of the CFs is an effective method, but it easily produces defects on the surface of the CFs. These defects will cause stress concentration, thus resulting in the decrease of tensile properties of the CFs.

(2) According to the XRD results, residual tensile stress exists in the coated Ni layer. The residual stress in the fiber was obtained using the $\theta - \sin^2(\psi)$ method, and
the results are shown in Fig. 4. The measured stress is 42.9 MPa, tensile. Under the combined actions of residual tensile stress and external normal load, the fracture of CFs is accelerated and the tensile strength is reduced.

(3) Because of the huge difference in the mechanical properties between Ni and CFs, the deformation of the Ni layer is incompatible with that of the CFs during the stretching process (Fig. 5). This produces a stress concentration and micro-cracks are formed at their interfaces, which will affect the bonding between the Ni layer and CFs and thus accelerate the earlier fracture of the CFs [30, 40].

(4) Tensile properties of metal coated CFs are directly linked with the type of coating material, quality of the coating (including layer thickness, continuity, uniformity and impurity), coating process and parameters [41-46]. When the strengthening effect generated by the Ni coating process is not as significant as the negative influences of newly generated defects caused by the pre-treatment processes, the mechanical properties of the Ni coated CF will be degraded. With the increase of thickness of metal layer, the strengthening effect of the Ni coating will be reduced, not only due to the generation of more defects in the surface layer [40], but also due to the lower tensile strength of nickel (345 MPa) compared with that of CFs (3.9 GPa) [42].

In Ref. [19], Ni(CO)$_4$ was used as a precursor to deposit a continuous nickel layer on the CFs based on MOCVD, but an enhanced fracture strength of the CFs after coated with Ni layer was reported in that reference, which is different from this study.
The possible difference could be that the fine nano-size nickel particles can be filled into those defects such as cracks and voids in the CFs, which can effectively delay the initial fracture of the fiber, thus the fracture strength of the CFs was improved in their study.

Although in this work, the Ni coating causes a slight decrease of tensile strength of the CFs, for the CF reinforced metal matrix composites, this might not be a critical problem for their practical applications. The general failure modes of fiber reinforced composites include pulling-out, stripping and breaking of CFs from the metal matrix. These are mainly due to interfacial wetting and bonding problems, which will be studied in following sections.

![Graph showing residual stress in the nickel coated CFs](image)

**Fig. 4.** Residual stress in the nickel coated CFs which was obtained using the 20-sin²(ψ) method from XRD test.
3.3 Fracture morphology

Fig. 6 shows the fracture morphologies of the uncoated and Ni-coated CFs, which is quite rough with irregular granular structures (Fig. 6(a)) and mainly distributed in the core of the granular structures (Fig. 6(b)). It can be seen from Fig. 6(b) that the Ni layer has a good adhesion with the carbon fiber. Crack
FT-IR spectra of the chemically treated and adhesive-removed CFs are shown in Fig. 7. The spectrum of the adhesive removed CFs in Fig. 7(b) shows the existence of many peaks: e.g., absorption peak due to the -O-H stretching vibration of hydroxyl groups at 3450 cm$^{-1}$; the -C=O stretching mode at 1650 cm$^{-1}$; the vibration mode of -C-O at 1450 cm$^{-1}$; and the -C-O-C stretching vibration at 1120 cm$^{-1}$. The intensities of all the peaks which are correlated to the oxygen functional groups of chemically treated CFs are increased dramatically if comparing Fig. 7(a) with Fig. 7(b). Based on the appearance of more oxygen functional groups on the surfaces of the treated CFs measured from the FT-IR, we can conclude that the chemical reactivity of the treated CFs has been improved.

After the ultrasonic treatment of Ni-coated CFs at room temperature (25 °C) for 30 min, the Ni layer did not peel off and the solution did not show apparent changes. The weight loss rate of the Ni-coated CFs was measured to be 5.8 %. There are large Ni particles on the surfaces of CFs (Fig. 1(c)). If the adhesion of the Ni layer is poor, during the ultrasonic process, the particles are easily detached, and the weight loss will be increased significantly. After the chemical treatment, oxygen-containing functional groups have been increased on the surfaces of the CFs (evidenced from Fig. 7), and thus the surface reactivity has been increased. The contact areas between the Ni layer and CFs are increased, and the bonding strength is thus increased. The Ni layer electroplated onto the rough surfaces of the treated CFs will have an enhanced
interlocking effect, thus increasing the adhesion of the layer to the substrate (which can be proved from the images shown in Figs. 1(d) and 1(e).

![FT-IR spectra](image)

Fig. 7 FT-IR spectra of (a) roughed surface of CFs and (b) CFs with adhesive removed

### 3.4 Surface wettability

Fig. 8 shows the SEM images of the non-plated and Ni plated CFs after being dip-coated with the molten tin alloys. Fig. 8(a) shows that the non-plated CFs are not adhered well with the tin alloys, which can be verified from the EDS results. However, the adhesion of the Ni-coated CFs to tin alloys has been significantly improved as shown in Fig. 8(b). According to the EDS results, after dip-coating the surface of the Ni-coated CFs has elements of Al, Mo and O, apart from Ni and Sn from the electroplating. The Al and Mo are from the tin alloy, and O is from the surface oxidation during the experiment. The surface tension of the molten tin alloys on the CFs is large and its density is quite different from that of the CFs [47]. During the dip
coating process, it is difficult for the CFs to form an effective contact or good adhesion with the molten tin alloys, and the surface of the fiber does not adhere well to the molten tin alloys. When the Ni-coated CFs are immersed in the molten tin alloys, the Ni layer adheres well to the molten tin alloys, and thus the bonding strength is increased significantly. The SEM images in Fig. 8 clearly show that the wettability of the CFs with tin alloys was improved after coated with the Ni layer on their surfaces.

Fig. 8 SEM morphologies and their corresponding EDS analysis results of (a) uncoated and (b) Ni-coated CFs after they have been dip-coated with the molten tin liquid SEM images of the cross-section interfaces between copper matrix and uncoated CFs or Ni-coated CFs are shown in Fig. 9. The interface between the uncoated CF and the copper matrix is clear (Fig. 9(a)), whereas there is a significant metallurgical bonding occurred at the interface between the CF and the copper in the Ni-coated reinforced copper matrix composite material. This further proves that metal-coated CFs can significantly improve the wettability of CFs with the metal.
Fig. 9 SEM images of reinforced copper matrix composites prepared using (a) uncoated and (b) Ni-coated CFs.

4. Conclusions

In this paper, we used the electroless plating to coat a layer of Ni onto the CFs to improve the interfacial structures, fracture strain/strength and wettability. Results showed that a Ni layer with a uniform thickness of ~0.5 μm was deposited onto the CFs using an electroless plating method. The CFs were well bonded with the nickel layer and their wettability with the molten Sn alloy and copper matrix composite testing were improved significantly. Compared with the CFs after removal of adhesive, the fracture strength of the Ni-coated CFs was decreased from 3.5 GPa to 2.25 GPa (a 37.5 % decrease) and the maximum strain was increased from 1.72% to 2.06% (e.g., a 23.4 % increase). The fracture mechanisms of the Ni-coated CFs during tensile tests are summarized as follows: (1) crack generation between the coating layer and fiber
due to existence of residual stress and local stress concentration; (2) coating delamination; and (3) brittle fracture of fiber.

Acknowledgement

The authors would like to acknowledge the financial support from Key Research and Development Projects of Shaanxi Province (No. 2017ZDXM-GY-050) and Electrical Materials and Infiltration Key Laboratory of Shaanxi Province Projects (No.17JS080), Xi’an Science research project of China (No.2017080CG/RC043), Newton Mobility Grant (IE161019) through Royal Society and the National Natural Science Foundation of China, and Royal academy of Engineering UK-Research Exchange with China and India.

References:


[40] E. Hajjari, M. Divandari, A.R. Mirhabibi, The study of electroless coating of


