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We identify a new type of shock wave by constructing
a stationary expansion shock solution of a class
of regularised shallow water equations that include
the Benjamin-Bona-Mahoney (BBM) and Boussinesq
equations. An expansion shock exhibits divergent
characteristics, thereby contravening the classical
Lax entropy condition. The persistence of the
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and numerical simulations. The expansion shock’s
existence is traced to the presence of a non-local
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establish the algebraic decay of the shock as it is
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More generally, we observe a robustness of the
expansion shock in the presence of weak dissipation
and in simulations of asymmetric initial conditions
where a train of solitary waves is shed from one side
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1. Introduction
In this paper, we consider a class of nonlinear, dispersive equations naturally arising in shallow
water theory, most concisely exemplified by a version of the Benjamin-Bona-Mahoney (BBM)
equation, also known as the regularised long wave equation

ut + uux = uxxt. (1.1)

The original BBM equation, which contains an additional linear convective term ux, is an
important model for the description of unidirectional propagation of weakly nonlinear, long
waves in the presence of dispersion. It first appeared in a numerical study of shallow water
undular bores, [1], and later was proposed in [2] as an analytically advantageous alternative to
the Korteweg-de Vries (KdV) equation

ut + uux =−uxxx. (1.2)

In the context of shallow water waves, the BBM and KdV equations (1.1) and (1.2) are
reduced, normalised versions of corresponding asymptotic models derived from the general
Euler equations of fluid mechanics using small amplitude, long wave expansions. If δ� 1 is
the ratio of the undisturbed depth to a typical wave length and ε� 1 is the ratio of a typical
wave amplitude to the undisturbed depth, then the asymptotic KdV and BBM equations occur
under the balance ε∼ δ2, [3], and so can be used interchangeably within their common domain
of asymptotic validity, [4].

Despite asymptotic equivalence, the mathematical properties of the BBM and KdV equations
are very different, which is acutely captured by their normalised versions (1.1) and (1.2). The KdV
equation (1.2) is known to be integrable via the inverse scattering transform and to possess an
infinite number of conservation laws. The BBM equation (1.1), by contrast, does not enjoy full
integrability and has only three independent conservation laws. Nonetheless, well-posedness of
initial value problems for both equations has been established in the Sobolev spaces Hs (with
s > 0 for BBM [5], s >− 3

4 for KdV, [6]).
As a numerical and mathematical model, the BBM equation yields more satisfactory short-

wave behaviour, due to the regularisation of the unbounded growth in frequency, phase and
group velocity values present in the KdV equation. In particular, this enables less strict time-
stepping in numerical schemes for the BBM equation. Indeed, linearising (1.1) about a constant
u= u0: u(x, t) = u0 + aei(kx−ωt), we obtain the dispersion relation

ω= ω0(k;u0) = u0
k

1 + k2
. (1.3)

The phase and group velocities are

cp =
ω0
k

=
u0

1 + k2
, cg = ∂kω0 = u0

1− k2
(1 + k2)2

. (1.4)

One can see that ω0 as well as cp and cg are bounded as functions of the wave number k, in
contrast to their counterparts for the KdV equation with dispersion relation ω0 = u0k − k3. The
rational form of BBM dispersion (1.3) indicates its non-local character. Moreover, the dynamics
of linear dispersive equations with discontinuous initial data exhibit distinct qualitative structure
depending upon bounded or unbounded dispersion behaviour for large k [7].

We remark that “engineering” the dispersive properties of model equations was pioneered
by Whitham in the context of water waves, see [8]. In addition to some already mentioned
mathematical and numerical advantages, one may also achieve superior physical accuracy, when
compared with standard asymptotic models, by incorporating full linear dispersion, [9].

Equations (1.1) and (1.2) represent two different dispersive mechanisms to regularise the scalar
conservation law, the inviscid Burgers equation

ut + (
1

2
u2)x = 0. (1.5)
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Dispersive regularisation of hyperbolic conservation laws is known to give rise to dispersive
shock waves (DSWs), also known as undular bores, [10,11], which are in many respects very
different from their diffusive or diffusive-dispersive counterparts, [12]. These DSWs have a
distinct oscillatory structure and expand with time so that the Rankine-Hugoniot relations are
not applicable to them. Instead, DSW closure is achieved via an appropriate solution of the
Whitham modulation equations obtained by a nonlinear wave averaging procedure applied to the
full dispersive equation, [3,13]. Dispersive shock waves are evolutionary if they satisfy causality
conditions, [13] and thus represent dispersive counterparts of classical, Lax shocks, [14]. All shock
solutions of the KdV equation are evolutionary DSWs, [13]. In contrast, we show in this paper
that the BBM equation (1.1) admits a family of stationary (non-propagating), non-oscillatory
expansion shocks that (i) satisfy the Rankine-Hugoniot jump condition, and (ii) violate causality.
BBM expansion shocks are very different from both classical shocks of the inviscid Burger’s
equation (1.5) and DSWs of the KdV equation (1.2).

Nonlinear partial differential equations of hyperbolic type, such as those modelling inviscid
gas dynamics, e.g., (1.5), can have discontinuous solutions. These weak solutions may or may
not be physical, depending on whether they are stable, or persist under small changes to initial
conditions or the governing equations. Shock waves are physical, discontinuous solutions that
typically satisfy side conditions associated with either a physical or mathematical notion of
entropy. In gas dynamics, these conditions force shock waves to be compressive in that they
compress the gas as they pass a fixed location. This kind of condition was expressed by Lax in
the 1950s in terms of characteristics, requiring that shock waves are evolutionary, i.e., they are
uniquely determined from initial conditions.

In this paper, we show that a non-evolutionary stationary shock wave of the BBM equation
(1.1) persists but decays algebraically in time. This example is surprising because hyperbolic
theory would suggest that the stationary shock would immediately give way to a continuous
solution, namely a rarefaction wave. The persistence is explained through the interaction of the
particular non-local nature of dispersion in the BBM equation and a length scale associated with
the stationary shock, that sets the time scale for decay.

Expansion shocks are not unique to the BBM equation. We show that they also persist in one
of the versions of the classical bi-directional Boussinesq equations for dispersive shallow-water
waves, [3,15]. Similar to the BBM equation, these Boussinesq equations have the term uxxt in
the momentum equation. (Existence of weak solutions of initial value problems for Boussinesq
equations was established in [16].) More broadly, we identify a large class of non-evolutionary
partial differential equations — i.e., equations not explicitly resolvable with respect to the first
time derivative, [17] — that exhibit decaying expansion shock solutions, indicating the ubiquity
of these new solutions.

2. Shocks and rarefactions
If the dispersive right hand side of the BBM (1.1) or KdV (1.2) equation is deleted, we are left
with the inviscid Burger’s equation (1.5), a scalar conservation law that admits shock wave weak
solutions

u(x, t) =





u−, x < st

u+, x > st,
(2.1)

provided the speed s is the average of the characteristic speeds u± on either side of the shock:
s= 1

2 (u+ + u−). Such shocks are stable provided that characteristics enter the shock from each
side, u+ <u−, a condition known as the Lax entropy condition [14]. In this case, the shock is
called an entropy shock, or by analogy with gas dynamics, a compressive shock.

By contrast, a shock wave (2.1) solution of (1.5) is called expansive if u− <u+. Expansion
shocks are thought to be unstable and to violate causality, because characteristics leave rather
than approach the shock. Instead of an expansion shock, a self-similar rarefaction wave resolves
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Figure 1. Numerical (solid, blue) and asymptotic (dashed, red) solutions of the initial value problem for eq. (1.1) with initial

data eq. (3.1) where "= 0.1 and A = 1.

the discontinuity between u� and u+:

u(x, t) =

8
>>><
>>>:

u�, x < u�t

x/t, u�t < x < u+t

u+, x > u+t.

(2.2)

When u+ =�u�, the shock wave (2.1) is stationary, and hence is also a weak solution of the
BBM equation (1.1). With u� > 0, the stable case, the stationary shock persists. However, for u� <

0, the unstable case, hyperbolic theory would suggest that the jump is immediately replaced by
the self-similar rarefaction wave (2.2) or some approximation to it. However, we find that the
BBM equation sustains solutions in which a stationary shock persists but decays algebraically,
as shown in Fig. 1. More precisely, we study the initial value problem with initial data being a
smoothed stationary shock, with width "> 0.

3. The expansion shock.
To see the effect of dispersion on a stationary shock, we pose initial data

u(x, 0) = A tanh
x

"
, �1< x <1, (3.1)

with amplitude A > 0 for the BBM equation (1.1). Thus, as "! 0, the initial data converge to a
jump from u =�A to u = A, representing a stationary expansion shock solution to the inviscid
Burger’s equation (1.5). The numerical solution of (1.1),(3.1) is shown in Fig. 1. We observe the
development of a rarefaction wave on either side of a stationary but decaying shock. We analyse
the solution by matched asymptotics using " as the small parameter. First note that the initial
function u(x, 0) is an odd function, and the solution u(x, t) should therefore be an odd function
of x for each t > 0.

(a) The inner solution
To capture the inner solution, we introduce into eq. (1.1) the short space ⇠ = x/" and long time
T = "t scalings of the independent variables x and t

"uT +
1

"
uu⇠ =

1

"
u⇠⇠T . (3.2)

Figure 1. Numerical (solid, blue) and asymptotic (dashed, red) solutions of the initial value problem for eq. (1.1) with initial

data eq. (3.1) where ε= 0.1 and A= 1.

the discontinuity between u− and u+:

u(x, t) =





u−, x < u−t

x/t, u−t < x< u+t

u+, x > u+t.

(2.2)

When u+ =−u−, the shock wave (2.1) is stationary, and hence is also a weak solution of
the BBM equation (1.1) (since the shock is time-independent). With u− > 0, the stable case,
the stationary shock persists. However, for u− < 0, the unstable case, hyperbolic theory would
suggest that the jump is immediately replaced by the self-similar rarefaction wave (2.2) or
some approximation to it. However, we find that the dispersive regularisation resulting from
the BBM equation sustains solutions in which a smoothed stationary shock persists but decays
algebraically, as shown in Fig. 1. More precisely, we study the initial value problem with initial
data being a smoothed stationary shock, with width ε > 0.

3. The expansion shock.
To see the effect of dispersion on a stationary shock, we pose initial data

u(x, 0) =A tanh
x

ε
, −∞<x<∞, (3.1)

with amplitude A> 0 for the BBM equation (1.1). Thus, as ε→ 0, the initial data converge to a
jump from u=−A to u=A, representing a stationary expansion shock solution to the inviscid
Burger’s equation (1.5). The numerical solution of (1.1), (3.1) is shown in Fig. 1. We observe the
development of a rarefaction wave on either side of a stationary but decaying shock. We analyse
the solution by matched asymptotics using ε as the small parameter. First note that the initial
function u(x, 0) is an odd function, and the solution u(x, t) should therefore be an odd function
of x for each t > 0.
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(a) The inner solution
To capture the inner solution, we introduce into eq. (1.1) the short space ξ = x/ε and long time
T = εt scalings of the independent variables x and t

εuT +
1

ε
uuξ =

1

ε
uξξT . (3.2)

Expanding the dependent variable

u= u0(ξ, T ) + εu1(ξ, T ) + . . . , (3.3)

and substituting this ansatz into (3.2) yields the leading order equation

u0∂ξu0 = ∂ξξTu0.

This equation admits separated solutions u0(ξ, T ) = f(ξ)a(T ), leading to

ff ′a2 = f ′′ȧ,

where ′, ˙ denote derivatives with respect to ξ and T , respectively. Introducing a separation
constant K > 0

ȧ

a2
=
ff ′

f ′′
=−K,

we obtain the solution
a(T ) =

a0
1 + a0KT

,

and

f(ξ) =
√
c tanh

(√
c

2K
(ξ − ξ0)

)
.

In these formulas, K, a0, c and ξ0 are arbitrary constants. To agree with the initial data (3.1), we
set c= 1,K = 1

2 , a0 =A, and ξ0 = 0. Thus, the leading order inner solution is

u∼ uin(ξ, T ) =
A

1 + 1
2AT

tanh ξ. (3.4)

The inner solution reveals the smoothed structure of the dispersively regularised expansion shock
and its algebraic temporal decay.

(b) The outer solution
The outer solution has a different, long space and time scaling

X = εx, T = εt.

This leads to the scaled equation

εuT + εuuX = ε3uXXT . (3.5)

With the expansion u(X,T ) = ũ0(X,T ) + εũ1(X,T ) + · · · , we have the leading order
conservation law

∂T ũ0 + ũ0∂X ũ0 = 0.

We write the general, implicit solution by characteristics in the form

ũ0(X,T ) = f(T − X

ũ0
).

Matching to the inner solution, we have, for x> 0,

lim
X→0+

ũ0(X,T ) = f(T ) = lim
ξ→∞

u0(ξ, T ) =
A

1 + 1
2AT

.
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Figure 2. Pointwise error between the uniform asymptotic expansion and numerical solution of Fig. 1 at t= 100 with

ε= 0.1, and A= 1.

The matching for x< 0 is similar, giving an odd function for the outer solution.

ũ0 =
A sgn(X)

1 + 1
2A(T − X

ũ0
)
.

Solving for ũ0, we find the leading order outer solution

u∼ uout(X,T ) =
A( 12X + sgn(X))

1 + 1
2AT

, |X|<AT. (3.6)

Continuous matching to the constant, far field conditions we obtain

uout(X,T ) = sgn(X)A, |X| ≥AT. (3.7)

(c) Uniformly valid asymptotic solution
Using the standard technique from asymptotics, we can formulate a composite solution that is
asymptotically valid over the entire range of x. Based on the outer solution (3.6), (3.7), we define

F (x, t, ε) =





−A, x<−At

A( 12εx+ sgn(εx))

1 + 1
2Aεt

, |x|<At

A, x >At

Then the uniformly valid asymptotic solution is

u(x, t) =
A

1 + 1
2Aεt

(
tanh

x

ε
− sgn(x)

)
+ F (x, t, ε). (3.8)

A comparison of the uniform asymptotic expansion to the numerical solution is shown in
Fig. 1. The two solutions are hardly distinguishable. The insets of Fig. 1 reveal the smoothed, non-
oscillatory nature of the dispersively regularised expansion shock. In contrast, typical dispersive
shock waves are characterised by their oscillatory structure [13]. Figure 2 displays the absolute
error. Note that the largest error occurs at the outermost edges of the rarefaction wave where the
asymptotic solution has a weak discontinuity. The error in the inner solution is approximately
ε3 = 10−3, which can be formally identified by going to higher order terms in eq. (3.2). In Fig. 3(b)
we show characteristics calculated from the outer solution (3.6), (3.7) with ε= 0.1 and A= 1.
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Figure 3. Characteristics for: (a) the compressive shock solution of equation (1.5); (b) the expansion shock solution of

equation (1.1).

(d) Boussinesq equations
The Boussinesq equations, formulated in the 1870s [15], can take a variety of asymptotically
equivalent forms [3]. While having the same level of accuracy as the KdV and BBM equations
in reproducing dispersive shallow water dynamics, the Boussinesq equations have the advantage
of bi-directionality. The system considered here

ht + (uh)x = 0

ut + uux + hx − 1
3uxxt = 0,

(3.9)

is a reduced, normalised version of an equation that appeared in [3] (see also [18]), which includes
a ux term in the dynamical equation for h. The non-dimensional variables h, u represent the
height of the water free surface above a flat horizontal bottom, and the depth-averaged horizontal
component of the water velocity, respectively. A stationary shock solution of this system

h(x, t) =





h−, x < 0

h+, x > 0,
u(x, t) =





u−, x < 0

u+, x > 0,
(3.10)

will satisfy Rankine-Hugoniot (RH) jump conditions derived from the time-independent
equations,

h+u+ = h−u−; h+ + 1
2u

2
+ = h− + 1

2u
2
−. (3.11)

The RH conditions (3.11) are attained for the two-parameter loci of states

u± = h∓

(
2

h− + h+

)1/2

, (3.12)

with arbitrary, positive total water depths h±. In Fig. 4, we show the result of a numerical
simulation demonstrating the persistence of a stationary shock wave for the Boussinesq system
(3.9).

The characteristic speeds for the dispersionless system ((3.9) with uxxt→ 0) are λ±(h, u) =
u±
√
h. Therefore, if u± ≥ 0 as in the loci (3.12), then the characteristics with speed λ+ pass

through the stationary shock from left to right. However, the characteristics with speed λ− leave
the shock on both sides if u− <

√
h− and u+ >

√
h+. This is the case for the choices of h±, u±

in Fig. 4. These choices also satisfy the Rankine-Hugoniot conditions for a stationary shock (3.11).
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Figure 4. Evolution of h (left) and u (right) in an expansion shock for the Boussinesq system with h− = 2, h+ = 1 and

u−, u+ given by eq. (3.12). Jump initial data is smoothed by tanh(x/ε), as in eq. (3.1), with ε= 0.1.

To see that similar data with u< 0 can make a stationary shock expansive in the λ+ characteristic
family, note that the system (3.9) is unchanged under the transformation x→−x, u→−u.

We remark that the analytical treatment of the Boussinesq expansion shock appears to be more
challenging than it was for BBM. For example, there is no clear means to separate variables in an
inner solution due to the nonzero mean values of h and u.

(e) Discussion
The expansion shock solutions we have discovered here do decay slowly in time, but their
persistence in the face of the usual rules of causality is a surprise. For the BBM expansion shock,
we can identify further robustness to perturbation by considering the asymmetric initial condition
passing through zero

u(x, 0) = 1
2

(
(u+ − u−) tanh(

x

ε
) + u+ + u−

)
,

where u− < 0<u+. The numerical simulation of eq. (1.1) with this asymmetric data is shown
in Fig. 5. As t increases, the solution quickly develops a stationary, expansion shock with initial
amplitude A=min{u+, |u−|}, that decays according to the inner solution (3.4). However, the
solution also sheds a train of rank ordered solitons.

The expansion shock also persists in the presence of weak dissipation in the BBM-Burger’s
equation

ut + uux = uxxt + νuxx, (3.13)
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Figure 5. Expansion shock and solitons as components of the initial value problem u(x, 0) = 0.55tanh(x/ε)− 0.45

for eq. (1.1) where ε= 0.1.

where ν > 0 is the dissipation coefficient. If we consider the initial data (3.1) for (3.13), then the
inner solution exhibits exponential temporal decay

uin(ξ, T ) =
Ae−νT/ε

1 + Aε
2ν (1− e−νT/ε)

tanh ξ. (3.14)

Thus, for ν =O(ε), the expansion shock decays exponentially as t→∞, rather than the algebraic
decay in the absence of diffusion. In fact, if ν� ε, then (3.14) is asymptotically equivalent to (3.4).

The construction presented here can be generalised to higher order nonlinearity f(u) and
higher order, positive differential operators L in the form

L[ut] + f(u)x = νuxx, (3.15)

so long as the non-evolutionary, dispersive character is maintained. For example, L= 1− ∂xx
and f(u) = u4 or L= 1 + ∂xxxx and f(u) = u2 admit expansion shock solutions that can be
approximated with matched asymptotic methods.

Recalling that the original formulation of the BBM equation (1.1) was as a numerically
advantageous shallow water wave model, [1], it is important to stress that “engineering” the
dispersion for mathematical or numerical convenience can lead to new, unintended phenomena,
e.g., expansion shocks.

(f) Conclusions
We have identified decaying expansion shocks as robust solutions to conservation laws of non-
evolutionary type that naturally arise in shallow water theory. These models include versions
of the well-known BBM and Boussinesq equations, which are weakly nonlinear models for uni-
directional and bi-directional long wave propagation, respectively, although as written here, they
are not asymptotically resolved. The requisite non-local dispersion in these models is not peculiar
to shallow water theory, occurring, for example, in a Buckley-Leverett equation with dynamic
capillary pressure law, [19] describing flow in a porous medium. Expansion shocks represent a
new class of purely dispersive and diffusive-dispersive shock waves. An important open question
is whether expansion shock solutions can be physically realised.
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A. Numerical Method
The numerical methods utilised here for both the BBM (1.1) and Boussinesq (3.9) equations
incorporate a standard fourth order Runge-Kutta timestepper (RK4) and a pseudospectral Fourier
spatial discretisation, similar to the method described in [12]. We briefly describe the method for
BBM here.

We are interested in solutions u(x, t) to (1.1) that rapidly decay to the far field boundary
conditions u(±∞, t) = u±. The derivative v= ux therefore rapidly decays to zero and satisfies

(1− ∂xx)vt + (uv)x = 0, (A 1)

where u(x, t) =
∫x
−L v(y, t) dy + u−. The Fourier transform (written f̂(k) with wavenumber k for

a function f(x)) of eq. (A 1) can therefore be written

d

dt
v̂=− ik

1 + k2
ûv. (A 2)

The term ûv is well-defined because the function uv is rapidly decaying. Suitable truncation of
the spatial and Fourier domains turn eq. (A 2) into a nonlinear system of ordinary differential
equations, which we temporally evolve according to RK4. The computation of the nonlinear
term in (A 2) is efficiently implemented using the fast Fourier transform (see [12] for further
details). For BBM, (L,N,∆t) = (200, 215, 0.01) (Figs. 1, 2), (300, 215, 0.01) (Fig. 5). For Boussinesq,
(L,N,∆t) = (100, 214, 0.005).
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