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We report an optical fiber experiment in which we study the nonlinear stage of modulational instability
of a plane wave in the presence of a localized perturbation. Using a recirculating fiber loop as the
experimental platform, we show that the initial perturbation evolves into an expanding nonlinear oscillatory
structure exhibiting some universal characteristics that agree with theoretical predictions based on
integrability properties of the focusing nonlinear Schrödinger equation. Our experimental results
demonstrate the persistence of the universal evolution scenario, even in the presence of small dissipation
and noise in an experimental system that is not rigorously of an integrable nature.
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Modulational instability (MI), known as the Benjamin-
Feir instability in water waves, is a ubiquitous phenomenon
in focusing nonlinear media that is manifested in the growth
of small, long-wavelength perturbations of a constant
background [1–9]. The linear stage of MI is characterized
by an exponential growth of all the perturbations falling in
the region of the Fourier spectrum below a certain cut-off
wave number [5]. This simple picture ceases to be valid
when the amplitude of the growing perturbation becomes
comparable to the background, i.e., at the nonlinear stage
of MI.
In the nonlinear regime, MI exhibits a rich spatiotem-

poral dynamics that has recently been the subject of
significant interest in several areas of experimental and
theoretical physics [10–20]. In this respect, the focusing
one-dimensional nonlinear Schrödinger equation (1D
NLSE) plays a prominent role as a universal mathematical
model describing at leading order wave phenomena rel-
evant to many fields of nonlinear physics such as, e.g.,
optics and hydrodynamics [21]. A particular scenario of the
MI development strongly depends on the type of initial
conditions considered. In the majority of the existing
analytical, numerical, and experimental studies of MI,
periodic or random initial modulations of a constant
background have been considered [10–13,18–20,22]. For
these types of initial conditions the nonlinear stage of the
MI development was shown to be dominated by breath-
erlike structures such as the Akhmediev, Kuznetsov-Ma,

Peregrine breathers and their generalizations. The role of
NLSE breather solutions has been extensively discussed in
recent years in the context of the formation of rogue waves
[23,24]. A particular type of breather solutions of the 1D
NLSE, the so-called superregular solitonic solutions, have
been shown in Refs. [25,26] to describe the development of
a certain type of small localized perturbations of the plane
wave [27]. In the inverse scattering theory of the 1D NLSE
regular and superregular solitonic solutions have a discrete
spectrum component associated with their soliton content
[25,26].
When a localized (and not necessarily small) initial

perturbation of a plane wave has an arbitrary shape (within
the class of “solitonless” perturbations with no discrete
spectrum), it was recently shown using the inverse scatter-
ing transform solutions of the 1D NLSE that the nonlinear
dynamics of MI is characterized by a longtime “hyper-
bolic” scenario, where a universal (not depending on the
shape of the initial localized perturbation to leading order)
nonlinear oscillatory structure develops and expands in
time with finite speed [28–30]. In sharp contrast with the
previously mentioned MI scenarios involving the formation
of various breathers, this scenario involves the formation of
a symmetric expanding nonlinear wave structure described
by the modulated elliptic solution of the 1D NLSE. The
modulation provides a gradual transition from a funda-
mental soliton (realized only asymptotically as a local
approximation of the solution) resting at the center to small-
amplitude dispersive waves propagating away from the
center with linear group velocity. This universal modulated
elliptic solution of the 1D NLSE saturating the MI was first
obtained in Ref. [31] in the framework of the Whitham
modulation theory [32].
It has been demonstrated in Ref. [33] that the qualitative

behaviors found within the integrable NLSE framework are
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robust and the considered nonlinear stage of MI can also
be found in a variety of other wave systems being not
necessarily integrable. In view of the fundamental signifi-
cance of the 1D NLSE and its generalizations, the question
of the physical relevance of this universal scenario of the
MI development and the possibility of its realization in an
experiment are of major importance for nonlinear physics.
In this Letter, we report the experimental observations of

the space-time dynamics of a modulationally unstable
plane wave modified by two types of localized perturba-
tions: a hump and a well. Using a recirculating fiber loop as
the experimental platform, we observe the expansion of a
nonlinear oscillatory structure going along with the ampli-
fication of the small optical noise that surrounds the
perturbed plane wave at the initial stage. The behaviors
observed experimentally are quantitatively very well
described by the 1D NLSE with a small linear damping
term, and our experimental observations reveal that the
“hyperbolic” scenario considered in Refs. [28,29,31,33,34]
exhibits robustness to noise, to weak dissipation, and to
some deviations from integrability that are inherent in any
experimental system.
Even though modern single mode fibers (SMFs) re-

present propagation media with very small linear losses
(typically ∼0.2 dB=km at the telecommunication wave-
length of 1550 nm), their attenuation cannot be considered
as being fully negligible over propagation distances of
a few kilometers. Many of the optical fiber experiments
realized in recent years for the observation of breather
solutions of the 1D NLSE have encompassed this con-
straint by using waves with an optical power of the order of
∼1 W. With this power, the characteristic nonlinear length
typically ranges between 100 m and 1 km so that single-
pass propagation experiments reasonably well described by
the 1D NLSE can be performed within propagation lengths
between one to several kilometers. In all single-pass fiber
geometries where Watt-level powers are required, the
generated nonlinear structures have typical durations fall-
ing between ∼1 and ∼10 ps. This requires the use of fast
optical detection devices like optical sampling oscillocopes
or time lenses [11,35–38]. Moreover, the observation of the
space-time dynamics in single-pass optical fiber experi-
ments often represents a difficult task since it relies on
destructive cutback techniques [39] or, alternatively, on
nonlinear digital holography methods [40,41].
In our work, we have adopted another strategy by

implementing a recirculating fiber loop that presents the
significant advantage to provide real-time observation of
the space-time dynamics of the optical wave. Recirculating
fiber loops have been previously used under many circum-
stances in the context of optical fiber communication [42],
in particular to demonstrate long-distance transmission of
solitons [43–46]. Here, this fiber system is used to provide
in a nondestructive way the real-time stroboscopic view
of the “slow” evolution of the perturbed plane wave,

round-trip after round-trip inside the fiber loop. In our
recirculating fiber loop, the optical power is kept typically
around only ∼10 mW and the propagation distances that
are reached can be as large as hundreds of kilometers.
With this experimental approach, all the physically relevant
characteristic lengths and durations are rescaled by one or
two orders of magnitude; i.e., the nonlinear length becomes
of the order of ∼100 km and the typical duration of soliton
structures becomes∼50 ps. With such a timescale, the local
perturbation of the plane wave can be relatively easily
engineered by using standard fast electro-optic modulators
(EOMs). Moreover, the detection part can be ensured by
fast electronic devices like photodiodes and oscilloscopes.
Our experimental setup is schematically shown in Fig. 1.

It consists of a recirculating fiber loop, i.e., a ring cavity
made up of ∼4 km of SMF closed on itself by a 90=10 fiber
coupler. The coupler is arranged in such a way that 90%
of the intracavity power is recirculated. A wide light
pulse of ∼100 ns having a square shape is perturbed by
a small localized perturbation of ∼30 ps and circulates
in the counterclockwise direction inside the fiber loop.
The perturbed square pulse is generated by modulating
the power of a single-frequency laser operating at 1550 nm
(see Supplemental Material [47]) and is periodically
injected inside the loop with a period of 10 ms, which is
much larger than the cavity round-trip time of ∼20 μs. It is
monitored by a fast photodiode (PD1) connected to an
oscilloscope having an electrical bandwidth of 36 GHz.

0
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FIG. 1. Schematic representation of the experimental setup. PC,
polarization controller; EDFA, erbium-doped fiber amplifier;
AOM, acousto-optic modulator. The bottom part represents the
decay of the plane wave power measured in the absence (blue
line) and in the presence (red line) of Raman amplification at a
pump power of 535 mW.
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The linear losses of the SMF are around ∼0.2 dB=km.
They are partially compensated by Raman amplification in
a section of the loop that is 2 km long. Following the
method used in Refs. [20,35], a pump beam at 1450 nm is
launched in a counterpropagating (clockwise) direction to
provide Raman gain with weak relative intensity noise. The
pump power Pp at 1450 nm is typically around ∼500 mW,
which is much greater than the power (P0 ∼ 10 mW) of the
plane wave circulating inside the loop. The pump radiation
at 1450 nm is coupled in and out of the fiber loop by using
two wavelength dense multiplexers (WDMs). Increasing
the power Pp of the pump beam at 1450 nm from zero to a
few hundreds of mW, the decay time of the square pulse
that propagates inside the loop and that is measured by the
photodiode PD2 at the output of the fiber coupler dramati-
cally increases from ∼40 μs to ∼1 ms, as shown in the
bottom part of Fig. 1. Let us emphasize that our ring cavity
is conceptually different and also simpler than coherently
driven passive cavities used, e.g., in Refs. [49,50] as
intrinsically bistable devices that can support dissipative
cavity solitons.
Figure 2 (left) shows the space-time evolution of an

optical plane wave initially perturbed by a localized bright
(positive) perturbation having a duration of ∼30 ps and a
peak power twice as large as the mean power (14 mW)
of the plane wave; see Fig. 2(b). As shown in Fig. 2(a),
the experiment reveals that a nonlinear oscillatory
structure develops from the initial localized perturbation
and expands with propagation distance, in qualitative
agreement with the scenario theoretically described in

Refs. [28,29,31,33]. Additionally, the real-time single-shot
measurement of the evolution of the perturbed plane wave
reveals that the small optical noise that surrounds the plane
wave at the initial stage [see Fig. 2(b)] is significantly
amplified due to MI [see Figs. 2(a) and 2(c)].
In fact, Fig. 2 provides the experimental evidence of the

inherent competition between the well-known process of
noise amplification by MI and the process of the develop-
ment of a nonlinear oscillatory structure within the wedge-
shaped region. In our experiments we have observed that
the nonlinear oscillatory structure shown Fig. 2(a) can be
completely overtaken by the process of the exponential
amplification of the small optical noise that perturbs the
laser field at the initial stage. To obtain the space-time
diagram of Fig. 2(a), the power P0 of the initial plane wave
and the power Pp of the 1450 nm pump laser have been
carefully adjusted to 14 and 535 mW, respectively. With
these values, the growth rate of the oscillatory structure that
emerges from the local perturbation, the noise amplification
rate, and the cavity loss rate are sufficiently well balanced
for the nonlinear oscillatory structure to be observed over a
propagation distance of ∼500 km [corresponding to ∼9
times the nonlinear length LNL ¼ 1=ðγP0Þ]. Taking some
other values of P0 and Pp, space-time evolutions similar to
the one plotted in Fig. 2(a) can be observed over some
larger or smaller physical propagation distances. However,
the growth rate of the nonlinear oscillatory structure and the
noise amplification rate are inherently comparable and it
always happens that the nonlinear oscillatory structure
never survives beyond a limited (typically between ∼5

(a)

(b) (c)

(d)

(e) (f)

FIG. 2. Space-time evolution of a modulationally unstable plane wave perturbed at the initial stage by a localized bright (positive)
peak. (a)–(c) Experiments and (d)–(f) numerical simulation of Eq. (1) with β2 ¼ −22 ps2 km−1, γ ¼ 1.3 W−1 km−1, αeff ¼
4.2 × 10−3 km−1, P0 ¼ 14 mW, T0 ¼ 30 ps [ψðz ¼ 0; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0½1þ exp ( − ðt=T0Þ2)�
p

]. At each round-trip inside the cavity in
(a) and (d), the optical power has been renormalized by the mean power carried by the exponentially decaying plane wave. hjψðzÞj2i ¼
P0 expð−αeffzÞ represents the mean power of the plane wave at position z.
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and ∼10) number of nonlinear lengths before being
destroyed by noise amplification. This feature has already
been discussed and evidenced in simulations of the 1D
NLSE where the numerical noise was shown to destroy the
structure in finite time [29].
Behaviors found in the experiments are retrieved with a

good quantitative agreement from the numerical integration
of the 1D NLSE with small linear damping,

i
∂ψ
∂z ¼ β2

2

∂2ψ

∂t2 − γjψ j2ψ − i
αeff
2

ψ ; ð1Þ

and with parameters corresponding to the experiments.
ψðz; tÞ represents the complex envelope of the electric
field that slowly varies in space z and time t. At 1550 nm
the group velocity dispersion coefficient of the SMF
is β2 ¼ −22 ps2=km. The Kerr coefficient is γ ¼
1.3 W−1 km−1 and the effective power losses αeff measured
from the decay rate of the plane wave inside the ring cavity
are 4.2 × 10−3 km−1 (equivalently 0:018 dB=km).
Figure 2 (right) shows the result of the numerical

integration of Eq. (1) by taking ψðz ¼ 0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0½1þ exp ( − ðt=T0Þ2)�
p

as initial condition. Taking
P0 ¼ 14 mW and T0 ¼ 30 ps, this expression fits quite
well the experimental profile plotted in Fig. 2(b). There is a
good quantitative agreement between right (numerical) and
left (experimental) parts of Fig. 2, which indeed confirms
that our experiment iswell described byEq. (1)where power
losses have been introduced in a phenomenological way.
It has been shown in Refs. [28,29] that the development

of the oscillation behavior in the nonlinear stage of MI does
not depend on the exact shape of the localized perturbation,

provided some (relatively mild) conditions necessary for a
rigorous treatment are satisfied. We have investigated this
point from our experiments. Figure 3 shows space-time
evolution of an optical plane wave initially perturbed by a
localized dark (negative) perturbation. The experimental
results plotted in Figs. 3(a)–3(c) reveal that a nonlinear
oscillatory structure grows from the initial perturbation.
One can see that the detailed structure exhibiting two
symmetric solitary waves separated by a narrow “vacuum”
region in the central part slightly differs from the one
observed in the positive perturbation case. However, the
leading order modulation solution describing this structure
is the same as in the positive perturbation case. This can be
readily understood by noticing that the dynamics of the
plane wave under sufficiently negative localized perturba-
tion can be viewed as a combination of two focusing
dam breaks of opposite signs located close to each other
[15,51]. It follows from the results of Refs. [15,34,52]
that the modulation solution describing such a “double dam
break” problem is exactly the same as the one from
Refs. [28,29,31] for the positive perturbation case [47],
confirming the universality of the observed structure.
As shown in Fig. 3 (right), the behavior observed

experimentally is also quantitatively well described by
the numerical simulation of Eq. (1) taking ψðz ¼ 0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0½1 − β exp ( − ðt=T0Þ4)�
p

as the initial condition (P0 ¼
16 mW, β ¼ 0.93, T0 ¼ 50 ps) that fits the experimental
profile shown in Fig. 3(b).
As shown in Refs. [28,31], the boundaries of the

region separating the nonlinear oscillatory solution from
the plane wave region are expanding linearly with the

(a)

(c) (f)

(d)

(b) (e)

FIG. 3. Space-time evolution of a modulationally unstable plane wave perturbed at initial stage by a localized dark (negative) peak.
(a)–(c) Experiments and (d)–(f) numerical simulation of Eq. (1) with β2 ¼ −22 ps2 km−1, γ ¼ 1.3 W−1 km−1, αeff ¼ 4 × 10−3 km−1,
P0 ¼ 16 mW, T0 ¼ 50 ps, β ¼ 0.93 [ψðz ¼ 0; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0½1 − β exp ( − ðt=T0Þ4)�
p

].
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evolution variable. When rephrased in physical variables,
these boundaries are given by t� ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2β2γP0

p
z (see

Supplemental Material [47]). They are plotted with white
straight lines in Figs. 2(a), 2(d), 3(a), and 3(d). Even though
the oscillatory structure is effectively located within the linear
boundaries, the edges of the nonlinear oscillating structure are
relatively far from the boundaries predicted by the asymptotic
(longtime) theory. This quantitative difference between
experiment and theory arises from the fact that the theoretical
result has been established in the framework of the purely
integrable and nondissipative 1D NLSE; see Supplemental
Material [47]. Comparing Figs. 2(a) and 2(d) and Figs. 3(a)
and 3(d), it is clear that dissipation has a stronger effect on the
expansion of the bright perturbation than on the expansion of
the dark one. At the qualitative level, this can be understood
by realizing that the nonlinearwave structure establishes itself
much faster due to the low background at the center, naturally
fitting the rapidly decaying field in the fundamental soliton.
Further theoretical work is needed to quantify the influence of
small dissipation but also vectorial (polarization) effects on
the universal oscillatory solution [28,29,31,33] and its mani-
festation in experiment; see Ref. [53].
In summary, we have reported an optical fiber experi-

ment in which we have observed the space-time dynamics
of a modulationally unstable plane wave perturbed by a
localized peak. Our experimental results demonstrate the
robustness to noise and small dissipation of the expanding
modulated solution theoretically found in Refs. [28,29,31].
Our experimental platform could be further used to explore
other scenarios of the nonlinear stage of MI, including
integrable turbulence or soliton gas [54–57].
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