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Abstract. The West Antarctic Ice Sheet Divide (WAIS Di-
vide, WD) ice core is a newly drilled, high-accumulation
deep ice core that provides Antarctic climate records of
the past� 68 ka at unprecedented temporal resolution. The
upper 2850 m (back to 31.2 ka BP) have been dated using
annual-layer counting. Here we present a chronology for
the deep part of the core (67.8–31.2 ka BP), which is based
on stratigraphic matching to annual-layer-counted Greenland
ice cores using globally well-mixed atmospheric methane.
We calculate the WD gas age–ice age difference (1 age) us-
ing a combination of �rn densi�cation modeling, ice-�ow
modeling, and a data set of� 15N-N2, a proxy for past �rn
column thickness. The largest1 age at WD occurs during the
Last Glacial Maximum, and is 525� 120 years. Internally
consistent solutions can be found only when assuming lit-
tle to no in�uence of impurity content on densi�cation rates,
contrary to a recently proposed hypothesis. We synchro-
nize the WD chronology to a linearly scaled version of the
layer-counted Greenland Ice Core Chronology (GICC05),

which brings the age of Dansgaard–Oeschger (DO) events
into agreement with the U=Th absolutely dated Hulu Cave
speleothem record. The small1 age at WD provides valuable
opportunities to investigate the timing of atmospheric green-
house gas variations relative to Antarctic climate, as well as
the interhemispheric phasing of the “bipolar seesaw”.

1 Introduction

Deep ice cores from the polar regions provide high-
resolution climate records of past atmospheric composition,
aerosol loading and polar temperatures (e.g., NGRIP com-
munity members, 2004; EPICA Community Members, 2006;
Wolff et al., 2006; Ahn and Brook, 2008). Furthermore, the
coring itself gives access to the ice sheet interior and bed,
allowing investigation of glaciologically important processes
such as ice deformation (Gundestrup et al., 1993), folding
(NEEM community members, 2013), crystal fabric evolution
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(Gow et al., 1997), and geothermal heat �ow (Dahl-Jensen
et al., 1998). Having a reliable ice core chronology (i.e., an
age–depth relationship) is paramount for the interpretation of
the climate records and comparison to marine and terrestrial
paleoclimate archives.

The West Antarctic Ice Sheet Divide (WAIS Divide, WD)
ice core (79.48� S, 112.11� W; 1766 m above sea level;
� 30� C present-day mean annual temperature) was drilled
and recovered to 3404 m depth (WAIS Divide Project Mem-
bers, 2013). Drilling was stopped 50 m above the estimated
bedrock depth to prevent contamination of the basal hy-
drology. Due to high accumulation rates of 22 cmicea� 1 at
present and� 10 cmicea� 1 during the Last Glacial Maxi-
mum (LGM), the WD core delivers climate records of un-
precedented temporal resolution (Steig et al., 2013; Sigl
et al., 2013) as well as gas records that are only minimally
affected by diffusive smoothing in the �rn column (Mischler
et al., 2009; Mitchell et al., 2011, 2013; Marcott et al., 2014).
The combination of high accumulation rates and basal melt-
ing at the WD site results in ice near the bed that is rela-
tively young (� 68 ka) compared to cores drilled in central
East Antarctica.

In WD, annual layers can be identi�ed reliably for the
upper 2850 m of the core, reaching back to 31.2 kaBP
(thousands of years before present, with present de�ned as
1950 CE). Below 2850 m depth an alternative dating strat-
egy is needed. Several methods have been employed previ-
ously at other deep ice core sites. First, orbital tuning via
� O2 =N2 has been applied successfully to several Antarctic
cores (Bender, 2002; Kawamura et al., 2007). However, an
age span of only� 3 precessional cycles in WD, in combi-
nation with the low signal-to-noise ratio of� O2 =N2 data,
makes this technique unsuitable for WD. The uncertainty in
the orbital tuning is about one-fourth of a precessional cycle
(� 5 ka), making it a relatively low-resolution dating tool.
Second, in Greenland, ice-�ow modeling has been used to
extend layer-counted chronologies (e.g., Johnsen et al., 2001;
Wolff et al., 2010). This method requires assumptions about
past accumulation rates, ice �ow, and ice sheet elevation.
Particularly for the oldest WD ice, the resulting uncertainty
would be substantial. Third, several radiometric techniques
have been proposed to date ancient ice. Radiocarbon (14C)
dating of atmospheric CO2 trapped in the ice is unsuitable as
it suffers from in situ cosmogenic production in the �rn (Lal
et al., 1990), and the oldest WD ice dates beyond the reach of
14C dating. Other absolute (radiometric) dating techniques,
such as recoil234U dating (Aciego et al., 2011),81Kr dating
(Buizert et al., 2014a), or atmospheric40Ar buildup (Bender
et al., 2008), currently suffer from uncertainties that are too
large (� 20 ka) to make them applicable at WD.

Instead, at WD we use stratigraphic matching to well-
dated Greenland ice cores using globally well-mixed atmo-
spheric methane (CH4) mixing ratios (Blunier et al., 1998;
Blunier and Brook, 2001; Blunier et al., 2007; Petrenko
et al., 2006; EPICA Community Members, 2006; Capron

et al., 2010). This method is particularly suited to WD be-
cause of the small gas age–ice age difference (1 age, Sect. 3)
and the high-resolution, high-precision CH4 record available
(Sect. 2.1). The method has three main sources of uncer-
tainty: (i) the age uncertainty in the records one synchro-
nizes to, (ii)1 age of the ice core being dated, and (iii) the
interpolation scheme used in between the CH4 tie points. We
present several improvements over previous work that reduce
and quantify these uncertainties: (i) we combine the layer-
counted Greenland Ice Core Chronology (GICC05) and a re-
cently re�ned version of the U=Th-dated Hulu speleothem
record (Edwards et al., 2015; Reimer et al., 2013; Southon
et al., 2012) to obtain a more accurate estimate of the (ab-
solute) ages of abrupt Dansgaard–Oeschger (DO) events
(Sect. 4.4); (ii) we combine �rn densi�cation modeling, ice-
�ow modeling, a new WD� 15N-N2 data set that spans the
entire core, and a Monte Carlo sensitivity study to obtain a re-
liable1 age estimate (Sect. 3); and (iii) we compare four dif-
ferent interpolation schemes to obtain an objective estimate
of the interpolation uncertainty (Sect. 4.5).

This work is the �rst part in a series of two papers de-
scribing the WD2014 chronology for the WD core in de-
tail. The second part describes the development of the annual
layer count from both multi-parameter chemistry and elec-
trical conductivity measurements. The WD2014 chronology
is currently the recommended gas and ice timescale for the
WD deep core, and as such it supersedes the previously pub-
lished WDC06A-7 chronology (WAIS Divide Project Mem-
bers, 2013).

2 Methods

2.1 Data description

Measurements of water stable isotopes. Water isotopic com-
position (� 18O and� D D � 2H) was measured at IsoLab, Uni-
versity of Washington. Procedures for the deep section of the
core are identical to those used for the upper part of the core
reported in WAIS Divide Project Members (2013) and Steig
et al. (2013). Measurements were made at 0.25 to 0.5 m depth
resolution using laser spectroscopy (Picarro L2120-i water
isotope analyzer), and normalized to VSMOW-SLAP (Vi-
enna Standard Mean Ocean Water – Standard Light Antarctic
Precipitation). The precision of the measurements is better
than 0.1 and 0.8 ‰ for� 18O and� D, respectively.

Measurements of CH4. Two CH4 data sets were used for
WD. The �rst is from discrete ice samples, and was mea-
sured jointly at Pennsylvania State University (0–68 ka, 0.5–
2 m resolution) and Oregon State University (11.4–24.8 ka,
1–2 m resolution). Air was extracted from� 50 g ice samples
using a melt–refreeze technique, and analyzed on a standard
gas chromatograph equipped with a �ame-ionization detec-
tor. Corrections for solubility, blank size and gravitational
enrichment are applied (Mitchell et al., 2011; WAIS Divide
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Project Members, 2013). The second data set is a contin-
uous CH4 record measured by coupling a laser spectrom-
eter to a continuous �ow analysis setup (Stowasser et al.,
2012; Rhodes et al., 2013; Chappellaz et al., 2013), and
was measured jointly by Oregon State University and the
Desert Research Institute (Rhodes et al., 2015). The continu-
ous data set is used to identify the abrupt DO transitions, as it
provides better temporal resolution and analytical precision.
Both records are reported on the NOAA04 scale (Dlugo-
kencky et al., 2005). Analytical precision in the CH4 data (2�
pooled standard deviation) is around 3.2 and 14 ppb for the
discrete data from Oregon State University and Pennsylvania
State University, respectively, and 3 to 8 ppb for the continu-
ous CH4 data, depending on the analyzer used (Rhodes et al.,
2015); the 14 ppb stated for the PSU discrete data may be an
overestimation, as depth-adjacent (rather than true replicate)
samples were used in the analysis.

Measurements of� 15N. Atmospheric N2 isotopic composi-
tion (� 15N) was measured at Scripps Institution of Oceanog-
raphy, University of California. Air was extracted from�
12 gram ice samples using a melt–refreeze technique, and
collected in stainless steel tubes at liquid-He temperature.
� 15N was analyzed using conventional dual-inlet isotope ra-
tio mass spectrometry (IRMS) on a Thermo Finnigan Delta V
mass spectrometer. Results are normalized to La Jolla (Cal-
ifornia, USA) air, and routine analytical corrections are ap-
plied (Sowers et al., 1989; Petrenko et al., 2006; Severing-
haus et al., 2009). Duplicates were not run for most� 15N data
in this study, but the pooled standard deviations of Holocene
WD � 15N data sets with duplicate analyses are 0.003 ‰
(Orsi, 2013). We conservatively adopt an analytical uncer-
tainty of 0.005 ‰ for this data set to allow for other sources
of error.

Measurements of [Ca]. Ca concentrations in the ice were
measured at the Ultra Trace Chemistry Laboratory at the
Desert Research Institute via continuous �ow analysis. Lon-
gitudinal samples of ice (approximately 100cm� 3:3cm�
3:3 cm) were melted continuously on a melter head that di-
vides the meltwater into three parallel streams. Elemental
measurements were made on meltwater from the innermost
part of the core with ultra-pure nitric acid added to the melt
stream immediately after the melter head; potentially con-
taminated water from the outer part of the ice is discarded.
Elemental analysis of the innermost meltwater stream is per-
formed in parallel on two inductively coupled plasma mass
spectrometers (ICPMS), each measuring a different set of
elements; some elements were analyzed on both. The dual
ICPMS setup allows for measurement of a broad range of
30 elements and data quality control (McConnell et al., 2002,
2007). Precision of the Ca measurements in WD glacial ice
is estimated to be� 3 %, with a lower detection limit of
0.15 ngg� 1. Continuous Ca and CH4 measurements are done
on the same ice, and are exactly co-registered in depth.

2.2 Firn densi�cation model description

Air exchange with the overlying atmosphere keeps the inter-
stitial air in the porous �rn layer younger than the surround-
ing ice matrix, resulting in an age difference between po-
lar ice and the gas bubbles it contains, commonly referred
to as1 age (Schwander and Stauffer, 1984). Here we use
a coupled �rn–densi�cation–heat–diffusion model to calcu-
late 1 age back in time (Barnola et al., 1991; Goujon et al.,
2003; Schwander et al., 1997; Rasmussen et al., 2013), con-
strained by measurements of� 15N of N2, a proxy for past �rn
column thickness (Sowers et al., 1992). The model is based
on a dynamical description of the Herron–Langway model
formulated in terms of overburden load (Herron and Lang-
way, 1980), which is solved in a Lagrangian reference frame.
This model has been applied previously to the Greenland
NEEM, NGRIP, and GISP2 cores (Rasmussen et al., 2013;
Seierstad et al., 2015; Buizert et al., 2014b), where it gives
a good agreement to the Goujon densi�cation model (Ras-
mussen et al., 2013; Goujon et al., 2003). The model allows
for the inclusion of softening of �rn in response to impurity
loading (Horhold et al., 2012), following the mathematical
description of Freitag et al. (2013a). The equations govern-
ing the model densi�cation rates are given in Appendix A.

The model uses a 2-year time step and 0.5 m depth reso-
lution down to 1000 m, the lower model boundary. A thick
model domain is needed because of the long thermal mem-
ory of the ice sheet. At WD, downward advection of cold
surface ice is strong due to the relatively high accumulation
rates, and the geothermal gradient does not penetrate the �rn
column (Cuffey and Paterson, 2010). We further use a lock-
in density that equals the mean close-off density (Martinerie
et al., 1994) minus 17.5 kgm� 3 (as in Blunier and Schwan-
der, 2000) and an empirical parameterization of lock-in gas
age based on �rn air measurements from 10 sites (Buizert
et al., 2012, 2013).

We furthermore use the steady-state version of the
Herron–Langway model (Herron and Langway, 1980) in per-
forming sensitivity studies (Sect. 3.2) and the dynamical Ar-
naud model (Arnaud et al., 2000; Goujon et al., 2003) to val-
idate our1 age solution.

2.3 Temperature reconstruction and ice-�ow model

Our temperature reconstruction (Fig. 1a) is based on water
� D, a proxy for local vapor condensation temperature, cal-
ibrated using a measured borehole temperature pro�le (fol-
lowing Cuffey et al., 1995; Cuffey and Clow, 1997) and, for
the last 31.2 ka, adjusted iteratively to satisfy constraints on
�rn thickness provided by� 15N and by the observed layer
thickness�.z/ . Using � 18O rather than� D in the temper-
ature reconstruction leads to differences that are negligibly
small. This borehole temperature calibration approach is pos-
sible at WD because the large ice thickness and relatively
high accumulation rates help to preserve a memory of past
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Figure 1. Modeling 1 age for WAIS Divide.(a) Past temperatures reconstructed from water� D, calibrated to the borehole temperature
pro�le. (b) Past accumulation rates as reconstructed by the �rn densi�cation inverse model (red), and from the annual-layer count (black).
(c) � 15N data (black dots) with densi�cation model output (green).(d) 1 age calculated using the densi�cation model (orange) and using
the Parrenin1 depth method (black) with constant 4 m thick convective zone and no correction for thermal� 15N fractionation.(e) Modeled
thinning function from ice-�ow model (solid), and a simple Nye strain model for comparison (dashed); the Nye thinning function, which has
a uniform strain rate as a function of depth, is given asf � .z/ D .H � z/=H with H the ice sheet thickness (Cuffey and Paterson, 2010, p.
616).

temperatures in the ice sheet. A coupled 1-D ice-�ow–heat-
diffusion model converts surfaceT .t/ into a depth pro�le
for comparison to measured borehole temperatures. The 1-
D ice-�ow model calculates the vertical ice motion, taking
into account the surface snow accumulation, the variation in
density with depth, and a prescribed history of ice thickness.
Vertical motion is calculated by integrating a depth pro�le of
strain rate and adding a rate of basal melt. As in the model
of Dansgaard and Johnsen (1969), the strain rate maintains a
uniform value between the surface and a depth equal to 80 %
of the ice thickness, and then varies linearly to some value at
the base of the ice. This basal value is de�ned by the “basal
stretching parameter”f b, the ratio of strain rate at the base
to strain rate in the upper 80 % of the ice column. The basal
ice is melting, so part of the ice motion likely occurs as slid-
ing. The along-�ow gradient in such sliding is unknown and
thus so too is the parameterf b. We overcome this problem
by making both the current ice thickness and the basal melt

rate free parameters when optimizing models with respect
to measured borehole temperatures. Because the basal melt
rate andf b affect the vertical velocities in similar fashion,
the optimization constrains a combination of melt rate and
f b that is tightly constrained by the measured temperatures.
Thus we �nd that varyingf b through a large range, from
0.1 to 1.5, changes the reconstructed LGM temperature by
less than 0.2� C. Effects of the prescribed ice-thickness his-
tory are likewise minor; assuming a 150 m thickness increase
from the LGM to 15 ka changes the reconstructed LGM tem-
perature by less than 0.2� C compared to a constant thick-
ness. Note that the 1-D �ow model used here is simpler than
the one used by Cuffey and Clow (1997) in that it does not at-
tempt to calculate changes in the shape of the strain rate pro-
�le; the unknown basal sliding motion at the WD site negates
the usefulness of such an exercise.

One output of the 1-D �ow model is the strain history of
ice layers as a function of depth and time. The cumulative
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Figure 2. ReconstructingA.t/ and1 age from� 15N: the choice of
accumulation template.(a) A init .t / based on�.z/ from the annual-
layer count (0–31.2 kaBP) and Clausius–Clapeyron scaling of wa-
ter stable isotope data (34.2–68 ka) in orange;A init D 0:22 ma� 1

in blue; and for comparison the �nalA.t/ solution (Fig. 1b) in
grey. For the orange curve we have used the Nye thinning func-
tion (Fig. 1e); the �nal ice-�ow model optimizes the agreement be-
tweenA.t/ obtained from�.z/ and from the inverse �rn modeling
approach. The WD2014 chronology uses the orangeA init .t / sce-
nario. (b) A.t/ found in the inverse �rn modeling approach using
both A init .t / scenarios; color coding as in panel(a). The function
�.t / is found as follows. We use control points at 1500-year inter-
vals (blue dots); the algorithm has the freedom to change the value
of �.t / at each of these points. In between the control points,�.t / is
found via linear interpolation.(c) Modeled1 age using bothA init .t /
scenarios; color coding as in panel(a).

strain is represented by the thinning functionf � .z/ (Cuf-
fey and Paterson, 2010), the ratio of annual-layer thickness
at depth in the ice sheet to its original ice-equivalent thick-
ness at the surface when deposited. The modeled thinning
function is shown in Fig. 1e (solid line). In the deep part of
the ice sheet,f � .z/ becomes increasingly uncertain as the
unknown basal melt rate andf b become the dominant con-
trols. Here we optimize the model by comparing accumu-
lation rates derived fromf � .z/ with those implied by a �rn
densi�cation model and the measured� 15N of N2 (Sect. 3.1).
While this has little effect on the temperature history recon-
struction, it provides an important constraint on calculated
basal melt rate, an interesting quantity for ice dynamics stud-
ies. Our analysis of basal melt rates and further details of
the temperature optimization process and 1-D �ow modeling
will be presented elsewhere.

3 The gas age–ice age difference (1 age)

3.1 The WD20141 age reconstruction

The �rn densi�cation forward model uses past surface tem-
peratureT .t/ and accumulationA.t/ as model forcings, and
provides1 age.t/ and� 15N.t/ as model output.

For the past 31.2 ka, WD has an annual-layer-counted
chronology; for this period the annual-layer thickness�.z/
provides a constraint on past accumulation rates via�.z/ D
A.z/ � f � .z/ . WD accumulation reconstructed from�.z/ is
plotted in black in Fig. 1b.

Prior to 31.2 ka we have no such constraint onA.t/ , and
an alternative approach is needed. We use the densi�cation
model as an inverse model, where we ask the model to
�nd the A.t/ history that minimizes the root-mean-square
(rms) deviation between measured and modeled� 15N, given
the T .t/ forcing. The� 15N data and model �t are shown
in Fig. 1c, theA.t/ history that optimizes the� 15N �t is
shown in Fig. 1b (red), and the modeled1 age is shown
in Fig. 1c (orange). The optimalA.t/ history is estimated
in two steps. First, we make an initial estimateA init .t / for
the past accumulation history. Second, we adjust theA.t/
forcing by applying a smooth perturbation�.t / such that
A.t/ D T1C �.t / U � A init .t / ; an automated algorithm is used
to �nd the curve�.t / that optimizes the model �t to the� 15N
data. For the last 31.2 ka we obtain a good agreement be-
tweenA obtained from�.z/ and the modeledf � .z/ (Fig. 1b,
black) andA obtained from the inverse method (red). The so-
lution we present here is therefore fully internally consistent,
i.e., theA andT histories used in the �rn densi�cation mod-
eling are the same as those used in the ice-�ow modeling, and
they provide a good �t to both the� 15N data and borehole
temperature data. WD does not suffer from the� 15N model–
data mismatch that is commonly observed for East Antarctic
cores during the glacial period (Landais et al., 2006; Capron
et al., 2013).

We base ourA init values on�.z/ for the past 31.2 ka;
prior to that we use the common assumption thatA follows
� 18O (i.e., Clausius–Clapeyron scaling); the �t to the� 15N
data is optimized forA D 24:2� expT0:1263� � 18OU. To test
the validity of the Clausius–Clapeyron assumption, we addi-
tionally run the scenarioA init .t / D 0:22 ma� 1 (i.e., constant
accumulation at present-day level). TheA.t/ and1 age re-
constructed under bothA init scenarios are similar at multi-
millennial timescales (Fig. 2). In the layer-counted interval
(< 31:2 kaBP),A obtained from�.z/ and � 18O is signi�-
cantly coherent at all timescales longer than 3000 years, but
not at higher frequencies. This is equivalent to the variability
resolved in theA init .t / D 0:22 ma� 1 scenario above. We con-
clude that the WD� 15N data support the idea thatA follows
� 18O on multi-millennial timescales. However, there may not
be a strong relationship at timescales less than a few thousand
years, as is clear from the abruptA increase around 12 ka
seen in�.z/ that is not re�ected in� 18O (Fig. 1a and b). For
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consistency between the upper and deeper part of the core we
use the1 age values obtained with the inverse densi�cation
model for the entire core.

Recently, another� 15N-based approach has been sug-
gested that uses1 depth, rather than1 age, in reconstruct-
ing gas chronologies (Parrenin et al., 2012). This method
removes the dependence onT .t/ and replaces this with
a dependence on the thinning functionf � .z/ . Note that this
method is very successful in the upper part of an ice core,
wheref � .z/ is well constrained, but not very reliable near
the base, wheref � .z/ is highly uncertain. Therefore, the �rn
densi�cation modeling approach should be considered to be
more reliable at WD during marine isotope stages (MIS) 2
through 4. Results from the1 depth method are plotted in
black in Fig. 1c, and generally show good agreement with
the �rn modeling approach. A notable exception is the 60–
65 ka interval, where the1 depth method overestimates the
1 age due to the fact that we have to compress�.z/ strongly
in order to �t age constraints derived from DO 18 (Sect. 4.5).

Last, we want to point out that the� 15N data support
an early warming at WD, as reported recently (WAIS Di-
vide Project Members, 2013). WD� 15N starts to decrease
around 20.5 kaBP, suggesting a thinning of the �rn column.
The �.z/ (as derived from the layer count) shows that ac-
cumulation did not change until 18 kaBP, at which point
it started to increase (which would act to increase the �rn
thickness). The most plausible explanation for the� 15N de-
crease around 20.5 kaBP is therefore an early onset of West
Antarctic deglacial warming, in agreement with increasing
� 18O around that time. The warming enhances the densi�ca-
tion rate of polar �rn, thereby decreasing its thickness (e.g.,
Herron and Langway, 1980).

3.2 1 age sensitivity study

BesidesA andT there are several model parameters that have
the potential to in�uence the model outcome; these are the
convective zone (CZ) thickness (Sowers et al., 1992; Kawa-
mura et al., 2006), surface density (� 0), and sensitivity to ice
impurity content. In this section we evaluate the sensitivity
of the model output to all of these parameters. We performed
1000 model runs in which the model parameters were ran-
domly perturbed. The spread in1 age model results is used
to calculate the WD2014 age uncertainty.

Convective zone thickness. In the WD2014 model run
(Sect. 3.1) we use a constant 3.5 m CZ, corresponding to the
present-day situation (Battle et al., 2011). In the sensitivity
study we vary the CZ by one of two methods: (1) we let the
CZ be constant in time; its thickness is set by drawing from
a Gaussian distribution with 3.5 m mean and 3.5 m 2� width
(i.e., 95 % probability of drawing a value in the 0–7 m range).
(2) We let the CZ be a function of accumulation rate (Drey-
fus et al., 2010), CZD 3:5C k � .A –0:22/; we drawk from
a Gaussian distribution with mean of� 10 and a 2� width
of 40 (at an LGMA of 10 cma� 1 this gives a CZ of 0–10 m

thickness). In both methods, whenever CZ values are selected
that are smaller than 0 m, the CZ thickness is set to 0 m in-
stead. For each of the 1000 model runs in the sensitivity study
we randomly selected either of the two methods.

Surface density. In the WD2014 model run we use past
surface densities (� 0) as given by the parameterization of
Kaspers et al. (2004). In the sensitivity study we add a con-
stant offset to the Kaspers values, the magnitude of which is
drawn from a Gaussian distribution of zero mean and a 2�
width of 60 kgm� 3. This range corresponds to the full range
of observed� 0 variability in Kaspers et al. (2004).

Past temperatures. Model temperature forcing is con-
strained by� D and measured borehole temperatures. There
is, however, a range to the solutions allowed by the bore-
hole temperature and ice-�ow model; here we use the up-
per and lower extremes of this range, determined by Monte
Carlo analysis using uncertainties of input variables. The sce-
narios were chosen to provide the maximumT range for
the glacial period rather than for the Holocene, because we
are interested in the uncertainty in the methane synchroniza-
tion (68–31.2 kaBP). In the sensitivity study we useT .t/ D
Toptimal.t / C � � 1T .t/ , whereToptimal is the forcing used in
the WD2014 model run (Fig. 1a),1T .t/ is half the difference
between the maximum-T and minimum-T scenarios, and�
is drawn from a Gaussian distribution of zero mean and unit
2� width (giving 95 % probability thatT .t/ is within the ex-
treme range identi�ed from the borehole, Fig. 3a).

� 15N uncertainty. We conservatively adopt an analytical
uncertainty of 0.005 ‰ for this data set; in addition, the inter-
pretation of� 15N in terms of �rn thickness is subject to fur-
ther uncertainty due to irregular �rn layering and the stochas-
tic nature of bubble trapping, as was observed for other atmo-
spheric gases such as CH4 (Etheridge et al., 1992; Rhodes
et al., 2013). For each run of the sensitivity study, we there-
fore perturb each of the individual� 15N data points by adding
an offset that is drawn from a Gaussian distribution of zero
mean and a 2� width of 0.015 ‰.

Impurity-enhanced densi�cation. Following recent
work we include the possibility that increased glacial
impurity loading could have enhanced densi�cation rates
(Horhold et al., 2012; Freitag et al., 2013a). We use the
mathematical formulation of Freitag et al. (2013a), in which
the activation energy of the sintering process is a function
of the Ca concentration in the �rn. The value of� , the
sensitivity to Ca, is drawn from a Gaussian distribution
with 0.0015 mean and a 2� width of 0.0015. The topic of
impurity-enhanced densi�cation is discussed in detail in
Sect. 3.3.

The A and1 age scenarios found in the sensitivity study
are shown in Fig. 3b and c, respectively. The shaded areas in
Fig. 3b and c give the total range of solutions, as well as the
� 2� and� 1� con�dence intervals. Note that the total range
of solutions will depend on the number of model runs (here
1000) but that the position of the� 2� and� 1� envelopes
will not. To investigate the distribution of values, we include
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Figure 3. 1 age sensitivity study. Shades of blue give the con�dence intervals as marked; the black curves represent the values used in the
WD2014 chronology; the red curve gives an alternative1 age solution using the Arnaud densi�cation model.(a) Temperature forcing of the
densi�cation model.(b) Reconstructed accumulation rates.(c) Reconstructed1 age; note the reversed scale. Histograms of1 age distribution
are shown for(d) 60 kaBP,(e)40 kaBP, and(f) 20 kaBP. Distribution mean and 2� uncertainty bound is stated in each panel.

histograms of1 age at 20 kyr intervals (Fig. 3d–f). Based
on the sensitivity study, we estimate the WD1 age to be
521� 120 years (2� uncertainty) at the LGM (� 20 kaBP).
The 1 age value of 351� 73 years at 40 kaBP gives a rep-
resentative1 age for MIS 3;1 age at 60 kaBP is 262� 50
years.

Additionally, we have repeated our1 age reconstruction
using the �rn densi�cation physics described by Arnaud et al.
(2000) rather than the Herron–Langway description used so
far; the Arnaud model provides the physical basis for the
commonly used �rn densi�cation model of Goujon et al.
(2003). More details on the implementation of the Arnaud
model are given in Appendix A.1 age found using the Ar-
naud model is plotted in red in Fig. 3c. Averaged over the
entire core,1 age found with the Arnaud model is 19 years

(about 7 %) smaller than1 age from the Herron–Langway
model. The root-mean-square (rms) difference between both
solutions is 35 years, corresponding to 0.63 times the 2� un-
certainty found in the sensitivity study. Both solutions are
thus found to be in good agreement. The Herron–Langway
approach is preferred because the internally consistent solu-
tion of temperature, accumulation, and ice �ow associated
with it is in better agreement with borehole temperature data
than the solutions associated with the Arnaud model. Fur-
thermore, the Herron–Langway model is more successful in
simulating the magnitude of the� 15N response to the accu-
mulation anomaly at 12 ka (not shown), suggesting it has a
more realistic sensitivity to accumulation variability.
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Figure 4. Impurity enhancement of densi�cation rates at WD. Den-
si�cation modeling results for(a) accumulation rates and(b) 1 age.
We use Ca sensitivities� D 0 (red) through� D 1� 10� 2 (blue), in
steps of 2:5 � 10� 3 (shades of deep purple). Black curves giveA
and1 age from ice-�ow modeling and�.z/ .

3.3 Impurity softening of �rn?

Recent work suggests a link between densi�cation rates and
impurity content (for which [Ca2C ] is used as a proxy) in po-
lar �rn (Horhold et al., 2012; Freitag et al., 2013a). Here we
measured total [Ca] by ICP-MS, but at WD nearly all Ca is
in the form of Ca2C . The in�uence of the impurity sensitivity
� (see Eq. A6 in the Appendix) on1 age at WD is shown in
Fig. 4. The sensitivity recommended by Freitag et al. (2013a)
from investigating present-day �rn packs is� D 1� 10� 2. We
reconstructedA and1 age with the �rn densi�cation inverse
model using �ve values of� ranging from� D 0 (red) to
� D 1� 10� 2 (blue) in steps of 2:5 � 10� 3. Average [Ca] is
around 0.8 ngg� 1 in the early Holocene and around 9 ngg� 1

in the LGM; a change to about an order of magnitude. Fol-
lowing Freitag et al. (2013a) we use the total [Ca] rather than
non-sea-salt Ca. If densi�cation rates are sensitive to impu-
rity loading (large� , blue curves), this results in increased
�rn compaction during the LGM. The densi�cation model,
which is trying to match the� 15N data, will compensate by
increasing theA forcing, which in turn results in a decreas-

ing 1 age. Hence the model simulations with large� (blue)
give a higherA and smaller1 age.

For the past 31.2 ka we have an independentA estimate
from �.z/ that we can compare to the solutions from the
�rn model (Fig. 4, black curve). We also plotted1 age re-
constructed via the1 depth method of Parrenin et al. (2012).
Remarkably, we �nd consistent solutions only when using
a Ca sensitivity� � 2:5� 10� 3, i.e., less than one-quarter of
the sensitivity suggested by Freitag et al. (2013a). The best
�t to the independent LGM (25–20 kaBP)A and1 age esti-
mates is obtained for� D 0. We conclude that WD does not
provide any evidence for impurity (or, more speci�cally, Ca)
enhancement of densi�cation rates.

An important caveat is that our model uses 10-year-
average [Ca] values, and therefore cannot resolve effects of
interannual layering within the �rn. Explicitly modeling the
layering would require centimeter-scale resolution in the dy-
namical �rn model, which is prohibitive from a computa-
tional point of view. Furthermore, [Ca] data at the required
sub-annual resolution are dif�cult, if not impossible, to mea-
sure for the deepest part of the core, where�.z/ is below
1 cma� 1. Increased �rn layering and enhanced bulk densi�-
cation affect the �rn thickness in a similar manner; both lead
to a shallower lock-in depth, and thereby a reduced� 15N.
Therefore, in order to reconcile our WD results with the im-
purity hypothesis of Horhold et al. (2012), one would need to
invoke a strong reduction in LGM �rn layering relative to the
present day to compensate for the impurity-driven increase
in bulk densi�cation rates. Recent work on the EDML core
suggests that �rn density layering may have been more pro-
nounced during glacial times (Bendel et al., 2013); including
�rn layering is therefore likely to only exacerbate the prob-
lem.

Work on present-day �rn has provided support for �rn
softening by impurity loading (Horhold et al., 2012; Freitag
et al., 2013a, b). More work is needed to understand how
densi�cation rates are linked to impurity content in a mecha-
nistic, rather than purely empirical, way. Perhaps such a mi-
croscopic description could provide an explanation why �rn
densi�cation rates at WD, to �rst order, do not appear to be
affected by order-of-magnitude variations in [Ca] loading.
One possible explanation could be that densi�cation rates
are controlled by some parameter that co-varies with Ca in
modern day �rn yet does not change appreciably over glacial
cycles (Fujita et al., 2014).

4 Constructing the WAIS Divide WD2014 chronology

4.1 Annual layer count (0–31.2 ka)

A �rst layer-counted chronology for the upper 2800 m of
the WD core based on electrical conductivity measurements
(ECM), named WDC06A-7, was presented by WAIS Divide
Project Members (2013). The WAIS chronology presented
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Figure 5. Records of abrupt DO climate variability,(a) revised Hulu Cave speleothem� 18O record on Hulu chronology with U=Th ages
above the time series (red dots),(b) NGRIP ice core� 18O on 1:0063� GICC05 chronology, and(c) WD CH4 on WD2014 (discrete data). DO
numbering is given in the bottom of the �gure following Rasmussen et al. (2014). White dots denote the midpoints of the stadial–interstadial
transitions; the orange vertical lines show the timing of the NGRIP tie points (on 1:0063� GICC05). For DO 3, 4, and 5.1 the WD2014
chronology is based on annual-layer counting, and minor timing differences exist between WD and NGRIP.

in this work, WD2014, uses an updated layer count for the
upper 2850 m, based on new data and analyses that have be-
come available since publication of WDC06A-7. These up-
dates are as follows:

1. a reassessment of the dating in the upper 577 m (2.4 ka)
using high-resolution multi-parameter chemistry data in
combination with automated layer detection algorithms
(Winstrup et al., 2012);

2. a reassessment of the dating between 577 and 2300 m
(2.4–15.3 ka) using high-resolution multi-parameter
chemistry data in combination with ECM;

3. a reassessment of the dating between 2300 and 2800 m
(15.3–29.5 ka) using ECM and dust particle measure-
ments, with the ECM having increasing importance
with depth;

4. an extension of the annual-layer dating between 2800
and 2850 m (29.5–31.2 ka) using ECM.

Details on the updated WD layer count and the layer counting
methodology are presented in part 2 of the WD2014 papers.

4.2 Methane synchronization (31.2–68 ka)

For the deep part of the core where an annual-layer count
is not available, we date WD by synchronization to well-

dated Northern Hemisphere (NH) climate records of abrupt
DO variability using the WD record of globally well-mixed
CH4 (Fig. 5). This process consists of several steps:

1. Determine the midpoint of the abrupt DO transitions in
WD CH4, NGRIP� 18O, and Hulu speleothem� 18O.

2. Assign a gas age to the WD CH4 tie points (i.e., the DO
transitions).

3. Apply the WD1 age (Sect. 3) to �nd the corresponding
ice age at the depth of the CH4 tie points.

4. Interpolate between the ice age constraints to �nd the
WD depth–age relationship.

5. Redo the1 age calculations on the new ice age scale.

6. Repeat steps 3–5 iteratively until the depth–age relation-
ship is stable within 1 year. At WD this happened after
three iterations.

These steps are described in more detail in the following sec-
tions.

4.3 Establishing the midpoint in abrupt DO transitions

The procedure for determining the midpoint of the abrupt
DO warming transitions is depicted in Fig. 6. For each of
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Figure 6. Determining the midpoint for the abrupt warming phases
of (from oldest to youngest) DO 17.2, 17.1, 16.2, and 16.1 in(a)
NGRIP� 18O (on 1:0063� GICC05),(b) WD CH4 (continuous data,
on WD2014), and(c) Hulu � 18O with U=Th ages beneath the time
series (red dots with error bars). Red dots give the midpoint (50 %)
of the DO transition; the blue dots give the 25 and 75 % marks in
the DO transitions. The DO transition at 58.35 ka was not used in
Hulu, where it is much more gradual than in the other records (pos-
sibly because calcite sampling was not perfectly perpendicular to
the stalagmite isochrones, or because growth rates were variable in
between the U=Th ages).

the transitions we manually determine pre-event and post-
event averages, as indicated by the orange lines. The averag-
ing time is set to 150 and 50 years for stadial and interstadial
periods, respectively; this difference in duration is used be-
cause (i) several of the interstadials are of short duration and
(ii) Greenland� 18O is more variable during stadial climates,
requiring longer averaging. For DO 16.1, the duration of the
pre-event stadial baseline climate was shorter than 150 years,
and the averaging time was reduced to 100 years (Fig. 6).

After determining the pre- and post-event averages, we use
linear interpolation of the time series to �nd the time at which
the variable of interest had completed 25, 50, and 75 % of the
total transition (Fig. 6). We use the 50 % marker (red) as the
midpoint of the transition, which is used in the methane syn-
chronization. The 25 and 75 % markers (blue) are used as
the � 1� uncertainty estimate. In rare cases the time series
contain inversions within the transitions that lead to ambigu-
ity in the timing of the markers; for these events we �nd the
markers using a monotonic spline �t to the data.

The midpoints of abrupt interstadial terminations were de-
termined in the same fashion (WD CH4 and NGRIP only).
Tables 1 and 2 give the results for NH warming and NH cool-
ing, respectively.

4.4 Synchronizing WD to a NGRIP–Hulu hybrid
chronology

Abrupt DO variability is expressed clearly in a great num-
ber of NH climate records (Voelker, 2002). For the pur-
pose of methane synchronization, our interest is in high-
resolution records that express the abrupt DO events very
clearly, and are furthermore exceptionally well dated. We
here use a combination of two such NH records (Fig. 5),
namely the Greenland NGRIP� 18O record (NGRIP com-
munity members, 2004), and a re�ned version of the Hulu
Cave speleothem� 18O record (Edwards et al., 2015; Reimer
et al., 2013; Southon et al., 2012) with improved resolution
and additional dating constraints (see Wang et al., 2001, for
the original, lower resolution Hulu� 18O record). The DO
events are resolved most clearly in the NGRIP� 18O record,
which is available at 20-year resolution. We use the GICC05-
modelext chronology for this core, which is based on annual-
layer counting back to 60 kaBP and ice-�ow modeling for
ice older than 60 ka (Rasmussen et al., 2006; Svensson et al.,
2006; Wolff et al., 2010). While annual-layer counting pro-
vides accurate relative ages (e.g., the duration of DO inter-
stadials), it provides relatively inaccurate absolute ages due
to the cumulative nature of counting uncertainty (Table 1).
The re�ned Hulu � 18O record also shows the abrupt DO
events in high temporal resolution (Fig. 6). The speleothem
chronology is based on U=Th radiometric dating, providing
much smaller uncertainty in the absolute ages than GICC05
(Table 1). The reason for selecting this record over other
speleothem records is the large number of U=Th dates, the
low detrital Th at the site, and the high sampling resolution
of the � 18O record (Wang et al., 2001). In the Hulu data,
as in other records of DO variability, the interstadial onsets
are more pronounced and abrupt than their terminations. We
therefore only use the timing of the former as age constraints,
as they can be established more reliably. The onset of NH
interstadial periods as expressed in Hulu� 18O is given in Ta-
ble 1.

In both the NGRIP and Hulu Cave� 18O records we have
determined the ages of the midpoints of the DO transitions
(Fig. 6; Table 1); a plot of their difference (Hulu age mi-
nus NGRIP age) is shown in Fig. 7, where the error bars
denote the root sum square of the NGRIP and Hulu mid-
point determination uncertainty (Sect. 4.3). The Hulu ages
are systematically older than the NGRIP ages, and the age
difference increases going further back in time. Note that
the Hulu–NGRIP age difference is smaller than the stated
GICC05 counting uncertainty (832 to 2573 years) but larger
than the Hulu age uncertainty (92 to 366 years). A linear �t
through these data, forced to intersect the origin, is given by
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Table 1.Overview of CH4 tie points for NH warming events. WD ages printed in boldface are assigned as part of the CH4 synchronization;
all other ages are on their independent chronologies.

NGRIP Hulu WD

Depth Age Age uncert. Midpoint Hulu age Age uncert. Midpoint Depth Gas age Ice age Midpoint
(m) (years BP) (years) (years) (years BP) (years) (years) (m) (years BP) (years BP) (years)

YD-PB 1490.89 11 619 98 23 1983.02 11 546 11 740 33
OD-BA 1604.05 14 628 185 15 2259.40 14 576 14 804 29
DO 3 1869.00 27 728 832 12 27 922 95 39 2755.74 27 755 28 144 19
DO 4 1891.27 28 838 898 14 29 134 92 21 2797.92 29 011 29 397 22
DO 5.1 1919.48 30 731 1023 11 30 876 255 37 2848.38 30 730 31186 22
DO 5.2 1951.66 32 452 1132 15 32 667 236 21 2885.44 32 631 33 051 17
DO 6 1974.48 33 687 1213 19 34 034 337 36 2913.01 33 874 34 283 18
DO 7 2009.62 35 437 1321 16 35 532 299 20 2958.64 35 636 35 982 20
DO 8 2069.88 38 165 1449 13 38 307 155 19 3021.37 38 381 38 681 33
DO 9 2099.50 40 104 1580 13 40 264 241 42 3066.52 40 332 40 690 19
DO 10 2123.98 41 408 1633 14 41 664 310 27 3094.17 41 643 41 980 18
DO 11 2157.58 43 297 1736 17 43 634 144 26 3130.44 43 544 43 866 15
DO 12 2221.96 46 794 1912 21 47 264 153 20 3195.25 47 064 47 335 16
DO 13 2256.73 49 221 2031 17 49 562 251 52 3237.65 49 506 49 836 19
DO 14 2345.39 54 164 2301 11 3311.09 54 480 54 747 13
DO 15.1 2355.17 54 940 2349 16 3322.24 55 261 55 564 11
DO 15.2 2366.15 55 737 2392 26 3329.72 56 063 56 381 14
DO 16.1 2398.71 57 988 2498 11 3350.44 58 328 58 610 9
DO 16.2 2402.25 58 210 2510 12 58 545 226 22 3352.59 58 552 58 848 14
DO 17.1 2414.82 59 018 2557 15 59 364 366 18 3360.02 59 364 59 627 17
DO 17.2 2420.35 59 386 2573 15 59 772 254 23 3363.42 59 735 59 997 25
DO 18 2465.84 64 049 2611 30 3388.73 64 428 64 773 15

Figure 7. Hulu–NGRIP age offset at the midpoint of the DO� 18O
transitions. The error bars denote the root sum square of the mid-
point determination uncertainty in NGRIP and Hulu� 18O (Table 1).
The GICC05 ages are placed on the BP 1950 scale rather than the
b2k scale (years prior to 2000 CE).

0:0063� GICC05 age, suggesting that the GICC05 annual-
layer count on average misses 6.3 out of every 1000 layers.
Because of this observation we use a linearly scaled version
of the GICC05 chronology (GICC05� 1.0063) as the target
chronology for methane synchronization. This approach has
several advantages. First, it respects both the superior rela-
tive ages (i.e., interval durations) of GICC05, as well as the

superior absolute ages of the Hulu chronology. Second, it is
very simple to convert between the WD2014 and GICC05
chronologies (CH4-synchronized section of the chronology
only); one simply needs to divide WD2014 ages by 1.0063
(and add 50 years to convert to the b2k reference date).
Third, it still allows for direct synchronization of WD CH4
to the NGRIP� 18O record, providing more tie points than di-
rect synchronization to the Hulu record would. Note that the
GICC05� 1.0063 target chronology respects the Hulu age
constraints in an average sense only; the age of individual
events differs between Hulu and our target chronology by up
to 180 years. Our approach therefore represents only a �rst-
order correction of a growing offset between GICC05 and
Hulu; nonlinear temporal changes in the counted dating er-
ror may exist from one tie point to the next (Fleitmann et al.,
2009).

The exercise of �nding the transition midpoints and deter-
mining the GICC05–Hulu scaling factor was performed by
two of the authors (J. P. Severinghaus and C. Buizert), inde-
pendently of each other. The scaling factors obtained were
1.0063 and 1.0064, respectively, showing that, to �rst order,
this result is insensitive to (subjective) judgment in identi-
fying the transitions. The difference between the Hulu ages
and 1:0063� GICC05 ages are all within the stated Hulu 2�
dating error (Table 1). Consequently, our chronology is not
in violation of any Hulu constraint as it respects the Hulu 2�
error at all of the tie points. In deriving the scaling we have
assumed that the abrupt DO transitions observed in NGRIP
and Hulu are simultaneous, which is not necessarily true. The
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variations in monsoon intensity represented by Hulu� 18O
are commonly explained by meridional movement of the In-
tertropical Convergence Zone (ITCZ) and tropical rainfall
belts (Wang et al., 2001, 2006; Kanner et al., 2012); model-
ing work suggests such atmospheric readjustments occur on
decadal timescales in response to NH high-latitude forcing
(Chiang and Bitz, 2005; Broccoli et al., 2006; Cvijanovic and
Chiang, 2013). Moreover, CH4 emission changes are near-
synchronous with Greenland� 18O variations, which they lag
by only a few decades on average (Huber et al., 2006; Baum-
gartner et al., 2014; Rosen et al., 2014). Since both CH4
emissions and Hulu� 18O are closely linked to tropical hy-
drology, timing lags between NGRIP and Hulu are also ex-
pected to be on decadal timescales. The uncertainty in the
NGRIP–Hulu phasing is therefore probably small (decadal)
relative to the correction we apply (up to 400 years).

Rather than synchronizing WD CH4 to Greenland CH4
records, we have chosen to synchronize directly to NGRIP
� 18O, which varies in phase with CH4 (but with a nearly
constant time lag). We let the midpoint in the CH4 transi-
tions lag the midpoint in the NGRIP� 18O transition by 25
years, as suggested by studies of Greenland� 15N-CH4 phas-
ing (Huber et al., 2006; Baumgartner et al., 2014; Rasmussen
et al., 2013; Kindler et al., 2014; Rosen et al., 2014). The
rationale behind this approach is threefold. First, through-
out MIS 3 the NGRIP� 18O record has both better precision
and higher temporal resolution than any available Greenland
CH4 record (Baumgartner et al., 2014; Brook et al., 1996;
Blunier et al., 2007). Second, the dating of Greenland gas
records depends on the highly variable1 age function, which
is not equally well constrained for all DO events (Schwander
et al., 1997; Rasmussen et al., 2013). This reliance on Green-
land 1 age would introduce an additional source of uncer-
tainty. The NGRIP� 18O record, on the other hand, is accu-
rately dated through the GICC05 layer count. Third, Green-
land CH4 records are more strongly impacted by �rn smooth-
ing than the WD CH4 record, because glacial accumulation
is lower in Greenland (Greenland glacial1 age is about 2–3
times as high as WD1 age during that time). In summary,
our approach circumvents the uncertainties associated with
using Greenland CH4 as an intermediary, or, to state this an-
other way, the uncertainty in the phasing between CH4 and
Greenland� 18O is smaller than the uncertainty in the Green-
land1 age.

4.5 Interpolation between age constraints

We can assign a gas age to each of the depths where an abrupt
WD CH4 transitions occurs; we do this for DO 4.1 through
DO 18, i.e., the events prior to 31.2 kaBP (the onset of the
WD layer count). The gas age we assign is equal to 1.0063
times the GICC05 age for the same event, with 25 years sub-
tracted to account for the slight CH4 lag behind Greenland
� 18O. By adding1 age (Sect. 3) to this gas age we assign an

ice age. These assigned ages are printed in boldface in Ta-
bles 1 and 2.

To obtain a continuous depth–age relationship between
these ice age constraints, we have to apply an interpolation
strategy. This task amounts to estimating the annual-layer
thickness�.z/ along the deep part of the core. The simplest
approach is to assume a constant accumulation rate in be-
tween the age constraints; this is shown in Fig. 8b for the case
where we use the age constraints from NH warming events
only (black) or the age constraints from both NH warming
and cooling events (red). The disadvantage of this approach
is that it results in discontinuities in�.z/ (the �rst derivative
of the depth–age relationship), which we consider highly un-
realistic. A more realistic approach is therefore to assume
that �.z/ is continuous and smooth (Fudge et al., 2014);
Fig. 8b shows two scenarios in which we use a spline func-
tion to estimate�.z/ , where again we have applied age con-
straints from NH warming events only (orange) or age con-
straints from both NH warming and cooling events (blue).

For comparison, pastA obtained from the �rn densi�ca-
tion model (Sect. 3) is plotted in green (Fig. 8b). While the
� 15N-basedA follows the synchronization-basedA estimates
broadly, the millennial-scale details do not agree. We want to
point out that this is not unexpected, since both methods have
their imperfections. In particular, any errors in the (stretched)
GICC05 age model or in our modeled thinning function
f � .z/ will strongly impact the synchronization-basedA es-
timates in Fig. 8b. The discrepancy is pronounced between
60 and 65 ka, where we have to strongly reduce�.z/ in order
to �t the age constraint(s) from DO 18, while� 15N provides
no evidence for lowA during this interval.

For the WD2014 chronology we have applied the smooth
�.z/ interpolation scheme using all age constraints (i.e., both
NH warming and cooling events). The midpoint detection
uncertainty is comparable for all events and systematically
smaller at the start of interstadial periods than at the termi-
nations (Tables 1 and 2). For short interstadials (e.g., DO 9)
this leads to a large relative uncertainty in the event dura-
tion, and thereby a large uncertainty in the implied accumu-
lation rates (Fig. 8b). We force the interpolation to �t all NH
warming constraints perfectly, yet relax this requirement for
NH cooling constraints to prevent large swings in�.z/ for
the short-duration events. The WD2014 chronology �ts the
NH warming and NH cooling age constraints with a 0- and
16-year rms offset, respectively. Because the duration of (in-
ter)stadial periods is well constrained in the layer-counted
GICC05 chronology, using both the NH warming and NH
cooling tie points results in a more robust chronology. The
duration of (inter)stadial periods is 0.63 % longer in WD2014
than in GICC05, which is well within the stated GICC05
counting error of 5.4 % (31.2–60 ka interval).
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Figure 8. Interpolating between the CH4 age constraints.(a) WD discrete CH4 record with the abrupt stadial–interstadial transitions marked.
DO numbering given at the top of the panel.(b) Different annual-layer thickness scenarios, converted to an accumulation rate for comparison
to the � 15N-based �rn model reconstructions. The interpolation strategy is to use either constant accumulation rates between tie points
(“constant”) or a smoothly varying�.z/ (“smooth”); the age constraints used are either only the NH warming events (“warming”), or both
the NH warming and cooling events (“all”).(c) Estimated 2� uncertainties in the WD2014 chronology due to1 age, choice of interpolation
scheme, midpoint detection, and the absolute age constraints used in the synchronization. Total absolute ice age uncertainty plotted in solid
black; relative age uncertainty (i.e., with absolute age uncertainty in the Hulu–GICC05 master chronology withheld) plotted in dashed black.

4.6 Age uncertainty

The age uncertainty we assign to the deep part (> 2850 m) of
the WD2014 chronology has four components.

The �rst source of uncertainty is the1 age calculation; we
use the 2� uncertainty obtained in the1 age sensitivity study
(Sect. 3.2). The second source of uncertainty is the choice of
interpolation scheme used to obtain a continuous chronol-
ogy; here we use the standard deviation between the four
different interpolation schemes of Fig. 8b as an uncertainty
estimate. The third source of uncertainty is the dif�culty in
determining the timing of the abrupt events in the time se-
ries; we use the uncertainty in the midpoint evaluation (root
sum square of WD CH4 and NGRIP� 18O estimates). The

last source of uncertainty is the age uncertainty in the hy-
brid NGRIP–Hulu chronology that we synchronize to. We
use the stated Hulu age uncertainty plus 50 years to account
for possible leads or lags in the NGRIP–Hulu� 18O phasing,
plus the absolute value of the offset between the Hulu ages
and the 1:0063� GICC05 ages. For DO events where we do
not have reliable Hulu age estimates (Table 1), we set the
uncertainty to the Hulu age uncertainty of the nearest event,
plus the uncertainty in the interval duration speci�ed by the
GICC05 layer count. For example, for DO 14 we do not have
a reliable Hulu age estimate, and we use the Hulu age un-
certainty of DO 16.2 (226 years) plus the uncertainty in the
DO 14 to DO 16.2 interval duration on GICC05 (209 years),
giving a total of 226C 209D 435 years.
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Table 2.Overview of CH4 tie points for NH cooling events. WD ages printed in boldface are assigned as part of the CH4 synchronization;
all other ages are on their independent chronologies

NGRIP WD

Depth Age Age uncert. Midpoint Depth Gas age Ice age Midpoint
(m) (years BP) (years) (years) (m) (years BP) (years BP) (years)

BA-YD 1524.21 12 775 136 81 2096.61 12 769 12 987 52
DO 3 1861.91 27 498 822 52 2747.25 27 520 27 905 38
DO 4 1882.59 28 548 887 17 2787.99 28 696 29 090 61
DO 5.1 1916.45 30 571 1010 70 2845.37 30 618 31 067 50
DO 5.2 1939.71 31 992 1108 13 2875.86 32 168 32 607 70
DO 6 1964.52 33 323 1192 37 2905.55 33 508 33 905 60
DO 7 1990.58 34 703 1286 13 2939.09 34 897 35 292 50
DO 8 2027.43 36 571 1401 21 2986.58 36 776 37 172 32
DO 9 2095.51 39 905 1572 42 3063.79 40 132 40 492 25
DO 10 2112.53 40 917 1621 44 3083.89 41 150 41 508 44
DO 11 2135.66 42 231 1685 27 3110.76 42 472 42 823 69
DO 12 2171.17 44 308 1783 41 3149.89 44 562 44 904 47
DO 13 2242.85 48 440 1996 27 3226.93 48 720 49 054 20
DO 14 2261.49 49 552 2052 20 3243.03 49 839 50 165 65
DO 15.1 2353.66 54 850 2339 18 3321.15 55 170 55 469 14
DO 15.2 2359.92 55 369 2370 55 3326.47 55 693 55 983 45
DO 16.1 2375.88 56 555 2435 49 3337.98 56 887 57 219 76
DO 16.2 2400.56 58 123 2508 15 3351.80 58 465 58 756 9
DO 17.1 2406.52 58 544 2530 35 3355.54 58 888 59 151 61
DO 17.2 2417.77 59 257 2570 18 3362.26 59 606 59 862 24
DO 18 2462.07 63 810 2611 14 3387.28 64 187 64 547 32

The uncertainties (2� values) are plotted in Fig. 8c (log
scale). We assume these four uncertainties to be independent,
and use their root sum square as the total uncertainty estimate
on the WD2014 ice age scale (Fig. 8c, black curve). Note that
the fourth source of uncertainty is only relevant when con-
sidering absolute ages; when evaluating relative ages (e.g.,
between WD ice and WD gas phase, or between WD and
NGRIP), this last contribution does not need to be consid-
ered. For the deepest WD ice (3404 m depth) we thus �nd an
age of 67:7 � 0:9 kaBP.

5 Discussion

While the WAIS Divide ice core does not extend as far back
in time as deep cores from the East Antarctic Plateau, its
relatively high temporal resolution (due to the high snow
accumulation rate) makes it an ice core of great scienti�c
value. WD accumulation rate during the LGM (� 10 cma� 1

ice equivalent) is still higher than the present-day accumu-
lation rate at the EPICA (European Project for Ice Coring
in Antarctica) Dronning Maud Land core (7 cma� 1), which
is generally considered a high-accumulation core (EPICA
Community Members, 2006). With 68 ka in 3404 m of core,
the core average� is 5 cma� 1, at the onset of the last
deglaciation (18 kaBP)� is around 4 cma� 1, and near the
bed � is around 0.4 cma� 1. This high temporal resolution

provides the opportunity for obtaining very detailed climatic
records.

High accumulation rates also result in a small1 age. Fig-
ure 9 compares1 age between several Antarctic cores (note
the logarithmic scale).1 age at WD is approximately one-
third of the1 age at EPICA DML (EDML) and Talos Dome
(TALDICE), and one-tenth of the1 age at EPICA Dome C
(EDC), Vostok, and Dome Fuji. Because the uncertainty in
the1 age (or1 depth) calculation is typically on the order of
20 %, a smaller1 age allows for a more precise interhemi-
spheric synchronization with Greenland ice core records us-
ing CH4. The small WD1 age uncertainty during MIS 3
allows for investigation of the phasing of the bipolar see-
saw (Stocker and Johnsen, 2003) at sub-centennial precision
(WAIS Divide Project Members, 2015).

In comparing the shape of the1 age pro�les, there are
some interesting differences (Fig. 9). It is important to re-
alize that not all the1 age histories shown were derived in
the same way; WD and Dome Fuji1 age were derived using
densi�cation models, and the other four were derived using
the1 depth approach (Parrenin et al., 2012) and a Bayesian
inverse method that includes a wide range of age markers
(Veres et al., 2013). We will therefore focus on comparing
the WD and Dome Fuji results.1 age at WD shows more
pronounced variability than at Dome Fuji, particularly dur-
ing MIS 3. The reason is that the glacial �rn pack at Dome
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Fuji is about 4000 years old, and consequently the �rn col-
umn integrates over 4000 years of climate variability, thereby
dampening the1 age response to millennial-scale climatic
variability. At WD the glacial �rn layer is only about 350
years old, and therefore the �rn is in near equilibrium with
the millennial-scale climate variations. This difference in re-
sponse time is also obvious during the deglaciation, where
WD 1 age transitions from glacial to interglacial values be-
tween 18 and 14.5 kaBP, while Dome Fuji takes more time
(18–10 kaBP). Surprisingly, EDML1 age does not show
a strong deglacial1 age response, unlike all the other cores.

The relatively small1 age at WAIS Divide also allows for
precise investigation of the relative timing of atmospheric
greenhouse gas variations and Antarctic climate (Barnola
et al., 1991; Pedro et al., 2012; Caillon et al., 2003; Par-
renin et al., 2013; Ahn et al., 2012). Recent works suggest
that during the last deglaciation the rise in atmospheric CO2
lagged the onset of pan-Antarctic warming by approximately
0 to 400 years (Pedro et al., 2012; Parrenin et al., 2013). This
Antarctic warming around 18 kaBP is presumably driven by
the bipolar seesaw, as it coincides with a reduction in At-
lantic overturning circulation strength as seen in North At-
lantic sediment records (McManus et al., 2004). The WD
1 age at 18 ka (gas age) is 515� 91 years (2� ), much smaller
than at central East Antarctic sites such as EPICA Dome
C, where1 age is approximately 3850� 900 years (Veres
et al., 2013, with the1 age uncertainty taken to be the dif-
ference between the gas age and ice age uncertainties). The
precision with which one can determine the relative phasing
of climatic (i.e.,� 18O of ice) and atmospheric signals is set
by the uncertainty in1 age (or equivalently, the uncertainty
in 1 depth). High-resolution WD records of CO2 and CH4
(Marcott et al., 2014) place the onset of the deglacial rise in
the atmospheric mixing ratio of these greenhouse gases on
the WD2014 chronology at 18 010 and 17 820 years BP, re-
spectively. However, evaluating the relative phasing of CO2
and Antarctic climate is complicated by the observation of
asynchronous deglacial warming across the Antarctic con-
tinent (WAIS Divide Project Members, 2013). Attempts to
capture the climate–CO2 relationship in a single lead-lag
value may be an oversimpli�cation of deglacial climate dy-
namics.

An important next step will be to synchronize the WD
chronology with other Antarctic cores via volcanic match-
ing and other age markers (e.g., Severi et al., 2007; Sigl
et al., 2014). Because of the annual-layer count and possi-
bility of tight synchronization to Greenland ice cores, WD
could contribute to an improved absolute dating of Antarctic
cores, as well as improved cross-dating between cores. Such
cross-dating could help inform the WD chronology as well,
particularly in the deepest part of the core, where the ice is
potentially highly strained, as suggested by the interpolation
dif�culties in the 60–65 ka interval (Fig. 8b). With a synchro-
nized chronology, WD could improve the representation of
West Antarctic climate in Antarctic ice core stacks (Pedro

Figure 9.Comparison of1 age for different Antarctic cores, plotted
on the gas age scale. Dome Fuji1 age from Kawamura et al. (2007);
WD from Sect. 3; all others from Bazin et al. (2013); Veres et al.
(2013).

et al., 2011; Parrenin et al., 2013), and provide a more re-
�ned pan-Antarctic picture of the climate–CO2 relationship.

6 Summary and conclusions

We have presented a �rst chronology for the deep (> 2850 m)
section of the WAIS Divide ice core, which is based on
stratigraphic matching to Greenland ice cores using glob-
ally well-mixed methane. We use a dynamical �rn densi-
�cation model constrained by� 15N data to calculate past
1 age, and �nd that1 age was smaller than 525� 120 years
for all of the core. Using high-resolution WD records of at-
mospheric CH4, we synchronize WD directly to Greenland
NGRIP � 18O for the abrupt onset and termination of each
of the DO interstadials. To each event we assign an age cor-
responding to 1.0063 times its GICC05 age, which brings
the ages in agreement with the high-resolution U=Th-dated
Hulu speleothem record. The uncertainty in the �nal chronol-
ogy is based on the uncertainties in (i) the1 age calculations,
as evaluated with a sensitivity study; (ii) the interpolation
strategy, as evaluated by comparing four different interpo-
lation methods; (iii) determining the timing of events in the
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different time series; and (iv) the ages of the hybrid NGRIP–
Hulu chronology we are synchronizing to.

Due to the combination of a small1 age and a high-
resolution methane record, the WAIS Divide ice core can be
synchronized more precisely to Greenland records than any
other Antarctic core to date. This is important when inves-
tigating interhemispheric climate relationships such as the
bipolar seesaw. The small WD1 age furthermore provides
valuable opportunities for precise investigation of the rela-
tive phasing of atmospheric greenhouse gas variations and
Antarctic climate.

Appendix A: Densi�cation physics

The densi�cation rates used in this work are based on the
empirical steady-state model by Herron and Langway (1980)
(the H-L model). We use the H-L model with minor modi�-
cations that allow it to be run dynamically (i.e., with time-
variableT andA) and to include the softening effect of im-
purities following Freitag et al. (2013a). The H-L model di-
vides the �rn column in two stages, separated at the critical
density� c D 550 kgm� 3, occurring at the critical depthzc.

For the upper �rn (� � � c, stage 1), the densi�cation rates
are given by

d�
dt

D k1A .� ice � � / ; (A1)

with

k1 D 11exp
�

�
E1

RT

�
; (A2)

whereE1 D 10:16 kJ mol� 1 is the activation energy for stage
1 andR is the universal gas constant. Because both the sink-
ing velocity of deposited layers (w D dz=dt) and the densi�-
cation rate scale linearly withA, the resulting density–depth
pro�le �.z/ in stage 1 becomes independent ofA, and sensi-
tive toT variations only.

For the deeper �rn (� > � c, stage 2), we use Eq. (4c)
from Herron and Langway (1980), which was �rst derived
by Sigfús J. Johnsen. This equation gives the densi�cation
rate in terms of overburden load, which allows the model to
be run dynamically. The stage 2 densi�cation rates are given
by

d�
dt

D k2
2

.� z � � zc/.� ice � �/

ln
�
.� ice � � c/=.� ice � �/

� ; (A3)

with

k2 D 575exp
�

�
E2

RT

�
; (A4)

where E2 D 21:4 kJmol� 1 is the activation energy for
stage 2 and� z denotes the �rn overburden load at

a given depth in Mgm� 2:

� z D

zZ

0

� .z 0/dz0=1000: (A5)

Note that we divide by 1000 to convert from kgm� 3 to
Mgm� 3, the units used by Herron and Langway (1980).

We use the mathematical description by Freitag et al.
(2013a) to include the hypothesized �rn softening effect of
impurities. In this approach an increasing Ca concentration,
as a proxy for mineral dust content, lowers the activation en-
ergy of �rn, thereby enhancing densi�cation rates. This is
tantamount to stating that dusty �rn behaves as if it were
“warmer” than its climatological temperature. The H-L ac-
tivation energies of Eqs. (A2) and (A4) are modi�ed by [Ca]
in the following way:

ECa D EHL � �
�
1 � � ln

�
TCaU

TCaUcrit

��
; (A6)

whereECa andEHL are the Ca-modi�ed and original H-L
activation energies, respectively, [Ca]crit D 0:5 ngg� 1 is the
minimum concentration at which impurities affect densi�-
cation, and� and � are calibration parameters. Whenever
TCaU.z/ < TCaUcrit, we setTCaU.z/ D TCaUcrit.

The parameter� sets the sensitivity to dust loading, and
� is a normalization parameter that is included to account
for the fact that the original H-L model was calibrated with-
out the impurity effect. Consequently, if� > 0, one needs
to compensate by setting� > 1 to preserve the original H-
L calibration. The work by Freitag et al. (2013a) recom-
mends� D 0:01 and� D 1:025 (which yieldsECa D EHL at
[Ca]D 5.73 ngg� 1).

Using the recommended value of� D 1:025 at WD pro-
vides a poor �t to observations of present-day �rn density
and close-off depth. The optimal �t to present-day WD ob-
servations is obtained using an activation energy equal to
1:007� EHL ; this is in between the values suggested by Her-
ron and Langway (1980) and Freitag et al. (2013a). In the ex-
periment presented in Fig. 4 we changed the dust sensitivity
� ; it is clear that we need to simultaneously change� to keep
the model well-calibrated to present-day conditions. Due to
the fact that the mean late Holocene WD [Ca] is around
0.8 ngg� 1, we let� D 1:007=.1� � lnT0:8=0:5U/ in the exper-
iment of Fig. 4. This approach ensures that the present-day
ECa is invariant with� , and equalsECa D 1:007� EHL . This
means that whatever value we choose for� , we will obtain
a good �t to the present-day1 age,� 15N, andA values that
are well known from direct observations (Battle et al., 2011).

To validate the H-L model1 age simulations, we repeated
the �rn modeling using the densi�cation physics of Arnaud
et al. (2000), which is also the basis of the model by Gou-
jon et al. (2003). Our implementation of the Arnaud model is
based on the description in the latter paper, with one modi�-
cation at the critical density that we outline here.
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In the Arnaud model, densi�cation in the stage 1 follows
the work of Alley (1987), and is given by

dD
dt

D 

�

P
D2

� �
1 �

5
3

D
�

; (A7)

with D the relative densityD D �=� ice, P the overburden
pressure, and
 a scaling factor used to make the densi�ca-
tion rates continuous across the critical densityDc. Stage 2
densi�cation is given by

dD
dt

D kA

�
D2Dc

� 1
3
� a

�

� 1
2
�

4�P
3aZD

� 3

; (A8)

with

kA D 4:182� 104exp
�

�
EA

RT

�
; (A9)

wherea is the average contact area between the grains,Z
is the coordination number, andEA is the activation en-
ergy (60 kJmol� 1). Arnaud densi�cation rates for stage 3
(D � 0:9) are describe elsewhere (Goujon et al., 2003; Ar-
naud et al., 2000).

The dif�culty in implementing this model is the following.
The densi�cation rates of Eqs. (A7–A8) exhibit a discontinu-
ity at the critical densityD D Dc D 0:6 that cannot be reme-
died with the scaling factor
 . On approachingDc, densi�-
cation rates given by Eq. (A7) go to zero (due to the inclu-
sion of the term.1� 5

3D), while densi�cation rates given by
Eq. (A8) go to in�nity because the contact areaa equals zero
at D D Dc. Clearly neither equation gives a realistic result
at D D Dc. Therefore, in our implementation of the Arnaud
model we use the H-L densi�cation rates of Eq. (A1) instead
of Eq. (A7) in stage 1. We take the onset of stage 2 to be the
density at which Eqs. (A1) and (A8) intercept, thus avoiding
the singularity in Eq. A8. This approach has the additional
advantages of removing dependence on ad hoc scaling factor

 and introducing realistic temperature dependence for stage
1 densi�cation. Because stage 1 spans just the top 10–20 %
of the �rn column, the modi�cation has only a minor in�u-
ence on the overall behavior of the Arnaud model. The Gou-
jon model code avoids the singularity in Eq. (A8) by extend-
ing stage 1 toDc C " (Anaïs Orsi, personal communication,
2014), a procedure not described in Goujon et al. (2003).

The Supplement related to this article is available online
at doi:10.5194/cp-11-153-2015-supplement.
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