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Abstract 

The nonlinear extremely large-amplitude oscillation of a cantilever subject to motion 

constraints is examined for the first time. In order to be able to model the large-amplitude 

oscillations accurately, the equation governing the cantilever centreline rotation is derived. This 

allows for analysing motions of very large amplitude even when tip angle is larger than π/2. The 

Euler-Bernoulli beam theory is employed along with the centreline inextensibility assumption, 

which results in nonlinear inertial terms in the equation of motion. The motion constraint is 

modelled as a spring with a large stiffness coefficient. The presence of a gap between the 

motion constraint and the cantilever causes major difficulties in modelling and numerical 

simulations, and results in a non-smooth resonance response. The final form of the equation of 

motion is discretised via the Galerkin technique, while keeping the trigonometric functions 

intact to ensure accurate results even at large-amplitude oscillations. Numerical simulations are 

conducted via a continuation technique, examining the effect of various system parameters. It 

is shown that the presence of the motion constraints widens the resonance frequency band 

effectively which is particularly important for energy harvesting applications.  
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1. Introduction 

Temporary contact and impact between components are present in many mechanical 

structures and machines, such as piping systems, vibration isolators, gears with clearances, and 

impact damping elements. Impact between components is also present in a specific class of 

energy harvesters [1, 2]. For all these systems, accurate modelling and analysis of the dynamical 

behaviour of the system is essential for predicting the motion amplitudes as well as the 

developed force and stress magnitudes, to ensure smooth operation and prevent improper 

functioning and immature failure of system components. 

The early studies on this topic focused on investigating the behaviour of piece-wise 

linear discrete systems [3-10]. For instance, Moon and Shaw [3] studied the chaotic vibrations 

of an elastic beam with nonlinear boundary conditions. Nigm and Shabana [11] conducted a 

theoretical analysis on the steady-state vibrational characteristics of a discrete system subject 

to an impact damper. Further investigation was conducted by Shaw and Holmes [4], who 

studied vibrational behaviour of a single degree-of-freedom (DOF) piecewise linear oscillator. 

Choi and Noah [5] examined the forced response of a single DOF system involving an 

unsymmetrical piecewise linear stiffness using a harmonic balance technique together with the 

fast Fourier transformation. The investigations were continued by Natsiavas [9], who examined 

the dynamics of oscillators with bi-linear damping and stiffness. There are also a few studies 



3 
 

examining some aspects of the dynamics of constrained continuous systems [12, 13]. For 

instance, Metallidis and Natsiavas [14] examined the axial vibration response of a periodically 

excited deformable rod subject to motion-limiting constraint. Björkenstam [12] studied the 

motion and dynamic stability of a bar subjected to a periodic driving force, a linear damping 

force and impact forces due to its motion.  

Most of the recent studies on this topic focus on the application of motion constraints in 

enhancing the efficiency of vibration-based energy harvesters via widening the resonance 

frequency band.  For instance Liu et al. [15] used a lumped model to analyse the response of a 

piezoelectric energy harvester subject to motion constraints. Soliman et al. [16] developed an 

energy harvester design implementing motion constraints to widen the frequency band. Similar 

theoretical and experimental investigations have been performed on design and analysis of 

vibration-based energy harvesters by, for instance, Halim and Park [17], Wu et al. [18], and Liu 

et al. [1]. All of these valuable studies are based on experimental observations and/or discrete 

(lumped mass) theoretical analysis.  

The present study, for the first time, investigates the nonlinear extremely large-

amplitude oscillation of a cantilever under base excitation subject to motion-limiting 

constraints from both sides, employing a continuous model. In particular, a continuous model of 

the cantilever is developed on the basis of the Euler-Bernoulli beam theory and inextensibility 

condition. The centreline rotation is considered as the main variable describing the motion of 

the cantilever; this allows analysing very large-amplitude motions accurately. The effect of the 

motion constraint is accounted for via a spring with a clearance. The presence of an initial gap 



4 
 

(clearance) between the cantilever and the motion constraint causes major challenges in 

continuous modelling and numerical simulations. The continuous model is discretised 

employing the Galerkin technique and solved using a continuation technique. Numerical results 

are presented in the form of frequency-amplitude diagrams, time histories, and phase-plane 

portraits. 

 

2. Model development 

The system under consideration, as shown in Fig. 1, is a cantilever under base excitation 

subjected to motion constraints. The motion of the cantilever is analysed in a Cartesian 

coordinate system with x and z denoting the axial and transverse directions. The cantilever is of 

length L, width b, and thickness h. The motion constraints are located at a distance xc from the 

base, with a gap width of g0 from each side; both motion constraints have the same stiffness. 

The whole cantilever system is under harmonic base excitation of amplitude w0 and frequency 

ω. 

One of the well-known assumptions in modelling of cantilevers is the inextensibility of the 

centreline. Under this assumption, the longitudinal displacement, u(x,t), and the transverse 

displacement (with respect to the base), w(x,t), can be written as a function of the rotation 

angle of the centreline, θ(x,t), as 
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The total transverse displacement, wt(x,t), is given by 

     0 0

0

( , ) ( , ) sin sin ( , ) d sin .
x

tw x t w x t w t x t x w t       (2) 

The relations in Eq. (1) allows for deriving the rotational equation of motion of the cantilever. 

The advantage of the rotational equation of motion over the transverse equation of motion is 

that it is capable of predicting very-large-amplitude oscillations even when the tip angle is 

larger than π/2. In what follows, the kinetic and potential energies as well as the work of 

damping are obtained in terms of the rotation angle. 

The axial strain of the cantilever under inextensibility assumption can be formulated as [19] 

( , )
.

x t
z

x





 


  (3) 

Based on the Kelvin-Voigt energy dissipation mechanism, the axial stress can be expressed as 

e

v

E
t




  


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
  (4) 

where E and η stand for Young’s modulus and material viscosity; e  and v  respectively 

denote the elastic and viscous components of the axial stress. 

The strain energy of the cantilever is given by [20] 



6 
 

2

0

1 1 ( , )
d d .

2 2

L

e

V

x t
V EI x

x


  

 
   

 
    (5) 

in I represents the second moment of area. 

The virtual work done by the viscous component of the axial stress can be formulated as 

2

0

( , ) ( , )
d d .

L

v v

V

x t x t
W V I x

x t x

 
    

   
      

    
   (6) 

The kinetic energy of the cantilever under base-excitation can be obtained as 
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in which ρ denotes the mass density and A stands for the cross-sectional area. 

The motion constraints are modelled via linear springs with very large stiffness coefficients. 

Hence, the work of the motion constraints (both sides) can be mathematically represented as 

      
       

             
        

    1 0 0

0 0 0 0

cos ( )H sin d sgn sin d sin d d d
L L x x x

c D c

x

W k x x x g x x g x x  (8) 

where H denotes the Heaviside function, sgn stands for the Sign function, δD represents the 

Dirac Delta function, and the vertical bars, i.e. ||, indicate the absolute value. 

Employing generalised Hamilton’s principle 
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one can derive the equation governing the rotational motion of the cantilever under transverse 

base-excitation and subject to motion constraints as 
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Introducing the following dimensionless quantities 
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where 4 ( )AL EI  , inserting them in Eq. (10) and disregarding the asterisk notation results 

in 
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Wiring the equation of motion in dimensionless form allows for a general parametric 

analysis [21].  In order to be able to examine the nonlinear dynamical characteristics of the 

cantilever numerically, Eq. (12) is reduced to a discretised set nonlinear ordinary differential 
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equations (ODEs) utilising the Galerkin technique. To this end, the cantilever centreline rotation 

is expanded as 
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where ( )mp t  denotes the mth generalised coordinate for the rotational motion and 
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Substitution of Eq. (13) into the equation of motion, i.e. Eq. (12), and application of the Galerkin 

method results in 
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In order to ensure accurate results even at very large-amplitude oscillations, the trigonometric 

functions of θ are kept intact as they are integrated from 0 to 1, which results in substantially 

large equations of motion. The presence of such large equations and nonlinear inertial terms 

makes the numerical simulation even more challenging. In this study, 5 generalised coordinates 

are retained in the rotational motion series expansion, resulting in a 5-degree-of-freedom 

(DOF) system which ensures converged results; in other words, the contribution of higher 

modes (more than 5) to the cantilever response is small enough that can be safely neglected. 

After obtaining the amplitude of the rotational motion, the longitudinal and transverse 

displacements are calculated using Eq. (1). The 5-DOF discretised system of equations is solved 

numerically via use of a pseudo-arclength continuation technique; additionally, a stability 

analysis was conducted using Floquet theory. The employed method used is capable of 

capturing all types of periodic motions as well as detecting different bifurcations [22]. 

 

3. Numerical results  

The nonlinear large-amplitude oscillations of the cantilever with and without motion 

constraints are studied in this section. In order to better illustrate the capability of the 

developed model in capturing very large-amplitude oscillations of the cantilever, the motion 

constraint is initially removed and the nonlinear resonant response of the system under base-

excitation is examined; this is discussed in sub-section 3.1. Then, the detailed nonlinear 

response of the cantilever subject to motion constraint is examined and discussed in sub-

section 3.2. The numerical results are obtained for a cantilever of dimensions h=1 mm, b=5h, 
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and L=200h. It should be mentioned here once again that all the reported values in this section 

are dimensionless as defined in Eq. (11) with the asterisk notation being dropped for 

convenience. 

 

3.1. Nonlinear response of the cantilever without motion constraint 

In the absence of a motion constraint, the cantilever is free to undergo large-amplitude 

oscillations. The transverse amplitude of oscillation depends of course on the base-excitation 

amplitude. Figure 2 shows the nonlinear frequency-amplitude plots of the cantilever 

undergoing large-amplitude oscillations due to transverse base-excitation. For this case, 

w0=0.018 and ηd=0.0057. Sub-figures (a, b) show the cantilever tip transverse and longitudinal 

displacements while sub-figure (c) shows the cantilever tip angle. It is worth mentioning that 

solving the model developed in Section 2 results in the value of centreline angle. Having 

obtained the centreline angle, the transverse and longitudinal displacements are calculated via 

using Eq. (1). As seen in Fig. 2, the system shows a weak nonlinear hardening behaviour. 

Furthermore, sub-figure (c) shows that the tip angle maximum value is more than π/2, 

indicating that the tip of the cantilever bends more than 90° at large-amplitude oscillations. 

This is the main advantage of the model developed in this study, as it overcomes the limitation 

of the classical nonlinear transverse model of the cantilever (i.e. the tip angle being between -

π/2 and π/2). To better illustrate the oscillation of the cantilever, the system motion is captured 

at different frames in one full period for points P1, P2, and P3, and plotted in Fig. 3. As seen in 

sub-figure (a), the cantilever longitudinal displacement is much smaller than its transverse 
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displacement; however, at larger oscillation amplitudes, for instance sub-figure (c), the 

longitudinal displacement becomes comparable to the transverse displacement.  

 

3.2. Nonlinear response of the cantilever with motion constraint 

This section examines the nonlinear resonant response of the cantilever in the presence 

of a motion constraint at xc=0.2. The frequency-amplitude diagrams are constructed for 

different cases and the effect of different parameters is examined in detail.  

Figure 4 shows a comparison between constrained and unconstrained motion of the 

cantilever in the primary resonance region. For this case, an initial gap width of 0.03 is 

considered, i.e. g0=0.03. Furthermore, a large spring stiffness coefficient is considered, i.e. 

K1=2.0E4, to properly model the effect of the motion constraint. The base-excitation amplitude 

is set to w0=0.018 while its frequency (ωe) is varied in the vicinity of the fundamental natural 

frequency of the cantilever, i.e. ω1=3.5160.  As seen in sub-figure (a), the presence of a motion 

constraint reduces the amplitude of the oscillation, but yields wider resonance frequency band. 

This is particularly interesting and useful for energy harvesting applications. More specifically, 

one of the techniques used in increasing the efficiency of vibration-based energy harvesters is 

to increase the band of resonance vibration, i.e. increase the interval at which the amplitude is 

larger than a certain value. If a transverse displacement threshold of 0.45 is considered, the 

cantilever system without constraint undergoes oscillations of amplitude larger than 0.45 in the 

frequency range of 0.980 < ωe/ω1 < 1.031; however, the constrained cantilever system 

undergoes oscillations of amplitude larger than 0.45 in the frequency range of 0.980 < ωe/ω1 < 
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1.160, i.e. 3.5 times the range of unconstrained system. Comparing the area under the curve for 

both constrained and unconstrained system in the frequency ratio range shown in the figure 

(i.e. 0.90 < ωe/ω1 < 1.18) reveals a value of for the 0.0790 unconstrained system and a value of 

0.1292 for the constrained, i.e. an increase of 63.5 %.  

The detailed dynamical characteristics of the constrained cantilever at two different 

excitation frequencies, ωe/ω1=0.9775 and 1.1030, are illustrated in Figs. 5 and 6, respectively. 

ωe/ω1=0.9775 is in the resonance region before hitting the motion constraint while 

ωe/ω1=1.1030 is in the region where the cantilever is hitting the motion constraint. The goal 

here is to compare the time traces and phase-plane portraits of the cantilever motion before 

and after hitting the motion constraint. As seen in Fig. 5, the cantilever displays smooth 

periodic response in the region where there is not contact between the cantilever and the 

constraint. However, as seen in Fig. 6, the dynamical characteristics of the cantilever in the 

region where it hits the constraint are totally different, showing non-smooth vibrational 

behaviour.  

It would be interesting to compare the response of the cantilever subject to motion 

constraint at both sides to that subject to motion constraint only at one side; the comparison 

between the two cases is shown in Fig. 7. As seen, when the cantilever motion is constrained 

from both sides, the change in the slope of the resonance response after hitting the constraint 

is larger compared to the case with one-side constraint. Furthermore, the cantilever with 

constraints at both sides shows wider resonance frequency band compared to the cantilever 

with a constraint only at one side. It should be noted that for the rest of the figures in this 
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paper, it is assumed that the cantilever is constrained at both sides. It is important to note that 

asymmetric motions can arise even in oscillators with perfectly symmetric properties. 

As mentioned in the previous section, in this study the motion constraints are modelled 

as linear springs located at distance xc from the clamped base and at both sides of the 

cantilever with a gap (clearance) g0. To this end, the spring stiffness coefficient should be large 

enough to ensure that the spring is a realistic representative of the motion constraint. The 

effect of the spring stiffness coefficient on the frequency-amplitude diagrams of the 

constrained cantilever is shown in Fig. 8; the frequency-amplitude plot of the unconstrained 

cantilever is plotted as well for better comparison. As seen, due to increased stiffness 

coefficient, the change in slope of the frequency-response becomes sharper when the 

cantilever hits the motion constraint. Additionally, the frequency band of resonance increases 

with increasing stiffness coefficient. It is interesting to note that the resonance response of the 

constrained cantilever changes dramatically when K1 is increased from 2.0E2 to 2.0E3; however, 

a smaller change in the resonance response is observed as K1 is increased from 2.0E3 to 2.0E4. 

Increasing the stiffness coefficient even further, to 6.0E4, causes only very slight change in the 

resonance response, indicating convergence. Hence, K1 = 2.0E4 can be selected as the stiffness 

of the constraint since it gives a reasonable approximation of the motion constraint while 

allowing for smooth numerical simulations. 

The effect of the gap width (clearance) of the motion constraint on the nonlinear 

resonance response of the constrained cantilever is depicted in Fig. 9. As seen, as the gap width 

is decreased, the cantilever hits the motion constraint at smaller oscillation amplitudes; as a 
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result, the change in slope of the resonance response occurs at smaller excitation frequencies. 

Furthermore, as the gap width is decreased, the resonance frequency band increases and the 

peak amplitude occurs at larger excitation frequencies. 

Figure 10 shows the effect of the base-excitation amplitude on the nonlinear frequency-

amplitude response of the constrained cantilever. It is seen that at a small base-excitation 

amplitude of 0.005, the cantilever does not hit the motion constraint, hence displaying a 

smooth response. At larger base-excitation amplitudes, on the other hand, the cantilever does 

hit the motion constraint causing a sharp change in the slope of the resonance response. As 

seen, by increasing the base-excitation amplitude, the resonance frequency band increases and 

the peak amplitude occurs at larger excitation frequencies. 

The frequency-amplitude plots of the constrained cantilever for two locations of the 

motion constraint are illustrated in Fig. 11. As seen, as the motion constraint is moved slightly 

to the right (i.e. further away from the base), the cantilever hits it at smaller excitation 

frequencies. Furthermore, the peak amplitude occurs at larger excitation frequencies as the 

constraint is moved to the right on the x axis. 

The effect of the material damping coefficient ηd on the resonance response of the 

constrained cantilever is shown in Fig. 12. As seen, as ηd is increased, the multi-valued 

resonance region becomes wider and the peak amplitude occurs at smaller excitation 

frequencies. It is interesting to note that increasing ηd from 0.006 to 0.007 causes a further 

reduction in the amplitude compared to the case when ηd is increased from 0.005 to 0.006. 

 



15 
 

4. Conclusions 

The nonlinear large-amplitude oscillation of a cantilever under base excitation has been 

examined in the presence of motion-limiting constraints on both sides of the cantilever. 

Hamilton’s principle is employed to derive the equation governing the rotational motion of the 

cantilever centreline, based on the Euler-Bernoulli beam theory and centreline inextensibility 

assumption. The equation of motion is discretised through use of the Galerkin technique; the 

trigonometric functions in the equation of motion are kept intact to ensure accurate results. 

The discretised equations are solved making use of a continuation technique, while examining 

the effect of various system parameters.  

It is shown that unlike other nonlinear models of the cantilever (based on transverse 

motion), the present model can predict large-amplitude oscillations even when the tip angle 

becomes larger than π/2. It is shown that the presence of a motion constraint reduces the 

amplitude of the oscillation and widens the band of resonance frequency vibration. Examining 

the effect of the stiffness of the motion constraint revealed that, as the stiffness is increased, 

the change in slope of the frequency-response becomes sharper when the cantilever hits the 

motion constraint; this results in widened resonance frequency band. Furthermore, it is shown 

that as the clearance between the motion constraint and the cantilever is increased, the change 

in slope of the frequency-response, due to hitting the motion constraint, occurs at smaller 

excitation frequencies. Examining the effect of the base-excitation amplitude on the nonlinear 

resonance response of the system shows that at small base-excitation amplitudes the cantilever 

does not hit the motion constraint; as the base-excitation amplitude is increased to larger 
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amplitudes, the cantilever hits the motion constraint causing a change in the slope of the 

frequency-amplitude. Additionally, due to increased base-excitation amplitude, the resonance 

frequency band increases and the peak amplitude occurs at larger excitation frequencies. If the 

motion constraint is moved further away from the clamped end, the cantilever hits it at smaller 

excitation frequencies and the resonance peak occurs at larger excitation frequencies. 
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Appendix A. Verification and Convergence 

In order to verify the model and numerical results of the present study, a nonlinear static 

analysis is conducted on a cantilever without a stopper and the obtained results are compared 

to three-dimensional (3D) finite element analysis (FEA) results obtained using Abaqus/CAE. In 

order to examine very large-amplitude displacements, the cantilever is assumed to be under a 

concentrate tip load, always perpendicular to the beam. For such a system, the nonlinear 

dimensionless static equation of motion can be derived as 

   
1 12

2
cos ( 1)cos d sin ( 1)sin d 0,s D D

x x

f x x x x
x


     

 
     

  
    (15) 

in which 2 ( )sf fL EI  with f being the forcing amplitude (dimensional). 

Using the same discretisation procedure and numerical technique introduced in Section 2, the 

nonlinear static response of the cantilever is obtained numerically. The cantilever nonlinear 

static deflection is also obtained using Abaqus/CAE, using continuum shell elements. The results 

obtained by the present study are compared to those obtained through 3D FEA and plotted in 

Figs. 13 and 14. The transverse and longitudinal displacements of the cantilever tip are shown 

in Fig. 13 for the two models. As seen, the model developed in this study predicts almost the 

same displacements as the nonlinear 3D FEA. Additionally, the deformed configuration of the 

cantilever under various tip load magnitudes is plotted in Fig. 14 for the two models, again 

showing very similar predictions by the two models; it should be noted that x and z are 

dimensionless with respect to the length of the cantilever. Hence, the comparisons in Figs. 13 

and 14 verify the developed model and numerical technique in the present study. 
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Furthermore, Fig. 15 shows the maximum strain in the cantilever as a function of x when 

fs=7.68. In particular, the strain is calculated at z=-h/2, where it is maximum for the system 

under consideration, and plotted as a function of x. Referring to Fig. 14, it is seen that for 

fs=7.68, the system undergoes very large-amplitude deformation. However, as seen in Fig. 15, 

even for such large deformation, the strains remain small.  

A convergence analysis is shown in Fig. 16 showing a comparison between the frequency-

amplitude diagrams of the system obtained using 5-degree-of-freedom (5-DOF) and 6-DOF 

discretised models of the system. As seen, both models predict almost the same response 

showing that taking into account 5 modes ensures converged results. 
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(a) 

 
(b) 

 
 

Fig.1. (a) Schematic of a cantilever under transverse base excitation subject to motion constraints; (b) deformed 

configuration of the system. 
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(c) 

 
Fig.2. Frequency-amplitude plots of the cantilever without constraint; (a) maximum tip transverse displacement; 
(b) maximum tip longitudinal displacement; (c) maximum tip angle. Solid line showing stable solution while dotted 
line showing unstable one. P1, P1, and P1, are points of interest which are examined in more detail in Fig. 3. 
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(a) 

 

(b) 

 

(c) 

 
Fig.3. (a-c) Oscillation of the system of Fig. 2 at points P1, P2, and P3, respectively. 
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(c) 

 
Fig.4. Comparison between the frequency-amplitude plots of the constrained cantilever to those of a cantilever 
with no constraint; (a) maximum tip transverse displacement; (b) maximum tip longitudinal displacement; (c) 
maximum tip angle. Solid line showing stable solution while dotted line showing unstable one. g0=0.03, K1=2.0E4, 
and w0=0.018. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(d) 

 
Fig.5. Details of the motion of the system of Fig. 4 at ωe/ω1=0.9775 (i.e. in the resonance region before hitting the 
motion constraint), showing respectively the time trace and phase-plane portrait of: (a, b) tip transverse 
displacement, (c, d) tip longitudinal displacement, and (e, f) tip angle. tn denotes normalized time with respect to 
the period of the oscillation. 
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(a) 
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(c) 
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(e) 

 

(d) 

 
Fig.6. Details of the motion of the system of Fig. 4 at ωe/ω1=1.1030 (i.e. in the resonance region after hitting the 
motion constraint), showing respectively the time trace and phase-plane portrait of: (a, b) tip transverse 
displacement, (c, d) tip longitudinal displacement, and (e, f) tip angle. tn denotes normalized time with respect to 
the period of the oscillation. 
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(a) 

 
(b) 

 
Fig.7. Comparison between the frequency-amplitude plots of the cantilever constrained at both sides to those of a 
cantilever constrained at one side; (a) maximum tip transverse displacement; (b) maximum tip longitudinal 
displacement. Solid line showing stable solution while dotted line showing unstable one. g0=0.03, K1=2.0E4, and 
w0=0.018. 
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(a) 

 
(b) 

 
Fig.8. Effect of the motion constraint stiffness on frequency-amplitude plots of the constrained cantilever; (a) 
maximum tip transverse displacement; (b) maximum tip longitudinal displacement. Solid line showing stable 
solution while dotted line showing unstable one. g0=0.03 and w0=0.018. 
 


e
/

1

w
ti

p

0.95 1 1.05 1.1 1.15
0

0.15

0.3

0.45

0.6

0.75

0.9

K
1

= 6.0E4

No constraint

K
1

= 2.0E3

K
1

= 2.0E2 K
1

= 2.0E4


e
/

1

u
ti

p

0.95 1 1.05 1.1 1.15

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

K
1

= 6.0E4

No constraint

K
1

= 2.0E3

K
1

= 2.0E2

K
1

= 2.0E4



31 
 

(a) 

 
(b) 

 
Fig.9. Effect of the motion constraint gap-width on the frequency-amplitude plots of the constrained cantilever; (a) 
maximum tip transverse displacement; (b) maximum tip longitudinal displacement. Solid line showing stable 
solution while dotted line showing unstable one. K1=2.0E4 and w0=0.018. 
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(a) 

 
(b) 

 
Fig.10. Effect of base-excitation amplitude on the frequency-amplitude plots of the constrained cantilever; (a) 
maximum tip transverse displacement; (b) maximum tip longitudinal displacement. Solid line showing stable 
solution while dotted line showing unstable one. g0=0.03 and K1=2.0E4. 
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(a) 

 
(b) 

 
Fig.11. Effect of the position of the motion constraint on the frequency-amplitude plots of the cantilever; (a) 
maximum tip transverse displacement; (b) maximum tip longitudinal displacement. Solid line showing stable 
solution while dotted line showing unstable one. g0=0.03, K1=2.0E4, and w0=0.018. 
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(a) 

 
(b) 

 
Fig.12. Effect of material damping coefficient on the frequency-amplitude plots of the constrained cantilever; (a) 
maximum tip transverse displacement; (b) maximum tip longitudinal displacement. Solid line showing stable 
solution while dotted line showing unstable one. g0=0.03 and K1=2.0E4, and w0=0.018. 
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(a) 

 
(b) 

 
Fig.13. Comparison between the cantilever tip deflections under perpendicular tip load; (a) transverse deflection; 
(b) longitudinal deflection. Solid line: present study; symbols: 3D FEA. 
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Fig.14. Deformed configuration of the cantilever at various forcing amplitudes. Solid line: present study; symbols: 
3D FEA. 
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Fig.15. Strain distribution as a function of x at z = -h/2 for cantilever under static load fs=7.68 (the case with the 
largest force in Fig. 14). 
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16. Effect of number of degrees of freedom on the frequency-amplitude diagrams of the system. 
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