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a b s t r a c t 

Makeup face verification in the wild is an important research problem for its popularization in real-world. 

However, little effort has been made to tackle it in computer vision. In this research, we first build a new 

database, i.e., Facial Beauty Database (FBD), which contains paired facial images of 8933 subjects with- 

out and with makeup in different real-world scenarios. To the best of our knowledge, FBD is the largest 

makeup face database to date compared with existing databases for facial makeup research. Moreover, we 

propose a new discriminative marginal metric learning (DMML) algorithm to deal with this problem in 

the wild. Inspired by the fact that interclass marginal faces are usually more discriminative than interclass 

nonmarginal faces in learning the discriminative metric space, we use the interclass marginal faces to de- 

pict the discriminative information. Simultaneously, we wish that those interclass marginal faces without 

makeup relations are separated from each other as far as possible, so that more discriminative infor- 

mation between facial images without and with makeup can be exploited for verification. Furthermore, 

since multiple features could provide comprehensive information in describing the facial representations 

from diverse points of view and extract more informative cues from facial images, we also introduce a 

multiview discriminative marginal metric learning (MDMML) algorithm by effectively learning a robust 

metric space such that multiple features from different points of view can be integrated to effectively 

enhance the performance of makeup face verification. Experimental results on two real-world makeup 

face databases are utilized to show the effectiveness of our method and the possibility of verifying the 

makeup relations from facial images in real-world. 

© 2019 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Human faces convey a number of important properties, such

s emotion, gender, age, identity, expression, and ethnicity. Dur-

ng the past few years, a great number of facial image analysis

ethods were developed in both computer vision and computer

ecurity communities [1–4] . Typical applications include face

ecognition [1,5–11] , facial age estimation [4,8,12–14] , facial ex-

ression recognition [15–17] , facial gender identification [18,19] ,

acial sketch recognition [20,21] , and human ethnicity recognition

rom facial images [22,23] . Although encouraging results have

een obtained in the current research, most existing research

nly focus on facial image analysis under controlled conditions in
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eal-world scenarios, where facial images are usually taken in

ncontrolled settings [8,13,15] . In real-world applications, human

ubjects may wear some cosmetics to hide their facial flaws.

imultaneously, facial makeup can also make humans appear more

ttractive. The evidence of the effectiveness of using cosmetics for

umans [24,25] have shown the improved attractiveness of hu-

ans when using cosmetics. As we can notice in Fig. 1 , significant

acial appearance difference can be observed for human subjects

ithout and with makeup. 

To develop effective facial image analysis methods that are ro-

ust to makeup changes, the system in real-world should ad-

ress the influence caused by cosmetics. Wen et al. [26] tried to

earn the attributes in makeup faces using the semantic attributes

o reduce the influence of makeup on low-level visual features.

oreover, Chen et al. [27] preprocessed facial images with a self-

uotient technique and reduced the cosmetic effects before match-

ng two faces. Recently, some works have made effort s on robust
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. An illustration of the facial images without and with makeup. It is observed that the facial images with makeup appear significantly different from the facial images 

without makeup for the same subject. Therefore, it is more useful to perform facial image verification that is robust and efficient to facial images with makeup. 
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face recognition with makeup changes [28] . However, the number

of human subjects in their work is still quite limited (i.e., only a

few human subjects in the makeup face databases) and the sizes

of facial image databases are also small in terms of the number of

human facial images without and with makeup [27–31] . 

In this paper, we investigate the makeup face verification prob-

lem in real-world scenarios. There are only a few effort s in tack-

ling this challenging problem. Given facial images with makeup

changes, makeup face verification aims to determine whether

these two facial images are from the same subject. In this pa-

per, we define the facial makeup relation as a relationship be-

tween two facial images for the same human subject without and

with makeup. This new research direction has many potential real-

world applications, e.g., social media analysis [32] , face recogni-

tion [1] and public security [33] . However, limited research ef-

forts have been carried out in this area, mainly due to the lack

of such effective makeup face databases and intrinsic challenges of

the makeup face verification problem. For this purpose, we build

a novel makeup face database containing 17,866 facial images of

8933 subjects without and with makeup under uncontrolled con-

ditions, which we named as Facial Beauty Database (FBD), to eval-

uate the effectiveness of makeup face verification in the wild. To

the best of our knowledge, our FBD is the largest among exist-

ing makeup face databases for facial makeup research so far in the

computer vision community. Then, we introduce a discriminative

marginal metric learning (DMML) method to learn a robust metric

space such that facial images with makeup relations are mapped

closely and facial images without makeup relations are separated

from each other as far as possible. Motivated by the issue that the

interclass marginal samples without makeup relations are usually

more discriminative than the interclass nonmarginal samples, we

use the interclass marginal samples to depict the discriminative

information in learning the distance metric space. Simultaneously,

we wish those interclass marginal samples are pushed away as

far as possible, so that more effective discriminative information

can be exploited for verification. Since multiple feature represen-

tations could provide comprehensive information in characterizing

human faces from different points of view and extract more de-

scriptive features, we present a multiview discriminative marginal

metric learning (MDMML) method to obtain a robust distance met-

ric. Moreover, multiple feature representations can be effectively

combined to enhance the makeup face verification performance.

Experimental results on two real-world makeup face databases are

utilized to show the possibility of verifying the makeup relation

via facial images and the effectiveness of DMML and MDMML. 
f  
This paper is organized as follows: Section 2 briefly reviews

he related works. Section 3 presents the proposed methods.

ection 4 details the experimental results, and Section 6 concludes

he work. 

. Related work 

.1. Makeup face verification 

During the past few years, makeup face verification has been

tudied in both computational neuroscience, computer security

nd computer vision [26–29] , and one interesting finding was no-

iced: human can easily recognize the makeup relation from facial

mages even if they are from unknown subjects in different scenar-

os. Motivated by the fact in computational neuroscience, computer

ision researchers are aiming to develop computational approaches

o verify the makeup relation from facial images, and there are

 few attempts to address this challenging issue recently. Wen

t al. proposed to learn facial attributes in facial images without

nd with makeup separately. In this work, face matching uses the

emantic attributes to significantly reduce the influence of facial

akeup on low-level features [26] . Moreover, [27] preprocessed fa-

ial images with a self-quotient technique and reduced the facial

osmetics effort s bef ore face matching. Recently, some works have

ade effort s on robust face recognition with makeup changes [28] .

owever, the number of facial images is still quite limited (i.e.,

nly a few subjects in [26–28] ), and the databases are also small

n terms of the number of facial makeup and nonmakeup images. 

.2. Makeup face databases 

Most of existing makeup face databases contain only a few

umber of facial images without and with makeup in the com-

uter vision community [27–31,31] . For instance, Guo et al. assem-

led a facial image database of 1002 faces with 501 pairs of female

ubjects, which mainly contains adult Asian or Caucasian women

29] . Hu et al. built the FAce Makeup (FAM) database of makeup

ace images, which are collected from the public figures or celebri-

ies without and with makeup on the Internet [28] . FAM contains

19 subjects, 222 of them are male and the remaining 297 are fe-

ale. In [34] , a YouTube Makeup (YTM) database consisting of 99

ubjects, specifically Caucasian females from YouTube makeup tu-

orials was assembled. The makeup in these facial images varies

rom subtle to heavy. Moreover, there are also some other makeup

ace databases (e.g., Virtual Makeup database [34] , Makeup In the
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Table 1 

Comparison of our FBD and other existing makeup face databases. Our FBD offers the largest number of sub- 

jects and facial images without and with makeup compared with other existing makeup face databases. 

Properties Guo [29] FAM [28] YMU [34] VMU [34] MIW [30] Concordia [31] FBD 

# Images 1002 1038 604 204 154 1290 17,866 

# Subjects 501 519 151 51 125 21 8933 

# Male 0 222 0 0 0 0 112 

# Female 501 297 151 51 125 21 8821 
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ild (MIW) database [30] and Concordia database [31] , etc.) in the

urrent computer vision research. However, most of the existing

akeup face databases contain a small number of human subjects,

nd even the largest one merely provides 1290 makeup face im-

ges. 

Discriminative metric learning has attracted much attention

uring the past few years, and there have been many effec-

ive methods proposed previously. Typical methods include neigh-

orhood component analysis (NCA) [35] , marginal Fisher analysis

MFA) [36] , cosine similarity metric learning (CSML) [37] , large

argin nearest neighbor (LMNN) [38] , conjunctive patches sub-

pace learning [39] , and information theoretic metric learning

ITML) [40] . 

Although these algorithms obtained excellent performance in

ifferent com puter vision applications, they have some intrinsic

isadvantages: (1) Interclass marginal samples of different classes

re more discriminative than interclass nonmarginal samples in

earning the discriminative metric [36] , however, most existing

iscriminative metric learning methods treat the interclass sam-

les of different classes equally and overlook the significantly dif-

erent contributions in learning the discriminative metric space,

nd thus the discriminative information conveyed by the interclass

amples is ignored. (2) Previous research in computer vision has

emonstrated that different features can provide different descrip-

ive information in characterizing the visual information from dif-

erent points of view. However, most of the existing metric learn-

ng methods make an assumption that the samples are extracted

rom a single view space and will not be able to handle multiview

ata directly. Therefore, it is urgent to design effective multiview

etric learning methods to deal with the data from different views

or real-world applications [41,42] . 

. Makeup face database 

.1. FBD 

Aiming to collect a large-scale and comprehensive makeup face

atabase, in this work, we firstly crawl facial images from vari-

us image search engines by using a number of keywords to de-

cribe various facial makeup scenarios. To make our large makeup

ace database more generalized, we do not include keywords re-

erring to specific subjects. Instead, we only use general keywords

hat can describe the scenarios such as “face before and after

akeup”. Besides, we also select several implicit descriptions re-

ated to makeup (e.g., “beauty with cosmetics”) as the keywords

or image searching. Afterwards, the gathered keywords are used

o search for images from several public image search engines in-

luding Google Image Search, 1 Yahoo Image Search 

2 and Flickr Im-

ge Search. 3 To control the facial image quality, we remove images

f synthetic faces, tiny faces and unclear faces. Moreover, to obtain

leaner facial images, we further apply VJ face detector to localize

he facial areas and crop them out [43] . Finally, the makeup face
1 http://images.google.com . 
2 http://images.search.yahoo.com . 
3 http://www.flickr.com . 

w  

a  

a  

g  

o

atabase contains the cropped 17,866 facial images with 8933 sub-

ects and is termed as FBD. In FBD, we use some similar images

o simulate the same persons of different situations and periods

n real world applications. FBD offers a superiorly comprehensive

atabase for facial makeup research. In the near future, we plan

o release our FBD for further research. The detailed comparison

f our FBD and existing makeup face databases is illustrated in

able 1 . 

.2. Face representations 

To represent the facial images, we used the following four fea-

ure representations for makeup face verification, i.e., local bi-

ary patterns (LBP) [44] , histogram of oriented gradients (HOG)

45] , scale-invariant feature transform (SIFT) [46] , three-patch LBP

TPLBP) [47] . The reason we selected these features is that they

ave shown good performance in recent kinship verification re-

earch [48–50] . In this work, we followed the same parameter set-

ings for the features in [48] so that a fair comparison can be ob-

ained. In the following, we will detail each feature representations

f facial images. 

LBP: For each facial image, we partition it into 4 × 4 non-

verlapped blocks with the size 16 × 16. For each individual block,

e extract a 256-dimensional histogram feature to describe the

lock. Finally, all of the feature representations are concatenated

nto a 4096-dimensional features to represent each face image. 

HOG: Each facial image is participated into 16 × 16 blocks

ith size 4 × 4. Then, each individual block was evenly divided

nto 8 × 8 blocks with size 8 × 8 again. Finally, we extract a 9-

imensional HOG feature descriptor for each block and concatenate

hem to form 2880-dimensional features to represent each face im-

ge. 

SIFT: We partition each facial image into several overlapping

locks, and then extracted the features from each individual block.

n this work, the block size is set as 16 × 16 and the overlapping

cale is 8. Finally, there are 49 blocks for the whole facial image

nd each facial image can be represented as a 6272-dimensional

eature in the high-dimensional space. 

TPLBP: Each facial image has been partitioned into 4 × 4 non-

verlapping blocks with scale 16 × 16. The 3 × 3 block centered on

he pixel and 8 blocks located uniformly in the ring of radium

round this block were considered in experiments. For each block,

e can extract 256-dimensional histogram feature and each facial

mage can be represented as a 4096-dimensional feature vector. 

.2.1. Data preparations 

In experiments, we first applied the VJ face detector to well lo-

alize the facial areas [43] of FBD, and cropped and aligned the

acial areas into 64 × 64 size according to Shan et al. [51] . Finally,

he nonfacial areas were carefully removed and the facial areas

ill be utilized for makeup face verification. For each facial im-

ge, we used the histogram equalization technique to smooth the

ligned images of FBD. We converted the color facial images into

rey ones. Some aligned facial images without and with makeup

f FBD are illustrated in Fig. 3 . 

http://images.google.com
http://images.search.yahoo.com
http://www.flickr.com
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Fig. 2. An illustration of DMML. (a) The facial images without and with makeup in the original high-dimensional visual feature space. The blue data in left denote the facial 

images without makeup, and the red data in right denote the facial images with makeup. The objective of DMML is to learn a robust metric space so that two facial images 

with makeup relations are pulled closely and those facial images without makeup relations can be separated as far as possible. (b) The basic principle of DMML. (c) The 

expected distributions of facial images without and with makeup in the new metric space, where the distances of makeup face images of same subjects are decreased and 

those facial images of different subjects are separated as much as possible, respectively. 

Fig. 3. An illustration of the facial images of FBD and two neighboring images along each row are facial images with makeup and without makeup of the same subject, 

respectively. 
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4. The proposed approach 

4.1. Basic principle 

To well describe our methods, Fig. 2 illustrates the basic prin-

ciple of DMML. In Fig. 2 (a), there are two sets of facial sam-

ples, where the samples in the left denote the facial images

without makeup and those in the right denote the facial images

with makeup, respectively. The facial images without and with

makeup of different subjects are indicated by corresponding cir-

cles, five-pointed star, squares and triangles in Fig. 2 . In the high-

dimensional space, there is always a large difference between facial

images without makeup and facial images with makeup due to the

color and texture variations. Hence, the facial images of different

subjects are usually misclassified in real-world applications. From

the classification point of view, the interclass marginal samples are

more discriminative than those interclass nonmarginal samples in

learning the discriminative metric space. Motivated by Yan et al.

[36] , we are interested in learning an effective metric space such

that the facial images with makeup relations are pulled closely and

the interclass marginal samples without makeup relations can be

separated as far as possible, as indicated in Fig. 2 (b) and (c). That is

to say, the similarities of makeup face images of different subjects

should be significantly decreased so that the interclass margin be-

tween different subjects in the new metric space will be increased

and more discriminative information could be utilized for makeup
face verification. 
.2. DMML 

Let F = { ( x i , y i ) | i = 1 , 2 , . . . , n } denote the training set of n pairs

f facial images,ã;;where x i and y i are the i th the facial im-

ge without makeup and the facial image with makeup in a h -

imensional space. Our DMML method aims to find an effective

ahalanobis distance metric M so that the distances between the

acial samples x i and y j (i = j) are as small as possible, and those

acial images between x i and y j ( i � = j ) are as large as possible simul-

aneously, and 

( x i , y j ) = 

√ 

( x i − y j ) 
T 

M( x i − y j ) , (1)

here M is an h × h square matrix and 1 ≤ i, j ≤ n . Moreover, the

istance metric d should be symmetric, nonnegative, and triangu-

arly unequal. 

To learn an effective distance metric, we formulate our pro-

osed DMML method as follows: 

in 

M 

f (M) = f 1 (M) − f 2 (M) − f 3 (M) 

= 

1 

n 

n ∑ 

i =1 

d 2 ( x i , y i ) −
1 

n k 

n ∑ 

i =1 

k ∑ 

j=1 

d 2 ( x i , y i j ) 

− 1 

n k 

n ∑ 

i =1 

k ∑ 

j=1 

d 2 ( x i j , y i ) 
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= 

1 

n 

n ∑ 

i =1 

( x i − y i ) 
T 

M( x i − y i ) 

− 1 

n k 

n ∑ 

i =1 

k ∑ 

j=1 

( x i − y i j ) 
T 

M( x i − y i j ) 

− 1 

n k 

n ∑ 

i =1 

k ∑ 

j=1 

( x i j − y i ) 
T 

M( x i j − y i ) , (2) 

here y i j represents the j th interclass marginal samples of x i and

 i j 
denotes the j th interclass marginal samples of y i , respectively.

he objective of f 1 is to ensure that x i and y i are pulled closely in

he new metric space since the two facial images have the makeup

elation. f 2 aims at ensuring that if y i j is one of the interclass

arginal samples of x i , then they will be pushed away from each

ther as much as possible in the new metric space. In the same

ay, f 3 ensures that if x i j is one of the interclass marginal samples

f y i , they should also be separated from each other as much as

ossible. 

Since the distance metric M is usually symmetric and positive

emidefinite, we instead find a non-square transformation matrix

 with size h × l ( l ≤ h ), thus 

 = W W 

T , (3) 

Then, we can reformulate Eq. (1) as the following optimization

roblem, i.e., 

( x i , y j ) = 

√ 

( x i − y j ) 
T 

M( x i − y j ) 

= 

√ 

( x i − y j ) 
T 
W W 

T ( x i − y j ) 

= 

√ 

( s i − t j ) 
T 
( s i − t j ) , (4) 

here s i = W 

T x i and t j = W 

T y j . 

Thus, we can simplify f 1 ( M ) as the following form as 

f 1 (M) = 

1 

n 

n ∑ 

i =1 

( x i − y i ) 
T 

M( x i − y i ) 

= tr 

( 

W 

T 1 

n 

n ∑ 

i =1 

( x i − y i ) ( x i − y i ) 
T 
W 

) 

= tr 
(
W 

T D 1 W 

)
, (5) 

here D 1 = 

1 
n 

∑ n 
i =1 ( x i − y i ) ( x i − y i ) 

T 
, W means the transformation

atrix. Similarly, f 2 ( M ) and f 3 ( M ) can be simplified as 

f 2 (M) = tr 

( 

W 

T 1 

n 

n ∑ 

i =1 

k ∑ 

j=1 

( x i − y i j ) ( x i − y i j ) 
T 
W 

) 

= tr 
(
W 

T D 2 W 

)
, (6) 

f 3 (M) = tr 

( 

W 

T 1 

n 

n ∑ 

i =1 

k ∑ 

j=1 

( x i j − y i ) ( x i j − y i ) 
T 
W 

) 

= tr 
(
W 

T D 3 W 

)
, (7) 

here D 2 and D 3 are defined as 1 
n k 

∑ n 
i =1 

∑ k 
j=1 ( x i − y i j ) ( x i − y i j ) 

T 

nd 

1 
n k 

∑ n 
i =1 

∑ k 
j=1 ( x i j − y i ) ( x i j − y i ) 

T , respectively. 

Thus, we can simplify the DMML method as follows: 

min 

W 

f (W ) = tr 
(
W 

T ( D 1 − D 2 − D 3 ) W 

)
.t. W 

T W = I, (8) 
here the constraint W 

T W = I is used to remove an arbitrary scal-

ng factor in the projection. Therefore, W can be effectively solved

s a standard eigenvalue decomposition problem, i.e., 

( D 1 − D 2 − D 3 ) w = λw. (9) 

Let us define w 1 , w 2 , . . . , w l as the eigenvectors corresponding

o the l smallest eigenvalues ordered by λ1 ≤ λ2 ≤ λ3 . . . ≤ λl . The

 × l transformation matrix W can be obtained to project the facial

mages x i without makeup and the facial images with makeup y i 
nto a low-dimensional feature space s i and t i as follows: 

 i = W 

T x i , t i = W 

T y i , i = 1 , 2 , . . . , n. (10)

.3. MDMML 

In computer vision, previous research effort s have indicated

hat different f eature representations can provide comprehensive

nformation in describing the facial features from different points

f view. Therefore, we expect to utilize multiple feature represen-

ations from different points of view for the makeup face veri-

cation problem [52,53] . The problem is that, most conventional

etric learning approaches cannot be directly applied to multi-

iew data in real-world applications [35,37,38,40] due to the com-

lexity of the visual features from different points of view. One

ossible solution to this problem is to concatenate multiple fea-

ure representations together as a single feature vector in the high

imensional space and then apply conventional metric learning

pproaches for real-world applications. However, the concatena-

ion of multiple features is usually not reasonable since different

eature representations usually carry different statistical charac-

eristics. This operation ignores the diversity of different features

rom different points of view, which thus cannot efficiently uti-

ize the comprehensive information conveyed by different feature

epresentations. Therefore, we introduce a new multiview DMML

ethod to learn a robust metric space for measuring the similarity

f multiple feature representations of facial images. 

Here, suppose we have v different views of feature representa-

ions, and F t = { (x t 
i 
, y t 

i 
) | i = 1 , 2 , . . . , n } is the feature representation

f the t th view of facial images with n pairs, where x t 
i 
∈ R h and y t 

i 
∈

 

h are the i th facial images without makeup and the facial images

ith makeup from the t th view, respectively, and t = 1 , 2 , . . . , v .
DMML aims to find a distance metric d such that the distances

etween the facial images x t 
i 

and y t 
i 
(i = j) are as small as possible,

nd those between x t 
i 

and y t 
j 
(i � = j) are as large as possible. 

Aiming to exploit the complementary information of different

eature representations, a number of nonnegative parameters α =
 α1 , . . . , αv ] are imposed on the objective function of DMML for

ach view. Generally, the larger αi is, the more important role the

iew x t 
i 

plays in learning the low-dimensional transformation ma-

rix W . Here, we can generally formulate MDMML as the following

onstrained optimization problem: 

in 

W,α

v ∑ 

t=1 

αt tr 
(
W 

T (D 

t 
1 − D 

t 
2 − D 

t 
3 ) W 

)

s.t. W 

T W = I, 

v ∑ 

t=1 

αt = 1 , αt ≥ 0 . (11) 

The solution to Eq. (11) is αt = 1 corresponding to

in tr 
(
W 

T (D 

t 
1 

− D 

t 
2 

− D 

t 
3 
) W 

)
over different views, and αt = 0

therwise. This indicates that only one kind of feature representa-

ion from one view can be selected by using this solution. Thus,

he performance of this solution can be equivalent to using the

ne from the best view, in which different information of facial

mage feature representations from diverse views has not been

xploited. It is not appropriate to only select the best view in

eal-world applications. Motivated by the authors in [52,53] , we
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Fig. 4. The framework of our makeup face verification system. Suppose we have a number of training facial images, our system can extract different visual feature represen- 

tations from different views and then learn a discriminative metric such that the facial images with makeup relations can be pulled closely and the facial images without 

makeup relations are separated from each other as far as possible. For each testing facial image pair, the system can also extract the same visual feature representations 

from different views and then project the high-dimensional features into the low-dimensional space. A conventional classification model can be used to verify whether the 

testing facial image pairs are from the same subject or not. 
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modify αt to be αr 
t with r > 1, so that each feature representa-

tion from different views will have an individual contribution to

the final transformation matrix W . Finally, this problem can be

reformulated as follows: 

min 

W,α

v ∑ 

t=1 

αr 
t tr 

(
W 

T (D 

t 
1 − D 

t 
2 − D 

t 
3 ) W 

)

s.t. W 

T W = I, 

v ∑ 

t=1 

αt = 1 , αt ≥ 0 . (12)

To the best of our knowledge, there is no effective method to

find the optimal solution to Eq. (12) , which is a nonlinear con-

strained nonconvex problem. Motivated by the authors in [52,53] ,

here, we introduce an iterative algorithm by using the alternating

computation to calculate a locally optimal solution. The algorithm

can update W and α iteratively. 

Firstly, we need to fix W and update α. By introducing a La-

grange multiplier λ to formulate the constraint 
∑ v 

t=1 αt = 1 to-

gether, we can get the new objective function as follows: 

L ( α, λ) = 

v ∑ 

t=1 

αr 
t tr 

(
W 

T 
(
D 

t 
1 − D 

t 
2 − D 

t 
3 

)
W 

)
− λ

( 

v ∑ 

t=1 

αt − 1 

) 

. (13)

Let ∂L (α,λ) 
∂ αt 

= 0 and 

∂L (α,λ) 
∂λ

= 0 , we have { 

r αr−1 
t tr 

(
W 

T 
(
D 

t 
1 − D 

t 
2 − D 

t 
3 

)
W 

)
− λ = 0 ∑ v 

t=1 αt − 1 = 0 . 
(14)

Finally, we can obtain αt as follows: 

αt = 

(
1 /tr 

(
W 

T 
(
D 

t 
1 − D 

t 
2 − D 

t 
3 

)
W 

))1 / (r−1) 

∑ v 
t=1 

(
1 /tr 

(
W 

T 
(
D 

t 
1 

− D 

t 
2 

− D 

t 
3 

)
W 

))1 / (r−1) 
. (15)

By using the new α, we can update W . The optimization prob-

lem in Eq. (11) can be reformulated as: 

max 
W 

tr 

( 

W 

T 

( 

v ∑ 

t=1 

αr 
t 

(
D 

t 
1 − D 

t 
2 − D 

t 
3 

)) 

W 

) 

s.t. W 

T W = I . (16)

Thus, W can be easily calculated by solving the eigenvalue de-

composition problem in the following: ( 

v ∑ 

t=1 

αr 
t 

(
D 

t 
1 − D 

t 
2 − D 

t 
3 

)) 

w = λw. (17)
p

The proposed MDMML algorithm can be summarized as

lgorithm 1 . 

lgorithm 1 MDMML. 

nput: The tth view of n pairs of facial images without and with

akeup; the number of interclass samples k ; the maximum num-

er of iteration T, and the error of convergence ε. 

utput: The final metric W . 

tep 1: Set α = [ 1 / v , 1 / v , . . . , 1 / v ] and calculate W 

0 by using 

q. (17). 

tep 2: Checking procedure to find the metric space W . 

For i = 1 , . . . , T 

2.1 Compute α as in Eq.(15); 

2.2 Calculate W 

i by using Eq. (17); 

2.3 If 
∣∣W 

i − W 

i −1 
∣∣ < ε, then Step 3. 

End 

tep 3: Output the best metric W = W 

i . 

. Experiments 

In this section, we first design a makeup face verification

ystem for makeup face verification based on two makeup face

atabases (i.e., FAM and FBD) and provide the baseline results for

ther researchers to compare their methods with ours. Moreover,

e have also evaluated DMML and MDMML by conducting com-

rehensive makeup face verification experiments based on these

wo databases. 

.1. Makeup face verification system 

In this subsection, we give an overview of our makeup face ver-

fication system. As shown in Fig. 4 , given a set of training fa-

ial images without and with makeup, the visual feature repre-

entations from different views (i.e., LBP, HOG, SIFT, etc.) are first

xtracted and constructed in the high-dimensional feature space.

hen, a discriminative metric space can be learned in which the

acial images with makeup relations are pulled closely. Meanwhile,

he facial images without makeup relations are separated from

ach other further. Finally, a classification model is used to divide

he feature space into two classes, i.e., one for the same subject

airs and the other is for different subject pairs. 
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Table 2 

The classification accuracy (Percent), AUC (Percent) and 

EER (Percent) of four feature representations (i.e., LBP, 

HOG, SIFT, TPLBP) on FAM. 

Features Dimension Accuracy AUC EER 

LBP 3776 75.8 76.3 30.5 

HOG 1764 70.6 71.5 32.6 

SIFT 6272 78.0 79.2 27.3 

TPLBP 4096 76.2 77.1 29.8 
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Table 3 

The classification accuracy (Percent), AUC (Percent) and EER 

(Percent) of four feature representations (i.e., LBP, HOG, SIFT, 

TPLBP) on FBD. 

Features Dimension Accuracy AUC EER 

LBP 3776 70.3 71.4 35.3 

HOG 1764 65.2 66.3 37.5 

SIFT 6272 72.8 73.7 30.7 

TPLBP 4096 71.8 72.9 32.9 

Table 4 

The verification accuracy ( percent ) of different metric learning 

methods on FAM. 

Features NCA CSML LMNN DMML MDMML 

LBP 73.2 72.5 74.6 75.3 79.5 

HOG 68.7 67.6 69.8 70.5 

SIFT 76.4 77.5 77.9 78.2 

TPLBP 74.3 73.5 75.8 77.2 

Table 5 

The verification accuracy ( percent ) of different metric learning 

methods on FBD. 

Features NCA CSML LMNN DMML MDMML 

LBP 68.5 67.4 69.7 71.5 73.2 

HOG 63.7 62.9 64.6 65.3 

SIFT 70.5 71.4 72.1 72.8 

TPLBP 69.8 67.4 70.5 71.6 
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.2. Experimental setup 

.2.1. The classification model 

Since the makeup face verification is a binary classification

roblem, we apply the conventional support vector machine (SVM)

or verification. In experiments, we use the conventional linear ker-

el as the similarity metric of each pair of facial images for its ef-

ectiveness in high dimensional feature space [54] . We apply five-

old cross validation on training facial images to find the optimal

arameters. Specifically, we divide the training facial images into

ve folds, and each one will have 20% of the facial images with

akeup relations. Moreover, we use four folds to train the SVM

lassification model, and then we utilize the remaining fold to de-

ermine the parameters of SVM. 

.2.2. Experimental protocol 

In real-world scenarios, we expect our makeup face verifica-

ion system can effectively verify whether there are makeup re-

ations for new pairs of facial images without redesigning the sys-

em. Thus, we introduce the open set protocol for facial makeup

elation [55] , which is widely used in face verification experiments.

n experiments, we used five-fold cross validation to evaluate the

ystem on the makeup face databases. Specifically, each subset of

AM and FBD were equally partitioned into five small folds and

ach fold has around 20% of facial images with makeup relations.

ere, we consider all face pairs with makeup relations as positive

ace pairs, and facial images without makeup relations as negative

ace pairs. In the experiments, the positive face pairs are true pairs

f facial images (i.e., two images of the same subject: one without

akeup and the other one with makeup), and the negative face

airs are false pairs of facial images (i.e., two images of different

ubjects: one without makeup and the other one with makeup).

he size of positive face pairs is usually much smaller than that

f negative face pairs. In the experiments, the facial image without

akeup was randomly paired with a facial image with makeup to

onstruct the negative face pairs. Moreover, we have to make such

hat each face image without and with makeup appears only once

n negative face pairs. Therefore, the size of positive face pairs and

hat of negative face pairs will be equal to train a classifier. 

.3. Experimental results 

.3.1. Analysis on different feature representations 

For testing face pairs, we aim to verify whether they are the

ame subject or not by using the SVM classification model. We

se the classification accuracy rate, the area under the ROC curve

AUC), the equal error rate (EER) to evaluate the performance of

he system. The accuracy rate is defined as n c / n t , where n t is the

ize of the whole testing face pairs and n c is the size of testing fa-

ial image pairs with correct classification. The classification accu-

acy rate, AUC and EER of different feature representations on the

wo makeup face databases are shown in Tables 2 and 3 . These

wo tables illustrate the best feature representations for makeup

ace verification tasks. As shown in Tables 2 and 3 , the best fea-

ure representations for makeup face verification on FAM and FBD
s SIFT, which can significantly outperform the other feature repre-

entations, i.e., LBP, HOG and TPLBP. 

Moreover, to visualize the performance difference of the four

eature representations, we also show the receiver operating char-

cteristic (ROC) curves of the four feature representations in Fig. 5 ,

nd Figs. 5 (a) and 5 (b) plot the ROC curves of these feature rep-

esentations on FAM and FBD, respectively. We notice from the ex-

erimental results that the SIFT feature representation can outper-

orm other visual features on both FAM and FBD in terms of the

OC curves. 

.3.2. Comparisons with existing discriminative metric learning 

ethods 

In this subsection, we have compared the proposed methods

ith three representative metric learning methods, which could

lso be used for makeup face verification in the wild, i.e., CSML

37] , NCA [56] , LMNN [38] . The number of nearest neighbor sam-

les is set as 5 for these methods. Here, we empirically set the

eature dimension of our proposed methods as 30 and 40, respec-

ively. 

The makeup face verification rate of compared methods with

he different f eature representations on FAM and FBD are shown

n Tables 4 and 5 , respectively. As shown in the two tables, our

roposed DMML and MDMML methods can constantly outperform

he other compared methods, i.e., CSML, NCA, and LMNN. We no-

ice that DMML can outperform the other compared algorithms in

ll experiments on the two databases, which means that learning a

istance metric by using the interclass marginal samples can give

ore discriminative information for makeup face verification tasks.

n DMML, the interclass marginal samples with makeup relations

re fully utilized to exploit the discriminative information within

ifferent classes for the verification tasks. CSML uses cosine met-

ic to measure the similarity between two samples, which may not

ork well for LBP and TPLBP features in face verification tasks [37] .

lthough NCA and LMNN also utilize the neighborhood samples to

escribe the discriminative information of different classes, their
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Fig. 5. The ROC curves of the four feature representations (i.e., LBP, HOG, SIFT, TPLBP) obtained on (a) FAM and (b) FBD, respectively. 

Fig. 6. The ROC curves of different metric learning methods obtained on FAM and FBD, respectively. 
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solutions usually do not perform well in a high dimensional fea-

ture space [38,56] . 

Moreover, MDMML can obtain better performance than DMML

for makeup face verification as shown in Tables 4 and 5 . This is

mainly because MDMML can effectively utilize multiple feature

representations of facial images in a commonly metric space so

that more describable information can be exploited for makeup

face verification tasks. 

The experimental results on the FAM database are generally

higher than those obtained on FBD, which means the makeup face

verification relation on FBD is more difficult than that on FAM.

This is mainly because that the facial images in the FAM database

are captured under controlled nature and posed restrictions on the

variations other than makeup. On the other hand, the facial images

in FBD are collected from different scenarios in real-world Inter-

net search. Moreover, the size of FBD is much larger than that of

FAM. 

Moreover, we have also plotted the ROC curves of compared

methods in Fig. 6 , where Figs. 6 (a) and (b) plotted the ROC curves
 i  
f experimental results on FAM and FBD, respectively. It should

e noted that in experiments, the CSML, NCA, LMNN and DMML

ethods use the SIFT feature because it can achieve better perfor-

ance compared with other feature representations. As shown in

ig. 6 , our methods show a much better performance than other

ompared methods in terms of the ROC curves. 

.3.3. Comparisons with existing multiview learning methods 

In this subsection, we will compare the MDMML method with

wo popular methods for multiview learning. One is the multiview

earning method for dimension reduction, i.e., multiview spectral

mbedding (MSE), which has extended the conventional spectral

mbedding method for multiview data [52] ; the other one is the

ultiple kernel learning (MKL), which constructs multiple kernels

or multiple features to describe the data complementarily [57] . 

Fig. 7 illustrates the mean accuracy of compared methods on

AM and FBD. We notice that our MDMML method can obtain

 much better performance than the other two multiview learn-

ng methods. The reason is that our method uses the interclass
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Fig. 7. The verification accuracy ( Percent ) of compared Methods on FAM and FBD. 

Table 6 

The verification accuracy ( Percent ) of different 

classification models on FAM. 

Methods Features NN KNN SVM 

DMML LBP 73.5 74.7 75.8 

HOG 69.5 71.3 70.6 

SIFT 77.5 75.9 78.0 

TPLBP 76.1 75.4 76.2 

MDMML ALL 78.7 77.5 79.6 
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Table 7 

The verification accuracy ( Percent ) of different 

classification models on FBD. 

Methods Features SVM NN KNN 

DMML LBP 69.5 70.1 70.3 

LE 63.4 64.8 65.2 

SIFT 70.5 71.3 72.8 

TPLBP 69.8 70.6 71.8 

MDMML ALL 72.6 72.5 73.7 
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arginal samples to learn the robust metric space while other

ethods do not sufficiently utilize this discriminative information. 

.3.4. Comparisons with different classification models 

To further evaluate the effectiveness of DMML and MDMML,

e also compare our proposed methods with different classifica-

ion models in makeup face verification task. Generally, besides

he conventional SVM model, we also employ two widely used

lassification models, i.e., the nearest neighbor (NN) classifier and

he k-nearest neighbor (kNN) classifier. These classification mod-

ls are widely used in previous face recognition and verification

asks [5,36,4 8,4 9] . In experiments, we empirically set the number

f the nearest neighborhood in the KNN classifier as 7. In NN, the

ew sample is classified by calculating the distance to the nearest

raining samples. The label of the new sample is determined by

he nearest training data. The mean accuracy of DMML and MD-

ML for makeup face verification with different classifiers on FAM

nd FBD are shown in Tables 6 and 7 , respectively. In experiments,

e can notice that the classification models have some effect on
Fig. 8. The mean verification accuracy of DMML and MDMML versus the n
he experimental results and different classification models can get

imilar performance, which can effectively show the robustness of

MML and MDMML for makeup face verification tasks. 

.3.5. The sensitivity of parameters 

In this subsection, we investigate the effect of the number of in-

erclass marginal samples k in DMML and MDMML. Fig. 8 gives the

ean verification accuracy of DMML and MDMML in experiments,

here Fig. 8 (a) and (b) are the experimental results acquired on

AM and FBD, respectively. Here, one can see our DMML and MD-

ML can achieve the best performance when k is determined as 5

or both DMML and MDMML. Moreover, we can also observe that

MML and MDMML can show stable verification performance for

ifferent numbers of nearest neighborhood samples. Hence, it is

asy to select an appropriate number of nearest samples for DMML

nd MDMML to obtain good performance for makeup face verifica-

ion. 

To evaluate the effect of different f eature dimensions of both

MML and MDMML, Fig. 9 shows the mean verification accuracy

f DMML and MDMML versus the feature dimensions of our meth-

ds, where Fig. 9 (a) and (b) are the experimental results achieved

n FAM and FBD, respectively. It is clearly shown that both DMML

nd MDMML get stable performance when the dimension of the

eature is larger than 30 for DMML and 35 for MDMML, respec-

ively. 

.3.6. Visualization of makeup face verification 

To gain further insight into the challenges of FBD and the lim-

tations of our methods, we illustrate the most confident predic-

ions on FBD made by our MDMML method. Fig. 10 presents the

ost confident incorrect matching. These images demonstrate the

hallenges and complexities of makeup face verification under dif-

erent scenarios. Many mistakes result from the misleading context
umbers of nearest neighborhood samples k on (a) FAM and (b) FBD. 
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Fig. 9. The mean verification accuracy of DMML and MDMML versus the feature dimensions (a) FAM and (b) FBD. 

Fig. 10. The same and different labels are the ground truth labels of facial image 

pairs, and the true and false labels indicate whether the proposed method predict 

correctly. The experimental results show that the challenges of the makeup face 

verification problem. 
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and background. For instance, same makeup face pairs are misclas-

sified because of pose ambiguity and different viewpoints. Mean-

while, different facial image pairs are always incorrectly classified

as the same pairs due to the similar background, skin color and

hair style. 

5.3.7. Discussions 

Here, we discuss some possible applications of the makeup face

verification system in real-world scenarios. One of the most rep-

resentative applications is that our makeup face verification can

be used for social media analysis. There are usually billions of fa-

cial images on various social websites (i.e., Facebook, Flickr, etc.),

and millions of images are added to the websites everyday. One

key problem is how to automatically manage such large-scale im-

ages. In this problem, there are two challenges to be tackled: (1)

who the people in images are and (2) how to recognize the facial
mages with cosmetics. Previous face recognition techniques may

e effective to tackle the first problem, and makeup face verifica-

ion should be a useful technique to alleviate the second challenge.

hen the facial makeup relation is known, it is possible for us to

utomatically organize the images according to the subject identi-

ies. Currently, our makeup face verification method has achieved

round 70% accuracy when two facial images were captured under

ifferent conditions. It has provided us useful information to ana-

yze the relation of two subjects since our methods can get much

igher performance than a random guess. 

Another important application of the makeup face verification

s public security. Nowadays, face recognition techniques are the

ominant approaches to recognize humans. However, conventional

ace recognition methods are usually hindered by glasses, cosmet-

cs and thus these methods cannot be directly applied for public

ecurity. Makeup face verification techniques can provide useful

ools to verify whether two facial images with cosmetics are from

he same subject or not. 

. Conclusions and future work 

In this paper, we have studied the makeup face verification

roblem in the wild. A real database of 17,866 facial makeup im-

ges with 8933 subjects was collected from Internet search for our

tudy, which is named as Facial Beauty Database (FBD). To the best

f our knowledge, our FBD is the largest database in the world,

hich can be used for facial makeup research in computer vi-

ion. Moreover, we have proposed a discriminative marginal met-

ic learning (DMML) method for makeup face verification in the

ild. Inspired by the fact that interclass marginal samples with-

ut makeup relations are always more discriminative than inter-

lass nonmarginal samples in learning the discriminative metric

pace, we use the interclass marginal samples to depict the dis-

riminative information and expect those interclass marginal sam-

les are separated from each other as far as possible, such that

ore discriminative information can be exploited for verification.

ince multiple feature representations could provide comprehen-

ive information in describing the facial information from different

oints of view and capture more descriptive information, we fur-

her introduce a multiview discriminative marginal metric learning

MDMML) method by learning a robust metric space such that dif-

erent feature representations can be effectively integrated to fur-

her improve the performance of makeup face verification. Exper-

mental results on two real-world databases are used to show the
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ossibility of verifying the identity via facial image analysis and

he effectiveness of the new methods. 

In the future, we are interested in exploring more discrimi-

ative feature representations (e.g., deep features) and combining

hem with MDMML to further improve the performance of makeup

ace verification. Moreover, we are also interested in applying our

akeup face verification approaches to some interesting potential

pplications, e.g., social media analysis and public security. 
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