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The extent to which climate change causes significant societal
disruption remains controversial. An important example is the
decline of the Akkadian Empire in northern Mesopotamia ≈4.2
ka, for which the existence of a coincident climate event is still
uncertain. Here we present an Iranian stalagmite record spanning
5.2-3.7 ka, dated with 25 U/Th ages that provide an average age
uncertainty of 31 years (1σ). We find two periods of increased
Mg/Ca, beginning abruptly at 4.51 and 4.26 ka, and lasting 110
and 290 years, respectively. Each of these periods coincides with
slower vertical stalagmite growth and a gradual increase in stable
oxygen isotope ratios. The periods of high Mg/Ca are explained
by periods of increased dust flux sourced from the Mesopotamia
region, and the abrupt onset of this dustiness indicates threshold
behavior in response to aridity. This interpretation is consistent
with existing marine and terrestrial records from the broad region,
which also suggest that the later, longer event beginning at 4.26
ka is of greater regional extent and/or amplitude. The chrono-
logical precision and high resolution of our new record indicates
that there is no significant difference, at decadal level, between
the start date of the second, larger dust event and the timing of
North Mesopotamia settlement abandonment, and furthermore
reveals striking similarity between the total duration of the sec-
ond dust event and settlement abandonment. The Iranian record
demonstrates this region’s threshold behavior in dust production,
and ability to maintain this climate state for multiple centuries
naturally.

4.2 ka event | stalagmite | drought | Mesopotamia | dust

Main Body Text:
The characteristics of an anomalous, abrupt climate event at

≈4.2 ka (thousand years before 1950 C.E.) remain controversial.
Multiple advanced societies, including the Akkadian Empire,
Ancient Egypt, and Indus Valley civilizations, experienced great
transformations at ≈4.2 ka (e.g. 1). A climate event is seen in
other paleoclimate records at about this time (2-11), leading some
to hypothesize a possible cause-and-effect relationship between
climate change and societal change (12,13). There is, however,
no a priori reason to expect a climate anomaly at 4.2 ka, as it
post-dates the deglaciation and is a time when potential climate
drivers (CO2 (14), volcanic emissions (15), solar output (16), etc.)
have levels similar to modern and do not show an abrupt or
significant change. It is possible that the 4.2 ka event was a result
of stochastic atmospheric forcing, and might be part of a pattern
of decadal/centennial climate variability in this region more gen-
erally. Resolving the nature of Middle-Eastern climate change
during this period, and particularly the timing and duration of the
event at ≈4.2 ka, is important to understand the natural climate
variability of this region, critical for both historical and modern
human society.

The most prominent evidence for an abrupt, anomalous cli-
mate event in the Middle East region at ≈4.2 ka is found in two
marine records. The first is a multi-proxy sediment record from
the northern Red Sea (Fig. 1, Label 1) that suggests an abrupt dry
event beginning at 4.2 ± 0.1(1σ) ka (Fig. 2a) (5). The second is a

sediment core record from the Gulf of Oman (Fig. 1, Label 2) that
shows an abrupt increase in Mesopotamia-sourced dust deposi-
tion at 4.1 ± 0.1(1σ) ka (Fig. 2a) (3). These events occur within
error of each other, and within error of the precisely dated end
of the Akkadian empire in northern Mesopotamia, 4.19 ± 0.02
(1σ) ka (17). The level of this correlation is uncertain, however,
because the start date and duration of the climate events found
in existing sediment records is limited to centennial precision by
the low sampling resolution and age errors intrinsic to 14C-dated
marine records (SI Appendix, Fig. S1). In addition, inter-annual
rainfall variability over the northern Red Sea is not strongly
correlated in modern times with rainfall variability at Tell Leilan
(Fig. 1, Label ‘+’), the archeological site that originally and most-
convincingly establishes the timing of the abrupt abandonment
of urban settlements and decline of the Akkadian empire in
northern Mesopotamia (12, 17).

The presence of a regional, or even global-scale, multi-
century climatic event beginning at ≈4.2 ka has been suggested
by multiple other studies (e.g. 2,4,6-11) both within and beyond
the Middle East region. Of these, speleothem records have the
potential to provide particularly precise age control to improve
on chronologies of marine records. None of the speleothem
records from the eastern Mediterranean and West Asia region,
where inter-annual rainfall variability under modern conditions
is correlated to the rainfall variability of northern Mesopotamia,
however, show an abrupt, anomalous δ18O signal comparable to
that observed in the two marine records at ≈4.2 ka (Fig. 2a). Lack

Significance

A speleothem geochemical record from northern Iran cap-
tures significant climate fluctuations during the mid-to-late
Holocene at high resolution. Two abrupt shifts in Mg/Ca last
for more than a century and are interpreted as enhanced dust
activity, indicating a threshold behavior in response to aridity.
Coincident gradual peaks in δ18O support the interpretation of
regional drying. The precise chronology shows the later event,
4.26 to 3.97 ka, is coincident within decades of the period
of abandonment of advanced urban settlements in northern
Mesopotamia, strengthening the argument for association be-
tween societal and climatic change. The record demonstrates
the abrupt onset of dust production in the region, and ability
to maintain this dry climate state for multiple centuries natu-
rally.
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Fig. 1. . Correlation maps of archeological site Tell Leilan (black ‘+’) rainfall with ECMWF ERA-Interim model forecast total precipitation (resolution ≈80 km)
(41). White areas indicate areas where p>0.10. The Tell Leilan rainfall record was set as the ERA-Interim model forecast record at the closest point (37°N,
41.5°E). Annual precipitation records in (a) were constructed by calculating the 12 month average of each year centered on winter, i.e. July 1979 – June 1980,
July 1980 – June 1981, etc. (b) uses only winter months October through March, and (c) uses only spring and summer months March through August, to create
yearly records highlighting a particular season. (a) also shows the direction and relative speed in arrow size of 850 mb level winds from 5th July 2009 12:00
GMT (41), an example time period of a severe dust event in Tehran, Iran in which dust was sourced from the Mesopotamia region (25, 28). The location of
paleoclimate records discussed in the text are marked with circles, labels provided in the legend in (a). Source area of 92% of contributions of PM10 (fine dust
with particles smaller than 10 μm) in Tehran (50 km from label #9, this study) during 2009-2010 dusty episodes shown by dotted boxed area in (a) (28).

of an abrupt signal in this proxy may be expected, as speleothem
δ18O is complex and responds to climate change on a large spatial
scale (eg. 18).

Drysdale et al. (2006) discovered a pronounced signal in other
speleothem proxies (Mg/Ca, δ13C, and fluorescence measure-
ments) at ≈4.2 ka (Fig. 2b) in a central Mediterranean flowstone
sample from Buca della Ranella cave (Fig. 1, Label 3). Later
higher resolution δ18O work on the same sample (19) also indi-
cated a δ18O signal at this time and combined with other central
Mediterranean records suggested that the event in this region
was likely characterized by longer summer drought (19). Unfor-
tunately, the age uncertainty on this particular flowstone is not an
improvement over the marine records, so the timing and duration
of the signal remains uncertain. Modern climate records also
suggest that the central Mediterranean has little correlation with
rainfall in northern Mesopotamia on inter-annual timescales, so
the relevance of this site to the key archeological region is unclear
(Fig. 1).

In this study, we aim to assess whether an unusual climate
event is indeed evident at, or close to, the location of the north
Mesopotamia settlements that show a large transition at this time.
We investigate the magnitude and duration of climate variation
in a precisely-dated mid-to-late Holocene record, and assess the
uniqueness of the 4.2 ka event.

The Middle East is characterized by aridity, and the alluvial
plains of the Tigris and Euphrates rivers are one of the major
world source areas of dust (20). Dust storm activity is a func-
tion of climate in the source region, and can increase due to
multiple inter-related factors (precipitation amount, vegetation
cover, windspeed) (21), with sometimes large magnitude changes
on abrupt timescales (22, 23). Cullen et al. (2000) captured an
abrupt, factor-of-5 increase in eolian deposits from Mesopotamia
at 4.1 ± 0.1(1σ) ka in a Gulf of Oman marine sediment record
(Fig. 2a). It is plausible that this dust event is captured in terres-
trial archives, such as speleothems that can be sampled for trace
elements at high resolution, if the concentration of particular

elements leached from the dust deposit is large compared with
the karst limestone background concentrations.

Here we present an annual-to-decadal scale stalagmite multi-
proxy record from northwest Iran spanning 5.2-3.7 ka. The record
is dated at high resolution and contains large abrupt changes in
Mg/Ca, which are explained by sensitivity to dust input to the
overlying soil. An apparent threshold behavior between dustiness
and aridity allows detailed assessment of change during the mid-
Holocene, as well as a precise chronology for the 4.2 ka climatic
event notably at a terrestrial site near to North Mesopotamia, the
key region of societal change at this time.

New 4.2 ka record with precise age model
I. Cave from the Iranian plateau
The Iranian plateau is located directly to the east (down-

wind) of Mesopotamia. Rainfall patterns in west Iran (Zagros
mountains) and north Iran (Alborz mountains) are correlated
with Mesopotamia on seasonal to inter-annual timescales (Fig.
1), dominated by winter precipitation (SI Appendix). Gol-e-Zard
(“Yellow Flower”) cave (Fig. 1, Label 9) is situated on the southern
slopes of the Alborz mountains (35.84°N, 52.00°E), 2535 meters
above sea level (SI Appendix, Fig. S2). Stalagmite GZ14-1 was
collected near the end of the cave’s single ≈300m long passage
in 2014 (SI Appendix).

Dust storms in the region, sourced from the Tigris-Euphrates
alluvial plain in Syria and Iraq (24), are categorized into two
groups: the summer Shamal, with highest event frequency in June
and July, and frontal dust storms, the most common events in
the non-summer season (25). The summer Shamal winds, strong
north-westerlies near the surface, transport dust across Iraq,
Kuwait, the Persian Gulf, and parts of the Arabian Peninsula
(e.g. 26, 27). Givehchi et al. (2013) analyzed the 2009-2010 dusty
episodes in Tehran, 50 km SW of Gol-e-Zard cave (this study) (SI
Appendix, Fig. S2), and concluded that ≈90% of the dust-related
PM10 concentrations was sourced from the deserts of Syria and
Iraq (SI Appendix, Fig. S3). Indeed, analysis of natural hazard-
level Shamal dust storms between 2003-2011 show the two most
common synoptic types associated with these dust storms to be
capable of transporting dust to west and central Iran (Fig. 1 shows
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Fig. 2. . Mid-to-late Holocene records of climatology in the Mesopotamia
region. (a) Marine records: (i) Red Sea sediment core GeoB 5836-2 shallow
dwelling foraminifera G. ruber δ18O (5) (ii) Gulf of Oman Core M5-422 eolian
dolomite concentration (% wt) (3), and Terrestrial records: (iii) Buca della
Ranella RL4 stalagmite δ18O record (6, 19) (iv) Sofular cave So-1 stalagmite
δ18O record (42); (v) Jeita J-1 stalagmite δ18O record (43); (vi) Soreq cave
multiple stalactite and stalagmite δ18O records (8, 44); (vii) Qunf cave Q5
stalagmite δ18O record (45); (viii) Tonnel’naya cave TON-2 stalagmite δ18O
record (46). Locations of the caves are shown in Fig. 1. (b) Local climate
proxies, Mg/Ca (mmol/mol) and δ13C (‰), measured in the Buca della Ranella
RL4 stalagmite (6, 19) are plotted with the new high-resolution δ18O (‰)
record (19), all on the updated age model (19). A grey dotted line in both (a)
and (b) indicates the location of date 4.2 ka before 1950 C.E.

the 850mb winds of a destructive dust storm observed in Iran in
July 2009) (25, 28). Additionally, analysis of frontal dust storms

Fig. 3. . GZ14-1 age v. depth plot with OxCal Poisson process deposition age
model 68% (black) and 95% (dark grey) confidence ranges (30, 31). Original
individual U-series samples’ ages are plotted as black “x” shapes. Individual
samples’ modeled age distributions are shown in dark grey (68%) and light
grey (95%). GZ14-1’s mean extension rate (μm/yr), plotted as a 20-yr moving
average of the annually interpolated OxCal mean extension rate, is included
as a subset in the lower left corner.

show a synoptic pattern that transports dust north-eastwards to
west and central Iran, and in extreme cases as far north as the
Caspian coast (25). As rainfall occurs almost exclusively during
the winter months in the Middle East region, there is minimal
precipitation along the dust transport path during the summer
Shamal. Gravitational settling is thus the dominant mechanism
for atmospheric scavenging (21).

Gol-e-Zard cave receives an average ≈380 mm precipita-
tion annually, with ≈50 mm total accumulated rainfall in June-
September, 10-times greater than the surrounding plateau, due
to its higher elevation (29) (SI Appendix, Fig. S4). Typical monthly
surface temperatures above the cave range from -12°C in the
winter to 26°C in the summer, and the site is covered with snow
in the winter (29) (SI Appendix, Fig. S5 and S6). The temperature
within the cave is assumed to be the average annual temperature,
≈7°C.

II. Timing of arid periods
Twenty-five U/Th dates (Methods; SI Appendix, Fig. S7 and

S8, Table S3) and thin section analysis indicate that stalagmite
GZ14-1 grew with no recognizable hiatuses from 5.2 to 3.7 ka,
covering the age of the decline of the Akkadian empire and aban-
donment of urban settlements in northern Mesopotamia. The age
model, with 68% and 95% confidence ranges, was constructed
using OxCal’s Poisson-process deposition model (30, 31) and has
an average age error of 31 years (1σ) (Methods, SI Appendix),
with larger errors during the slower growth periods (Fig. 3; SI
Appendix, Dataset S1). GZ14-1 grew relatively quickly throughout
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Fig. 4. . Timing of environmental changes in Middle
East region compared with archeological settlement
records. (a) Proxy records of Mesopotamia-sourced
dust event activity: (i) GZ14-1 Mg/Ca (mmol/mol) (this
study) and (ii) Gulf of Oman Core M5-422 eolian
dolomite concentration (% wt) (3), plotted on an
updated age model (SI Appendix). Time resolution
of GZ14-1 is average of ∼2 years during fast growth
and average of ∼10-15 years during slow growth,
with slow growth period found within intervals high-
lighted in grey (growth rate shown in Fig. 3). In both
records greater Mg/Ca or dolomite % wt indicates
more dolomite-containing eolian dust deposits. (b)
Proxy records of aridity climate: (i) GZ14-1 δ18O (this
study), with more positive values interpreted as drier
conditions to an unknown magnitude on inter-annual
timescales, (ii) Jeita cave stalagmite δ18O record as
in Fig 2a; more enriched δ18O interpreted as drier
conditions (43), (iii) Soreq cave multiple stalactite and
stalagmite sample δ13C records; more enriched δ13C
interpreted as drier conditions (8, 44), (iv) Red Sea
sediment core GeoB 5836-2 G. ruber δ18O, as in Fig.
2a; more enriched δ18O interpreted as greater evap-
oration and thus drier climate (5). (c) Graphical rep-
resentation of the evolution of rain-fed agricultural
settlements in north Mesopotamia, which became
urbanized around 4.5 ka, were imperialized by Akkad
around 4.26 ka, and then were suddenly abandoned
at 4.19 ± 0.018(1σ) ka (17), coincident with the decline
of the Akkadian empire. Settlements returned at 3.90
± 0.026(1σ) ka (17). Modeled U/Th mean ages (blue
circles) and 95% confidence ranges are plotted above
each record. For the two GZ14-1 records, (a)(i) and
(b)(i), the ages are plotted only above (a)(i). The two
vertical grey bars across all panels begin when Mg/Ca
ratio in the GZ14-1 record rises greater than 3σ from
the average ratio of the record for >10 years, and
end when Mg/Ca returns to background levels (see
Methods, Event timing and errors).

the majority of the record (>130 μm/yr). However, in two periods
the extension rate, or vertical growth rate, falls below 100 μm/yr,
dropping to ≈15-20 μm/yr: 4.57-4.38 ka and 4.32-3.91 ka (start-to-
end date) (Fig. 3). The decreased extension rate is suggestive of
drier local conditions, however it is important to note that other
factors not directly related to rainfall, such as drip rate, temper-
ature, and dripwater chemistry, also are capable of affecting the
extension rate (e.g. 32). Thus without complementary proxies the
extension rate in a single stalagmite is inconclusive.

The ratio of Mg/Ca in GZ14-1 exhibits sudden changes coin-
cident with the periods of slow vertical growth. Mg/Ca abruptly
increases at the start of two periods, lasting from 4.51 to 4.40 ka
and from 4.26 to 3.97 ka (Fig. 4a) (Methods). Error in the start
and end dates of these periods range between 40-70 years (1σ)
due to the slow growth rate of this interval (SI Appendix, Dataset
S1).

The rise in GZ14-1 Mg/Ca is most readily interpreted as
an increase in Mesopotamia-sourced dust. Mineralogical studies
show that dust sourced from this region contains dolomite (33,
34), and a greater dust flux and deposition over the Gol-e-Zard
cave site is likely to result in a greater Mg/Ca ratio in dripwaters
through dissolution of the dust particulates in the soil above the
cave (SI Appendix). Occasional rainfall in the summer months and
snow cover in the winter months may also help prevent the dust
from being blown off before dissolution.

Increased prior calcite precipitate (PCP), a term used to de-
scribe the precipitation of calcite within the karst conduits before
the dripwater arrives on the stalagmite, is a second mechanism
that could increase stalagmite Mg/Ca ratios (35). This mecha-
nism can be ruled out as the major cause of Mg/Ca change in
this record, however, because other element and isotopic ratios
affected by PCP, such as Sr/Ca, Ba/Ca, and δ13C, do not follow the
expected behavior associated with PCP (SI Appendix, Fig. S10).

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

4 www.pnas.org --- --- Footline Author

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544



Submission PDF

A mass balance calculation based on the concentration of trace
elements in the host rock that allows for dissolution of dolomite-
containing dust can produce the observed magnitude shift in
Mg/Ca, Sr/Ca, and Ba/Ca ratios, supporting such dust dissolution
as the major control on Mg/Ca (SI Appendix, Fig. S11).

Discussion
This study shows two centennial-scale periods of high Mg/Ca with
abrupt beginnings and ends (Fig. 4a). The events demonstrate
threshold behavior in dustiness of the Mesopotamia region, due
to either enhanced aridity, stronger winds, or change in soil
properties or vegetation cover (21). Several factors suggest a
drier regional climate coincident with these two century-scale
dusty periods. The stalagmite was collected from a site at which
inter-annual rainfall variability today is positively correlated with
rainfall variability in north Mesopotamia (Fig. 1, Label 9). Dur-
ing the two periods of anomalously high Mg/Ca, the stalagmite
δ18O record exhibits a gradual increase followed by a decrease
back to baseline values (Fig. 4b). Based on the limited modern
rainfall δ18O data available, the increased stalagmite δ18O can
be interpreted as a decrease in precipitation amount at Gol-e-
Zard cave: rainwater δ18O at Tehran (50 km SW of the cave site)
between 1962-1972 (36) has a negative correlation with annual
average precipitation amount (51% of the variance in δ18Orainwater
is predictable from rainfall amount) (SI Appendix, Fig. S13). The
stalagmite multi-proxy record is therefore interpreted as two
periods when enhanced dustiness was caused by some threshold
behavior, in which the region became sufficiently dry that dust
sources increased dramatically. Similar behavior has been seen in
other settings, notably during variation in aridity in North Africa
(22, 23).

Additional information on regional climate during the dusty
periods is found in other nearby speleothem records, which show
stable isotope enrichment, interpreted as evidence of more arid
conditions, around the same periods as the Iranian stalagmite
Mg/Ca dust-proxy events (Fig. 4b). The records support our
interpretation of drying in the region during these two periods.
However, the stable isotope proxies in other speleothem records
are not exhibiting abrupt or anomalous shifts and therefore do
not allow for as precise a chronology of climate variations as is
obtained using the Iranian Mg/Ca proxy (Fig. 4).

The Red Sea sediment record (Fig. 1, Label 1) does show a
clear, anomalous +2‰ increase in planktonic δ18O, interpreted
as drier conditions and enhanced evaporation in the region, from
4.2 to 4.0 (± 0.1; 1σ) ka, with perhaps an earlier period of less
extreme aridity (indicated by a +0.3‰δ18O increase) from 4.5 to
4.4 (± 0.1; 1σ) (Fig. 4b) (5). The Gulf of Oman record (3) only
demonstrates one period of dustiness (at 4.1 ± 0.1, 1σ ka), and no
earlier event at ≈4.5 ka (Fig. 4a). Taken with the new results from
this study, these records demonstrate the presence of two arid
periods, but indicate that the later of these – at 4.2ka – is of larger
amplitude and has a greater spatial extent, apparently influencing
the broad Middle Eastern region. The precise chronology of the
record presented here allows the duration of these two events to
be assessed, and demonstrates the event starting at 4.2 ka was of
longer duration, as well as larger extent, than the earlier 4.5 ka
event (≈290 versus ≈110 years).

A hierarchy of urbanized settlements and structured
economies in northern Mesopotamia (e.g. 13) were abandoned
at 4.19 ± 0.02(1σ) (Fig. 4c) (17). These abandoned settlements,
which are connected with the wider decline of the Akkadian
Empire, do not show evidence of repopulation until 3.90 ±
0.03(1σ), ≈300 years later (17). The Iran stalagmite climate
proxy record is strategically located in close proximity to the
settlements, to challenge the originally proposed linkage (12)
between human societal transformations in north Mesopotamia
and climate change. The Mg/Ca record suggests an abrupt start

and end to a ≈300 year dusty period at this time (Fig. 4a),
overlying a more gradual trend toward maximum aridity seen
in the δ18O record. A two-tailed student t-test (SI Appendix)
confirms the statistical significance of indistinguishable ages
between the onset of abrupt dust event (4.26 ± 0.066(1σ) ka)
and the timing of settlement collapse in north Mesopotamia
(4.19 ± 0.017(1σ) ka), supporting the possibility of a relation
between the two. Further, the remarkably similar duration
of the dusty/arid event (≈290 years) with the duration of the
abandoned settlements (≈300 years) provides additional support
for a relationship between the two. It is possible that the link
is explained by the fact that these agricultural settlements were
located in marginal areas particularly vulnerable to variations of
aridity.

The Iran stalagmite record of this study delivers a significantly
improved age model that for the first time is able to capture the
precise start and end points for two periods of “switched on” dust
events originating in Mesopotamia, as well as the duration of
these periods, between 5.2-3.7 ka. The second period of height-
ened dust flux, suggested to be of greater magnitude and/or larger
regional extent, occurs within decadal-scale error of the decline
of the Akkadian empire and abandonment of advanced urban
settlements in north Mesopotamia (4.19 ± 0.02(1σ) ka), strength-
ening the case for association between societal and environmental
change. Comparison with the sample’s stable isotope record and
regional speleothem and marine paleoclimate records support
the idea that both periods of switched on dust activity coincide
with periods of drier climate, and that the later 290-year period
beginning at 4.26 ± 0.066(1σ) ka was more extreme in magnitude
than the earlier shorter period. Evidence of centennial-scale
periods of enhanced dust activity in the Middle East that begin
abruptly and correspond with a slower trend toward drier condi-
tions in the region provides additional insight on the magnitude
of natural climate variability in this region, notably within global
climate parameters that are similar to present.

Methods:
U/Th ages: Stalagmite GZ14-1 was sliced in half vertically using a tile saw, and
80-230 mg calcite samples (weight varying due to size of lamina and distance
from other U/Th ages) were drilled with a 0.8mm or 1.0mm diameter drill bit
at various distances from the top of the stalagmite (SI Appendix, Fig. S7).
Sample drill depth into the stalagmite half was ≈2-3mm. The powder calcite
samples were dissolved in nitric acid and spiked with a mixed 229Th-236U
solution (37) and the U and Th fractions were separated following procedures
adapted from Edwards et al. (1986). U and Th isotopes were measured using
a Nu Plasma multi-collector inductively coupled plasma mass spectrometer
(MC-ICP-MS) at Oxford University, following the procedures described in Vaks
et al. (2013). Individual ages and 95% confidence intervals were calculated
using an in-house Monte Carlo script that incorporates chemical blank errors,
analytical uncertainties, and the initial 230Th/232Th ratio of 5.38 ± 5.38 ppm
(uniform distribution) (SI Appendix, Table S3).

Age model: The age model with 68% and 95% confidence ranges was
produced using OxCal Version 4.3 Poisson-process deposition model (k0= 1
cm-1, log10(k/k0) = U(-2,2)), with interpolation (30, 31) (SI Appendix, Table S4
and Dataset S1).

Proxy sample extraction: The working half of GZ14-1 was slabbed and
mounted to a New Wave MicroMill. Element and stable isotope powder
samples were drilled with a flat-base, cylindrical 0.8mm diameter tungsten-
carbide drill bit in a trench along the growth axis at 500 μm and 250 μm
step intervals for initial low resolution sampling, followed by 100 μm and 50
μm step intervals for high-resolution sampling. Depth of drilling was ≈500
μm for low resolution and ≈1000 μm for high resolution, and the width
perpendicular to growth axis was 2.5mm for the high-resolution samples
(SI Appendix, Fig. S7). ≈500-1000 μg powders were collected individually
using aluminum spatulas and stored in compressed air-cleaned plastic 2ml
centrifuge tubes.

Trace element/Ca ratios: 80-100 μg of calcite was removed from the
storage tubes using an ethanol-cleaned spatula and analyzed for a suite
of trace elements (Mg, Sr, Ba, S, Na, K, P, Cr, Mn, Fe, Co, Zn, U) using
a Thermo Scientific Element 2 ICP-MS at Oxford University. All samples
(calcite and water samples) were diluted to 10 ppm Ca concentration for
analysis. Calibration standards bracketed every 20 samples to correct for
drift, and a secondary standard was measured every 10 samples to calculate
precision/accuracy. Trace element-to-Ca ratios were determined using the
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‘ratio’ method (40). Mg/Ca, Sr/Ca, Ba/Ca, and S/Ca records provided in SI
Appendix, Dataset S2.

Stable isotope ratios: 30-60 μg of calcite was removed from the storage
tubes using an ethanol-cleaned spatula and analyzed for oxygen and carbon
stable isotopes using a Thermo Scientific Delta V isotope ratio mass spec-
trometer (IRMS) coupled to a Kiel V carbonate device at Oxford University.
Each batch (up to 38 samples) was measured with calibration standards
and evenly scattered secondary standards. Precision/accuracy was calculated
using the secondary standards’ long-term average and standard deviation
(δ18O = ±0.07‰, δ13C = ±0.05‰, 1σ). δ18O and δ13C records provided in SI
Appendix, Dataset S2. Water sample hydrogen and oxygen stable isotopes
were measured on the same Delta V IRMS using a Thermo Scientific Gasbench
II gas preparation and introduction system. Water calibration standards and
evenly scattered secondary standards were used for water analyses (δ18O =
±0.09‰, 1σ).

XRD analysis: ≈0.2-5 mg powder samples (smaller samples for GZ14-
1, larger samples for overlying rock) were analyzed using a PANalytical
Empyrean Series 2 powder diffractometer at Oxford University. HighScore
software was used to detect peaks and measure peak size, and calculate per-
centage of mineral in the sample based on user-chosen mineral candidates.
Candidates were chosen based on i) if the most intense peaks for that mineral
occurred in the data, and ii) if the mineral assemblage makes sense given
prior knowledge of the sample.

Event timing and errors: Linear interpolation was used to create a
10yr-resolution Mg/Ca record (SI Appendix, Dataset S3). A histogram of the
Mg/Ca ratios was then plotted, which shows a bimodal distribution, with

the lower-value peak indicating background values and the higher-value
peak indicating event-linked values (SI Appendix, Fig. S14). 1.4 mmol/mol
was chosen as the maximum cutoff for background values based on the
location of peaks in the bimodal distribution, and values greater than 1.4
mmol/mol were removed to calculate the average and standard deviation
of the record (0.87 ± 0.18 (1σ) mmol/mol). Post-calculation, 1.4 mmol/mol is
equal to adjusted average + 3σ. The age and age error associated with the
depth at which the Mg/Ca ratio rises above/below 1.4 mmol/mol for longer
than 10 years (“event”) was obtained from the interpolated OxCal age model.
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